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Induction of innate cytokine
responses by respiratory
mucosal challenge with R848 in
zebrafish, mice, and humans
To the Editor:
Development of new therapies and vaccines to combat viral

respiratory tract infections is slow, partly because of the limited
understanding of innate immune responses at the respiratory
mucosal site of disease. Detailed characterization of such re-
sponses might facilitate biomarker definition for respiratory
diseases and provide novel mechanistic insights and a platform
for the testing of novel therapeutics. Recently, noninvasive serial
nasosorption of mucosal lining fluid has been used to study
immune responses to experimental live human rhinovirus.1

However, human viral infection models require specialized
centers and resources, with some studies requiring quarantine
of volunteers.

In vivo animal models of innate immune stimulation are useful
alternatives; for example, mammalian models of airway mucosal
polyinosinic:polycytidylic acid (poly[I:C]) challenge (a viral
double-stranded RNA mimetic) are well established and demon-
strate the ability of these agents to induce proinflammatory cyto-
kines by respiratory cells.2-4Many noninfectiousmodels of innate
antiviral immunity have used resiquimod (R848; a Toll-like re-
ceptor [TLR] 7/8 agonist, single-stranded RNA mimetic), which
is closely related to imiquimod. R848 causes different vaccine-
specific immune responses in minipigs when administered intra-
dermally or intranasally, while intranasal R848 had adjuvant
activity in macaques.5 Studies using these models in mice, chim-
panzees, and ferrets have provided valuable insight into the mech-
anisms of immunity to and pathogenesis of viral respiratory tract
infections. However, they are not always practical to use, and they
do not always accurately mimic human infection responses.
Furthermore, the extent towhich thesemodels predict humanvac-
cine efficacy is often unclear.6,7

The zebrafish (Danio rerio) is an attractive alternative verte-
brate species, especially because of similarities with the human
innate and adaptive immune system. Recently, we have used ze-
brafish gills to assess respiratory inflammation, and our results
suggest zebrafish are a relevant model to study mechanisms of
respiratory mucosal innate immune responses.8 Therefore, we
developed parallel live zebrafish, mouse, and human challenge
models to study the effects of viral RNA mimic TLR agonists
with relevance to respiratory viral infection. These comparative
studies allow assessment of cytokine responses at comparable
and accessible sites of the respiratory mucosa (Fig 1, A-C).

Human nasal samples were collected serially by means of
nasosorption (using a synthetic absorptive matrix [SAM]) after
saline and TLR agonist nasal challenge of 9 volunteers (see Table
� 2019 The Authors. Published by Elsevier Inc. on behalf of the American Academy of

Allergy, Asthma & Immunology. This is an open access article under the CC BY li-

cense (http://creativecommons.org/licenses/by/3.0/).
E1 in this article’s Online Repository at www.jacionline.org for
baseline characteristics of participants and Table E2 in this arti-
cle’s Online Repository at www.jacionline.org for nasal and sys-
temic observations and clinical symptoms after R848
administration). The mouse nasal cavity is inaccessible for repet-
itive sampling, and therefore we developed a mucosal tissue sam-
pling technique ex vivo by applying an absorption approach
similar to that used for human subjects.

Zebrafishwhole gill tissuewas harvested at several similar time
points after R848 challenge. Fig 1 shows how remarkably similar
cytokine responses were across the 3 species, especially between
zebrafish and human subjects (see Fig E1 in this article’s Online
Repository at www.jacionline.org for detailed responses of indi-
vidual human subjects). An early response was observed for
TNF-a, whereas IFN-g levels increased later. These results sug-
gest that R848 can be administered to human subjects as a nonin-
fectious virus-type challenge of the innate immune system,
whereas complementary studies inmice and zebrafish could allow
mechanistic insight.

