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Purpose: Magnetic resonance (MR) cholangiopancreatography (MRCP) is an estab-
lished specialist method for imaging the upper abdomen and biliary/pancreatic ducts. 
Due to limitations of either MR image contrast or low through‐plane resolution, 
patients may require further evaluation with contrast‐enhanced computed tomogra-
phy (CT) images. However, CT fails to offer the high tissue‐ductal‐vessel contrast‐ 
to‐noise ratio available on T2‐weighted MR imaging.
Methods: MR super‐resolution reconstruction (SRR) frameworks have the potential 
to provide high‐resolution visualizations from multiple low through‐plane resolution  
single‐shot T2‐weighted (SST2W) images as currently used during MRCP studies. Here, 
we (i) optimize the source image acquisition protocols by establishing the ideal number 
and orientation of SST2W series for MRCP SRR generation, (ii) optimize post‐processing 
protocols for two motion correction candidate frameworks for MRCP SRR, and  
(iii) perform an extensive validation of the overall potential of upper abdominal SRR, 
using four expert readers with subspeciality interest in hepato‐pancreatico‐biliary 
imaging.
Results: Obtained SRRs show demonstrable advantages over traditional SST2W 
MRCP data in terms of anatomical clarity and subjective radiologists’ preference 
scores for a range of anatomical regions that are especially critical for the manage-
ment of cancer patients.
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1  |   INTRODUCTION

Magnetic resonance (MR) cholangiopancreatography (MRCP) 
is an established method for imaging the upper abdomen and 
biliary/pancreatic ducts. Heavily T2‐weighted (HT2W) se-
quences exploit slow moving fluid in the biliary and pancre-
atic ducts to generate high‐resolution images of the biliary 
tree.1 Such HT2W images are acquired as near‐isotropic voxel 
three‐dimensional (3D) image volumes during free breathing 
using respiratory triggers and are useful in the assessment of 
intra‐ductal benign and malignant pathology.2-4 However, 
the assessment of peri‐ductal and extra‐ductal upper abdom-
inal soft tissue pathology is reliant on traditional two‐dimen-
sional (2D) single‐shot T2‐weighted (SST2W) imaging (e.g. 
half‐Fourier acquisition single‐shot turbo spin echo, HASTE 
sequences) because of the more suitable tissue contrast they 
provide of surrounding anatomy. To achieve acceptable in‐
plane signal‐to‐noise ratio (SNR), slice thickness is increased, 
with resultant low through‐plane resolution, anisotropic voxel 
2D images. Because of the close proximity of fine ductal/vas-
cular structures in the upper abdomen, these 2D images are 
particularly susceptible to partial voluming effects (PVEs), 
whereby signal from a single voxel is contaminated by signal 
from multiple anatomical structures. Images are also obtained 
in breath‐hold, so that patient non‐compliance and breath‐hold 
difficulties commonly introduce inter‐slice motion artifact. To 
mitigate these effects, SST2W sequences can be obtained con-
secutively in axial and coronal planes, with radiologists reading 
low through‐plane resolution, motion‐artifacted image series in 
both planes to improve sensitivity to pathology. However, early 
malignant lesions are typically small and mural/extra‐ductal 
(rather than intra‐ductal) and easily overlooked. Diagnostic 
pathways are therefore reliant on non‐MR imaging modalities 
for the exclusion of small volume pathology, but these can be 
invasive (e.g. endoscopic ultrasound, EUS) or require ionizing 
radiation (e.g. computed tomography, CT).

Super‐resolution reconstruction (SRR) is a post‐process-
ing technique to combine multiple low‐resolution (LR) 2D 
image stacks into a single high‐resolution (HR), 3D visualiza-
tion. Applications of SRR in MR imaging (MRI) range from 
adult studies on the tongue5 and thorax6 to fetal applications.7-9 
Despite being well‐suited to overcome the limitations of mul-
tiplanar SST2W in principle, its application in the upper abdo-
men to‐date has been limited. In fact, super‐resolution (SR) can 
only work accurately in case of very precise motion estimation 

with subvoxel accuracy for all LR observations for the recovery 
of subvoxel detail.10-12 This is especially difficult in the context 
of abdominal imaging where images acquired from separate 
breath‐holds are subject to inspiratory/expiratory variation in 
addition to deformation arising from cardiac motion, arterial 
pulsation, and gastro‐intestinal tract peristaltic motion. Existing 
respiratory motion models for motion correction require the 
availability of respiratory surrogate data13 which are currently 
not available for MRCP studies. Using an SRR approach such 
as the iterative two‐step registration‐reconstruction approach 
used in fetal MRI,8,14 applied to only two stacks, is prone to 
generate a strongly biased volume and the currently used rigid 
motion models might not be sufficient.

Our preliminary study15 demonstrated the feasibility of 
upper abdominal MRI SRRs generated from only two stan-
dard MRCP protocol axial and coronal SST2W series using 
HT2W volumes as a reference‐guide for in‐plane deformable 
slice‐to‐volume (S2V) registration/motion correction. but 
anatomical clarity was lacking and a more robust registra-
tion/motion correction was needed. SRRs generated from a 
larger number of LR 2D source series are known to increase 
the reconstruction quality9,16 but acquisition of additional 
SST2W data comes at the expense of additional patient scan-
ning time. Insight on the optimal orientation and number of 
input stacks for SRR is limited,17-19 especially in the upper 
abdomen. Using HT2W volumes as a reference to guide 
registration is attractive but motion artifact arising from 
extended acquisition times and inconsistent breathing com-
monly degrades HT2W image quality. More rapidly acquired, 
similar to SST2W tissue contrast T2‐weighted balanced fast 
field echo (BFFE) sequences may offer a more consistent 
alternative for reference‐guided registration, as may other 
more recently proposed non‐reference guided SRR registra-
tion methods.7 Finally, in order to objectively assess these 
factors, control studies using imaging free from significant 
variation in inter‐subject motion artifact and from which a 
robust non‐motion artifacted ground‐truth/reference standard 
can be generated for SRR comparison are required.

In this pilot study, we obtained healthy volunteer multi-
planar SST2W stacks of the upper abdomen and the brain 
(“quasi‐static” control data, to remove the effect of upper 
abdominal motion artifact), with the overall objectives of (i) 
optimizing source image acquisition protocols by establishing 
the ideal number and orientation of SST2W series (so‐called 
“source data configuration”) for MRCP SRR generation; (ii) 

Conclusions: Our results underline the potential of using SRR alongside traditional 
MRCP data for improved clinical diagnosis.
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optimizing post‐processing protocols by defining the best 
approach to registration/motion correction for SRR in the 
upper abdomen; and (iii) validation of the overall potential of 
upper abdominal SRR, using expert readers to compare pre‐
specified imaging features on the SRR with imaging obtained 
from standard SST2W MRCP protocols.

