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Predicting scheduled hospital attendance with artificial
intelligence
Amy Nelson1, Daniel Herron2, Geraint Rees 3,4,5 and Parashkev Nachev1

Failure to attend scheduled hospital appointments disrupts clinical management and consumes resource estimated at £1 billion
annually in the United Kingdom National Health Service alone. Accurate stratification of absence risk can maximize the yield of
preventative interventions. The wide multiplicity of potential causes, and the poor performance of systems based on simple, linear,
low-dimensional models, suggests complex predictive models of attendance are needed. Here, we quantify the effect of using
complex, non-linear, high-dimensional models enabled by machine learning. Models systematically varying in complexity based on
logistic regression, support vector machines, random forests, AdaBoost, or gradient boosting machines were trained and evaluated
on an unselected set of 22,318 consecutive scheduled magnetic resonance imaging appointments at two UCL hospitals. High-
dimensional Gradient Boosting Machine-based models achieved the best performance reported in the literature, exhibiting an area
under the receiver operating characteristic curve of 0.852 and average precision of 0.511. Optimal predictive performance required
81 variables. Simulations showed net potential benefit across a wide range of attendance characteristics, peaking at £3.15 per
appointment at current prevalence and call efficiency. Optimal attendance prediction requires more complex models than have
hitherto been applied in the field, reflecting the complex interplay of patient, environmental, and operational causal factors. Far
from an exotic luxury, high-dimensional models based on machine learning are likely essential to optimal scheduling amongst
other operational aspects of hospital care. High predictive performance is achievable with data from a single institution, obviating
the need for aggregating large-scale sensitive data across governance boundaries.
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INTRODUCTION
Failure to attend hospital appointments needlessly delays clinical
care and consumes resource better spent on improving its
quality.1 Its reach is global: the African continent (43.0%), South
America (27.8%), Asia (25.1%), North America (23.5%), and the rest
of Europe (19.3%).2

That attendance rates have remained relatively unchanged over
the past 10 years suggests the problem is anything but simple.1

Two interacting factors arguably account for its difficulty. First, the
comparative infrequency of non-attendances means any inter-
vention applied indiscriminately to all patients—such as blanket
phone call reminding—is wasted on the majority of its recipients,
rendering further escalation inefficient. Second, systems that
target interventions by predicting individual non-attendance are
difficult to devise because the diversity of probable causes—
ranging from behavioral predispositions to environmental events
—is too wide. The temptation is to discard all but the most
generic predictive features, relying on simple, linear, low-
dimensional statistical models. For example, of the eight studies
to quantify out-of-sample attendance prediction performance
identified in a systematic review of the literature (see Supple-
mentary Information), only three used non-linear models, and
none included more than 49 variables (Table 1). But the
mathematical framework behind such models is designed to
make simple inferences about groups, not complex predictions

about individuals. Simple models, chosen for their intelligibility
and generalizability, are ill-suited to predicting individual events
where the causal field is wide.
There is another way. The complexity of a mathematical model

—its ability to absorb non-linear associations and complex
interactions between many variables—is limited only by the
availability of data and the scale of the computational resource
applied to it. Combining machine learning with large-scale data
allows us to create rich, complex, high-dimensional models able to
operate within wider causal fields. If such models perform and
generalize better than simpler variants their one defect—lack of
easy intelligibility—is far outweighed.
Complex models may not only predict attendance, enabling

targeted intervention, but also prescribe it by matching detailed
appointment and patient characteristics. By capturing individual
variability better, they may also be used to infer systemic,
modifiable hospital causes of non-attendance currently obscured
by the many other factors in play. Complex models both
potentially enhance existing interventions and open the way to
implementing categorially new ones.
Across most healthcare systems, capacity limitations distribute

non-urgent initial secondary care appointments across a wide
interval—18 weeks in the UK National Health Service (NHS)—
where patients have varying freedom over the choice of an
appointment slot; subsequent appointments are distributed even
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more broadly as clinical needs dictate. Scheduling is commu-
nicated by mail, sometimes confirmed by telephone, text, or email
reminders. The greater resource complexity of secondary care
amplifies the cost of each missed appointment, accumulating, in
the UK alone, an estimated £1 billion annual loss for secondary
care on a ~8.5% non-attendance rate compared with £150 million
for primary care on a 7.9% non-attendance rate.3,4