When poly(I:C) was applied, neither the fish gill nor human
nose responded (see Fig E2 in this article’s Online Repository at
www.jacionline.org). In contrast, the mouse nasal mucosal
response to poly(I:C) was characterized by an early increase in
Tnfa, Il6, and Ifna2 transcript levels and a later increase in Ifng
transcript levels. Overall, the R848 and poly(I:C) challenges
demonstrated both matching and discrepant innate antiviral re-
sponses in the different models.

To further refine the use of zebrafish gills as a model to study
viral mimetics, we also established a noninvasive sampling
technique using SAM to allow for repetitive sampling and
thereby longitudinal studies of individual fish, which also
contributes to the 3Rs (replacement, reduction, and refinement)
through refinement and reduction of animal procedures. Tnfa,
il1b, ifnphi1, and ifng1.1 transcripts were successfully detected
by using this method and significantly increased in gills stimu-
lated by R848 (see Fig E3, A-D, in this article’s Online Reposi-
tory at www.jacionline.org). Making use of transgenic zebrafish
with labeled immune cells, we examined both neutrophil (Tg
[lyz:GFP]) and lymphocyte (Tg[lck:eGFP]) distribution within
the gill tissue and found a significant early transient increase in
neutrophil counts (Fig 2, A and B), followed by an increase in
lymphocyte counts (Fig 2, C and D) in the lamella after R848
stimulation. Such cells, but not vascular epithelial cells, were
also harvested by using SAM (see Fig E3, E-I). These data high-
light the number of useful features of the zebrafish respiratory
mucosal model that permit investigation of mechanistic immune
pathways for assessing topical drug effects, viral infections, and
vaccine adjuvant activity.

Animal models are central to our understanding of innate
antiviral immunity. However, translation of these studies to
human disease can be limited. This can result in the need for
primate models of disease that are ethically, financially, and
logistically challenging. Here we establish parallel methods for
administration of TLR ligands directly onto the respiratory
mucosa in 3 species, with measurement of local inflammation
using simple and reproducible sampling methods. Development
of a human nasal mucosal model is of special interest because the
nose is the portal for viral respiratory tract infections that cause
widespread winter morbidity and mortality, and there are
advantages in studying a complex multicellular mucosal system
directly in human subjects.
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FIG 2. R848 induces lymphocyte migration in zebrafish gills. A and C, Maximum z-stack projections of

Tg(lyz:GFP; neutrophils; Fig 2, A) and Tg(lck:GFP; lymphocytes; Fig 2, C) gills after treatment with water or

R848 for 3 (Fig 2,A) and 8 (Fig 2, C) hours (n5 7). Scale bars5 100 mm. B and D, Average number of GFP1 cells

in the first 20 lamellae of each filament. Each dot indicates average counts per individual fish (n >_ 6). Values are

presented as means 6 SEMs. Two-way ANOVA followed by the Sidak multiple comparison test was used.
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Using these approaches, we demonstrate remarkably analo-
gous interferon and inflammatory cytokine production after R848
stimulation in the human and mouse nasal mucosa and zebrafish
gill tissue, which was evident despite the functional inactivity of
mouse TLR8.9 By contrast, human subjects and zebrafish did not
respond to poly(I:C), demonstrating that this common mouse
model of viral innate immune activation might have limited
translation to the human mucosal response to double-stranded
RNA viruses.

This study demonstrates that respiratory challenge with R848
might offer a novel mucosal model of antiviral immunity in
human subjects. This human challenge model might be particu-
larly suited to understanding differences in innate antiviral
responses in patients with allergic and respiratory diseases, such
as asthma and chronic obstructive pulmonary disease, in which
viral infections are major exacerbation triggers. As such,
mechanistic studies using poly(I:C) challenge of mice might
lack direct translation to human subjects. Instead, the R848model
can confidently be extended to mice and zebrafish, in which the
analogous response to R848 allows more detailed mechanistic
insights, relatable to those seen in human subjects. Overall, these
novel parallel in vivo mucosal models offer a platform for
FIG 1. Kinetic profile of mucosal proinflammatory cytok