2  |   METHODS

2.1  |  Subjects and MRI scanning
Local ethics committee approval was obtained and all par-
ticipants provided informed written consent. Volunteers were 
recruited via advertisement within the University College 
London campus and were eligible if (i) they had no MRI con-
traindication, (ii) were not taking any long‐term medication 
(excluding the oral contraceptive pill), and (iii) had no docu-
mented history of previous liver or gastrointestinal disease. The 
final cohort consisted of eight healthy volunteers (six male, 
mean age (28 ± 2) years, mean weight (72 ± 12) kg). Imaging 
was performed using a 3T scanner (Ingenia, Philips Healthcare, 
Best, Netherlands) with a 16 channel body coil (SENSE XL 
Torso, Philips Healthcare, Best, Netherlands) used for abdomi-
nal imaging and a 15 channel head coil (dStream HeadSpine, 
Philips Healthcare, Best, Netherlands) used for brain imaging.

2.2  |  Image acquisition protocols

2.2.1  |  Upper abdominal imaging
Abdominal imaging was planned to ensure adequate cover-
age of the liver and biliary tree, with acquisition parameters 

listed in Table 1. Standard clinical axial and coronal SST2W 
series were acquired in expiratory breath‐hold. The same 
acquisition parameters were used for additional expiratory 
breath‐hold SST2W series planned in (i) the sagittal plane, 
(ii) repeat axial, coronal and sagittal volumes shifted by 
half the slice thickness in the slice‐select direction, and 
(iii) four additional oblique volumes where the slice‐select 
dimensions were defined by the direction of a unit vector 
toward the lower four corners of a cube [−1, 1]3 whose ori-
entation is aligned with the standard anatomical directions 
(Figures 1 and 2 and Supporting Information Figure S1).

For deformable reference‐guided registration/motion 
correction, navigator‐triggered free‐breathing standard 
clinical HR HT2W volumes were acquired (Table 1). To 
investigate the potential of a less heavily T2‐weighted 
volume for reference‐guided registration that can be 
acquired more rapidly, we also used a thin slice 1.5 mm 
balanced fast field echo (BFFE) volume sequence to 
obtain high through‐plane resolution coronal images 
(Table 1).

2.2.2  |  Quasi‐static control brain imaging
The same imaging protocol as presented for the abdo-
men was applied to the brain for seven of eight volunteers 
whereby identical imaging parameters were used to obtain 
image contrasts similar to the abdomen for the quasi‐static 
control brain studies. All control data was planned to 
ensure adequate coverage of the brain whereby no imaging 
trigger was used. For optimization studies and ground‐truth 
comparisons, an additional HR T2W volume was obtained 
(Table 1 and Figure 2).

Abdomen and Control Brain Control Brain only

Description HT2W volume SST2W stack BFFE volume HR T2W volume

Acquisition Type 3D 2D 3D 3D

Repetition Time [ms] 1120 1161 2.46 2500

Echo Time [ms] 662.00 80.00 1.23 252.83

Flip Angle [◦] 90 90 15 90

Pixel Spacing [mm] 0.65 × 0.65 0.78 × 0.78 0.73 × 0.73 0.98 × 0.98

Slice Thickness [mm] 1.8 5 1.5 1

Slice Spacing [mm] 0.9 5 1.5 0.5

Number of Slices 90 20‐25 83 360

Abdominal Imaging Trigger Respiratory bellow Expiratory BH Expiratory BH ‐

Abdominal Scan Duration 04:06.0 00:21.5‐00:33.3 00:23.0 ‐

Notes: For the abdominal imaging, the heavily T2‐weighted (HT2W) volume is acquired as a gated acquisition triggered by a respiratory bellow. The single‐shot T2‐
weighted (SST2W) stack and the balanced fast field echo (BFFE) acquisitions are acquired at separate expiratory breath‐holds (BH). For the quasi‐static control brain 
experiment, no imaging trigger is used and an additional HR T2W volume is acquired for ground‐truth comparisons. Example images associated with this protocol are 
shown in Figure 2.

T A B L E  1   Image acquisition protocol used in this volunteer study for both abdominal and control brain anatomies



4  |      EBNER et al.

2.3  |  Motion correction and volumetric 
reconstruction
Assuming a classical slice acquisition model20,21 for each LR 
2D SST2W slice acquisition ys, i ∈ℝ

Ns from a stack s∈ with 
slice index i∈s, the pixelwise association with the unknown 
HR volume x∈ℝ

N, whereby Ns ≪N for the voxel numbers 
due to the LR 2D image acquisition, can be expressed by 

The linear operator As, i(j, ⋅ ) acts as point spread function 
(PSF)‐defined intensity interpolator in the HR volume space 
that approximates the image acquisition process at a non‐
linearly transformed physical position of voxel j of slice ys, i 
up to the imaging noise ns, i. Each voxel intensity of a LR 
slice is therefore influenced by a certain neighborhood of this 
voxel within a HR volume x given by the assumed PSF that 
is specific to the slice profile of the LR MR acquisition.22 For 
SST2W sequences, a common approximation is given by a 
slice‐aligned 3D Gaussian function that depends on the in‐ 
and through‐plane resolution of the LR slice.23,24 However, 
the motion that each anatomical region experiences during 
acquisition time is unknown. Once estimated, the HR vol-
ume can be obtained from the (motion corrected) LR slices 
by solving the associated SRR problem using a maximum a 
posteriori formulation (MAP)12,15,20 

where As, ix denotes the application of (1) to a vec-
tor in ℝNs, α  ≥  0 the regularization parameter and ∇ the 
differential operator. In particular, the linear operator 
As, i:ℝ

N
→ ℝ

Ns , x↦As, ix = : ỹs, i models the image acquisi-
tion process that generates a LR slice ỹs, i from a HR volume x 
at a specific, and in our case, estimated, position and orientation 
within that HR volume. The second term of (2) is a first‐order 
Tikhonov regularization which corresponds to a MAP formu-
lation exploiting a probabilistic prior on the HR volume. This 
counteracts the ill‐posed nature of the minimization problem 
and retains a computationally efficient least‐square structure. 
The final HR volume x∗ is also referred to as the SRR. More 
complex SRR models have been proposed in addition to the 
MAP formulation including modifying (2) to rely on robust 
M‐estimator20 and total variation formulations.25 However, 
while they substantially increase the computational cost, in 
our experience, they tend to show little improvement in the 
obtained reconstruction quality in case of appropriate motion 
correction. Associated experiments comparing Tikhonov and 
total variation regularizations are summarized in Supporting 
Information Tables S3 and S4 and Figures S6 and S7.

In this study, we evaluate two different motion correction 
methods: (i) a multimodal (With multimodal registration, we 
refer to the involvement of two images with different MR image 
contrasts due to different acquisition protocols as opposed to 
monomodal registration where two images of the same image 
contrast are used.) reference‐guided, in‐plane deformable 
registration approach that registers the LR SST2W slices to 
a separately acquired 3D HR reference volume of a different 

(1)
ys,i(j)=As,i(j,x)+ns,i(j)∈ℝ for all slice voxels j=1,… ,Ns.

