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Abstract: Accurate quantification of bearing material loss from retrieved metal-on-metal (MOM) hip replacements is
key to understanding their failure. Geometric methods are currently the only means of estimating volumetric wear
from retrieved implants and numerous contrasting approaches to obtain these measures have been published.
Data collection strategies have been thoroughly discussed and refined to minimise the effect of error incurring factors;
however, there is an opportunity to optimise the current methods of estimating the pre-wear geometry and, therefore,
improve the accuracy of wear volume measurements. An automated analysis strategy to quantify volumetric wear is
proposed in this study, which utilises the entire bearing surface to determine the implants pristine geometry.
This involves the iterative removal of geometrically effected data points to optimise the fit and size of a perfect sphere.
Once fitted, this reference geometry is compared with the measured data, in its entirety, to calculate the volume
change representative of the quantity of material lost. Improving the reliability of this parameter could influence
the care of a million patients that remain with MOM hip implants. Rigorous validation of this method will
dominate future work, ensuring that the accuracy and reliability of this approach are sufficient to provide clinically

meaningful data.

1 Introduction

The high prevalence of metal-on-metal (MOM) hip implant
revision, due to adverse reactions to metal debris has been widely
reported. The national joint registry currently states a 10 year
cumulative probability of revisions of 17.15 and 18.2% for
cemented and uncemented MOM primary hip replacements,
respectively [1]. In 2017, the Medicines and Healthcare products
Regulatory Agency (MHRA) published an updated Medical
Device Alert, recommending that all MOM hip patients, regardless
of symptoms, undergo frequent follow-up and blood metal level
testing [2]. The necrotic effect of metal debris on peri-prosthetic
tissue has also been well-documented [3], with the levels of
blood cobalt and chromium ions being correlated with the amount
of wear measured at the bearing surface during retrieval
analysis [4, 5].

Clinical evidence suggests that the dose response to metal debris
can differ between individual patients; the definition of clinically
relevant volumes of wear is, therefore, complex and must consider
influential patient factors. However, a key contributor to determine
clinically relevant wear volumes is the ability to accurately
quantify the amount of material lost from MOM bearing surfaces;
this information may influence the management of the million
patients worldwide, within which this bearing type remains
implanted.

Many implant factors contribute to wear, including surface
roughness and finish, cup-head diametrical clearance, lubrication
mechanisms and the influence of biological and foreign body
debris [6-12]. Surgical and patient factors can also affect the
amount of wear seen in retrieved hips, ranging from implant
positioning to patient activity levels [5, 13, 14].

Gravimetric analysis is currently considered the ‘gold standard’
for measuring material loss from orthopaedic devices [15, 16];
however, it is dependent on obtaining implant mass prior to
wearing. This requirement limits its use to hip simulator research
and validating new methods [17], as pre-implantation component
mass is unobtainable for retrieval analysis.

1.1 Geometric bearing surface analysis

A range of tools and methodologies have been used to acquire digital
representations of bearing surfaces, as seen in Table 1, most often
consisting of point cloud data. Over 20 years ago, Schmidt et al.
[19] used a roundness measuring machine to characterise the linear
wear depth of retrieved hip implants, while more recently, coordinate
measuring machines have been commonly used to map their
surfaces [16, 23, 24]. Other methods such as the RedLux Artificial
Hip Profiler have also been utilised to capture raw geometrical data,
but require similar post-processing to all other approaches [27].

In the utilisation of coordinate measuring machines (CMMs), a
range of strategies have also been developed to scan the bearing
surface, along with numerous methods of estimating the unworn
surface for comparison. When scanning the cup or head of a hip
replacement, a probe is instructed to follow a predefined path
along their surfaces; this has varied from parallels of latitude to
meridians of longitude, with different geographical points of
emanation. It is generally accepted that a sufficient number of data
points are required when estimating the volume of material loss,
with both the ISO standard 14242-2 and American Society for
Testing and Materials (ASTM) standard F2979-14 stating a greatest
acceptable point spacing of 1 and 0.5 mm, respectively [30, 31].

Bills et al. [15] demonstrated the importance of probing strategy
when calculating bearing volume, showing a difference of over
350 mm® when using 40 times the number of scan lines and
1/20th the original point pitch. However, through the analysis of
an explanted component using a variety of scanning parameters,
Langton et al. [29] saw no significant difference in their results,
suggesting that the effect of point spacing was not as considerable
as the accurate identification of the unworn surface.

1.2 Data analysis: estimating the pre-wear geometry and
wear volume

The development of international standards has facilitated some
consistency between probing strategies employed by different
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Table 1 Continued

Data analysis

Scanning strategy

Year

First author

research groups; however, methods of analysing this data to estimate
material loss volumes remain either individualised or tailored to the
approach of each researcher.