nasal stimulation with R848. A-C, Schematics showingm

of mucosal tissue/fluids to assess responses. D, G, J, M

representative of 3 experiments). Values are presented

the Sidak multiple comparison test was used. E, H, K, N

(n 5 4-10 pooled from 2 independent experiments). Val

OVA followed by the Sidakmultiple comparison test was

ysis of human nasal samples (n5 9). Values are presente

log10-transformed area under the curve values were use
translational studies and trials of novel antiviral therapies, vac-
cines, and adjuvants.
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Charcot-Leyden crystal concentration
in nasal secretions predicts clinical
response to glucocorticoids in
patients with chronic rhinosinusitis
with nasal polyps
To the Editor:
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a

heterogeneous disease characterized by a defective immune
barrier and massive inflammatory cell infiltration.1,2,E4 Currently,
the most effectivemedical therapy in clinical practice is the use of
glucocorticoids.3-5,E1 However, many patients have a poor
response to the therapy.1,4,5 Thus, developing biomarkers predict-
ing glucocorticoid response in patients with CRSwNP would
greatly improve the efficacy of glucocorticoids and lighten the
economic burden in clinical practice. Although several bio-
markers associated with glucocorticoid resistance have been
discovered recently, most of these have been detected in polyp tis-
sue samples.6,7 Because the procedure for obtaining tissues often
leads to unavoidable mucosal trauma and increased risk of
bleeding and infection, there is a need for biomarkers that can
be detected by using noninvasive procedures.

Charcot-Leyden crystal (CLC) was first described in the
19th century.8 It is a unique component of eosinophils and ba-
sophils and is regarded as a hallmark protein of eosinophilic
inflammatory diseases. Previous studies have demonstrated
the presence of CLC in sputum of patients given a diagnosis
of allergic asthma or pulmonary ascariasis and in the feces
of patients with eosinophilic diseases of the digestive system,
such as ulcerative colitis and amoebic Trichuris species infec-
tion.8 In preliminary experiments we successfully detected
CLC in nasal secretions of patients with CRSwNP collected
according to the noninvasive method of Watelet et al.9 Because
rhinorrhea is one of the most common symptoms in these pa-
tients and these secreted fluids can readily be collected by us-
ing a noninvasive method, we have hypothesized that CLC in
nasal secretions might serve as a predictive marker of gluco-
corticoid response in patients with CRSwNP. Thus this study
aimed to investigate the predictive capacity of CLC concentra-
tions in nasal secretions for glucocorticoid response in patients
with CRSwNP.

The study was approved by the Ethics Committee of Beijing
TongRen Hospital, and all participants provided written informed
consent. Eighty-nine patients given a diagnosis of CRSwNP
according to the European Position Paper on Rhinosinusitis and
Nasal Polyps 2012E1 and who had no contraindications to gluco-
corticoids were enrolled in the study. None of the patients had
received any treatmentwith glucocorticoids or immunomodulatory
drugswithin 4weeks before enrollment. Patients with fungal sinus-
itis, allergic fungal rhinosinusitis, cystic fibrosis, or primary ciliary
dyskinesia were excluded from the study, and all eligible patients
were evaluated for comorbidity of allergic rhinitis, asthma, and
atopy. None of the enrolled patients received a diagnosis of
aspirin-exacerbated respiratory disease. Clinical characteristics,
such as staging of computed tomography (CT) and objective eval-
uation of olfactory function, were determined, as described previ-
ously (detailed criteria for each clinical characteristics are
presented in the Patients and samples section in this article’s Online
Repository at www.jacionline.org).E1-E6

Bilateral nasal cavity secretions and polyp tissues were
collected for comparison from each patient on admission to the
hospital, as described previously (detailed information on collec-
tion of nasal secretions is presented in the Patients and samples
section in this article’s Online Repository).9 After enrollment,
all patients started a 2-week course of oral glucocorticoid therapy
(24 mg of methylprednisolone by mouth every morning) and at
the end of this treatment period were divided into 2 groups ac-
cording to the Nasal Polyp Size Score (NPSS) system (see
Table E1 in this article’s Online Repository at www.jacionline.
org): glucocorticoid responders (n 5 48, patients whose change
in NPSS was more than 1 point) and glucocorticoid nonre-
sponders (n 5 41, patients whose change in NPSS was no more
than 1 point). Data for the clinical characteristics for each patient
were expressed as medians and interquartile ranges (IQRs),
except for binary variables and age (expressed as the mean and
SD, see Table E2 in this article’s Online Repository at www.
jacionline.org).

