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Background: Validated absolute risk equations are currently recommended as the basis of cardiovascular disease
(CVD) risk stratification in prevention and control strategies. However, there is no consensus on appropriate
equations for sub-Saharan African populations. We assessed agreement between different cardiovascular risk
equations among Ghanaian migrant and home populations with no overt CVD.
Methods: The 10-year CVD risks were calculated for 3586 participants aged 40–70 years in the multi-centre
RODAM study among Ghanaians residing in Ghana and Europe using the Framingham laboratory and non-
laboratory and Pooled Cohort Equations (PCE) algorithms. Participants were classified as low, moderate or
high risk, corresponding to b10%, 10–20% and N20% respectively. Agreement between the risk algorithms was
assessed using kappa and correlation coefficients.
Results: 19.4%, 12.3% and 5.8% were ranked as high 10-year CVD risk by Framingham non-laboratory, Framing-
ham laboratory and PCE, respectively. The median (25th–75th percentiles) estimated 10-year CVD risk was
9.5% (5.4–15.7), 7.3% (3.9–13.2) and 5.0% (2.3–9.7) for Framingham non-laboratory, Framingham laboratory
and PCE, respectively. The concordance between PCE and Framingham non-laboratory was better in the home
Ghanaian population (kappa=0.42, r=0.738) than themigrant population (kappa=0.24, r=0.732)whereas
concordance between PCE and Framingham laboratory was better in migrant Ghanaians (kappa = 0.54, r =
0.769) than the home population (kappa = 0.51, r = 0.758).
Conclusion: CVD prediction with the same algorithm differs for themigrant and home populations and the inter-
changeability of Framingham laboratory and non-laboratory algorithms is limited. Validation against CVD
outcomes is needed to inform appropriate selection of risk algorithms for use in African ancestry populations.
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1. Introduction
Cardiovascular diseases (CVDs) continue to pose a major public
health challenge globally [1,2]. Current estimates show a dramatic
shift in the global burden of disease from communicable,maternal, peri-
natal and nutritional causes to non-communicable diseases [2,3]. The
annual mortality from CVDs is projected to increase from 17.5 million
in 2012 to 22.2 million in 2030 consolidating their position as leading
cause of death and disability worldwide [1]. CVDs are no longer consid-
ered the disease of affluent nations as N80% of deaths due to CVDs now
occur in low- and middle-income countries (LMIC) [4,5].

The management of CVDs has been improving steadily over the last
decade [2]. Deaths from CVDs have, for example, been dramatically
reduced in many high-income countries [2]. However, certain ethnic
minority groups and sub-Saharan African (SSA) populations have not
experienced equivalent improvements in outcomes and continue to
be disproportionately affected by CVDs [3,6]. Decreases in overall hospi-
talization rates for heart failure, for example, have been lower in African
Americans compared toWhite Americans, although the overall rate has
declined in recent years [7]. Mortality related to stroke also continues to
be higher in African Americans than inWhite Americans [8]. In addition,
the prevalence of CVD risk factors such as hypertension is also found to
be higher among African descent populations residing in Europe, than
their host populations [9,10].

Current guidelines have reiterated the need to simultaneously assess
most risk factors as an effective way of stratifying risk for CVDs preven-
tion and control [11]. This leads to estimation of total risk of CVDs to
Table 1
Risk factor profile stratified by RODAM site.

Variables Total
N = 3586

Ghana
N = 1564

Europe
N = 2022

p-Value

Men, N (%) 1396 (40.0) 513 (33.4) 883 (43.6) b0.001
Age, years 51.6 ± 0.1 52.4 ± 0.2 51.0 ± 0.2 b0.001
Mean systolic BP, mm Hg 134.2 ± 0.3 129.8 ± 0.5 137.6 ± 0.4 b0.001
Antihypertensives, N (%) 928 (25.9) 208 (13.3) 720 (35.6) b0.001
Total cholesterol, mmol/L 5.13 ± 0.02 5.10 ± 0.03 5.15 ± 0.02 0.063
LDL cholesterol, mmol/L 3.30 ± 0.02 3.31 ± 0.03 3.30 ± 0.02 0.872
HDL cholesterol, mmol/L 1.34 ± 0.01 1.24 ± 0.01 1.42 ± 0.01 b0.001
Diabetes, N (%)a 443 (12.4) 160 (10.2) 283 (14.0) b0.001
Smoking, N (%)

