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A B S T R A C T

Timely monitoring of crop lands is important in order to make agricultural activities more sustainable, as well as
ensuring food security. The use of Earth Observation (EO) data allows crop monitoring at a range of spatial
scales, but can be hampered by limitations in the data. Crop growth modelling, on the other hand, can be used to
simulate the physiological processes that result in crop development. Data assimilation (DA) provides a way of
blending the monitoring properties of EO data with the predictive and explanatory abilities of crop growth
models. In this paper, we first provide a critique of both the advantages and disadvantages of both EO data and
crop growth models. We use this to introduce a solid and robust framework for DA, where different DA methods
are shown to be derived from taking different assumptions in solving for the a posteriori probability density
function (pdf) using Bayes’ rule. This treatment allows us to provide some recommendation on the choice of DA
method for particular applications. We comment on current computational challenges in scaling DA applications
to large spatial scales. Future areas of research are sketched, with an emphasis on DA as an enabler for blending
different observations, as well as facilitating different approaches to crop growth models. We have illustrated
this review with a large number of examples from the literature.

1. Introduction

Monitoring and forecast local crop production are critical steps in
addressing food security problems at a global scale. The combined ef-
fects of a changing climate, growing population, soil loss, as well as the
natural variability of weather, require methods that provide a timely
and accurate assessment of crop growth and production, and contribute

towards increasing sustainability of agricultural food production (FAO,
2017; IPCC, 2018).

Remote sensing (RS) data have the potential to provide timely,
ubiquitous and frequent observations of the land surface at a range of
spatial scales (Liang and Qin, 2008). Different sensors acquire data in
different spectral windows using different sensing modes: In the solar
reflective domain, radiation from the sun is scattered by the atmosphere
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and land surface (soil, vegetation, etc.) and then captured by a sensor;
in the (active) microwave domain, a sensor irradiates the land surface
and records the echoes. In either case, these recorded observations re-
quire interpretation to provide inferences on biophysical parameters of
interest for monitoring the land surface (and in particular, croplands),
such as soil moisture (SM) (Njoku et al., 2003; Kerr et al., 2010; Liu
et al., 2012; Dorigo et al., 2017), leaf area index (LAI) (Knyazikhin
et al., 1998; Yang et al., 2006; Tian et al., 2002a,b), evapotranspiration
(ET) (Mu et al., 2007), the fraction of absorbed photosynthetically ac-
tive radiation (FAPAR) (Knyazikhin et al., 1998), or above ground
biomass (AGB) (Hu et al., 2016).

Simultaneously, there have been significant advances in modelling
crop growth and development using mechanistic models (Williams
et al., 1989; Van Diepen et al., 1989; Jones et al., 2003; Challinor et al.,
2004; Hsiao et al., 2009; Holzworth et al., 2015). These models predict
the evolution of the crop from sowing to harvest by simulating photo-
synthesis, gas exchanges between the canopy and the atmosphere,
phenology, soil moisture and temperature dynamics, biomass growth
and grain yield formation. These models require meteorological inputs,
such as downwelling shortwave radiation, temperature, precipitation,
etc. (Hoogenboom, 2000). In addition to these drivers, parameters de-
scribing the different processes, crop varieties, soil conditions, man-
agement practices, etc., are also required. The models thus allow
quantitative predictions of crop evolution in terms of different aspects
(leaf area, above ground biomass, root biomass, soil moisture, grain
yield, etc.). Although the performance of models is acceptable on its
own, it is important to understand that their performance is hampered
by uncertainty in the model parameterisation, uncertainty in meteor-
ological drivers, and uncertainty in the simplified description of the
model processes itself (Dorigo et al., 2007; Marin et al., 2017).

Both of the approaches described above, earth observations (EO)
and crop growth models (CGM), have marked advantages, but also
important disadvantages. Optical EO data can suffer from significant
gaps in the data record due to e.g. cloud cover (Wiseman et al., 2014;
Whitcraft et al., 2015). Additionally, retrieved parameters can have
large (often unknown) uncertainties and important and not well-char-
acterised biases (Lewis et al., 2012; Huang et al., 2015b, 2016). Ad-
ditionally, EO sensors only measure a limited set of variables of interest.
Crop growth models on the other hand can be difficult to parameterise
properly for large scale (e.g. regional) applications, as the intrinsic
variability of agriculture (different crop varieties, variations in soil
types, different crop management practices) can vary hugely. Ad-
ditionally, uncertainty from e.g. interpolated weather station data used
as an input to the model can substantially hamper the ability of the crop
model to predict crop evolution (Hansen and Jones, 2000).

It is desirable to combine crop growth models and observations, so
as to exploit the best of both realms. Data assimilation (DA) techniques
allow a formal and well-understood way to combine the predictions of
the model with observations to arrive at an “analysis” that is an optimal
combination of both inputs: the model is made to track observations,
hence limiting drift due to poor local parameterisation, and the ob-
servations might also be impacted by the crop growth model providing
an expectation of parameters that can be exploited for parameter re-
trieval.

Different from previous data assimilation reviews (Maas, 1988;
Delécolle et al., 1992; Liang, 2004; Dorigo et al., 2007; Lewis et al.,
2012; Kasampalis et al., 2018; Jin et al., 2018), this review focuses on
the techniques in DA and explaining what approach should be used in
which circumstances and why. It provides a common Bayesian frame-
work for the different data assimilation methods presented in the lit-
erature, with a view to provide users with selection criteria to choose
among them. In addition, this review summarises challenges of im-
proving the performance of data assimilation for agricultural applica-
tions. Finally, the future development and perspective of RS-crop model
data assimilation research are also discussed.

2. Data assimilation system illustration

Data assimilation was first proposed by Charney et al. (1969). Since
then, it was gradually applied to atmospheric circulation models, such
as numerical weather prediction (Dee et al., 2011), ocean circulation
models (Carton and Giese, 2008), and land surface models (Yang et al.,
2007). In DA, either the state of the system (e.g. the parameters that
describe the system at a given point and location), the model para-
meters (often assumed to be constant throughout the time of the model
run), or the initial conditions of some processes are assumed to be
random variables, defined with a probability density function (pdf).
The shape of the pdf critically encodes the uncertainty in our belief in
the value of the parameters or state. DA methods provide a way to
phrase the combination of observations (e.g. evidence) and models in
an optimal way, by generally using Bayes’ rule to update a prior pdf
(e.g. predictions from a crop growth model) when evidence (e.g. un-
certain EO data-derived parameters) is available. A number of different
methods have been developed to do this Bayesian update, their relative
merits are usually based on the assumptions made to solve for the a
posteriori (analysis) parameter/state pdf.

Fig. 1 depicts a typical DA system. A crop growth model, e.g.,
WOFOST (WOrld FOod STudies), will be used as a dynamic model. A
first step consists of collecting field data to localise or calibrate the
model for a particular region. As the model not only is an approxima-
tion to real processes, but also has a considerable number of parameters
that are hard to measure accurately or even at all, an initial calibration
will attempt to provide a parameterisation or calibration of the model
that aims to be consistent with the spatially limited field measurements
(and their uncertainty). The calibrated model will then be able to
forecast crop growth and development. If uncertainties in the calibrated
parameters have been calculated, these can be propagated through the
model to account for limitations in the calibration process.

After calibration, the model is localised and ready to use. Running
the model will provide predictions of a large number of parameters,
such as leaf area index (LAI), soil moisture (SM), evapotranspiration
(ET), above ground biomass (AGB) and development state (DVS). EO
has the potential to provide independent estimates of these quantities
over large areas. DA methods will seek to update the uncertain model
predictions of LAI, SM, etc. to match the uncertain observations, so that
the analysis state/parameter probability density function (pdf) is con-
sistent with both the model and observations, and providing a correc-
tion to the evolution of the model calibrated with a limited field scale
dataset. The availability of short-term as well as seasonal forecasts can
be used to run the model forward towards harvest and to produce
predictions of e.g. crop yield.

Fig. 1. Schematic representation of a typical DA system.
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3. Data assimilation methods

3.1. Basic theoretical background

It is instructive to consider a generic framework for data assimila-
tion, and use that framework to explore the different approaches taken
in the literature to perform model and observations combinations.

In the DA literature, we use the term state vector to denote the set of
parameters that describe the condition of the crop at any given time.
These parameters can include the amount of leaf area, phenological
stage, amount of biomass in different organs, etc.. The task of DA is to
infer the state vector given a set of (incomplete) observations. We can
assume further that instead of being interested in the state vector, we
are interested in its pdf. The shape of the pdf defines our belief in the
values of the parameters, and is thus a measure of our uncertainty in the
parameters. Once this is established, Bayes’ rule is a convenient way to
proceed to derive different DA approaches.