CLC concentrations in nasal secretions were analyzed by using
an ELISA. Statistical analysis was performed with GraphPad
Prism 6 software (GraphPad Software, La Jolla, Calif), and
receiver operating characteristic (ROC) curves were drawn with
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METHODS

Human studies
Participants. This human study was approved by the London-Harrow

Research Ethics Committee (clinicaltrials.gov identifier NCT02090374).

Healthy participants were enlisted from a database of previous volunteers,

as well as recruitment through newspaper advertisements. Subjects were

aged between 18 and 60 years and were current nonsmokers with a history

of less than 5 pack years. Participants had no history of asthma, respiratory

illness, or any other major systemic disease and were required to be off nasal,

inhaled, and systemic steroids. Participants with allergic rhinitis were

permitted. Written informed consent was obtained from all volunteers before

enrollment.

Study design. The study consisted of 2 nasal challenges: first with saline

and then followed 1 to 4 weeks later by a TLR agonist (either R848 or poly

[I:C]). On the day of the challenge visit, nasal mucosal lining fluid was

sampled at baseline by using nasosorption (Nasosorption FX-i; Hunt De-

velopments, Midhurst, United Kingdom) for a duration of 1 minute before and

after nasal lavage, as described previously.E1 After nasal challenge, nasosorp-

tion was performed at 30 minutes and then at hourly intervals for up to 8 hours

in all subjects. Clinical parameters of nasal obstructionwere assessed by using

Total Nasal Symptom Scores and peak nasal inspiratory flow, as described

elsewhere.E2

Nasal challenge with TLR agonists. TLR agonists used in the study

included high-molecular-weight poly(I:C) from InvivoGen (San Diego, Calif)

and VacciGrade R848 (also from InvivoGen). Saline and TLR agonists were

administered by using a Bidose nasal delivery device (Thermo Fisher, Epsom,

United Kingdom), which emits 100 mL per actuation. Poly(I:C) has been

previously tolerated in another study at doses of up to 800mg per nostril over a

24-hour period, with no adverse events reported.E3 Therefore poly(I:C) was

administered at a dose of 500 mg per nostril in five 100-mL installments by us-

ing the Bidose over a 1-hour period. R848 was delivered at a dose of 10mg per

nostril using 1 actuation of the Bidose device.

Sample processing. Mucosal lining fluid obtained from volunteers was

eluted, as described previously,E1 and stored in assay buffer at2808C, in addi-
tion to culture supernatants from PBMC experiments. These were thawed out

before chemokine and cytokine assays, which were performed by using the

MSD platform (Mesoscale Diagnostics, Gaithersburg,Md)with proinflamma-

tory panel 1 (IFN-g, IL-10, IL-12p70, IL-13, IL-1b, IL-2, IL-4, IL-6, IL-8, and

TNF-a) and an IFNa2a kit.

Mouse studies
Mice. C57BL/6 mice were purchased from Charles River or Harlan

Laboratories (United Kingdom). All mice were maintained in pathogen-free

conditions, and sex- and age-matched mice aged 8 to 10 weeks were used for

each experiment. All animal experiments were reviewed and approved by the

Animal Welfare and Ethical Review Board within Imperial College London

and approved by the UK Home Office in accordance with the Animals

(Scientific procedures) Act 1986 and the ARRIVE guidelines.