As previously discussed, to determine the volume of material loss,
the original unworn geometry must be approximated. The majority
of methods are based on the concept of extrapolating this pre-wear
surface, often referred to as pristine, zero cycle or virgin surfaces,
from an isolated region of the bearing that is considered unworn.
There are, however, limitations to this approach, especially
considering that the subjects under analysis are retrieved hip
implants, which may have remained in vivo for a number of years
and exposed to multiple deformation forces. Macroscopic visual
analysis of these bearings suggests that considerable portions of
the devices are often no longer geometrically equivalent to their
pre-use state. Additionally, gradual transitions are common at
boundaries between identifiably worn and unworn regions. This
exposes a limitation of methods, where only a speculated worn
region is considered in the calculation of material loss [26], as
these factors hinder our ability to identify all worn regions in their
entirety. Acknowledging these constraints, the accurate
identification of the unworn regions is essential to minimise error
when obtaining a reference shape for comparison.

Kothari et al. [21] were one of the first to adopt the approach of
fitting a perfect sphere to measured data through least-square
regression, once non-spherical regions were excluded. When
analysing the measured data set, the identification and exclusion of
points that represent geometrically affected regions are crucial in
generating an accurate estimation of the pre-wear surface.
However, implant sphericity can be influenced by many factors
such as manufacturing tolerances and component deformation, in
addition to wear. A consequential error in the defined reference
sphere diameter affects its deviation from each measured data
point, culminating in an even greater magnitude of error when
computing the change in volume (i.e. small errors in estimated
diameter can lead to large changes in estimated volume).

In an attempt to better isolate the unworn surface, Lord ef al. [16]
used the measured points with the radii of the highest frequency to
define the size of the perfect sphere; assuming that the most
common radii would represent the remaining points from the
pre-wear surface. The advantage of this approach is that the entire
bearing surface is acknowledged, considering each point
individually, rather than a subset of points representing localised
unworn patches. However, this method may be compromised in
the analysis of implants with extensive wear, as the frequency of
pristine radii would be reduced. The concept of a perfect sphere
(constant radius) comparison may also lead to errors, as it assumes
uniformity within the ‘off-the-shelf” product; the variability of
manufacturing tolerances may impact these calculations. Ideally, a
three-dimensional (3D) reconstruction of the pre- and post-wear
surfaces of the implant would be compared; however, the use of a
best-fit sphere is currently the most reliable approach despite its
conservatism.

Morlock et al. [23] considered overall bearing deformation, due to
the press-fit process, significant enough to be accounted for by fitting
an ellipsoidal surface to the data set. Points with the greatest
deviation from this surface were then removed to optimise the fit,

Volume calculation
Comparison between reference and measured
data achieved using a CAD software package,

Catia (Dassault Systems, France).

Points included in the fit

All points
Same data processing method [16].

Fitting method
Least-square regression method was used to
best fit the reference geometry, which was

then adjusted manually to optimise the fit
through the unworn region and account for

the wear scar.

Reference
geometry
sphere

scan lines: polar grid, concentrating
lines also emanating from the pole

CMM: Zeiss Prismo (Carl Zeiss Ltd.,
This method was adjusted from [16]

Reference geometry: the geometry used to represent the pristine surface; fitting method: method of fitting the reference geometry to measured data points; points included in fit: the points to which the reference
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assessed on their ability to estimate the volume of material lost from
a worn, retrieved hip bearing. Carmignato et al. [28] and others
evaluated the uncertainty of their methods following the ‘Guide to
the expression of uncertainty in measurement’. Numerous factors
have been discussed in this short communication that may
influence the quantification of material loss from hip implants; a
lack of conformity between validation methods makes it difficult
to directly compare and assess these different strategies.

1.3 Summary

Methods of scanning the bearing surface geometry of retrieved hip
implants using coordinate measuring machines have been
well-developed. However, it is acknowledged that the current
analysis approaches to quantifying wear volumes need further
refinement. This is largely due to the challenges in accurately
defining the pre-worn surface geometry. Many currently used
methods attempt to extrapolate the unworn geometry from
localised patches, believed to be pristine. Some methods consider
larger portions of the bearing surface, which may enable better
estimation of the unworn geometry; however, the analysis method
could be refined to more reliably identify points that hinder an
optimum perfect sphere estimation.

Building on previous methods, this short communication aims to
introduce an automated analysis strategy to quantify material loss
volumes, which maximises the number of measured points used to
reconstruct the pristine geometry by (i) considering data points
across the entire bearing surface and (ii) through iterative removal
of data points that are not representative of the unworn geometry
until a defined root-mean-square error (RMSE) target is met.

2 Material and methods
2.1 Measurement of bearing surface

Point cloud representations of each bearing surface (cup and head)
were generated using a Zeiss Prismo (Carl Zeiss Ltd., Rugby, UK)
coordinate measuring machine and a previously published
scanning strategy [15]. This involved a 2mm ruby stylus
following a number of longitudinal scan lines between the
bearings pole and equator. The number of these paths is
determined by the size of the component, allowing the distance
between the points at the equator to remain below 0.5 mm, in
accordance with the ASTM standard [30]. The point pitch along
each line is also maintained at this distance. For example, a
40 mm diameter head would be analysed using just in excess of
250 scan lines, accumulating around 17,500 data points.