From Bayes’ rule (Lee, 2012; Gelman et al., 2013), we have that the
a posteriori pdf →→p x y( | ) of the state vector →x conditioned on the ob-
servations →y is given by

→→ =
→ → →

→ ∝ → → →p x y
p x p y x

p y
p x p y x( | )

( )· ( | )
( )

( )· ( | ),
(1)

where →p x( ) is the a priori pdf and → →p y x( | ) is the likelihood function. The
product of these two provides us with the posterior pdf →→p x y( | ), as →y
are fixed observations during the Bayesian inference. That is, it is the
likelihood function that brings the evidence (EO data) into the system.

As a first approximation, let us only consider the likelihood func-
tion. Under the commonly made assumption of additive Gaussian un-
certainty (with mean zero and covariance matrix Cobs) in the observa-
tions, and using →M x( ) to denote the crop growth model producing
predictions of the same parameters present in the observations →y , we
have that

→ = → +M x y C( ) (0, ).obs� (2)

In other words, if the true state →x is known, the model will produce a
prediction that is identical to the observations, except for the un-
certainty in the latter. We assume here that the crop growth model is
perfect (i.e. it has no error).

It is convenient to use the logarithm of the likelihood function,
→ →p y xlog ( | ) instead of the function itself: the logarithm is a mono-

tonically increasing transform of the original function, so the location of
extrema will be the same. Additionally, logarithms simplify products
into sums, which results in numerical stability when implemented in
digital computers with finite precision arithmetic. In our case, the log-
likelihood function can be written as

→ → = − → − → → − → +⊤ −p y x M x y M x yClog ( | ) 1
2

[ ( ) ] [ ( ) ] Const.obs
1

(3)

From Eq. (3), the most likely solution is the one attaining the maximum
of → →p y xlog ( | ), which is equivalent to minimising the mismatch between
the model predictions and the observations, modulated by the asso-
ciated uncertainties in the observations.

There are situations where the observations are not directly re-
latable to the model predictions. This happens when for example sur-
face reflectance or backscatter is assimilated directly, instead of pro-
ducts derived from these original measurements (Huang et al., 2019;
Ma et al., 2008; Thorp et al., 2012; Wu et al., 2013; Zhou et al., 2017).
In that case, the use of an observation operator →H M x( ( )), such as em-
pirical relationships or physical models of radiative transfer (RT)
models, allows one to map from predicted state variables to the ob-
servations so that a comparison can be made.

The uncertainty in the estimated parameters from minimising the
negative log-likelihood can be calculated by exploring the radius of the
curvature of the function around the minimum using the Hessian, the

matrix of second order derivatives.
So far, we have ignored the use of the prior. An important ob-

servation on the minimisation of functionals like that introduced in Eq.
(3) is that due to the uncertainty in observations and model, the limited
number of observations, the limited sensitivity of observations to some
part of the state vector and the large number of parameters in the state
vector that have an impact on the predictions of the model, it is often
the case that the system is ill posed: a large number of parametrisations
of →x will result in acceptable predictions of the observations. The role
of the prior is to act as extra constraint on the inference, limiting the
solution space. There are a number of ways in which prior information
can be introduced into these systems. A first approach would be to
provide a prior pdf of →x based on e.g. previous studies or expert opi-
nions. The family of the prior pdf is subjective, and ought to reflect the
understanding of the parameters. Once the prior pdf is selected, and the
likelihood is similarly defined, the Bayesian update equation (Eq. (1))
can be used to find the a posteriori pdf of the state vector.

If we make some further assumptions on the prior pdf, such as it
being a multivariate normal distribution →μ C( , )prior� , it follows that the
negative log-posterior is given by

− →→ = → + → +

= → − → → − →

+ → − → → − → +

⊤ −

⊤ −

p x y J x J x

H M x y H M x y

x μ x μ

C

C

log ( | ) ( ) ( ) Const
1
2

[ ( ( )) ] [ ( ( )) ]

1
2

[ ] [ ] Const.

obs prior

obs
1

prior
1

(4)

In Eq. (4), if the dynamic model and the observation operator are linear
(or not excessively non-linear), there is an analytic solution for the
posterior: it is Gaussian, with a mean vector given by the minimum of
cost function → = → + →J x J x J x( ) ( ) ( )obs prior , and a covariance matrix de-
rived from the inverse of the Hessian of →J x( ) evaluated at the
minimum. That is, in the case of linear dynamic model and linear ob-
servation operator, analytic expressions for both mean vector and
covariance matrix are directly available. For non-linear mappings, the
solution can be approximated as a Gaussian pdf by minimising the
combined cost function using a non-linear solver to provide the mean,
and evaluating the Hessian at the minimum to indicate the covariance.

A further observation derived from Bayes’ rule is that the posterior
pdf at one time step t can be thought of as the prior pdf for a (yet
unobserved) observation at time t+1 (Lee, 2012; Gelman et al., 2013).
So after assimilating one observation at t, the posterior pdf could be
propagated through the crop growth model to provide a prediction of
the pdf of →x at t+1. This remark presents obvious advantages for
applications where the state needs to be updated as new observations
become available, and is fundamental for the development of methods
such as the Kalman filter and its variants.

3.2. Variational approaches

Variational approach solves the analysis problem through the op-
timisation of a given criterion (minimisation of a cost-function). Fig. 2
depicts a basic flow chart of variational approaches. In variational ap-
proaches, some assumptions made. The first one is that all the statistics
are assumed to be normal, and we arrive at the situation shown in Eq.
(4). Under the assumption of weak non-linearities, the posterior is as-
sumed normal, with a mean given by the value of →x that minimises Eq.
(4), and with a covariance matrix given by the inverse of the Hessian at
the posterior mean point. The minimisation of →J x( ) can be complicated
if the state vector is large, and the use of gradient descent algorithms is
preferred to global algorithms. In order to efficiently use gradient
descent, the Jacobian of →J x( ) is required, and it is given by

′ → = ∂ →

∂→
→ − → + → − →⊤

− −J x x
x

x y x μC C( ) ( ( )) [ ( ( )) ] [ ].obs
1

prior
1� �

� �
(5)

Differentiating further, we can calculate the Hessian as
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′ → = ∂ →

∂→
∂ →

∂→

+ ∂ →

∂→
→ − →

+

′ −
⊤

−

−

J x x
x

x
x

x
x

x y

C

C

C

( ) ( ( )) ( ( ))

( ( )) [ ( ( )) ]

.

obs
1

2

2 obs
1

prior
1

� � � �

� �
� �

(6)

If the predictions of the model are a good representation of the
observations (i.e. the value of → − →x y( ( ))� � is close to zero), then the
second term in the Hessian (which accounts for effect of non-linearities
in the posterior uncertainty) can be ignored.

Approaches that assimilate observations without taking into ac-
count temporal dependency (e.g. Eqs. (4) and (7)) are usually termed
3DVar (Lorenc, 1986; Sasaki, 1970), whereas an approach that in-
tegrates the solution over time is called 4DVar (Le Dimet and
Talagrand, 1986; Talagrand and Courtier, 1987).

We have so far assumed that all the uncertainty in the system comes
from the imperfect observations. However, in addition to lack of defi-
nition of model parameters in the prior (Cprior), errors in the model-
drivers and structure, pragmatic model simplifications also influence
the uncertainty of model simulation. We can model this model un-
certainty as an additive normal term with zero mean and covariance
given by Cmodel. We can extend the formulation from Eq. (4) to account
for this model error in the form of an extra term, a weak constraint
(Sasaki, 1970; Zupanski, 1997):

Fig. 2. Flow chart of variational methods.

Table 1
Representative research on variational approaches.