Intranasal stimulation with TLR agonists, mouse nasosorp-

tion, and quantitative RT-PCR. For exposure to TLR ligands, mice were

lightly anesthetized and instilled intranasally with poly(I:C) high molecular

weight or resiquimod (R848: VacciGrade), both from InvivoGen, at 2.5mg per

gram of mouse weight in 100 mL (5 50 mg/100 mL per mouse). Mice were

killed at 1, 3, and 8 hours after exposure by means of intraperitoneal adminis-

tration of pentobarbital.

To gain access to the nasal cavity, the snout and cartilage were removed

with scissors. To sample the mucosa, a small piece of SAM was inserted into

both nostrils by using fine tweezers. RNA from the SAM was extracted by

using TRIzol and the PureLink RNA Micro Kit (Life Technologies, Grand

Island, NY), according to the manufacturer’s instructions. cDNAwas synthe-

sized from 500 ng of total RNA, and quantitative RT-PCR (qRT-PCR) was

carried out, as described below. The following TaqMan primers and probes

were used: Tnfa (Mm00443260_g1), Il1b (Mm00434228_m1), Il6

(Mm_00446190_m1), Ifng (Mm00801778_m1), Ifna2 (Mm00833961_s1),

Ifnb1 (Mm00439546_s1), and Hprt (Mm00446968_m1). Cycle threshold

(Ct) values obtained were normalized to Hprt and calibrated to the

median control sample for relative quantification by using the comparative

Ct method.

Zebrafish studies
Zebrafish care. Wild-type zebrafish used in this study were reared and

maintained according to standard practices at 28.58C on a 14-hour light/10-

hour dark cycle. All procedures conformed to UK Home Office requirements

(ASPA 1986). The transgenic zebrafish lines Tg(lyz:GFP),E4 Tg(mpx:GFP),

(Tg(mpx:GFP)i114),E5 Tg(lck:GFP),E6 and Tg(fli:GFP)E7 were used.

Zebrafish gill treatment with TLR ligands and gillsorption.

Zebrafish were anesthetized in 0.17 mg/mL tricaine methanesulfonate (MS-

222; Sigma, St Louis, Mo) solution and positioned laterally under a dissecting

microscope on a Petri dish. Anywater was carefully removed, and the right gill

side of the fish was gently dabbed with tissue. R848 (2.5 mg/5 mL per

zebrafish, InvivoGen) or poly(I:C) (10 mg/5 mL per zebrafish, Invivogen) was

applied unilaterally to the gill for 5 minutes. Fish were returned to a fresh

system water.

To analyze transcript changes after stimulation, zebrafish were either killed

in MS-222 (4 mg/mL) and their gills were dissected or they were anesthetized

in MS-222 (0.17 mg/mL) and their gill tissues were gently dabbed to remove

excess water, with a piece of SAM (Fibrous Polyester; Hunt Developments)E1

applied for 5 seconds before being returned to fresh system water.