2.2 Quantification of wear

The point clouds of each component, generated using a CMM, were
directly imported into a custom developed software package.
Initially, a sphere was best fitted to all the measured data points.
The target RMSE between these two geometries was defined as
<2 um, in accordance with ASTM F2979-14 [30]. With each
iteration, both the RMSE and the individual error of each data
point from the best-fit sphere were calculated. Measured points
were then removed from the model if their individual error was
not within ~2 standard deviations of the mean error and located
on the worn side of the components, relative to the best-fit sphere.
This process was repeated, with a new best-fit sphere defined with
each iteration; the process was allowed to continue until the
RMSE converged to a value below 2 pm or until the maximum
number of iterations were performed. The maximum number of
iterations was initially defined as 100 in order to optimise the
processing speed; this was increased if the RMSE did not
converge below 2 pm.

The data points remaining at the end of this iterative process were
used to define the unworn geometry of the retrieved component. The
difference in volume between (i) this unworn geometry and (ii) the

Biosurf. Biotribol., 2019, Vol. 5, Iss. 1, pp. 28-33

geometry formed by all the measured data points was calculated
and considered representative of the volume of material loss from
each component.

2.3 Specimen specifications

Twelve retrieved MOM hips were analysed in this paper, utilising
the previously described method to obtain a volumetric estimation
of material loss for both their cup and head components, with
wear maps being generated for all specimens. Implant selection
was based on visual assessment, with the aim of including
components displaying the broad range of wear volumes seen in
previous retrieval analysis studies.

3 Results

The volumes of material lost from the 12 retrieved MOM hips are
reported in Fig. 1, with a worn map of each component
demonstrating the location of any change in the surface geometry.
The median volume of material loss was 27.02 mm?> (0.36-120.72)
and 24.16 mm® (1.39-78.50) from the cup and head components,
respectively; while the median total bearing wear volume was
51.18 mm® (1.74-174.90). The location of the wear scar varied in
size and shape; however, all displayed a gradual transition from
the estimated pristine surface to worn regions. The wear maps
generated for these implants also suggested that all acetabular cup
components analysed in this paper were edge wearing, with the
wear scar increasing in size as the wear volume increased. A trend
in wear scar shape and location was also seen in the head
components, as they were all worn nearer the pole in an elliptical
pattern.

4 Discussion and conclusion

Building on previous research, we have presented an automated
method of estimating volumetric wear from the bearing surfaces of
hip implants. This approach considers data points across the entire
surface, rather than localised unworn patches, in the estimation of
the pristine geometry. Its ability to identify wear scars on 12
retriecved MOM implants has also been demonstrated, as the
generated wear maps corresponded to patterns identified during
their visual assessment (Fig. 2). The estimated range of volumetric
material loss was also comparable with values reported in previous
investigations into similar implant designs [32].

(=9
=
o
(=9
=)
o

Fig. 1 Wear maps of 24 paired MOM hip implant components and the
volume of material lost from their surface, both estimated using the
proposed method
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Fig. 2 Cup (left) and head (right) components of a retrieved MOM hip
replacement
a Macroscopic image

b Wear map generated using the proposed method. Red arrows indicate the location of
the worn regions

Numerous methods have been developed to quantify the
volume of material loss from the bearing surfaces of retrieved
hip implants; however, to be considered a truly reliable indicator
of their performance, measurement accuracy is key. As gravimetric
analysis is unachievable without pre-wear data, at present,
geometric methods remain the only feasible approaches to obtain
this parameter during retrieval analysis. Error incurring factors
associated with geometric measurement strategies have been
extensively discussed, providing sufficient information to minimise
their influence on volumetric estimations through protocol
refinement. Inconsistencies between methods primarily stem from
their differing approach to estimate the virgin surface of the
implants and obtaining a volume of material loss from the
acquired data.

As demonstrated by the number of contrasting methods described
in this short communication, a definitive conclusion has yet to be
reached, regarding the most accurate approach to estimate the
pre-wear geometries. These approximations are dependent on the
presence of a reliable unworn region and should be recognised as
a limitation; however, through consideration of the entire measured
data set, their accuracy can be optimised.

There are many reasons for hip revision surgery, and similarly
high implant wear may occur due to multiple factors associated
with the surgeon, implant and patient. In understanding the
mechanisms of failure, it is important that this methodology is
combined with clinical imaging and patient data. Recent MHRA
alert updates regarding the surveillance of MOM’s hips emphasise
the sustained relevance of accurate wear measurements. Their
acquirement could further our understanding of individual patient
sensitivity to metal debris, in response to smaller changes in dose.
Quantifying such clinically relevant wear volumes would also
benefit surgeons in the management of who, when and how to
revise their patients. The concepts described in this method could
also be useful in building on the previous work investigating the
wear of knee replacements [33, 34].

Future work will present the validation of this method, with the
intention of demonstrating its accuracy and repeatability when
analysing retrieved implants that exhibit the full spectrum of wear
values recorded in previous research. This method could provide
reliable and clinically relevant data that may enhance our

understanding of MOM hip failure mechanisms and impact the
management of the million patients, within which these devices
remain implanted.
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