Cost function Algorithm CGM Variables EO data References

4DVar SCE-UA WOFOST LAI MODIS, Landsat TM Huang et al. (2015b)
Powell SWAP LAI MODIS He et al. (2015)
Powell DSSAT+MCRM NDVI, LAI, EVI MODIS Fang et al. (2011)
AA DSSAT LAI MODIS Jin et al. (2016)
AA DSSAT+PROSAIL NDVI Landsat TM Dong et al. (2013)
SCE-UA WOFOST+PPROSAIL ρ Landsat TM, Landsat OLI Huang et al. (2019)

Root mean square error SA SUCROS+SAIL ρ Virtual reflectance Guerif and Duke (2000)
SCE-UA SAFY LAI Landsat-8, MODIS Dong et al. (2016)
PSO WOFOST LAI Landsat-8 Jin et al. (2015)
PSO WOFOST+PROSAIL FAPAR GF-1 Zhou et al. (2017)

Weighted sum of squared differences SA STICS LAI Landsat TM, SPOT, UAV Jégo et al. (2012)
MLS DSSAT LAI ENVISAT ASAR, MERIS Dente et al. (2008)

Least squares SA SUCROS+SAIL TSAVI SPOT, UAV Launay and Guerif (2005)
SA SUCROS+SAIL ρ Measurements Guérif and Duke (1998)
SCE-UA WOFOST LAI MODIS Ma et al. (2013a)
SCE-UA ORYZA2000+CLOUD λ ENVISAT ASAR Shen et al. (2009)
SCE-UA SWAP LAI MODIS Xu et al. (2011)
PSO WheatGrow+PROSAIL VI HJ-1A/B Guo et al. (2018)
ULM WOFOST LAI SPOT, ERS, Radarsat Curnel et al. (2011)

Vector angle SCE-UA SWAP LAI, ET MODIS Huang et al. (2015a)

Mean absolute error PSO RiceGrow LAI, LNA ASD Zhu et al. (2010)
Powell DSSAT LAI MODIS Fang et al. (2008)
Powell, SCE-UA WOFOST LAI MODIS Tian et al. (2013)

Relative error PSO WOFOST LAI HJ-1A/B Liu et al. (2015)
PSO AquaCrop CC, AGB HJ-1A/B, RADARSAT-2 Jin et al. (2017)
PSO AquaCrop CC HJ-1A/B, Landsat-8 Silvestro et al. (2017)
PSO DSSAT LAI, CNA ASD Li et al. (2015)

Penalty method GA SWAP ET Landsat ETM+ Ines et al. (2006)

Note: SCE-UA, PSO, MLS, Powell, SA, AA, GA, ULM, TSAVI, NDVI, EVI, ρ, λ, LNA, CC and CNA respectively represent shuffled complex evolution method developed at
the University of Arizona, particle swarm optimisation, maximum likelihood solution, Powell’s conjugate direction method, simplex algorithm, annealing algorithm,
genetic algorithm, unconstrained Levenberg–Marquardt algorithm, transformed soil adjusted vegetation index, normalised vegetation index, enhanced vegetation
index, band reflectance, backscatter coefficient, leaf nitrogen accumulation, canopy cover and canopy nitrogen accumulation. The same below.
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2
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]
1
2

[ ] [ ]

1
2

[ ( ) ] [ ( )

].

obs prior model obs
1

prior
1

model
1

� � � �

� �

(7)

In Eq. (7) we still have a combination of Gaussians. By assuming
that the posterior is also Gaussian as before, the mean will be a
weighted combination of the fit to the observations, the fit to the prior
pdf and the fit to the model, each of them balanced by their respective
uncertainties. While the observational and prior uncertainties might be
estimated reasonably well, the model error is usually not well defined
and tends to require tuning.

In general, functionals like those presented in Eq. (4) or (7) are hard
to minimise depending on the nature of the observation operators and
models. For one, availability of tangent linear models and adjoint
models is a non-trivial requirement (Giering and Kaminski, 1998).
Additionally, for general non-linear observation operators or models,
the function is not convex and may have multiple minima, which are
problematic with local minimisation approaches based on gradient
descent. Furthermore, if the prior covariance is ill-conditioned (large
difference between the smallest and highest eigenvalues), the mini-
misation process will be slow, requiring many iterations to reach con-
vergence. A solution to this is to use a pre-conditioner, or to solve a
series of linear approximations to the problem. In that case, the ap-
proximate problem has a unique solution, and these approximations
can be iterated (incremental 4DVar formulation, Courtier et al., 1994).

It is worth noting that in the crop growth DA literature, a wide range
of function optimisers are used to solve a generic cost function problem
(see Table 1). In some cases, global optimisers such as Genetic Algo-
rithms (GAs) are used, but these optimisers are not efficient for pro-
blems characterised by many dimensions (e.g. many parameters),
which we often find in regional applications. Gradient descent methods,
on the other hand, are efficient and scalable local minimisers (so can get
stuck in local minima), and require access to the gradient (Jacobian) of
the model, which may not be available. In some cases, the gradient can
be approximated by finite differences, but this approach will not scale
to higher dimensions.

A summary of variational applications in the literature is shown in
Table 1. It is immediately clear that a broad range of cost functions are
used. The framework presented above deduces the cost function from
Bayes’ rule, where in the previous discussion all statistics were assumed
normal. Using different cost functions results in different weightings of
the evidence-model mismatch, which encode very different description
of the statistics in observations and/or model. For example, a heavy
tailed pdf for the observations (e.g. a Laplace or Student's t distribution)
will tend to reduce the effect of outliers with respect to a Gaussian
approximation, but the posterior will be far from Gaussian. Similarly,
the vector angle method results in a complex likelihood that may be
poorly approximated by a Gaussian. It would appear that in the lit-
erature these choices are done in an ad hoc manner, fundamentally to
dampen or enhance the contribution of some observations to particular
situations (the case of reducing the influence of outliers, or as a way of
dealing with strong but unknown correlation structures in the ob-
servations). This results in difficulties in explaining the generality of the
results to other data streams. Improvements in the characterisation and
quantification of uncertainty would lead to more careful approxima-
tions of uncertainty in different DA frameworks.

In terms of linkages between observations and models, a pre-
dominance of LAI or FAPAR is in evidence. This is probably a con-
sequence of LAI and/or FAPAR products being both widely available
and having a clear representation or linking point within the crop

growth model. Different authors opt for using off-the-shelf products,
exploiting empirical relationships between e.g. vegetation indices (VIs)
and either LAI or FAPAR, or using physical models to convert e.g. LAI to
reflectance. In either of these approaches, it is important to understand
the limitations of the observation operators, assimilating FAPAR is not
necessarily the same as assimilating a VI, as in the former an inter-
pretation of the reflectance has been made with a set of assumptions. It
is important to note that the assumptions in the retrieval observation
operator should be consistent with the assumptions within the cropthe
coherence between reflectance and FAPAR is given only by the ob-
servation operator (RT model). Additionally, the use of SAR data ap-
pears less frequent, and although LAI is also widely derived from SAR
data, other observables are presented (AGB). Some references have also
used ET estimates.

3.3. Kalman filters

The Kalman filter assumes the prior distribution of state vector at
time t + 1 →

+xt 1 is a Gaussian distribution with mean →x( )t� and cov-
ariance matrix Pf :

→ ∝ ⎛
⎝

− → − → → − → ⎞
⎠

+ +
−

+p x x x P x x( ) exp 1
2

( ( )) ( ( )) .t t t f t t1 1
T 1

1� �
(8)

The observation →
+yt 1 is assumed to have a Gaussian pdf with mean

→
+x( )t 1� and covariance matrix R:

→ → ∝ ⎛
⎝

− → − → → − → ⎞
⎠+ + + +

−
+ +p y x y x R y x( | ) exp 1

2
( ( ) ( ( ) .t t t t t t1 1 1 1

T 1
1 1� �

(9)

If the linear dynamical system (both � and � are linear) is further
modelled as a Markov chain that the state vector is conditionally in-
dependent of all earlier states given the immediately previous state,

→ → … → = → →
− −p x x x p x x( | , , ) ( | ),t t t t0 1 1 (10)

then after a series of derivations (refer to Anderson and Moore, 2012 for
details), it can be shown that the posterior pdf → →

+ +p x y( | )t t1 1 of state
vector →

+xt 1 is also Gaussian with mean and covariance matrix as

→ = → + → − →
+ +E x x K y x( ) ( ) ( ( ( ))),t
a

t t t1 1� � � (11)

→ = −+x I K PCov( ) ( ) ,t
a

f1 � (12)

where the superscript a stands for a posteriori, and K is

= + −K P P R( ) .f f
T T 1� � � (13)

If the state vector →xt represents the state of the system at some time
t, from an initial prior estimate of this state (assumed Gaussian), and a
given observation operator � between the state and the observations→yt
at the current time, we can solve Eq. (4) which ignores the model error
(e.g., drivers and model structures) of crop growth model to obtain the
a posteriori pdf of the state →xt at t. This pdf can then be propagated by
the crop growth model � to time t+1 to provide an a priori state
vector pdf estimate at this new time step. To account for model error,
some additional uncertainty can be added to the propagated state (in
the same way as the weak constraint in the 4DVar approach introduced
earlier). This procedure is repeated sequentially for each new time step.
The Kalman filter (Jazwinski, 2007) provides a recursive expression for
the sequential update of the state vector: new observations are as-
similated using the propagated state (and associated uncertainties)
from a previous time step as a prior.