Here, we focus on an important exemplar of hospital outpatient
scheduling: magnetic resonance imaging (MRI). The breadth of
coverage across multiple medical domains, the diagnostic weight
of the investigational class, and the high, fixed unit cost here
combine plausible generalizability with a substantial margin of
potential benefit from improved attendance rates.
Studying a large sample of MRI appointments across two large

UK hospitals, we sought to answer two related questions: what is
the relationship between the complexity of predictive models of
attendance and their predictive performance, and can sufficient
predictive performance be achieved to render targeting cost-
effective? If complex models are convincingly shown to be
required for optimal performance, a reorientation of hospital
scheduling analytics to machine learning-based modelling would
be indicated; if there is no difference between simple and
complex approaches, then other avenues for improving schedul-
ing ought to be pursued. We further propose a framework for
evaluating such models that takes into account the relative cost of
non-attendance and the effort of preventing it.

RESULTS
Data distribution
Summary analysis revealed a typical overall attendance distribu-
tion, and a wide diversity of MR imaging types across the set of
22,318 appointments (see Supplementary Figs 1 and 2). Demo-
graphic and other clinical details are not available on our
radiology scheduling system, and were not accessible to us within
the operational optimization remit of our study.

Performance
The top performing model—based on GBM with 81 features—
achieved an AUC of 0.852 and an average precision of 0.511 on
the out-of-sample test set (Fig. 1). The training time for this model
was 16.6 s. Test set AUC was faithful to the mean training AUC
obtained by 6-fold cross-validation (0.860 ± 0.01 sd).

Model complexity and optimal variable number
For the top performing model architecture, predictive perfor-
mance increased with the addition of further variables up to 81
(Fig. 2a). Escalating dimensionality did not incur prohibitive
computational penalties: training times with 20, 30, and 81
variables were 7.1, 8.9, and 16.6 s respectively. The distribution
of Gini-importance feature weighting was broad (Fig. 2b).
Summary performance increased with the expressive capacity
of the evaluated architectures: logistic regression, SVM, Random

Table 1. Summary of all published models of scheduled appointment attendance in healthcare—ranked by area under the receiver operating
characteristic curve in order of performance—for which out-of-sample metrics are available

Model Type Variable count Predictive performance (AUC)

Stacking17 Non-linear 18 0.846

XGBoost5 Non-linear 42 0.834

Neural network6 Non-linear Not available 0.81

Logistic regression16 Linear 38 0.75

Logistic regression7 Linear 49 0.713

Logistic regression17 Linear 14 0.706

Sums of exponentials for regression8 Linear 17 0.706

Logistic regression9 Linear 13 0.702

Note: More complex, high-dimensional models tend to exhibit greater predictive power

Fig. 1 Performance of the optimal model based on gradient boosting machines incorporating 81 variables. a Receiver Operating
Characteristic curve for performance on the held-out test set (blue line, AUC= 0.852), on cross-validation (mean= thick gray line, AUC= 0.860,
two standard deviations (s.d.)= thin gray lines, ±0.03), and chance (red dotted line). b Precision-Recall curve on the held-out test set, yielding
an Average Precision (AP) score of 0.511
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Forest, and AdaBoost models achieved cross-validation AUCs of
0.771, 0.792, 0.826, and 0.848, with training times of 3 min 23 s,
5 min 27 s, 8.3 s, and 9.1 s, respectively. Plots of the minimal
effects of class weighting, random under-sampling, and SMOTE
oversampling on model performance are available in Supple-
mentary Fig. 3.