RNA extraction, cDNA synthesis, and qRT-PCR. Dissected gill

tissue from adult zebrafish were homogenized with a pestle in lysis buffer and

processed for RNA by using the MagMAX-96 Total RNA Isolation Kit

(Thermo Fisher) or the PureLink RNA Micro Kit (Thermo Fisher), according

to themanufacturer’s instructions. To extract RNA from cells attached to SAM

after gillsorption, the SAM was placed in TRIzol and then separated from the

TRIzol by means of centrifugation with Corning Costar Spin-X centrifuge

tube filters (without membrane), followed by RNA processing with the

PureLink RNAMini Kit (Life Technologies), according to the manufacturer’s

instructions. The quantity and quality of RNA were assessed spectrophoto-

metrically by using a Thermo Scientific NanoDrop 1000. One hundred

twenty-five nanograms of total RNA was used for reverse transcription by

using a High-Capacity cDNA Archive Kit (Applied Biosystems, Foster City,

Calif), according to the manufacturer’s instructions. qRT–PCRwas performed

with 2% cDNA generated by using TaqMan Fast Universal 23 PCR Master

Mix (Applied Biosystems) and TaqMan primer and probe assays for 18S

(4319413E), zebrafish Il1b (Dr03114368_m1), Tnfa (Dr03126850_m1), Il6

(FAM/MGB-NFQ custom TaqMan RNA assay: TGGAGGCCATAAACAGC-

CAGCTGCA), Ifnphi1 (Dr03100938_m1), and Ifng1.1 (Dr03109489_g1). All

reactions were performed in duplicates by using a 7500 Fast Real-time PCR

system (Applied Biosystems). Ct values obtained were normalized to 18S

and calibrated to themedian control sample for relative quantification by using

the comparative Ct method.

Whole-mount immunostaining. Dissected gills were fixed in 4%

paraformaldehyde at 48C overnight. Gills were washed twice in PBS and

once in deionized water, incubated in acetone at 2208C for 10 minutes, and

rinsed in deionized water and twice in PBS-T (PBS, 0.05% Triton X, and

0.05% Tween-20). Gills were then incubated in blocking buffer (PBS-T, 1%

dimethyl sulfoxide, and 5% donkey serum [Gibco, Carlsbad, Calif]) for

30 minutes, followed by incubation with 1:1000 polyclonal chicken anti–

green fluorescent protein (GFP; ab13970; Abcam, Cambridge, United

Kingdom) in blocking buffer at 48C overnight. Gills were rinsed 4 times

in PBS-T and incubated in 1:500 polyclonal donkey anti-chicken2Alexa

Fluor (AF) 488 (703-545-155; Jackson ImmunoResearch, West Grove, Pa)

in blocking buffer for 4 hours at room temperature (RT). Gills were rinsed in

PBS-T and PBS before incubating in DRAQ5 (1:1000; Thermo Fisher) and

rinsing further in PBS-T.

Gills were imaged on a Leica SP5 inverted confocal microscope (Leica,

Wetzlar, Germany), and images were processed with ImageJ software

(National Institutes of Health, Bethesda, Md). Cells were counted by using

Icy software in the first 20 lamellae from the arch of each undamaged or

unobstructed filament. Counts were performed in a blinded manner.
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Immunohistochemistry of gillsorption. After application on the

gills, SAMwas fixed in 4% paraformaldehyde (Sigma) for 1 hour at RT. After

briefly washing in PBS and deionizedwater, the SAMwas placed in acetone at

2208C for 5minutes, followed by brief washes with deionizedwater and PBS-

T (PBS, 0.05% Triton-X, and 0.05% Tween-20) and blocking with 5% goat or

5% donkey serum (Sigma) in PBS-T plus 1% dimethyl sulfoxide for

30 minutes at RT. The SAM was incubated with primary antibodies

(1:1000, rabbit anti-GFP, A-11122; Life Technologies), mouse anti-

cytokeratin antibody (1:100, MA1-82041; Thermo Scientific), and rabbit

anti-zebrafish L-plastin antibody (1:500) in blocking solution for 1 hour at RT,

followed by washes in PBS-Tand incubation in secondary antibodies (donkey

anti-rabbit2AF488; 1:500, A-21206; Life Technologies), donkey anti-

rabbit2AF555 (1:500, A-21428; Life Technologies), and goat anti-mouse-

IgG2AF633 (1:1000, A21052; Life Technologies) for 30 minutes at RT,

followed by washes in PBS-T and PBS before incubation in DRAQ5 (1:1000,

62254; Thermo Fisher Scientific) in PBS for 15 minutes at RT. Imaging was

performed with an inverted Leica SP5 confocal microscope, and image

processing was carried out with Fiji software.