The Kalman filter equations only hold with linear crop growth
models and linear observation operators and assume all statistics are
Gaussian. However, dynamic crop models are often not linear, as the
growth process is affected by many factors, including light, tempera-
ture, water and fertiliser. This process cannot be adequately simulated
by linear models. As a result, a standard Kalman filter cannot be used
directly. If either the observation operator or the crop growth model is
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non-linear, then a linear approximation of the model can be performed
by using Taylor series expansion, which leads to the Extended Kalman
filter (EKF) (Jazwinski, 2007).

The lack of access to the gradient of � or the computational
complexities in calculating the propagation equations for large di-
mensional problems can be solved by propagating an ensemble of state
realisations through the crop growth model, and from these, calculating
the prior covariance matrix for the next step. This approach is the
Ensemble Kalman filter (EnKF, Evensen, 2003), which is essentially a
Monte Carlo approximation of the Kalman filter and makes the as-
sumption that all probability distributions involved are Gaussian. EnKF
use an ensemble that is a sample from the prior distribution to calculate
the covariance of the prior state vector,

= → … →X x x[ , , ],N1 (14)

an n×N matrix whose columns are the ensemble members. From Eq.
(14), the ensemble covariance Pe can be obtained. There are two
common methods to generate the ensemble of initial state of the crop
growth model, one based on state variables and the other based on
initial conditions and parameters (Huang et al., 2016). The observation
ensemble is Y,

= → … →Y y y[ , , ],N1 (15)

an m×N matrix. Taking the example of crop model assimilation with
earth observations, each column →yi consists of the earth observation →y
plus a random vector from the m-dimensional normal distribution N(0,
R). From Eq. (15), the ensemble covariance of observations Re can be
obtained. The analysed matrices of ensemble states (mean value of the
posterior pdf) is given by

= + + −+
−

+X X P P R Y X( ) ( ) ( ( ( ))).t
a

t e
T

e
T

e t t1
1

1� � � � � � (16)

If the earth observation data is the state variable of the model, then the
observation operator � is an identity matrix, and Eq. (16) can be
simplified as

= + + −+
−

+X X p p R Y X( ) ( ) ( ( ))t
a

t e e e t t1
1

1M M (17).

Several implementations are available as shown in Table 2. The stan-
dard EnKF method tends to reject observations in favour of the en-
semble forecast in the late period of data assimilation, which could lead
the analysis to deviate incrementally from the reality, which is referred
to as filter divergence (Schlee et al., 1967; Fitzgerald, 1971; Burgers
et al., 1998; Ines et al., 2013). To reduce the effect of filter divergence,
an inflation factor is often adopted to enlarge Kalman gain (Lin et al.,

2008; Huang et al., 2016).
Satellite-derived products can provide direct, uncertainty-quantified

estimates of components of the state vector (e.g. LAI) that can be im-
mediately linked to model predictions. If the statistics of the error of the
data product are Gaussian, Kalman filters are a good choice. Since most
crop growth models are non-linear, the use of EnKF is a practical way to
assimilate products. However, it is worth noting that most crop growth
models can be well approximated by a local linear model around when
updating the state. If direct satellite measurements (e.g. reflectance,
radiance or backscatter) are assimilated, then the RT models might also
be very non linear, but local linear approximations may be feasible. If
these approximations are available, by e.g. using emulators (Gómez-
Dans et al., 2016), then using the Extended Kalman Filter (EKF) might
be an efficient alternative to the the EnKF.

Unlike variational approaches (e.g. 4DVar which optimises model
parameters), Kalman filtering is a sequential method to estimate the
state vector at different time points. Fig. 3 depicts a basic flow chart of
Kalman filtering methods. It uses a series of measurements observed
over time containing statistical noise and other inaccuracies, and, by
sequentially estimating a joint probability distribution over the vari-
ables for each time frame, it produces estimates of unknown variables
that tend to be more accurate than those based on a single measurement
alone. An important distinction from variational approaches is that
filtering approaches are causal: they only use information from the past
to assimilate an observation at the current time. In variational systems,
information from the whole assimilation temporal window needs to be
used, resulting in a more constrained problem compared to filters.
Filters, on the other hand, allow on-line updating and near real time
operation. The common point between 4DVar and Kalman filter is that
they are both based on Gaussian assumption and Bayes’ rule. Once the

Table 2
Representative research on filtering approaches.

Algorithm CGM Variables EO data References

CGKF SWAP LAI, ET MODIS Vazifedoust et al. (2009)
MCWLA-Wheat LAI GLASS LAI (MODIS-based) Chen et al. (2018)

EnKF WOFOST LAI MODIS Wu et al. (2011), Zhao et al. (2013), Zhu et al. (2013)
WOFOST LAI Landsat ETM+ Li et al. (2014)
WOFOST LAI MODIS, Landsat TM Huang et al. (2016)
WOFOST LAI HJ-1A/B Ma et al. (2013b), Cheng et al. (2018)
WOFOST LAI PROBA/CHRIS Wang et al. (2013)
WOFOST LAI SPOT, ERS, Radarsat Curnel et al. (2011)
WOFOST SM ERS, EUMETSAT de Wit and van Diepen (2007a)
WOFOST SM SMOS Chakrabarti et al. (2014)
WOFOST LAI, SM Synthetic data Pauwels et al. (2007)
WOFOST LAI, SM AMSR-E, MODIS Ines et al. (2013)
DSSAT LAI, SM MODIS, SMOS Nearing et al. (2012)
DSSAT LAI, VTCI Landsat TM, ETM+ and OLI Xie et al. (2017)
SAFY LAI HJ-1A/B, Landsat-8 Silvestro et al. (2017)

EnSRF WheatGrow LAI, LNA HJ-1A/B, Landsat TM Huang et al. (2013)
DSSAT LAI, SM MODIS, AMSR-E Mishra et al. (2015)
SWAP SM SMOS Singh and Panda (2015)

Note: CGKF, EnKF, EnSRF, VTCI represent constant gain Kalman filter, ensemble Kalman filter, ensemble square root filter, vegetation temperature condition index.

Fig. 3. Flow chart of Kalman filtering methods.
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filter has been run for some time, the filter can then be run backwards
to update the initial filter estimate, in what is called a smoother. Al-
gorithms exist for the Kalman smoother (Briers et al., 2009), which can
be shown to be equivalent to the 4DVar with a weak constraint ap-
proach introduced in Eq. (7) (Fisher et al., 2005).

3.4. Bayesian Monte-Carlo approaches

The previous two sections describe DA methods that either have a
direct analytic solutions (e.g. the Kalman filter and derivatives), or can
be solved by minimising a cost function. In either case, the use of
Gaussian distributions results in a solution that can be encoded as a
mean vector and a covariance matrix. However, with non-linear ob-
servation operators and crop growth models, or indeed where the un-
certainties in the model or the observations are non-Gaussian, assuming
normality in the posterior might be a poor choice. In these cases, ap-
proaches based on sampling are preferred.

In these sampling approaches, samples from the posterior pdf are
drawn as the solution, allowing the solution to be e.g. non-normal and
multimodal. The most general sampling approach is Markov chain
Monte Carlo (MCMC) (Gilks et al., 1995), using a Markov chain to
produce samples from the posterior pdf. The way MCMC works is by,
firstly identifying a Markov chain (the first MC in MCMC) whose sta-
tionary distribution is the posterior of interest, then sampling from this
Markov chain until it converges to an equilibrium distribution. As a
result, MCMC is essentially sampling from the posterior distribution of
interest. This is a very general approach that will work for any problem,
provided that the chain is let to run for a sufficient number of iterations
and that the chain converges to the required posterior pdf. Convergence
of the chain is hard to diagnose, and a number of rules of thumb are
usually deployed (Cowles and Carlin, 1996), e.g., the widely used R hat
indicator (Gelman et al., 2013). MCMC methods are practical for one-
off inferences and where the dimensionality of the problem is not very
high. If the dimensionality is very high, MCMC methods are slow to
explore the solution space, and convergence is hard to achieve in
practical time scales.