Impact
Call efficiency for our best model was 0.19, equating to a number-
needed-to-call of 5.3, set at a test threshold corresponding to 90%
sensitivity and 41% specificity. This is more than double the
baseline of 0.09 and 11, respectively. The operating net benefit of
using the model over intervening in all patients peaked at £3.15
per appointment, but remained positive over a wide range of non-

attendance prevalences and intervention efficacies (Fig. 3). Given
an estimated capital cost for infrastructure and development of
~£20,000, this yields a break-even point of ~6350 scheduled
appointments. If the observed performance is confined solely to
the ~20,000 MRI outpatient appointments booked annually at the
average NHS hospital trust, the break-even point would be
reached after ~83 working days. If the observed net benefit
performance is replicated across the mean ~800,000 out-patient
appointments annually in the average NHS hospital trust, the
break-even point would be reached within a few days. Naturally,
equivalent predictive fidelity may not be achievable outside our
specific domain, and the benefit of prevented non-attendances
will vary with the nature of the appointment, but these estimates
can accommodate a wide margin of error.

Fig. 2 The impact of model dimensionality. a Performance on the held-out test set across Gradient Boosting Machine-based models
incorporating features recursively eliminated in order of Gini-importance from the full model. Note that full performance is reached only after
the inclusion of 81 features. b Gini-importance based ranking of the features in the best Gradient Boosting Machine model; the top 8 are
labelled. Note the wide distribution of feature importance across variables

Fig. 3 Net benefit simulations with the optimal model. a Estimated net benefit per attendance in pounds sterling as a function of the chosen
model threshold—the output model value at which the attendance class is assigned—in blue at the 9% non-attendance rate in our dataset,
and in shades of gray at increments between 4 and 20%. Net benefit falls with reduced attendance, but there is always a model threshold at
which it is positive. b Estimated net benefit per attendance in pounds sterling as a function of the chosen model threshold, in blue at the 33%
estimated mean intervention efficacy, and in shades of gray at increments between 10 and 80%. Net benefit falls with increased efficacy, but
there is always a model threshold at which it is positive
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DISCUSSION
Our analysis of a large, diverse, unselected set of consecutive
magnetic resonance radiological scheduled appointments demon-
strates that predicting attendance demands high-dimensional,
high-capacity modelling. Indeed, our optimal model is both the
most complex and the best performing in the published literature.
Hospital attendance is bound to be a complex target of

prediction given the wide field of plausibly material factors.
Behavioral predispositions, physical constraints, clinical manifesta-
tions, hospital service characteristics, geography, transport, and
weather will all interact in complex ways to determine the
outcome of any particular appointment. Some factors consistently
carry more predictive information than others, both in our study
(where examined) and the wider literature: non-attendance
history,5–9 referral-to-appointment time,5–7,10 appointment day
and month,6,8,10 age,5–8 ethnicity,5,8 and weather.6,10 Factors
identified here but not yet comprehensively examined elsewhere
include patient home latitude and longitude, distance from home
to hospital, and the total cost of patient activity. Our primary task,
however, is not to identify the most strongly predictive factors but
to identify a modelling approach that yields the best predictive
performance overall. A great deal of information may be
distributed across a wide field of weakly predictive factors: the
right modelling architecture could harness this to achieve much
better performance than analysis of each factor in isolation or
linear combination would suggest. Indeed, that the best
performance in our study was achieved by the most complex
models indicates exploration of even greater complexity is likely
to be rewarding.
It is plausible that our analysis does not set a ceiling on maximal

performance since demographic information—of reported impor-
tance in almost all previous models5–9—is unlikely to have been
rendered wholly redundant by the field of modelled covariates.
We did not include demographics because our radiology
administrative system—in common with many others—does not
capture them, hindering the real-world implementation of models
that require them. Equally, even greater performance might be
achievable with architectures of greater expressive power—such
as those based on artificial neural networks—but at the cost of
potentially inhibitory complexity of development and
optimization.
Though limited in their actionable antecedence, fluctuations in

transport and weather should provide predictive information
more weakly supplied by geography and season. Richer para-
meterization of the patient’s clinical background should also
sharpen the contribution of the clinical context, in the present
models conveyed solely by the type of scheduled investigation.
Equally, the observed performance is unlikely to be limited to