– Current 104 (2.9) 23 (1.5) 81 (4.0) b0.001
– Past 307 (8.6) 128 (8.2) 179 (8.9)

BMI, kg/m2 27.5 ± 0.1 25.3 ± 0.1 29.2 ± 0.1 b0.001

Data are presented asmeans± standard error of themean (SEM) unless stated otherwise;
BP = Blood pressure; HDL = High density lipoprotein; LDL = Low density lipoprotein;
BMI = Body mass index.

a Based on self-report, use of hypoglycemicmedication or fasting plasma glucose N =
7 mmol/L (WHO criteria).

Fig. 1. Predicted 10-year CVD risk stratified by RODAM site. Lab; Laboratory, Fram; Framingha
Europe p b 0.001.
identify high-risk groups for targeted treatments, a strategy that has
been shown to be cost effective and result in significantly greater reduc-
tions in absolute risk [11,12]. Early identification, and appropriate treat-
ment of patients with highest level of absolute CVD risk is of substantial
health benefit [13]. This, however, requires reliable tools to identify in-
dividuals without overt CVDwho are at high risk of a future CVD event,
to enable effective implementation of preventive strategies.

Many CVD risk algorithms have been developed for different popu-
lations. The first Framingham risk score (FRS) was developed around
1967 by Cornfield and Truett [14], and since then, FRS has been
redeveloped several times, simplified through point score, recalibrated
for use in other populations, while new algorithms have also been
developed for populations in other settings. Current Framingham risk
algorithms include age, gender, smoking status, blood pressure levels
and blood cholesterol levels [15]. For resource limited settings, where
blood lipid determinations for screening purposes are less feasible
and far too costly, [16] the Framingham model has been modified by
replacing cholesterol with body mass index (BMI) [15]. The extent of
its applicability, has however not been extensively elucidated, particu-
larly in sub-Saharan Africa.

The choice of a CVD risk-estimation system should be based on its
robustness and ability to address clinically relevant risk factors, leading
to a measurable health gain [11]. There is conflicting evidence as to the
appropriateness of available risk scores to adequately capture the ethnic
and socioeconomic disparities relating to CVDs. The Framingham
equation, which has been used widely for assessing CVD risk for in-
stance, has been recently criticized for inaccurate estimation of risk
among ethnic minority groups [17–21]. A study on the performance of
Framingham cardiovascular risk scores by ethnic groups in New
Zealand for instance found that the original risk prediction score under-
estimates risk for the combined high-risk ethnic populations [22]. The
QRISK2, developed and validated among individuals from different
ethnic groups in England andWales, although shown to perform better
than Framingham, [23,24] also performedpoorly in identifying high risk
African Caribbeans [24]. The Pooled Cohort Equations (PCE), developed
and validated among Caucasian and African American men and women
with no clinical atherosclerotic CVD [25], has been shown to compara-
tively and appropriately estimate CVD risk in ethnic minority popula-
tions [26,27].

Despite the development and extensive use of risk prediction equa-
tions to estimate CVD risk in different populations of other geographical
settings, little can be said of SSA. There have been no population-based
studies conducted in most countries of SSA for the development of CVD
risk algorithms for these populations. There is little evidence on the
comparability of existing risk algorithms in identifying high-risk indi-
viduals among sub Saharan African populations [28]. Further, although
the Framingham non-laboratory algorithm was developed for limited
m, PCE; Pooled Cohort Equation; p-value for distribution of CVD risk = Ghana p b 0.001;
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resource settings, its exchangeability with the Framingham laboratory
algorithm has also not been elucidated in SSA populations. This study
aims to 1) compare the risk stratification of Framingham laboratory,
Framingham non-laboratory and PCE among Ghanaians, and 2) com-
pare CVD risk stratification between Ghanaian populations in Europe
and Ghana.