The causal equivalents of MCMC are sequential Monte Carlo
methods, such as particle filters (PF). Fig. 4 shows the basic steps of a
Metropolis–Hastings MCMC and Particle filters algorithms. Particle

filters allow the propagation of non-Gaussian distributions through
complicated crop growth and/or observation models, and show some
potential for RS-crop model DA compared with the widely used EnKF
(Jiang et al., 2014; Machwitz et al., 2014; Chen and Cournède, 2014). A
number of implementations of these filters are straightforward exten-
sions of the basic MCMC algorithms (Dowd, 2006, 2007), while others
are more directly based on importance sampling (van Leeuwen, 2009;
Ristic et al., 2004; Arulampalam et al., 2002). An important con-
sideration for particle filters is that in order to reliably describe the
posterior pdf, a large number of particles may be required. This is an
even more pressing need when the dimensionality of the problem in-
creases. Addressing this problem in particle filters is an active area of
research (Ades and Van Leeuwen, 2015; Ades and van Leeuwen, 2013;
van Leeuwen, 2010).

In practice, the MCMC methods or particle filters have been widely
applied to studies on hydrologic and land surface models (Evensen,
1994; Vrugt et al., 2003, 2008; Moradkhani et al., 2005, 2012; Yang
et al., 2008; Matgen et al., 2010; Montzka et al., 2011). The approach
appears to be promising for non-linear crop growth models, as shown in
Table 3, and some applications have shown encouraging results. The
MCMC methods seem to be effective and efficient for crop model
parameter estimation and uncertainty analysis (Makowski et al., 2002;
Dumont et al., 2014; Iizumi et al., 2009), examples where timeliness
and data volumes are not large. Ultimately, the full power of sampling
methods stems from their ability to cope with non-Gaussian, non-linear
generic problems, and in this respect, the bigger hurdle might lay with
the requirements to parameterise e.g. the prior pdf or the likelihood
function, rather than with the method of choice.

3.5. Choice of DA methods

The previous sections open a landscape of DA methods, and im-
mediately the question arises of which is the most adequate method to
use for a particular application. Fig. 5 depicts a simplified decision tree
for DA methods choice strategy.

A first decision would be based on timeliness: if near real-time in-
ferences, or even forecasts of harvest time yield during the growing
season, are required, then filters are the obvious choice, although var-
iational or sampling methods might be used within an assimilation
window. These first inferences might be refined after harvesting (si-
milar to reanalysis in meteorology, Parker, 2016), either by updating
the filtered estimates to produce a smoothed inference, or equivalently
by running a variational inversion (Fisher et al., 2005). Clearly, this
could be a suitable strategy for inferences from past campaigns. EnKF
predicts yield through optimising the state variables (e.g. LAI or SM)
during the growing period of the crop, not only near past. Because EnKF
is based on a Markov chain, all past observations will be used implicitly,
with recent observations being more closely weighted. 4DVar fits the
model to all the observations within the assimilation window, and uses
the propagates the solution through the crop model to forecast yield.
The general set-up of the EnKF makes its extension to within-season
forecasting straightforward, whereas variational methods need to con-
sider the size of the assimilation window and how that would affect
predictions.

Secondly, an additional decision might be made on the basis of
statistical, model or observation operator characteristics. The standard
Kalman filter can be used if the observations are direct measurements of
the state (e.g. LAI, SM, AGB) or linear transformations of the state, and
the crop model can be assumed to be linear too. Usually, the crop
growth model is assumed to be highly non-linear, which calls for ap-
proaches like EnKF (de Wit and van Diepen, 2007a; Ines et al., 2013) or
particle filters (Machwitz et al., 2014). A more pragmatic take would
consider whether the crop growth model can be assumed locally linear
when it updates the state between adjacent time steps, in which case
the standard Kalman filter might be a good choice, particularly if effi-
cient emulators of the crop growth that provide access to the Jacobian

Fig. 4. Illustration of Metropolis–Hastings MCMC and Particle filters algo-
rithms. The light grey shapes depict the target distribution (posterior). Circles
depict parameter combinations within the algorithm. (a) A Metropolis-Hastings
MCMC sampler proposes a new value conditional on the last, and accepts
(green) or rejects (red) according to the ratio of the point-wise likelihood ap-
proximations. (b) Sequential Monte Carlo samplers start with an ensemble of
parameter values, weight them according to their approximated point-wise
likelihood values, and potentially draw new values from the last ensemble ac-
cording to those weights (Hartig et al., 2011).
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are available.
Although reflectance cannot be simulated by crop models directly,

one can couple the crop model predictions of e.g. LAI or soil moisture
with physical model to simulate the observed satellite measurements
(e.g. reflectance, backscatter, ...). As with the comments in the last
paragraph, local linearisations of the non-linear physical models may be
used to benefit from the simpler linear Gaussian DA approaches. In
some cases, very simple parameter transformations are able to quasi-
linearise an observation operator, which means that the problem is
solved in transformed space and the solution is then presented in real
units space with the posterior pdf not being Gaussian in this case (Weiss
et al., 2001; Lewis et al., 2012).

The use of variational schemes is hampered by the need to have
access to the gradient of the crop growth model and/or the observation
operator, which is not always practical. Pragmatic approaches to
overcome these limitations are the use of look-up tables (LUTs) for the
models, often used in biophysical parameter retrieval from EO ob-
servations, e.g. Weiss et al. (2000), which can also be used with the crop
growth model. Hank et al. (2015) use an ensemble of model trajec-
tories, which amounts to a LUT for model trajectories. The ensemble
members that are most consistent with the observations are selected in
this way. Approaches based on look-up tables are easy to implement
and scale to situations where the crop growth models and/or the ob-
servation operators need to be evaluated many times.

If the statistics are non-normal and the crop growth model and the
observation operator are non-linear, then sampling methods are the
recommended option. However, the computational cost of these
methods make them unsuitable for high dimensional applications, and
even then, a large computational effort might still be required.
Nevertheless, even in cases where sampling methods may be im-
practical, they provide a benchmark to test the assumptions made to use
some of other methods. It is also important not to forget that in many
cases, non-linearities in models are not too large, and particle methods
might not be needed. Ziehn et al. (2012) show that for a complex

terrestrial ecosystem model, both a variational and an MCMC approach
converge to the same global minimum, and provide nearly identical
representations of the posterior pdf, but with the variational approach
being several orders of magnitude faster than MCMC. Using 4DVar to
assimilate and then using MCMC to verify the assimilation at limited
point is a promising solution for large area assimilation.

Finally, a further comment is that, throughout the previous dis-
cussion, we have always assumed that there is no bias between the
model and the observations. If this is not the case and the model pre-
dictions are very far from the observations, the Bayesian paradigm will
in effect weight the observations and the predictions, and produce an
analysis that is a weighted average of both terms. This disparity can be
due to the predictions from a poorly calibrated model that fails to
provide a good representation of the crop development, or can arise
when the observations have biases due to different assumptions in the
retrieval scheme (such as spatial scales, see the next Section), or due to
unfiltered defective retrievals (outliers) in the data. If these conditions
arise, and the bias is not removed, the analysis (combination of ob-
servations and model predictions) might be an unrealistic weighted
average.

4. Challenges in data assimilation applied to crop monitoring

4.1. Pre-DA considerations

4.1.1. Choice of simulation spatial and temporal scale
One of the most challenging aspects of the use of RS-crop model DA

stems from the spatial heterogeneity of croplands with respect to ty-
pical remote sensing spatial resolutions. The choice of simulation scale
can vary by several orders of magnitude depending on the application.
For some regional applications (e.g. national region), a coarse grid can
be sufficient, whereas for local/field scale a finer grid might be required
(around ∼km for provincial scale, 10s to 100s m for county scale, m to
10s m for plot scale). It is important to consider that the limitations of

Table 3
Representative research on sampling approaches.

Algorithm CGM Variables EO data References

DREAM STICS AGB Measurements Dumont et al. (2014)
M-H PRYSBI heading day, yield Statistics Iizumi et al. (2009)

PF DSSAT LAI HJ-1A/B Jiang et al. (2014)
APSIM+PROSAIL ρ RapidEye Machwitz et al. (2014)

CPF LNAS, STICS LAI, AGB, etc. Measurements Chen and Cournède (2014)

Note: DREAM, M-H, PF, CPF, PRYSBI represent differential evolution adaptive Metropolis, Metropolis–Hastings, particle filter, convolution particle filtering, Process-
based Regional-scale rice Yield Simulator with Bayesian Inference.