our particular dataset, for five reasons. First, performance was
quantified not by model statistics, but on out-of-sample data
wholly unseen by the model during training and optimization.
This differs from prospective testing only in that the data already
existed, which does not materially alter the statistical rigor of the
test. Second, our dataset is diverse, unselected, and consecutively
accumulated over a broad interval, so likely representative of data
of this kind. Third, though complex, our models incorporate a
number of features that are small in proportion to the size of the
dataset, limiting the risk of overfitting. This is reflected in the
stability of model training, the minimal discrepancy between
cross-validation and held-out test performance, and the broad
agreement between architectures of comparable expressive
power. Fourth, the nature and rank of the most predictive features
are both in keeping with prior expectations and dominated by
general features of appointments. Fifth, by choosing a specialist
radiological modality we can both cover a wide diversity of clinical
conditions and achieve better sampling of relatively narrow

contexts that nonetheless aggregate to a substantial proportion of
healthcare activity.
Special treatment must be given of the question of model

generalization to other institutions and clinical domains. At
another institution, the weighting of factors may well be different,
reflecting different populations and operational procedures; in
another clinical domain, wholly different factors may arise. Where
a model is optimally fitted to a particular attendance task, it
should not perform as well elsewhere; if it does, then its fit is likely
to have left too much room for improvement. Our sole concern
here is predictive fidelity—naturally sustained over time—for a
particular institution and a particular clinical domain.
Of course, given sufficient data, a more complex model could

learn to absorb such factors together with all others. But given the
ubiquity of attendance data at most hospitals—projected deep
into the past—there are no practical obstacles to creating
bespoke models, or at least retraining models heavily on local
data. Indeed, single-site models are desirable owing to the
information governance obstacles to pooling sensitive data across
institutions. We do not need model generalizability, only
replicability of the high-dimensional modelling approach.
Predicting attendance does not, in itself, prevent it, so the

impact of better prediction depends on the efficacy and relative
cost of an intervention, contextualized by attendance rate. The
relative cost of a telephone call (~£6) and a missed appointment
typical of complex radiology (~£150) leaves room for substantially
narrower margins, even at relatively low interventional efficacies,
given the former is reasonably uniform across the industry,
whereas the latter may be substantially lower. Our focus on
telephone calls here is justified by the loss of penetration of fully-
automated means of reminding—text messages, for example—
caused by the rapid proliferation of different mobile messaging
applications.
Our models of net benefit encompass a much wider range of

intervention efficacies than is reported in the literature:
33–39%.11–13 That we observed a positive net benefit across our
modelled range suggests real-world variations in this parameter
are unlikely to limit the utility of the approach. Equally, the net
benefit remains positive across the full range of realistic
attendance rates (Fig. 3). Accumulated across the large number
of scheduled events at an average healthcare institution in the UK
— ~20,000 MR scans and ~800,000 outpatient appointments
annually—the benefit is plausibly large enough to justify pursuing
even relatively small improvements in predictive performance.
Targeted reminding is only one way of using high-dimensional

models to improve attendance. Information available at the time
of booking may be used not only to predict attendance but to
prescribe the appointment characteristics most likely to deliver it.
While the nature of the appointment is clinically determined, its
timing and transport mechanisms are free to vary. Collaborative
filtering algorithms can be deployed here to match multiple
characteristics of the patient and the appointment, reducing the
risk of non-attendance at the time of scheduling.14 Second, a
comprehensive characterization of the factors impinging on
attendance enhances our ability to identify a subset—either of
patients, such as transport means, or the institution, such as clinic
times—that can be systemically modified.15 Such inference is
essential to optimizing the operational framework of scheduled
healthcare activity.
We have achieved excellent predictive performance with

models trained only on routinely collected administrative data,
built with open-source tools, and estimated and validated on
conventional hardware. Though more complex modelling, espe-
cially involving dynamic, external factors, may require more
complex systems, effective implementations are likely to be
economical. Note that the computational cost of escalating
dimensionality and expressive capacity is relatively modest in
proportion to the net benefit per appointment. The application of
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trained models at test time is of course simpler, and integration
with administrative systems is here straightforward. Both static
and periodically-updated models are feasible without major
disruption to current information handling systems in most
hospitals. The use of models with probabilistic outputs enables
the system to fail gracefully where accuracy might be locally poor
for reason of inadequate sampling of the specific neighborhood of
predictive features. In such circumstances, detection of high
uncertainty can be used to trigger a standard intervention,
ensuring that the outcome is no worse than where uniform
reminding is used.
Our study makes distinctive contributions to four key aspects of