(2)x∗:= argmin
x≥0

��

s∈

�

i∈s

1

2
‖ys,i−As,ix‖2

�
2 +

�

2
‖∇x‖2

�
2

�
∈ℝ

N

F I G U R E  1   Visualization of acquisition planes of SST2W images. Left and middle figures illustrate the imaging planes in the standard and 
the oblique orientations, respectively. The associated slice‐select directions orthogonal to the respective acquisition planes are shown in the figure 
on the right. Example images are shown in Figure 2
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contrast (e.g. HT2W or BFFE volumes), and (ii) a monomodal 
rigid motion correction approach based on robust outlier rejec-
tion using only the SST2W slice image information.

2.3.1  |  SRR using reference‐guided 
multimodal deformable motion correction
Building on our preliminary study,15 a reference‐guided 
motion correction approach is deployed whereby the fol-
lowing is assumed: (i) the resolution of the reference image 
is sufficiently high to act as a 3D reference volume, (ii) 
the occurring anatomical deformation can be captured by 
deforming the slice only in the in‐plane direction; the con-
tribution in the orthogonal slice‐select direction can there-
fore be neglected given the thick slices and the associated 
intensity information uncertainty due to PVEs. Based on 
those assumptions the following non‐iterative three‐step 

volumetric reconstruction algorithm is performed: (i) mul-
timodal slice‐to‐volume registration where each individual 
2D slice of each stack is rigidly registered to the 3D refer-
ence; (ii) based on the intersection of the slices with the 3D 
reference, each slice is deformed in‐plane to compensate 
for non‐rigid deformations; and (iii) estimation of the SRR 
volume by solving (ii) using the estimated deformations. 
Reference‐guided registration was applied using HT2W 
and BFFE volumes.

2.3.2  |  Outlier‐robust SRR using 
monomodal rigid motion correction
Outlier‐robust SRR using rigid motion correction has been 
proposed recently for fetal MRI and exploits data from 
series obtained in at least three orientations.8,14,20,24 Using an 

F I G U R E  2   Images obtained by extended MRCP protocol for abdomen and brain anatomies. The first three rows show the acquisitions that 
are available in standard clinical MRCP studies, i.e. an axial and a coronal SST2W images and an HT2W volume. Further acquisitions include 
SST2W images in sagittal and oblique orientations (shown in Supporting Information Figure S1) and a BFFE volume as an alternative candidate for 
the reference‐guided motion correction framework. For validation purposes, a separate HR T2W volume was acquired for the brain
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iterative two‐step registration‐reconstruction approach, a vol-
umetric reconstruction step is followed by a rigid S2V regis-
tration step until convergence using the SST2W image series 
only. “Outlier” slices are detected during the SRR steps and 
rejected to prevent misregistered or artifact‐corrupted image 
slices from affecting the final SRR outcome. In this study, we 
deploy our recently presented method for fetal brain MRI.7 
This computes the volumetric reconstruction using an SRR 
formulation similar to (2), i.e. 

for a slice‐index set k
s, 𝜎

:= {i: Sim(ys, i, Ak

s, i
xk−1) ≥ 𝜎} ⊂ s 

containing only slices that demonstrate high agreement 
with their simulated counterparts projected from the previ-
ous SRR iterate using a similarity measure Sim and param-
eter σ > 0. In particular, (2) is a special case of (3) since 
the combined linear forward operator Ak

s, i
 describes the ori-

ented PSF‐interpolator estimated after k motion correction 
steps, whereby only a subset of indices k

s, 𝜎
⊂ s per stack s 

is considered. Thus, (3) represents a convex SRR problem 
with complete outlier removal using a single hyperparame-
ter σ in a linear least‐squares minimization formulation that 
can be solved efficiently using matrix‐free operations.15,26

Therefore, using this iterative SRR framework it is 
assumed that, (i) sufficient input SST2W images are available 
to allow anatomically plausible reconstructions from these 
LR image stacks, (ii) the anatomical motion captured per 
slice is approximately rigid for the specified region of inter-
est (ROI) for most of the slices, and (iii) the outlier‐rejection 
algorithm can reliably reject individual slices that present 
non‐matching deformations.

2.4  |  Data preprocessing and 
parametrization of the reconstruction pipeline
A ROI including the common bile duct, head of pancreas, 
porta hepatis, and central liver was specified manually using 
masks generated on axial SST2W images by a radiologist 
with over 10 years experience in abdominal imaging (PP). 
Quasi‐static control ROIs for the brain tissue were defined 
automatically using the Brain Extraction Tool (BET).27 This 
region was also used for the quantitative ground‐truth com-
parisons. SST2W images were preprocessed via an ITK bias 
field28 and a linear intensity correction step constrained by 
the provided manual (abdomen) and automatic (brain) masks.

For abdominal and quasi‐static control brain data, the ROI 
mask was propagated to all the remaining SST2W series using 
nearest neighbor interpolation. Reconstruction pipelines were 
developed in Python using itk for the individual registration 
steps. Only data within the masked ROI was used for image pro-
cessing and all slice registrations were constrained to the slice 
mask. For the deformable, reference‐guided SRR framework, 

the in‐plane deformation was performed using NiftyReg  
(https​://github.com/KCL-BMEIS/​niftyreg) software that is 
based on a fast free‐deformation algorithm29 using localized nor-
malized cross‐correlation (LNCC) as similarity measure. By 
applying the obtained in‐plane deformation to each individual 
slice ys, i, the SRR problem (2) was solved using the transformed 
slices {y̆s, i}s∈ ,i∈s

 in combination with the linear operators 
Ăs, i = As, i, s∈ , i∈s, that carry the respective rigid slice 
motion correction estimates. To model the PSF of the image 
acquisition, we chose to approximate the SST2W sequence slice 
profile by a 3D Gaussian function defined by 
diag

( (1.2 s1)2

8 ln (2)
,

(1.2 s2)2

8 ln (2)
,

s2
3

8 ln (2)

)
∈ℝ

3× 3 as variance‐covariance 
matrix with s1, s2 and s3 representing the in‐ and through‐plane 
spacings23,24 in the slice‐coordinate system, respectively. For the 
outlier‐robust, rigid motion correction and SRR framework, 
NiftyMIC (https​://github.com/gift-surg/NiftyMIC) was used 
to solve (3) as described in Ebner et al.7 Three iterations of two‐
step rigid S2V registration and outlier‐robust SRR steps were 
performed with normalized cross‐correlation (NCC) used to 
guide registrations. To create a first HR reference for the initial 
rigid S2V registrations, we used a discrete variant of Nadaraya‐
Watson kernel regression as an efficient scattered data approxi-
mation scheme for the volumetrically aligned SST2W image 
stacks.15,30 For outlier detection, Sim was set to NCC and σ was 
selected empirically with values of 0.6, 0.65 and 0.7 per iteration 
to account for increasing accuracy in (3), respectively. There is 
broad consensus that SR in MRI can only reliably be achieved in 
through‐plane and not in in‐plane direction.12,31-33 We, therefore, 
defined the isotropic reconstruction grid for the abdominal SRRs 
by the in‐plane resolution of the stacks (0.78 mm). Given the 
SST2W slice thickness of 5 mm, our algorithm created an SR 
volume with approximately six times the resolution in the 
through‐plane direction as the source SST2W images. For the 
brain, an isotropic reconstruction grid of 0.98 mm was used to 
approximately match the HR T2W volume resolution for the 
quantitative comparisons. The regularization parameter α was 
set to be 0.01 and 0.02 for the abdominal and quasi‐static control 
SRRs, respectively. The different values are a result of the differ-
ent reconstruction grid resolutions and were determined using a 
combination of L‐curve studies34 and visual inspections.