Fig. 5. Decision tree for DA methods choice.
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the model might make it more or less suitable for some spatial scales as
the model may lack important processes that have a strong local impact
for example horizontal water transport at high spatial resolution. Crop
models can be adapted to the relevant spatial scale. For example, a crop
model may not be able to reproduce some between- or within-field
patterns, or the model parameterisation may require much more cau-
tion to account for different crop varieties, different management
practices (e.g. irrigation, fertilisation) and so on. In the DA context, we
can picture the role of DA as correcting the model predictions: the
observations help guide the imperfect model towards the actual de-
velopment of the crop. In this sense, the model and the state both de-
pend on the application. The increase of spatial resolution results in a
requirement for crop growth model parameters and other input vari-
ables (e.g. meteorological inputs or soil maps) at a similar spatial re-
solution in order to capture the inherent variability of the system.
Perhaps a useful illustration of this situation would consider that at
moderate to large scale (m to km scale), any model will be poorly
parameterised, and input meteorological data will usually poorly re-
present local weather conditions. The role of DA in this case would be to
make the model use observations as symptoms of crop evolution, which
are at much finer scale than the model drivers and parameters, tracking
variations in the crop development that compensate for the limitations
in the model drivers, parameters and model itself.

Another important consideration is on the temporal aspect.
Although different processes have different temporal scales, crop
growth models tend to operate on daily scales. Access to these daily
measurements is thus a pre-requisite for running the model. In an op-
erational scenario, a DA system would track the crop development up to
a given time, in which case the state of the crop would be defined. Then,
the crop growth model could be run until harvesting using e.g., an
ensemble of historical meteorological data (Lawless and Semenov,
2005; Hansen et al., 2006). In these cases, the inherent uncertainty in
the state after the last assimilation window is propagated through a
model which is driven by uncertain meteorological drivers (Fig. 6). In
recent years, major advances have occurred in the area of seasonal
weather forecasting (Meza et al., 2008; Wheeler et al., 2007; Doblas-
Reyes et al., 2013; Swinbank et al., 2016). Seasonal forecasts can be
used to derive an ensemble of plausible weather states at the General
Circulation Models (GCMs) temporal and spatial resolution. For ex-
ample, ECWMF can forecast up to 15 days in advance with a spatial
resolution of 25 km, depending on which daily meteorological element
can be produced. If medium and long-term forecast data are used, we

can predict crop yield in advance 1–3 months before harvest. However,
these inferences, often stored in the form of ensembles need to be
downscaled to the usual daily inputs required by CGMs (temperature,
precipitation, etc.). This can sometimes be done by using so-called
weather generators, which tend to produce an ensemble of possible
meteorological driver trajectories (Semenov and Doblas-Reyes, 2007;
Marletto et al., 2007; Apipattanavis et al., 2010; Lv et al., 2013). In
addition to statistical downscaling methods such as weather generators,
the dynamic downscaling method based on regional climate models
(RCMs) and the combination of these two are among the future study
direction of the field. Important programs in the field include ENSE-
MBLES and CORDEX (Van der Linden et al., 2009; Giorgi et al., 2009).

4.1.2. Crop model calibration
Before carrying out any DA procedure, a CGM should be carefully

calibrated with observable biophysical parameters including LAI, yield
and/or biomass distribution in different organs (e.g. Ceglar et al.,
2011). Typically, these calibrations are done with ground observation
instead of remote sensing observations, mainly due to the scaling dif-
ficulty in remote sensing products and their associated uncertainties
(see next two subsections for more details). One may argue for the
spatial limitation of ground observations, however typical values of
CGM parameters fall within very limited range of values (Boogaard
et al., 2014) and we expect the parameter values not to vary dramati-
cally away from the calibrated values. This is, indeed, where DA can
demonstrate its capability as a promising solution to take into account
such scale-dependent bias as discussed in the previous subsection.

4.2. Uncertainty characterisation

The uncertainty of the assimilation system includes the un-
certainties in model errors (e.g., drivers and model structure), model
parameters and observations.

4.2.1. Uncertainties in model errors
All of these uncertainties are difficult to be quantitative estimated,

especially model structure. On the one hand, the model missed some
model structure and process which should be considered, for not fully
understanding the physical process. On the other hand, model is a
simplification and abstraction of physical processes so it can’t accu-
rately simulate the real world. Uncertainties in driver (e.g. temperature,
radiation, rainfall, vapor pressure, wind speed) often arise from

Fig. 6. DA with numerical weather forecast.
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interpolation of point measurements to cover large areas. Interpolation
approaches that provide a local estimator of uncertainty are available,
usually (but not always) based on Kriging (Wilson and Silander, 2014;
Ließ et al., 2012; Poggio and Gimona, 2014). These approaches are
usually computationally costly, and are thus not routinely available.
Local experiments using high accuracy measurements (e.g. independent
meteorological stations) can be used to assess uncertainty in the in-
terpolated data. Whether model errors are important depends on the
research objective. For example, the model error (e.g., the drivers:
rainfall) usually has been taken into account in the soil water balance of
WOFOST model (de Wit and van Diepen, 2007b). However, errors in
model parameters such as TDWI and SPAN have been taken into ac-
count in the data assimilation process (Huang et al., 2015b, 2016).

4.2.2. Uncertainties in model parameters
Probabilistic calibration of the crop growth model with detailed,

multi-variate in situ data and a reliable Bayesian framework can provide
an indication of the different sources of uncertainty. In reality, this is
just an application of the methods introduced in Section 3, but now the
object of interest is not the state of the system but for example the
model parameters, or even the magnitude of the sources of uncertainty.
Specifying a prior pdf for model parameters, as well as prior informa-
tion of driver uncertainty, the model can be made to fit the in situ ob-
servations updating the prior pdf on parameters and driver un-
certainties. Standard approaches to this problem rely on the use of
MCMC methods (Ceglar et al., 2011; Van Oijen et al., 2011, 2005;
Patenaude et al., 2008; Lehuger et al., 2009; Makowski et al., 2002;
Dumont et al., 2014; Iizumi et al., 2009). While these approaches are
computationally costly, they are often only required once, and provide
a much more flexible way of encoding prior information with arbitrary
pdfs. It is important to gather as much ground data as possible so as to
constrain the largest possible region of parameter space. This should be
checked after the calibration by assessing the reduction of uncertainty
in parameters due to the observations used for calibration. Compensa-
tory effects in parameters (where parameters or processes compensate
for each other with respect to observations) should be identified after
the calibration, as these effects can be used to simplify the DA problem
(by prior specification), or may lead to model improvements. The
posterior parameter pdf provides a lower bound in the model un-
certainty CCGM introduced in Section 3, which can be used to produce
ensembles of model predictions that incorporate the calibration un-
certainty. Related to this point, an analysis of the statistical properties
of the posterior pdf can lead practitioners to decide that simplifications
(e.g. assume that the parameter pdf is Gaussian) are acceptable, or at
any rate, the analysis might provide some information on the price paid
for common simplifications. Parameters error estimated from the pos-
terior probability distribution by MCMC can be used to quantitatively
determine the Cprior.

4.2.3. Uncertainties in observations
The uncertainties in the observations are also of great importance,

and general guidelines for uncertainty production and reporting are
being established by the community (Povey and Grainger, 2015;
Merchant et al., 2017; Kaminski et al., 2017). There are however many
EO-derived products with poor or no uncertainty information available,
and it is up to the researchers to provide an indication of uncertainty.
This could be achieved by comparing a limited dataset of in situ mea-
surements with the EO-derived estimates (Dente et al., 2008; Huang
et al., 2015b), although it is hard to characterise the generality of this
estimate. Ultimately, a reason for this lack of uncertainty stems from
the fact that products are derived from intermediate products, so leaf
area index is often derived from surface reflectance, and if the surface
reflectance product does not provide an uncertainty estimate, this will
need to be prescribed (Lewis et al., 2012; Laurent et al., 2014), although
some efforts to derive it from the statistical properties of the image have
been reported (Mousivand et al., 2015). It is thus important that all

intermediate products have uncertainty estimates, or that a more direct
coupling of the at-sensor measurements (e.g. top of atmosphere ra-
diance) and the parameters of interest is used. The at-sensor measure-
ments can be calibrated much more accurately than those of inter-
mediate products, and the at-sensor uncertainties can then be
propagated through the entire chain (Laurent et al., 2013; Lewis et al.,
2012).