Statistics
All statistical analysis was carried out with GraphPad Prism 6.0 software

(GraphPad Software, La Jolla, Calif). Normality distribution was tested with

the D’Agostino–Pearson omnibus test.When comparing 2 groups, unpaired 2-

tailed t tests (followed by the Welch correction test for nonequal SDs) and

Mann-Whitney tests were used for parametric and nonparametric data sets,

respectively. Two-way ANOVA followed by a Sidak multiple comparison

test was used for time-course data sets. P values of less than .05 were deemed

statistically significant. For human studies, paired t tests of area under the

curve (AUC) of log10-transformed values between 0 to 8 hours were initially

calculated for each mediator in individual subjects (n 5 9) after nasal chal-

lenge with saline and R848. Subsequently, AUC values were compared be-

tween groups by using a paired t test. The baseline parameter for AUC was

set at the lower limit of detection for each mediator.
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FIG E1. Kinetic immune response of nasal mediators induced by R848 nasal challenge in individual

subjects. A-I, Immune response of individual subjects (n 5 9) after saline (left panels) and R848 (middle

panels) challenge. Of interest, the 3 volunteers with atopy had relatively enhanced type 1 interferon re-

sponses, although this study was not specifically powered to address this question. Grouped data (right

panels) are displayed as geometric means and 95% CIs. Blue line, Saline; red line, R848. Paired t test on

AUC of log10-transformed values between 0 and 8 hours in individual subjects after nasal challenge was

used. IFN-b values: n 5 7. A, Volunteer with allergic rhinitis; H, healthy.

J ALLERGY CLIN IMMUNOL

VOLUME 144, NUMBER 1

LETTERS TO THE EDITOR 345.e3



81
0

2

4

6

tn
fa

 m
R

N
A 

(fo
ld

 c
ha

ng
e)

 Control

poly (I:C)

81
0

2

4

6

il1
b 

m
R

N
A 

(fo
ld

 c
ha

ng
e)

 

81
0

2

4

6

il6
 m

R
N

A 
(fo

ld
 c

ha
ng

e)

81
0

2

4

6

ifn
ph

i1
 m

R
N

A 
(fo

ld
 c

ha
ng

e)
 

81
0

2

4

6

ifn
g1

.1
 m

R
N

A 
(fo

ld
 c

ha
ng

e)

Time (h)

A

B

C

D

E

F

G

H

I

J

TN
F-
α

IL
-1
β

IL
-6

IF
N

-α
IF

N
-γ

esuoMhsifarbeZ

-1 0 1 2 3 4 5 6 7 80.5
0

50

100

150

200

TN
F-
α

Pr
e-

L
Po

st
-L

P =0.5669 Control

poly (I:C)

-1 0 1 2 3 4 5 6 7 80.5
0

50

100

150

200

250

IL
-1
β

Pr
e-

L
Po

st
-L

P =0.3927

-1 0 1 2 3 4 5 6 7 80.5
0

100

200

300

400

IL
-6

Pr
e-

L
Po

st
-L

P =0.0966

-1 0 1 2 3 4 5 6 7 80.5
0

1

2

3

4

5
IF

N
- α

2a

Pr
e-

L
Po

st
-L

P =0.6606

-1 0 1 2 3 4 5 6 7 80.5
0

50

100

150

200

250

IF
N

-γ

Pr
e-

L
Po

st
-L

Time (h)

P =0.3122

K

L

M

N

O

Human

1 3 8
0.0

0.5

1.0

1.5

2.0

2.5

Tn
fa

 m
R

N
A 

(fo
ld

 c
ha

ng
e)

*** ***

1 3 8
0

1

2

3

4

Il1
b 

m
R

N
A 

(fo
ld

 c
ha

ng
e)

1 3 8
0

1

2

3

4

5

Il6
 m

R
N

A 
(fo

ld
 c

ha
ng

e)

*** ***

1 3 8
0

2

4

6

Ifn
g 

m
R

N
A 

(fo
ld

 c
ha

ng
e)

*** ***

Time (h)

1 3 8
0

2

4

6

8

Ifn
a2

 m
R

N
A 

(fo
ld

 c
ha

ng
e)