2.5  |  Evaluation methodology

2.5.1  |  Optimization control studies for 
brain MRI SRR
Six source data configurations for SRR generation were 
evaluated, using (i) axial and coronal (“a+c”, two series); (ii) 
axial, coronal, and sagittal (“a+c+s”, three series); (iii) axial, 
coronal, sagittal, and slice‐select direction shifted axial, coro-
nal, and sagittal (“2a+2c+2s”, six series); (iv) axial, coronal, 
sagittal, and the first three oblique planes as shown in Figure 
1 (“a+c+s+3obl”, six series); (v) axial, coronal, sagittal, 
and all four oblique planes (“a+c+s+4obl”, seven series); 
and (vi) both axial, both coronal, both sagittal, and all four 
oblique planes (“2a+2c+2s+4obl”, ten series).

(3)xk+1:= argmin
x≥0

��

s∈

�

i∈k
s,�

1

2
‖ys,i−Ak

s,i
x‖2

�
2 +

�

2
‖∇x‖2

�
2

�

https://github.com/KCL-BMEIS/niftyreg
https://github.com/gift-surg/NiftyMIC
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To evaluate the registration/motion correction approaches, 
five SRRs were generated for each source data configuration 
using (i) no registration/motion correction (static SRR); (ii) 
reference‐guided rigid registration using HT2W data (RG‐
HT2W); (iii) reference‐guided rigid registration using BFFE 
data (RG‐BFFE); (iv) reference‐guided rigid registration 
using HR T2W data (RG‐HRT2W); and (v) outlier‐robust 
rejection rigid registration using only the SST2W source data 
used for each configuration (NiftyMIC). HR T2W brain imag-
ing was used as ground‐truth/reference standard imaging, with 
NCC used for both the similarity measure for each of the reg-
istration steps and the quantification of ground‐truth similar-
ity. Alternative similarity measures for registration (mutual 
information, MI; normalized mutual information, NMI) and 
ground‐truth similarity (structural similarity index measure,35 
SSIM; NMI; peak‐signal‐to‐noise ratio, PSNR) were also gen-
erated and are presented in the Supporting Information Figures 
S3 and S4 and Table S1 for the sake of manuscript concise-
ness. Analysis of RG‐HRT2W based SRR results from the 
quasi‐static control data is used to establish the optimal num-
ber and orientation of SST2W series for SRR while excluding 
the confounding factor of motion as much as possible.

2.5.2  |  Optimization studies for upper 
abdominal MRI SRR
The results obtained from the control brain studies were used 
to inform the abdominal imaging optimization study meth-
odology. Three source data configurations for SRR genera-
tion were evaluated: (i) axial and coronal (“a+c”, two series), 
(ii) axial, coronal, and sagittal (“a+c+s”, three series), and 
(iii) axial, coronal, sagittal, and the first three oblique planes 
(“a+c+s+3obl”, six series). Four SRR approaches were eval-
uated for all previously utilized methods excluding the una-
vailable RG‐HRT2W approach in this scenario.

In the absence of ground‐truth/reference standard imaging, 
assessment was based on (i) numerical SRR self‐consistency 
similarity measures, and (ii) subjective semi‐quantitative 
analysis by two radiologists. Self‐consistency was defined 
as the similarity between each slice ys, i and its projected 
SRR counterpart As, ix according to a similarity metric Sim, 
i.e. Sim(ys, i, As, ix), whereby NCC was used as Sim (SSIM, 
NMI and PSNR are additionally presented in Supporting 
Information Figure S5 and Table S2).

Subjective semi‐quantitative evaluation was undertaken 
independently by two radiologists with over 10 years expe-
rience in abdominal imaging (MC, PP) blinded to the SRR 
source data configuration or registration/motion correction 
approach. The clarity of high signal intensity anatomical 
(biliary ductal) structures and presence of misregistration 
artifacts were scored as previously described (Ebner et al15; 
summarized in Supporting Information Section 2), and 
within‐subject SRRs were ranked in order of preference. 

Where inter‐reader discrepancies were noted, images were 
jointly re‐evaluated and a consensus score was recorded after 
joint re‐evaluation.

Because a reliable evaluation of 96 SRRs was not fea-
sible, assessment was restricted to 24 SRRs at a time. The 
first experiment evaluated the three best performing image 
registration/motion correction approaches determined from 
numerical self‐consistency measures, in SRRs generated 
from the densest source data configuration (a+c+s+3obl, six 
series). The second experiment evaluated all three source data 
configurations for SRRs generated using the best‐performing 
MRCP SRR approach determined from the first experiment.

2.5.3  |  Upper abdominal MRI SRR expert 
reader validation studies
Using the previously determined ideal number and orienta-
tion of SST2W series and the best approach for abdominal 
MRCP SRR, four radiologists (MC, PP, LF, and ZA), three 
with subspeciality interest in hepato‐pancreatico‐biliary 
imaging and all with more than eight years experience in 
abdominal imaging, independently validated upper abdomi-
nal SRRs by direct comparison with standard protocol axial 
and coronal SST2W images, using a semi‐quantitative scor-
ing system. Both SRRs and standard SST2W images were 
scored for preservation of anatomical information at nine 
anatomical sites, focused predominantly on the assessment 
of peri‐ductal and extra‐ductal soft tissues. Readers also 
scored regions for the presence of artifacts, i.e. subjective but 
clinically apparent loss, addition or distortion of structures, 
introduced by SRR and recorded their subjective preference 
relative to standard SST2W images.