2. Methodology

2.1. Study design and population

Details of themulti-centre Research on Obesity and Diabetes among AfricanMigrants
(RODAM) study including the recruitment and sample size estimations are published else-
where [29]. In summary, in the RODAM study, 6385 Ghanaians from a homogenous pop-
ulation, aged 25 to 70 years, residing in Ghana or had migrated to different European
countries were recruited, of whom 5898 were physically examined. This offers an advan-
tage for direct comparisons of CVD risk stratification between themigrant and home pop-
ulations. As a central feature of this study, at all study sites, a well standardized approach
was used for data collection. All RODAM study participants aged 40 to 70 years (meeting
the age range for both Framingham, 30–74 years and PCE, 40–74 years) and without his-
tory of clinical CVD (n= 3586) were included in the current analysis. Missing biomedical
data [systolic BP, 12 (0.3%); BMI, 10 (0.3%); Cholesterol, 139 (3.6%); HDL Cholesterol, 142
(3.6%) and LDL Cholesterol, 139 (3.7%)]were excluded. For sensitivity analysis, thesemiss-
ing values were imputed using multiple imputation in SPSS® version 22. Comparatively,
the outcomes for the imputed and incomplete dataset were the same.

2.2. Measurements

Information on demographics was obtained by structured questionnaire. Physical ex-
aminations were performedwith validated devices according to standardized operational
procedures across all study sites.Weightwasmeasured twice in light clothing andwithout
shoeswith SECA 877 scales to the nearest 0.1 kg. Height was alsomeasured twice without
shoeswith a portable stadiometer (SEC 217) to the nearest 0.1 cm. Bodymass index (BMI)
was calculated as weight (kg) divided by height squared (m2). Overweight and obesity
were defined as BMI ≥ 25 to b30 kg/m2 and ≥30 kg/m2 respectively.

Fasting venous blood sampleswere collected by trained research assistants in all sites,
manually processed and immediately aliquoted according to standard operational proce-
dures, and then temporarily stored at the local research location at−20 °C. The samples
were then transported to the respective local laboratories for registration and storage at
−80 °C and were subsequently transported to Berlin, Germany, for biochemical analysis
to avoid intra-laboratory variability. Total cholesterol, high density lipoprotein (HDL) cho-
lesterol and low density lipoprotein (LDL) cholesterol were determined using the ABX
Pentra 400 chemistry analyzer (HORIBA ABX, Montpellier, France). Type-2 diabetes was
defined according to the World Health Organization (WHO) diagnostic criteria (fasting
glucose ≥7.0 mmol/L, or reported current use of medication prescribed to treat diabetes,
or self-reported diabetes) [30]. Blood pressure was measured three times using validated
semi-automated device (The Microlife WatchBP home) with appropriate cuffs in a sitting
position after at least 5 min rest. The mean of the last two measurements was used in the
analysis. Use of antihypertensives was assessed based on a ‘Yes’ or ‘No’ response to the
question ‘Do you use any antihypertensive medication, including combinations?’.
Smoking status was based on either a ‘Yes’, ‘No, but I used to smoke’ or ‘No, I've never
smoked’ response to the question ‘Do you smoke at all?’.

2.3. CVD risk

The 10-year risks of CVDs were estimated using the Framingham laboratory and non-
laboratory algorithms (15) and the Pooled Cohort Equations (PCE) algorithm for African
Americans [31]. The Framingham laboratory algorithm involves two sex-specific equations
that use age, sex, total cholesterol, HDL-cholesterol, systolic blood pressure (SBP, BP) medi-
cation, diabetes, smokingwhile the samemodelling principleswere applied to produce sim-
pler sex-specific models which replace total and LDL cholesterol with BMI [15]. The PCE
algorithm on the other hand, is relatively new and has an explicit aim of being applicable
to different ethnic groups. The model combines age, sex, total cholesterol, HDL-cholesterol,
systolic blood pressure, use of antihypertensive medication, diagnosed with diabetes and
smoking and have separate equations for African–American men and women. Predicted
CVD risk was categorized into ‘low’ (b10%), ‘moderate’ (10–20%) and ‘high’ (N20%) [32].