4.3. Scale mismatch between observations and models

The satellite derived biophysical parameters are generally not the
same variables as the simulations from crop growth models. A cause of
this discrepancy is satellite products are derived from heterogeneous
pixels with a multitude of landcover types and/or vegetation states, and
under the assumption that a single variable (e.g. LAI) is able to explain
all this variation.Additionally, crop growth models are relatively suc-
cessful in simulating the potential growth, as affected by climate and
crop characteristic, and may provide an unrealistic prediction of the
current state of the vegetation. Also the growth inhibiting effects of
water shortage, oxygen shortage, salinity excess and nutrient shortage
can be simulated quite well with current crop growth models. However,
the growth reduction due to weeds, pests, diseases and temperature
stresses are still difficult to simulate. Satellites measure the actual
growth conditions, which includes the total effect of all growth redu-
cing factors. This would cause a mismatch between the crop growth
simulations and the crop growth measured by satellites (Hoefsloot
et al., 2012).

The complexity of agricultural landscapes can result in the char-
acteristics of different processes that are observed at various spatial or
temporal scale, which can be easily adjusted. For example, daily air
temperature measurements at a fine scale can be averaged spatially to
provide an accurate estimate of temperature at a coarser spatial scale.
Other processes or parameters might require more complex scalings:
interpreting coarse spatial resolution surface reflectance observations
using LAI results in the retrieved magnitude being usually lower than
that obtained by estimating LAI from high resolution surface reflectance
that are then spatially averaged and matched to the coarse resolution
estimates. The bias is a consequence of the non-linear transformation of
LAI to reflectance and the heterogeneity of the landscape (Liang, 2000;
Garrigues et al., 2006).

Approaches to solving the scale problem follow two main strategies:
the model adaptation school suggests a revision of processes in models
to accommodate the relevant scales of the observations (Gao et al.,
2001; Li et al., 1999; Raffy, 1992); and the scale transformation school
advocates for approaches that minimise the scale-induced bias (Chen,
1999; Garrigues et al., 2006; Jiang et al., 2018; Martínez et al., 2009;
Miller et al., 2004; Raffy, 1992; Wu et al., 2015, 2011). The latter
process could be implemented either through upscaling (from high
spatial resolution to coarse) or downscaling (disaggregating coarse
spatial resolution data to high spatial resolution). The downscaling is a
complicated process that requires approximations and extensive prior
knowledge (Duveiller et al., 2011), and it might not be practical. Al-
though, examples of downscaling practices through combination with
infrequent high resolution data using double logistic or Kalman filter
transformation can result in improved behaviours of the DA system on
regional scales (Huang et al., 2015b, 2016, 2019). Another stream of
studies lies between the two aforementioned schools is the use of bias-
reduced spatial subset. Instead of using all available pixels in the study
scene, these studies (de Wit et al., 2012; Duveiller et al., 2015) choose a
spatial subset of more adequate time series in which the bias is already
reduced. They provide a pragmatic solution to avoid modelling the
scale-dependent bias and focus on areas where the analysis and the crop
DA is more likely to succeed.
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5. Future development and perspectives

5.1. Seamless DA for crop monitoring and yield forecasting

Limitations on the technology and, more fundamentally, in the
processes that give rise to the observations captured by satellites result
in an incomplete assessment of croplands. Combination of sensors
might result in better monitoring capabilities of croplands. An obvious
improvement is mitigating the vulnerability of optical data to cloud
cover: having more sensors results in increased opportunity of obser-
ving land, even in cloudy regions (Claverie et al., 2018; Skakun et al.,
2017; Huang et al., 2015b, 2016, 2019). The Sentinels programme from
Copernicus includes SAR (Sentinel 1), optical high resolution (Sentinel
2) and coarse resolution optical and thermal (Sentinel 3/OLCI and
Sentinel3/SLSTR) constellation of sensors. With the Landsat pro-
gramme in the US, the combination of all these sensors provides fre-
quent coverage of most of the Earth's landmass, with a richness of in-
formation that is revolutionary. DA offers the techniques to combine
observations from different sensors in a consistent manner, providing a
practical implementation of the virtual constellation concept (Wulder
et al., 2015; Gómez-Dans et al., 2016).

Combining the observations from different sensors would also result
in reduced uncertainty in retrieved crop parameters by virtue of com-
bining more evidence. In this aspect, the DA system would assimilate all
available observations, providing a much stronger system than using a
single sensor or product. A condition to this success is the consistent
pre-processing of all observations, which includes common assumptions
and full uncertainty quantification. A particular difficulty here is to
make the physical models consistent across spectral domains: while
canopy modelling in the optical and thermal is mostly consistent due to
the similar range of wavelengths, SAR physical modelling is quite dif-
ferent, requiring that some consistency checks are introduced in mixed
processing chains.

Many DA studies have focused on the assimilation of LAI. One
reason for this is that LAI can be an effective diagnostic of crop status,
serving as an indicator of leaf abundance, as well as of phenological
stage, and acting as a useful proxy to different management approaches,
impact of pests and other stresses. However, having a single point of
contact between the observations is limiting, as LAI can only provide an
integrated effect of e.g. the effect of drought or pests. The assimilation
of other variables, such as ETa/ETp or soil moisture can be used to
complement LAI observations, providing an indication of crop stresses
(Olioso et al., 1999, 2005; de Wit and van Diepen, 2007a; Ines et al.,
2013). GLEAM (Global Land Evaporation Amsterdam Model) is a set of
algorithms dedicated to the estimation of terrestrial evaporation and
root-zone soil moisture based on satellite data (Miralles et al., 2011;
Martens et al., 2017). In 2017, a third version of the model (GLEAM v3)
has been developed, and two datasets that differ only in their forcing
and temporal coverage was produced using this version of the model
that are available. These two datasets can be used for crop DA study.
SAR data can also provide a complementary observations in regions
with high cloudiness (Dente et al., 2008), and backscatter has also been
related to above ground biomass (Prévot et al., 2003; Inoue et al., 2002;
Molijn et al., 2014; Shao et al., 2001; Toan et al., 2017; Nearing et al.,
2012; Betbeder et al., 2016). VOD (vegetation optical depth) can
measure attenuation of surface microwave emission due to the over-
lying vegetation is proportional to the density of the canopy and to its
water content. Therefore, it has the potential to provide information
about agro-ecosystems. The yield-VOD relationship has been explored
by using principal components regressions (Chaparro et al., 2018).
Solar-induced chlorophyll fluorescence (SIF) provides a direct link to
instantaneous photosynthetic activity (Guanter et al., 2014; Guan et al.,
2016; MacBean et al., 2018), and is now publicly available from a
number of missions (Joiner et al., 2011; Guanter et al., 2012). SIF is
emitted in the spectral range of 640-850 nm and is characterised by two
peaks centered at around 685 nm and 740 nm, respectively (Zhao et al.,

2018; Porcar-Castell et al., 2014). SIF can serve as a direct and non-
invasive indicator of the functional status of photosynthetic machinery
(Meroni et al., 2009). In a study to link spaceborne SIF retrievals from
the Global Ozone Monitoring Experiment-2 satellite and United States
crop yield by Guan et al. (2016), it was found that the SIF-based ap-
proach accounting for photosynthetic pathways (i.e. C3 and C4 crops)
provides the best measure of crop productivity among various tradi-
tional crop monitoring approaches. More recently, Norton et al. (2018)
demonstrated that remote sensing derived SIF could be used to optimise
the process-based terrestrial biosphere model and the uncertainty in
estimates of gross primary production (GPP) was largely reduced. There
is no crop growth model can simulate chlorophyll fluorescence, thus
SCOPE (Soil-Canopy spectral radiance Observations, Photosynthesis,
fluorescence, temperature and Energy balance) model would be used in
this study. For example, firstly, EO derived SIF is assimilated into
SCOPE model to obtain assimilated GPP. Then, the assimilated GPP is
assimilated into WOFOST model to simulate grain yield.

It is worth noting that the rich spectral sampling capabilities of
Sentinel-2 can provide additional information on leaf pigments such as
chlorophyll concentration that show promising links to photosynthetic
activity (Gitelson et al., 2006; Croft et al., 2017; Delloye et al., 2018). In
order to fully exploit these new parameters, more researches are needed
in how they relate to processes already present in the crop growth
models, and how to best interface the new observations to the models.

Extending the richness of the observation products results in addi-
tional constraints to the model space, as different processes are made to
track different sets of observations. In this sense, consistency between
different observations is crucial, as is accurate estimation of un-
certainties associated with the various observational inputs.