2.5.4  |  Statistical analysis
Non‐parametric statistical tests were used for the non‐

normally distributed NCC scores obtained from similarity 
measures between quasi‐static control SRRs and ground‐
trust/reference standard imaging and for upper abdominal 
SRR self‐consistency. This included Wilcoxon signed‐rank 
tests for the quasi‐static control brain and Kruskal‐Wallis 
with post hoc Dunn’s tests for the abdominal optimization 
studies. For the abdominal expert reader experiments, non‐
parametric statistical tests were used for all reader‐derived 
semi‐quantitative scores, specifically Kruskal‐Wallis tests 
with post hoc Dunn’s tests were used to determine differences 
between source data configurations or registration/motion 
correction strategies for upper abdominal SRRs. For valida-
tion studies, Bland‐Altman analysis of agreement for aver-
aged clarity of anatomical information scores for SRR and 
standard SST2W imaging were compared using the median 
difference as a bias measure and 2.5th and 97.5th percentiles 
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F I G U R E  3   Ground‐truth (HR T2W) similarities for static and reference‐guided SRR outcomes for the quasi‐static control brain experiment 
whereby each of the seven subjects is assigned a different marker. The more input stacks are used the higher the similarity scores. Moreover, 
motion correction markedly improves the ground‐truth similarities which was performed by rigidly registering each individual slice to the HR T2W 
volume using NCC as the similarity measure. A visual comparison for one subject is provided in Figure 4. Stars indicate statistical differences 
between the groups using a pairwise Wilcoxon signed‐rank test (p < 0.05)

F I G U R E  4   Qualitative comparison of the static and reference‐guided SRR outcome of one subject for various input data scenarios in 
the sagittal view (additional axial and coronal view comparisons are shown in Supporting Information Figure S2). It illustrates the impact of 
the number of input stacks and how multiple orientations can improve PVE recovery. In particular, SRR (a+c+s+3obl) shows visually higher 
anatomical accuracy than SRR (2a+2c+2s) despite the same number of six input stacks used for the SRR. The red arrows (A) underline that the 
SRR based on only two stacks (a+c) as currently available for clinical MRCP study protocols produces a very poor SRR quality which is especially 
noticeable in the sagittal view. The magenta arrows (B) illustrate that for three input stacks (a+c+s) the corpus callosum can only be reconstructed 
with limited geometrical integrity. Motion correction helps to recover it more clearly by adding three additional stacks (2a+2c+2s) as indicated 
by arrows (C). The green arrows (D) show the improved visual clarity at the medulla due to better PVE correction using oblique data. Additional 
oversampling for high input stack numbers leads to higher PSNR. This may also result in clear tissue boundaries even in case of insufficient motion 
correction for the static SRR as indicated by the cyan arrow (E)
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as the 95% Limits‐of‐Agreement (LoA). Wilcoxon signed‐
rank tests were used to test for differences of anatomical 
clarity between SRRs and standard clinical axial and coronal 
SST2W data (“Ax&Co”), subjective preference and the pres-
ence of visible artifacts. The threshold of statistical signifi-
cance for all tests was defined as p < 0.05.

3  |   RESULTS

3.1  |  Optimization control studies for brain 
MRI SRR
A total of 210 quasi‐static control brain SRRs were generated 
(30 SRRs for each of the seven volunteers). The box‐plot in 
Figure 3 illustrates the impact of motion correction and source 
data configuration on the NCC score. It shows that adding 
more than six input stacks (a+c+s+3obl) leads to only little 
numerical improvement in reconstruction quality for MRCP 
SST2W data (comparison using other similarity measures can 
be found in the Supporting Information Figures S3 and S4).

A visual comparison in Figure 4 illustrates how different 
source data configurations affect the SRR results. In partic-
ular, using two input stacks (a+c) leads to inferior outcomes 

which is especially noticeable in the sagittal plane. Three 
input stacks (a+c+s) yield a substantial visual improve-
ment that is further visible by adding three more stacks as 
shown for both 2a+2c+2s and a+c+s+3obl SRR outcomes. 
Although relatively subtle in this comparison, using oblique 
orientations (a+c+s+3obl) instead of same‐plane acquisi-
tions (2a+2c+2s) can lead to more accurate SRRs depending 
on the curvature of tissue structures. This is indicated at the 
medulla which appears more blurred for the 2a+2c+2s out-
come. Adding more stacks shows little visual improvement. 
However, the additional oversampling leads to higher PSNR 
and may result in clearer tissue boundaries (Figure 4 and 
Supporting Information Figure S2).

A quantitative comparison of the five registration/motion 
correction approaches with respect to different source data 
configurations is shown in Table 2. Only a subset of all per-
formed comparisons is provided for simplicity (further com-
parisons are available in Supporting Information Table S1). 
The RG‐HRT2W outcome represents an approximation of the 
upper bound for the theoretically achievable MRCP SRR qual-
ity. Of the remaining four SRR approaches, using the BFFE 
volume as a reference performs second best. NiftyMIC, which 
does not rely on any external reference, performs between 

MC Strategy a+c a+c+s 2a+2c+2s a+c+s+3obl

RG‐HRT2W 0.751 ± 0.046 0.770 ± 0.039 0.775 ± 0.038 0.779 ± 0.038

RG‐BFFE 0.735 ± 0.047 0.754 ± 0.039 0.759 ± 0.038 0.764 ± 0.038

NiftyMIC 0.724 ± 0.052 0.748 ± 0.043 0.751 ± 0.041 0.758 ± 0.040

RG‐HT2W 0.708 ± 0.042 0.734 ± 0.037 0.739 ± 0.037 0.750 ± 0.037

Static SRR 0.689 ± 0.049 0.708 ± 0.049 0.727 ± 0.050 0.724 ± 0.049

Note: The rows are sorted in a descending order according to the SRR outcome for “a+c+s+3obl”.

T A B L E  2   Ground‐truth (HR T2W) NCC‐similarities of obtained quasi‐static control brain SRRs for an increasing number of input stacks for 
different motion correction (MC) strategies summarized for all seven subjects

F I G U R E  5   Self‐consistency 
evaluation given by projected NCC‐
similarities for all slices of obtained 
abdominal SRRs for an increasing number 
of input stacks for different motion 
correction strategies summarized for 
all eight subjects. All self‐consistency 
outcomes between SRR approaches, except 
for RG‐HT2W vs Static SRR for “a+c+s,” 
are significantly different within each source 
data configuration based on Kruskal‐Wallis 
with post hoc Dunn tests (p < 0.05)
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RG‐BFFE and RG‐HT2W. NiftyMIC demonstrated negligi-
ble outlier rejections (average 0.05 ± 0.21 slices) during SRR. 
In terms of source data configurations, numerical outcomes 
confirm the importance of multiplanar image input for high 
SRR quality. In particular, oblique planes (a+c+s+3obl) are 
preferable over multiple standard planes (2a+2c+2s).