*

FIG E2. Kinetic profile of mucosal proinflammatory cytokine responses after zebrafish gill, mouse, and

human nasal stimulation with poly(I:C). qRT-PCR analysis of tnfa (A), il1b (B), il6 (C), ifnphi1 (D), and ifng1.1

(E) transcripts in zebrafish gills (n 5 4, representative of 2 experiments) after gill treatment. Values are pre-

sented as means 6 SEMs. Two-way ANOVA followed by the Sidak multiple comparison test was used.

qRT-PCR analysis of Tnfa (F), Il1b (G), Il6 (H), Ifna2 (I), and Ifng (J) transcripts in mouse nasal mucosa

(n 5 4-10 pooled from 2 independent experiments) sampled with SAM after intranasal stimulation. Values

are presented as means 6 SEMs. Two-way ANOVA followed by the Sidak multiple comparison test was

used. Soluble protein mediator analysis of TNF-a (K), IL-1b (L), IL-6 (M), IFN-a2a (N), and IFN-g (O) in human

nasal mucosal lining fluid (n5 8), as measured by using the nasosorption technique after challenge. Values

are presented as geometric means and 95% CIs, and AUC analyses were used. *P < .05 and ***P < .001.
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FIG E3. Gillsorption as a noninvasive sampling tool to monitor mucosal proinflammatory cytokine and

interferon responses after zebrafish gill stimulation with R848. A-D, qRT-PCR analysis of adult zebrafish gills

sampled with SAM 1 hour after gill treatment with water (control, blue bars) or R848 (0.5 mg/mL, red bars)

for 5 minutes. Dot plots show relative expression values obtained for individual fish (n 5 8), which were

normalized to 18S and expressed as fold change relative to the median control sample. Values are pre-

sented as means6 SEMs. *P < .05 and ***P < .001, Mann-Whitney test. E, Representative brightfield image

of SAM corresponding to Fig E3, J. F-J, Representative images (maximum projection of confocal z-stack) of

cells absorbed by SAM after application on gill tissue of liveWT zebrafish stained with an L-plastin antibody

(red; Fig E3, F) or the transgenic zebrafish Tg(mpx:GFP) (Fig E3, G), Tg(lck:GFP) (Fig E3, H), and Tg(fli:GFP)

(Fig E3, I) stained with an anti-GFP antibody (green) or a cytokeratin antibody (red; Fig E3, J). SAM was cos-

tained with DRAQ5 (cyan).
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TABLE E1. Baseline characteristics of participants undergoing R848 nasal challenge

Subject code Age (y) Sex

Positive grass pollen

skin prick test response? Eosinophil count (3 109/L) Serum total IgE

13 45 Male No 0 23.5

15 29 Female Yes 0.1 67.5

16 49 Female Yes 0.2 1085

25 35 Female Yes 0.2 142

28 34 Female No 0.3 54.1

30 27 Female No 0 32.8

31 47 Female No 0 4.69

35 45 Female No 0.1 NA

53 32 Female No NA 2.12

NA, Data not available.
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TABLE E2. Nasal and systemic symptoms after R848 nasal challenge

Subject code Nasal symptoms Fever >37.28C Myalgia Fatigue Headache Comments

13 Nil No No No No Asymptomatic

15 Nil No Yes Yes Yes Fatigue for up to 36 h after challenge

16 Blocked nose Yes No No No Nose blocked at 3 h after challenge for 1 h

Temperature increase from 36.98C to 37.48C
Asymptomatic

25 Blocked 1 itchy nose Yes Yes Yes Yes Shivering soon after administration of R848 for 1.5 h

Flu-like symptoms overnight with nasal symptoms

28 Nil No No No No Asymptomatic

30 Nil No No No No Asymptomatic

31 Nil No No No No Asymptomatic

35 Nil No No No No Asymptomatic

53 Nil Yes Yes Yes Yes Flu-like symptoms for 24 h after challenge

Temperature increased to 39.28C
Mild-to-moderate headache
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