2.4. Data analysis

Datawere analyzedusing SPSS® version 22 [33]. Variableswere summarized as count
and proportions, mean and standard error of the mean (SEM) or median and 25th–75th
percentiles. The inter-rater agreement between the various algorithms was assessed
using the Kappa statistic, based on the classification of Landis and Kock [34]: poor-to-
fair agreement (kappa b0.40), moderate agreement (kappa of 0.41–0.60), substantial
agreement (kappa of 0.61–0.80) and excellent agreement (kappa of 0.81–1.0). The corre-
lation between the predicted CVD risks was also assessed using the Spearman correlation;
whereas the differences in the correlation coefficients across the various settings were
tested using the Steiger's Z test [35]. All statistical tests were conducted at a significance
level of p b 0.05.
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3. Results

3.1. Background characteristics and CVD risk profile

Table 1 shows the background characteristics and risk factor profile
of the study population. Themean age was 52 years andmajority of the
study subjects at both Ghana and European sites were women; 33.4%
and 43.6% were men in Ghana and Europe respectively. The differences
in distribution of CVD risk at both European andGhana siteswere statis-
tically significant (p b 0.001). The mean (SE) SBP was higher among the
Europeanmigrant population, 137.6 (0.4)mmHg than those residing in
Ghana, 129.8 (0.5) mm Hg (p b 0.001). About 35.6% of the Ghanaian
population in Europe reported to have antihypertensive medication as
compared to only 13.3% of their counterparts in Ghana (p b 0.001).
The percentages of diabetics and current smokers were also higher
among the migrant populations than non-migrants (p b 0.001).

3.2. Estimated CVD risk and agreement across algorithms

As shown in Fig. 1, 19.4%, 12.3% and 5.8% of the Ghanaian population
studiedwere predicted as having high 10-year CVD risk by Framingham
non-laboratory, Framingham laboratory and PCE, respectively. Among
the migrant population, 23.7% were predicted as high 10-year CVD
risk as compared to 13.0% by Framingham laboratory and 6.8% by PCE.
A similar trend was observed among the home populations, Fig. 1.

The median (25th–75th percentiles) 10-year absolute CVD risk was
9.5% (5.4–15.7), 7.3% (3.9–13.2) and 5.0% (2.3–9.7) for Framingham
non-laboratory, Framingham laboratory and PCE respectively. As
shown in Table 2, the kappa statistic (95%CI) for PCE compared with
Framingham non-laboratory was 0.31 (95%CI 0.28–0.34) for the entire
study population whereas it was 0.63 (0.60–0.65) when Framingham
laboratory and non-laboratory were compared. The concordance be-
tween PCE and Framingham non-laboratory was better in the home
Ghanaian population (kappa; 0.42; 95%CI 0.37–0.47, r = 0.738) than
the migrant population (kappa; 0.24; 95%CI 0.20–0.28, r = 0.732)
whereas concordance between PCE and Framingham laboratory was
the inverse (Ghana kappa; 0.51; 95%CI 0.47–0.56, r = 0.758; Europe
kappa; 0.54; 95%CI 0.50–0.58, r = 0.769).

The differences in correlation between PCE and the Framingham al-
gorithms were statistically significant in the European (Z = 2.99; p =
0.003) but not the home Ghanaian populations (Ghana; Z = 1.39; p =
0.163), Table 3. The correlation in predictions for Framingham laborato-
ry versus PCE and Framingham laboratory versus non-laboratory were
statistically different for both the migrant and home populations. The
correlation between Framingham laboratory and Framingham non-
laboratory was significantly different between the migrant and home
populations (Z = 4.75; p b 0.0001).

4. Discussion

This study assessed the agreement between the Framingham
laboratory, Framingham non-laboratory and PCE algorithms in stratify-
ing 10-year CVD risk of Ghanaian populations in Ghana and Europe. The
main finding is that the degree of agreement between the risk estimates
from different algorithms differs between home and migrant
Table 3
Differences in correlations between risk algorithms, measure in Ghana or Europe.

Framingham non- laboratory versus PCE

Ghana Europe

z-Score p-Value z-Score

Framingham laboratory versus PCE 1.394 0.163 2.993
Framingham non-laboratory versus PCE
populations. This study shows discrepancies in the risk assessment
and identification of high- risk individuals between three popular scor-
ing systems. The level of agreement between the various CVD risk scores
was moderate between Framingham laboratory and non-laboratory
and low between PCE and the Framingham algorithms, with discrepan-
cies in prediction being higher among the Ghanaianmigrant population
than among the Ghanaian home populations. Migrant populations ac-
quire certain health characteristics including smoking and high lipid
diets, which influence their risk of CVDs over time [36]. This also indi-
cates that migrant populations could develop some important risk fac-
tors and biomarkers relevant for their CVD risk prediction, but are not
captured by the current risk equations.