5.2. Extending assimilation to large area and near real-time

More complex models, both for simulating crop growth and devel-
opment as well as for observation operators, and the increased resolu-
tion of observations, both in time and in space, result in an increase
computational cost for contemporary DA systems. Practical applications
at the regional or national scale require many evaluations of the crop
and/or observational operator models, particularly in the context of DA
with iterative or sampling approaches. Most crop growth models take
simulation units as independent of each other, and few simulate e.g.
lateral flows of fluxes, which suggests that a parallel approach where
different units can be spread out to different workers, is a feasible ap-
proach that can be successfully implemented in standard cloud archi-
tectures.

A different approach is to simplify the computational requirements
of the crop and/or observation models. Rather than using the given
model, approximations to the model can be used instead. In Gómez-
Dans et al. (2016), the observation operators is approximated by an
emulator: a proxy to the original model developed by using Gaussian
Processes (GPs, see Camps-Valls et al., 2016 for a review of GPs in Earth
Observation). The emulator not only is several orders of magnitude
faster than the original model, but also provides access to the Jacobian
and Hessian of the emulated model with minimal computational cost.
This allows the implementation of efficient variational methods, as well
as efficient MCMC methods that exploit gradient information in their
proposal distribution. GPs have been successfully used to emulate many
of the typical observation operators found in the literature, although
their use by the crop growth modelling community has been very
limited.

Current advances in SMP (symmetric multi-processor), GPU (gra-
phical processing units) and computer clusters have resulted in stan-
dard software libraries that can form the building blocks of the general
algorithms presented in Section 3. It is worth noting that developing
software to fully exploit the capabilities of these massively parallel
architectures is often hard, and not all problems are amenable to this
treatment. Even if some authors (e.g. Lee et al., 2010) have raised
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concerns casting doubt on some of the speed claims made for GPUs,
these architectures have a potential to scale DA problems. In this con-
text, the use of standard models through emulation can simplify their
use: only the emulator code needs to be made efficient for the target
architecture, a much simpler task than re-implementing crop or radia-
tive transfer models for GPUs.

Going forward into the future, the use of massive parallel infra-
structure, where the computing power as well as the data storage is
available (systems similar to Google Earth Engine (GEE) (Gorelick et al.,
2017), for example) might result in most of the DA problems being re-
implemented to work on these system. For example, a Scalable satellite-
based Crop Yield Mapper (SCYM) was developed (Lobell et al., 2015) to
map crop yields with satellite data by using crop model simulations to
train statistical models for different combinations of possible image
acquisition dates, and then these models were applied to remote sensing
images and gridded weather data within the GEE platform. However,
the uncertainty of crop growth models is not considered by SCYM
which differs itself from DA. The aforementioned approaches to modify
problems described in the previous paragraphs will still apply directly
to these architectures.

5.3. Advances in crop growth models

Generally, we need the crop growth model to dynamically simulate
crop phenology, leaf area index, biomass, water use and grain yield
formation in response to variations in genotype, environment and
management, as well as their interactions (de Wit et al., 2015; He et al.,
2017). A large number of crop growth models, such as APSIM (Keating
et al., 2003), AquaCrop (Hsiao et al., 2009), CERES (Jones et al., 2003),
GLAM (Challinor et al., 2004; Osborne et al., 2015), STICS (Brisson
et al., 2003), SWAP (Eitzinger et al., 2004), WOFOST (Van Diepen
et al., 1989), etc., have been used to predict crop growth and devel-
opment under various environments during the last several decades.
However, significant differences existed in model structures and para-
meters due to different aims and environments of model development
(Wang et al., 2015; Ruane et al., 2016). Furthermore, crop growth
models need to be improved to embed the latest progress in crop
physiological processes and quantify the modeling uncertainty (Rötter
et al., 2011). Fortunately, a part of these works is undertaken in the
Agricultural Model Intercomparison and Improvement Project (AgMIP)
(Rosenzweig et al., 2013). Within AgMIP a large number of crop and
agronomy modelling groups cooperate to compare modelling results for
existing crop datasets and for future conditions, including climate
change. A similar idea, comparison of different RS-crop model DA based
on the same dataset (remote sensing data and field data) are also sug-
gested.

We can envisage a system where the different strengths of different
models are pooled to provide an improved cropland monitoring cap-
ability, one where more observations allow for a better parameterisa-
tion of the interactions between crop growth, soil, weather, water,
nutrients and management practices. Some progress in this direction
has been made by using ensembles of models (Martre et al., 2015;
Ruane et al., 2016), although a lot of work is still required.

A different approach can be taken in the light that the richness of
observations that are currently available from satellites as well as from
international in situ networks (Fang et al., 2014) might offer a large
amount of information to the use of simpler crop growth models that
are made to track a varied set of observations are of interest. For ex-
ample, Revill et al. (2013) simplified the SPA-crop model of Sus et al.
(2010) so as to provide a very simple crop growth model that is spe-
cifically designed to be used within DA frameworks to estimate the
carbon balance of croplands: the simple model is designed to provide a
general trajectory that is refined by assimilating a rich set of observa-
tions.

Most previous DA studies were performed based on crop growth
models under potential condition, which implicitly simulate abiotic

stress, as they all use meteorological variables as input, but these
models may not simulate particular extreme events (e.g. frost kill on
winter cereals, lodging) or biotic stress. Crop growth model under po-
tential condition does not mean they are running under potential
growth conditions. Taking flooding as example, it may happen, perhaps
not often, and there are crop models (e.g. WOFOST) with a soil water
balance that can roughly simulate the effect of flooding. Consequently,
the existing DA studies take into account abiotic stress. Temporal
variability of these parameters before and after the stress needs to be
calibrated for improving the simulation of growth process.
Improvement of simulation of crop growth model requires further ca-
libration to account for the effect of water or temperature stress on dry
matter accumulation during subsequent growth periods. When stress
occurs, several key crop parameters of the crop growth model (e.g. the
leaf CO2 assimilation rate, conversion efficiency of assimilates, and
partitioning parameters in WOFOST model) need to be calibrated based
on the extent and duration of the historical stress in order to further
improve the simulation accuracy of crop growth models.

6. Conclusion

In this paper, we have provided a systematic review of data as-
similation (DA) in the field of crop modelling. We have provided a
common framework to most of the DA literature by basing most
methods in a Bayesian approach, where the different methods are
presented as a set of different choices and assumptions in the goal of
establishing a a posteriori pdf that combines a prior information (which
in some cases can be the crop growth model) and a set of observations
(often derived from satellite products).

The successful use of DA for crop monitoring results from the ability
of observations to correct the evolution of the crop as modelled by
imperfect crop growth models. A good example of the application of DA
is the paper of Kang and Özdoğan (2019), where an initial coarse scale
calibration of a crop model is performed first at the county level (e.g.
coarse resolution), to then be refined at the Landsat pixel (30m) level
by assimilating Landsat observations. A less succesful study from
Novelli and Vuolo (2019) in terms of yield estimation suggests that
careful calibration of the model is critical to obtain sensible results from
DA set ups. However, improving the yield estimate through assimilating
high or medium resolution in the fragmented landscapes still remains a
challenge (Huang et al., 2019; Defourny et al., 2019).

There are however a number of challenges ahead. Some of these
stem from the observations, with strong requirements to combine ob-
servations from different sensors in a seamless way, and critically,
provide accurate estimates of the uncertainty of the retrieved para-
meters. Part of this problem is inherent in the nature of satellite pro-
ducts, although recent advent of the Copernicus Sentinels satellites is
changing the opportunities dramatically, making frequent high spatial
resolution data (10m resolut ion) available. Other challenges include
the scaling of DA approaches to regional and national scales, where
heterogeneity of croplands poses a challenge for models and improve-
ments on the models to allow for more detailed processes, as well as
advances to better understand the uncertainties in the modelling fra-
meworks.

The increased spatial resolution, and the increasing simulated detail
within crop models are challenging when facing large area operational
applications. A number of strategies have been outlined, which include
the use of surrogate modelling (emulators), as well as the use of effi-
cient, massively parallel computational infrastructures.

Near real time applications, such as within-season forecasts are now
possible thanks to the routine production of seasonal forecasts by
weather centres across the world. While this area is still in its infancy,
the use of seasonal forecasts coupled with DA approaches has a great
promise in providing timely estimates of e.g. crop yield within the
season, an important requirement for many agencies and users.

It is our firm belief that DA approaches will form the basis of future
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crop monitoring systems. The fundamental limitations of crop models,
meteorological drivers and EO data all suggest that a blend of all these
realms is a necessity to provide a credible monitoring capability for
croplands.
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