3.2  |  Optimization Studies for Upper 
Abdominal MRI SRR
Based on the findings from the control quasi‐static brain MR 
data, we tested three source data configurations (a+c, a+c+s, 

a+c+s+3obl) using all four registration/motion correction 
methods available in the abdomen (RG‐BFFE, RG‐HT2W, 
NiftyMIC and static SRR). A total of 96 abdominal SRRs 
were generated (12 SRRs for each of the eight volunteers). 
The scores in Figure 5 indicate highest self‐consistency for 
the NiftyMIC SRR outcomes across source data configura-
tions for NCC (more comparisons in Supporting Information 
Figure S5 and Table S2) followed by Static SRR. Lower out-
comes for the reference‐guided approaches indicate the exist-
ence of slice misregistrations with RG‐HT2W producing 
consistently better results. For NiftyMIC, the statistics for the 
outlier‐robust framework were (# of rejected slices / # of total 

F I G U R E  6   Qualitative comparison 
between the SRR approaches using 
either two or six input stacks. Both 
motion correction frameworks, i.e. the 
HT2W‐guided one and NiftyMIC, achieve 
SRRs with visually improved anatomical 
plausibility. However, in areas where MRCP 
lacks contrast, NiftyMIC tends to produce 
superior results. Moreover, using six input 
stacks can lead to better SRR outcomes in 
case of adequate motion correction which 
is especially visible in the sagittal view. 
Examples for such visual improvements are 
indicated by arrows
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slices) 0.14 ± 0.35/30.43 ± 4.40, 0.71 ± 0.88/50.29 ± 4.33, 
and 5.00  ±  2.14/108.57  ±  4.87 for the a+c, a+c+s and 
a+c+s+3obl input data scenarios, respectively, indicating a 
moderate increase of slice rejections for increasing input data.

Figure 6 shows that SRRs based on fewer input stacks 
represent anatomically less plausible reconstructions. Both 
RG‐HT2W and NiftyMIC show improved anatomical clar-
ity over the static SRR approach. This is especially the case 
for the SRRs based on six input stacks. However, RG‐HT2W 
becomes less accurate in areas with poor HT2W image 
contrast.

Table 3 summarizes the two radiologists’ qualitative eval-
uation. Superiority of NiftyMIC over RG‐HT2W and Static 
SRR in terms of anatomical clarity, amount of visible motion 
and the radiologists’ preference was statistically significant. 
By selecting NiftyMIC as the best‐performing MRCP SRR 
approach, a second experiment demonstrated the significantly 
better reconstruction quality achieved using the a+c+s+3obl 
source data. In particular, it was selected as the radiologists’ 
preference without exception. Two independently conducted 
experiments with, at least, days delay, show little variability 
in the radiologists’ assessment of the NiftyMIC a+c+s+3obl 
outcome, Table 3 rows 3 and 6.

3.3  |  Upper abdominal MRI SRR expert 
reader validation studies
NiftyMIC with a+c+s+3obl input stacks was chosen as best‐
performing method for subsequent validation studies. Bland‐
Altman analysis of agreement between SRR and standard 
axial and coronal SST2W data in Figure 7 confirms a sys-
tematically better outcome in clarity of anatomical structures 
presented on the SRRs. Assessment of the individual ana-
tomical regions shows a statistically better SRR performance 
for two of the nine assessed anatomical features (cystic duct, 
and hepatic artery and central branches). Expert reader sub-
jective preference scores demonstrate statistically significant 
preferences for vascular structures, the cystic duct and first 
generation intrahepatic ducts. Pancreatic duct, head‐of‐pan-
creas parenchyma, and ampulla were preferred on standard 
imaging. Importantly, artifact scores were generally well 
above 1 which underlines that the SRRs present minimal or 
no new artifact in comparison with the original data. On aver-
age, no structure was scored as having less artifact than the 
original data.

4  |   DISCUSSION

In this work, we present the first comprehensive analysis 
of SRR for MRCP studies. Using quasi‐static control data 
from the brain and upper abdominal MR imaging of healthy T
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volunteers, we optimized source data configuration and 
motion correction strategies for MRCP SRR. We validated 
optimized SRRs using expert readers to show that SRRs can 
lead to novel high‐quality HR visualization of peri‐ductal 
anatomy. In particular, we empirically showed that SRRs 
based on the clinically available axial and coronal images are 
of inferior quality compared to those with additional input 
stacks. By performing highly controlled brain experiments 
we found that after approximately six input stacks the SRR 
quality achievable with MRCP SST2W sequences plateaus. 
Moreover, we showed that not only the number but also the 

orientation of the SST2W stack acquisitions matters. In par-
ticular, for the same number of six input stacks using oblique 
orientations on top of the standard anatomical directions pro-
duces superior SRR outcomes compared to using multiple 
standard axial, coronal and sagittal anatomical acquisitions. 
Notably, motion correction was needed for these experi-
ments to exclude the confounding factor of motion despite 
the ’static’ nature of brain imaging.

High anatomical fidelity of the SRRs relies on the accurate 
establishment of generally non‐linearly affected, anatomical 
correspondences captured by different SST2W stacks acquired 

F I G U R E  7   Clinical evaluation by four radiologists for the abdomen of the third experiment for all eight subjects. Top panels: Clinical 
interpretability scores were 0 (structure not identified), 1 (structure poorly visualized), and 2 (structure clearly visualized). Bottom left: Subjective 
impression score ranks how frequently the SRR (NiftyMIC a+c+s+3obl) was considered subjectively of worse, same or better quality than the 
original axial and coronal SST2W data for interpretation. Bottom right: Artifacts measure to what extent the SRR presented additional artifacts with 
respect to the original axial and coronal SST2W data with scores 0 (lots of new artifacts), 1 (minimal new artifacts), 2 (no new artifact), and 3 (less 
artifact than original). Stars are shown to illustrate significant outcomes by rejecting the respective H