Another important finding of this study was that, although the
Framingham non-laboratory was designed to replace the laboratory
equation in resource limited settings, interchangeability is limited. Com-
pared to the laboratory equation, the non-laboratory equation ranked
almost 1.5 times more people at higher absolute 10-year CVD risk
among the Ghanaian population in Ghana, with just the replacement
of cholesterol with BMI in the algorithm. This corroborates findings by
Gray et al. [37] where the Framingham non-laboratory algorithm pre-
dictedmore high absolute risk than the laboratory algorithm. This brings
to question; the reliability of the BMI algorithm in predicting CVD risk
even in resource limited settings, where these are proposed to be
used. Currently, no CVD risk algorithm has been validated in any SSA
population, nor for most low and middle-income countries. Incoherent
estimations of an individual's risk have huge implications for clinical
practice and the delivery of equitable care in risk based treatment.

Finding of this study corroborates previous evidence, that, pre-
dicted CVD risk depends on the algorithm used. The Framingham
non-laboratory and laboratory algorithms classified 2.5, and 4
times, respectively, more often Ghanaian participants to be high-
risk individuals compared to PCE algorithm classification. This was
more evident in the Ghanaian home population, where 9.4% and
12.3% were ranked at high risk by Framingham non-laboratory or
laboratory equations as compared to only 3.1% by the PCE. This im-
plies that when the same threshold is applied to the same popula-
tion, prescriptions of statin and antihypertensive medication, as
well as behavioral and dietary advice, will be more often recom-
mended when the Framingham algorithms are applied. Mancini
and Ryomoto [38], who compared risk algorithms to determine eligi-
bility for statin therapy, also concluded from their findings that the
choice of risk algorithm leads to systematic differences in risk cate-
gorization that can influence eligibility for lipid-lowering therapy.
While this study did not observe actual events, previous validation
studies that predicted absolute risk found the Framingham equation
to typically overestimate CVD risk compared to other risk algorithms
tested [17–21,39]. The study by Fulcher et al. found PCE, Framingham
and QRISK2 to overestimate risk, however, PCE was seen to outper-
form Framingham scores when applied to primary prevention con-
trol arm patients in the Cholesterol Treatment Trialists' database
[40]. The consideration of ethnicity in the development of PCE algo-
rithms was to enhance its usability and accuracy in predicting CVD
risk among ethnic minority populations and previous validation in
these populations has shown an improvement in CVD risk prediction
compared to existing algorithms (26,27).
Framingham laboratory versus Framingham non-laboratory

Ghana Europe

p-Value z-Score p-Value z-Score p-Value

0.003 24.892 b0.0001 9.265 b0.0001
– – 7.172 b0.0001
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The lack of concordance in CVD predictions by different risk algo-
rithms has been the subject of long debate. Previous comparative stud-
ies of different CVD risk algorithms in the general population also
revealed the lack of concordance in the detection of high- risk cases
and in the recommendations for treatment [41,42]. Studies that looked
into risk prediction in specific populations also found differences in pre-
dictions and lack of concordance in predictions by different algorithms,
including an underestimation by the PCE [43], underestimation [44,45]
and overestimation by the Framingham [46]. Although only a prospec-
tive study will truly inform which of the three equations offers optimal
sensitivity and specificity for the prediction in this population, defining
the groups and which methods offers most discrepancies may help im-
prove the clinical assessment of cardiovascular risk.

5. Conclusion

This study shows prediction of CVD risk to be reliant on the risk
algorithm adopted. The Framingham laboratory and non-laboratory
algorithms ranked more individuals to have high risk of 10-year CVD
event than the PCE, with concordance and correlations differing be-
tweenmigrant andhome populations of same ancestry. Although calcu-
lation of predicted risk of CVD may prove useful in the management of
CVDs, it is important to validate the different laboratory and non-
laboratory based risk algorithms used to evaluate CVD risk in ethnic
monitory groups and resource limited settings. This work demonstrates
the urgent need for prospective studies among sub-Saharan African
populations to enable the development or validation of population
specific CVD risk algorithms for use among these populations.
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