0
 hypothesis based on a Wilcoxon signed‐rank 

test (p < 0.05)
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at different breath‐holds. We explored two SRR frameworks 
that are based on different motion correction strategies: A 
non‐iterative framework based on reference‐guided multi-
modal, in‐plane deformable motion correction that leverages 
the existence of a separate HR volume of a different modal-
ity for motion correction, and an iterative outlier‐robust SRR 
framework that is based on monomodal rigid motion cor-
rection that does not rely on any external reference. For the 
reference‐guided approach, we found that the optimal combi-
nation of reference image and associated similarity measure 
for registration is difficult to determine reliably. Whereas the 
controlled quasi‐static brain experiments indicated high qual-
ity SRR outcomes using the BFFE combined with NCC, this 
set‐up failed in the abdominal experiments due to misregis-
trations. We hypothesize that this comes from more complex 
appearance differences between BFFE and SST2W image 
contrasts we noticed in the abdomen compared to the brain, 
including the more pronounced cancellation effects around 
fat‐water tissue boundaries typical for BFFE (Figure 2). 
Besides the reported similarity measures and references in here, 
we also ran experiments using NMI, MI, and LNCC as addi-
tional similarity measures and the standard axial SST2W series 
as alternative reference, all of which corroborated the find-
ings using NCC (Supporting Information Tables S1 and S2). 
Among reference‐guided SRR frameworks applied to the 
abdomen, only the HT2W‐guided approach driven by NCC 
showed promising results in regions of high MRCP contrast 
but is prone to artifacts in areas where this not the case. Our 
results indicate that the RG‐HT2W‐based motion correction 
can lead to improved anatomical clarity compared to the 
Static SRR for the abdomen. However, it is prone to creat-
ing artifacts due to slice misregistrations which may degrade 
the overall reconstruction quality. Additional experiments 
suggest that the in‐plane deformation step does not substan-
tially improve results (Supporting Information Table S2). 
Similarly, experiments incorporating the PSF for registra-
tion as described in Ebner et al15 remained inconclusive. 
Contrastingly, we found very encouraging outcomes for the 
outlier‐robust SRR approach that was originally developed for 
fetal MRI. Despite the use of a rigid motion correction model 
only, it could consistently generate SRRs of the biliary tree 
that have the potential for diagnostic use. We therefore con-
clude that the encountered motion was approximately rigid 
for the most part and that the outlier rejection mechanism is 
effective in eliminating slices where this was violated. In case 
of sufficient data oversampling, the SRR algorithm was then 
able to reconstruct anatomical structures with high anatomi-
cal clarity. Qualitative expert reader comparisons showed that 
the optimized SRRs tend to provide limited value for regions 
like ampulla, the head of pancreas parenchyma, the imaged 
pancreatic duct and the CBD where specifically developed 
MRCP SST2W sequences traditionally show high diagnostic 
yield. However, in regions where the SST2W data typically 

provides only limited insight such as the portal vein and first 
generation branches, hepatic artery and central branches, cys-
tic duct, and the imaged first generation intrahepatic ducts 
the SRRs allow an assessment with much higher anatomical 
detail which has important applications particularly for the 
assessment of hepato‐pancreatico‐biliary cancers. Therefore, 
we believe that using SRRs alongside the original data has 
real potential to improve the diagnostic yield of standard 
MRCP imaging, and improve patient care by reducing delays 
introduced by the need for further investigations, particularly 
in the context of cancer care.

Limitations of this work include the analysis of a rela-
tively small cohort of eight subjects. Moreover, this pilot 
study was designed based on healthy volunteers. Acquired 
data during breath‐holds of patients is expected to have 
more challenging motion artifacts. We therefore plan to 
apply the proposed extended MRCP protocol to a represen-
tative patient cohort to assess the clinical utility of MRCP 
SRR. Furthermore, we plan to make improvements on the 
reference‐guided framework. Using the BFFE as a reference 
appears promising in case a more robust similarity mea-
sure is available. In fact, recently proposed deep learning 
methods36,37 could prove useful for this step or, as shown in 
other applications, be used to aid the motion correction as a 
whole.38 In this work, we performed manual segmentations 
to define the region of interest in the standard axial SST2W 
image for the SRR. This step could be automated similar 
to the work as proposed in, e.g.7 For NiftyMIC a unified 
motion correction/reconstruction framework could help to 
better constrain the registration steps that might also allow 
the incorporation of a deformable model. This could help 
achieve higher anatomical accuracy in correcting for the 
challenging deformations in the upper GI anatomy. Finally, 
validation with abdominal isotropic 3D sequences was 
not undertaken in this study, but remains subject of future 
work.

REFERENCES

	 1.	 Griffin N, Charles‐Edwards G, Grant LA. Magnetic resonance 
cholangiopancreatography: the ABC of MRCP. Insights Imaging 
2012;3:11–21.

	 2.	 Basaran C, Agildere AM, Donmez FY, et al. MR cholangiopan-
creatography with T2‐weighted prospective acquisition cor-
rection turbo spin‐echo sequence of the biliary anatomy of 
potential living liver transplant donors. Am J Roentgenol. 
2008;190:1527–1533.

	 3.	 Chen W, Mo JJ, Lin L, Li CQ, Zhang JF. Diagnostic value of mag-
netic resonance cholangiopancreatography in choledocholithiasis. 
World J Gastroenterol. 2015;21:3351–3360.

	 4.	 Howard K, Lord SJ, Speer A, Gibson RN, Padbury R, Kearney 
B. Value of magnetic resonance cholangiopancreatography in the 
diagnosis of biliary abnormalities in postcholecystectomy patients: 
a probabilistic cost‐effectiveness analysis of diagnostic strategies. 
Int J Technol Assessment Health Care 2006;22:109–118.



14  |      EBNER et al.

	 5.	 Woo J, Murano EZ, Stone M, Prince JL. Reconstruction of high‐
resolution tongue volumes from MRI. IEEE Trans Biomed Eng. 
2012;59:3511–3524.

	 6.	 Van Reeth E, Tan CH, Tham IW, Poh CL. Isotropic reconstruc-
tion of a 4‐D MRI thoracic sequence using super‐resolution. Magn 
Reson Med. 2015;73:784–793.

	 7.	 Ebner M, Wang G, Li W, et  al. An automated localization, seg-
mentation and reconstruction framework for fetal brain MRI. In: 
Medical Image Computing and Computer‐Assisted Intervention—
MICCAI 2018, Cham, Switzerland: Springer; 2018:313–320.

	 8.	 Kainz B, Steinberger M, Wein W, et al. Fast volume reconstruc-
tion from motion corrupted stacks of 2D slices. IEEE Trans Med 
Imaging 2015;34:1901–1913.

	 9.	 Rousseau F, Kim K, Studholme C, Koob M, Dietemann JL. On 
super‐resolution for fetal brain MRI. In: Medical Image Computing 
and Computer‐Assisted Intervention—MICCAI 2010, Berlin, 
Heidelberg: Springer; 2010:355–362.

	10.	 Milanfar P. ed. Super‐Resolution Imaging. CRC Press; 2010. 
https​://www.crcpr​ess.com/Super-Resol​ution-Imagi​ng/Milan​far/p/
book/97814​39819302

	11.	 Park SC, Park MK, Kang MG. Super‐resolution image recon-
struction: a technical overview. IEEE Signal Process Mag. 
2003;20:21–36.

	12.	 Van Reeth E, Tham IWK, Tan CH, Poh CL. Super‐resolution in 
magnetic resonance imaging: a review. Concepts Magn Reson Part 
A 2012;40A:306–325.

	13.	 McClelland JR, Hawkes DJ, Schaeffter T, King AP. Respiratory 
motion models: a review. Med Image Anal. 2013;17:19–42.

	14.	 Rousseau F, Glenn OA, Iordanova B, et al. Registration‐based ap-
proach for reconstruction of high‐resolution in utero fetal MR brain 
images. Acad Radiol. 2006;13:1072–1081.

	15.	 Ebner M, Chouhan M, Patel PA, et al. Point‐spread‐function‐aware 
slice‐to‐volume registration: application to upper abdominal MRI 
super‐resolution. In: Zuluaga MA, Bhatia K, Kainz B, Moghari MH, 
Pace DF, eds. Reconstruction, Segmentation, and Analysis of Medical 
Images. RAMBO 2016, vol. 10129. Cham, Switzerland: Lecture Notes 
in Computer Science Springer International Publishing; 2017: 3–13.

	16.	 Shilling RZ, Robbie TQ, Bailloeul T, Mewes K, Mersereau RM, 
Brummer ME. A super‐resolution framework for 3‐D high‐ 
resolution and high‐contrast imaging using 2‐D multislice MRI. 
IEEE Trans Med Imaging 2009;28:633–644.

	17.	 Baker S, Kanade T. Limits on super‐rresolution and how 
to break them. IEEE Trans Pattern Anal Mach Intelligence 
2002;24:1167–1183.

	18.	 Candès EJ, Fernandez‐Granda C. Towards a mathematical theory 
of super‐resolution. Commun Pure Appl Math. 2014;67:906–956.

	19.	 Lin Z, Shum HY. Fundamental limits of reconstruction‐based 
superresolution algorithms under local translation. IEEE Trans 
Pattern Anal Mach Intelligence 2004;26:83–97.

	20.	 Gholipour A, Estroff JA, Warfield SK. Robust super‐resolution 
volume reconstruction from slice acquisitions: application to fetal 
brain MRI. IEEE Trans Med Imaging; 2010. 29:1739–1758.

	21.	 Greenspan H. Super‐resolution in medical imaging. Comput J. 
2008;52:43–63.

	22.	 Liang ZP, Lauterbur PC. Principles of Magnetic Resonance 
Imaging: A Signal Processing Perspective. Wiley‐IEEE Press; 
2000. https​://ieeex​plore.ieee.org/book/5264284

	23.	 Jiang S, Xue H, Glover A, Rutherford M, Rueckert D, Hajnal 
JV. MRI of moving subjects using multislice snapshot images 

with volume reconstruction (SVR): application to fetal, neona-
tal, and adult brain studies. IEEE Trans Med Imaging 2007;26: 
967–980.

	24.	 Kuklisova‐Murgasova M, Quaghebeur G, Rutherford MA, Hajnal 
JV, Schnabel JA. Reconstruction of fetal brain MRI with inten-
sity matching and complete outlier removal. Med Image Anal. 
2012;16:1550–1564.

	25.	 Tourbier S, Bresson X, Hagmann P, Thiran JP, Meuli R, Cuadra 
MB. An efficient total variation algorithm for super‐resolution 
in fetal brain MRI with adaptive regularization. NeuroImage 
2015;118:1–14.

	26.	 Diamond S, Boyd S. Convex optimization with abstract linear 
operators. In: 2015 IEEE International Conference on Computer 
Vision (ICCV) No. 1, IEEE; 2015:675–683. http://opena​ccess.
thecvf.com/conte​nt_iccv_2015/html/Diamo​nd_Convex_Optim​
izati​on_With_ICCV_2015_paper.html

	27.	 Smith SM. Fast robust automated brain extraction. Human Brain 
Mapping 2002;17:143–155.

	28.	 Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias 
correction. IEEE Trans Med Imaging 2010;29:1310–1320.

	29.	 Modat M, Ridgway GR, Taylor ZA, et al. Fast free‐form deforma-
tion using graphics processing units. Computer Methods Programs 
Biomed. 2010;98:278–284.

	30.	 Vercauteren T, Perchant A, Malandain G, Pennec X, Ayache N. 
Robust mosaicing with correction of motion distortions and tis-
sue deformations for in vivo fibered microscopy. Med Image Anal. 
2006;10:673–692.

	31.	 Peled S, Yeshurun Y. Superresolution in MRI—perhaps some-
times. Magn Reson Med. 2002;48:409–409.

	32.	 Plenge E, Poot DHJ, Bernsen M, et  al. Super‐resolution meth-
ods in MRI: can they improve the trade‐off between resolution, 
signal‐to‐noise ratio, and acquisition time? Magn Reson Med. 
2012;68:1983–1993.

	33.	 Scheffler K. Superresolution in MRI? Magn Reson Med. 
2002;48:408–408.

	34.	 Hansen PC. Analysis of discrete ill‐posed problems by means of 
the L‐curve. SIAM Rev. 1992;34:561–580.

	35.	 Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality as-
sessment: from error visibility to structural similarity. IEEE Trans 
Image Process. 2004;13:600–612.

	36.	 Cheng X, Zhang L, Zheng Y. Deep similarity learning for multi-
modal medical images. Comput Methods Biomechan Biomed Eng. 
2018;6:248–252.

	37.	 Simonovsky M, Gutiérrez‐Becker B, Mateus D, Navab N, 
Komodakis N. A deep metric for multimodal registration. In: 
Medical Image Computing and Computer‐Assisted Intervention—
MICCAI 2016; Cham: Springer; 2016:10–18.

	38.	 Hu Y, Modat M, Gibson E, et al. Weakly‐supervised convolutional 
neural networks for multimodal image registration. Med Image 
Anal. 2018;49:1–13.

SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 Images obtained by extended MRCP protocol 
for abdomen and brain anatomies
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FIGURE S2 Qualitative comparison of the static and refer-
ence‐guided SRR outcome of one subject for various input 
data scenarios
FIGURE S3 Ground‐truth (HR T2W) similarities for static 
and reference‐guided SRR outcomes for the quasi‐static brain 
experiment involving seven subjects
FIGURE S4 Ground‐truth (HR T2W) similarities for the 
quasi‐static brain experiment for all registration/motion cor-
rection strategies as an extension to Figure S3
FIGURE S5 Projected slice similarity evaluation for all 
slices of obtained abdominal SRRs for an increasing number 
of input stacks for different motion correction strategies sum-
marized for all eight subjects
FIGURE S6 Ground‐truth (HR T2W) similarities for first‐
order Tikhonov (TK1) and isotropic Total Variation (TV) 
regularization SRR outcomes for the quasi‐static brain exper-
iment involving seven subjects
FIGURE S7 Qualitative comparison of the impact of 
using either first‐order Tikhonov (TK1) and isotropic Total 
Variation (TV) regularization in the final reconstruction step 
using NiftyMIC (a+c+s+3obl)
TABLE S1 Ground‐truth (HR T2W) similarities of obtained 
quasi‐static control brain SRRs for an increasing number of 

input stacks for different motion correction (MC) strategies 
summarized for all seven subjects
TABLE S2 Projected slice similarity evaluation of obtained 
abdominal SRRs for an increasing number of input stacks 
for different motion correction strategies summarized for all 
eight subjects
TABLE S3 Ground‐truth (HR T2W) similarities of obtained 
quasi‐static control brain SRRs using first‐order Tikhonov 
(TK1) and isotropic Total Variation (TV) regularization SRR 
outcomes for an increasing number of input stacks for all 
seven subjects
TABLE S4 Typical computational times to create a HR visu-
alization of the biliary tree split into motion correction and 
volumetric reconstruction processing times
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