non-attendance predictive modelling.
First, our analysis demonstrates that high-dimensional, high-

capacity models of non-attendance are superior to low-dimen-
sional, low-capacity models. Previous studies have either assumed
that the problem is tractable within relatively low-dimensional,
low-capacity models,7–9,16,17 or employed complex modelling
without comprehensive evaluation of the relation between
performance and complexity.5,6,17 Our conclusion suggests the
exploration of more complex models of behavior related to
scheduled hospital activity is likely to be rewarding.
Second, we demonstrate that state-of-the-art predictive models

of non-attendance can be derived from relatively modest datasets,
based on routinely recorded, easily-accessible attendance vari-
ables, enabling institutions to build effective models without
substantial modification of their data streams, and without the
necessity—and potential information governance risk—of pooling
data across multiple environments.
Third, we provide a formula for calculating the net resource

benefit of implementing a predictive model of non-attendance
compared with indiscriminate intervention. This quantifies the
relation between the model threshold and the resultant net
benefit of selective intervention. We use net benefit curves to
demonstrate the advantage of deploying predictive modelling
across the full plausible range of prevalences of non-attendance
and interventional efficacy. Others may employ this approach to
construct models that explicitly maximize resource gain, for
example by adding a net benefit term to the training loss.
Fourth, we address the problem of class imbalance, neglected

in the current literature, quantifying the utility in this task of three
methods for imbalance handling: class weights, random under-
sampling of the majority class, and SMOTE oversampling of the
minority class, and providing precision recall curves of
performance.

METHODS
Dataset
A comprehensive, unselected, sequential set of administrative appoint-
ment data covering MRI radiological activity at University College Hospital
and the National Hospital for Neurology and Neurosurgery was collated for
the period between 10th January 2014 and 11th December 2016. The
dataset was filtered to include only non-cancelled appointments, yielding
22,318 appointments across 17,295 patients at the two hospital sites. The
variables included detailed scheduling data, previous appointment activity,
postcode-discretized patient home location, details of MRI scan type and
requestor, and aggregate patient costs (Supplementary Table 1). We
included all the variables available on our radiology administrative system
except those that were empty or redundant. The prevalence of missing
values was 4.6%.
The demographic variables of age, sex, ethnicity, employment, or

religion were not available within the radiology administrative system from
which the data was sourced. We did not seek to obtain these variables
from other systems because we wished to determine the performance
achievable within the constraints of a routine administrative environment,
and were not in a position to determine their marginal value because they
cannot be accessed under the information governance framework of the
present study. Clinical variables were not modelled for the same reasons,

but the clinical diversity and representativeness of the population is
conveyed by the distribution of MR imaging study types given in
Supplementary Fig. 1.

Data pre-processing
The dataset was cleaned to remove empty columns or redundant
variables. Keyword scan descriptors were extracted from the ‘scan type’
field, and recoded as dummy binary variables.
Further recoding was performed to facilitate modelling: postcodes were

converted to longitude and latitude; requesting clinician grades were
binned into junior, middle, and senior; and dates were binned into days of
the week and month. For the same reason, some implicit associations
between variables were made explicit: geodesic travel distance was
calculated from home and scan location; referral lag from booking date to
appointment date; time since last non-attendance from referral date and
last non-imaging non-attendance date. The full list of variables is given in
Supplementary Table 1.
Patients attending more than once within the study period provide

more information about their attendance than those captured only once.
To remove this potential source of bias, the attendance record for each
appointment was censored to exclude information on succeeding
appointments for the same patient.
Features trivially predictive of the outcome, for example arrival date set

at null, were removed from the analysis.
All categorical data was converted to dummy variables, and missing

values were imputed as median—except the reciprocal of ‘time since last
non-attendance’, which was imputed as 0. The resulting numerical array
was transformed into z-scores.

Modelling
We began by modelling all features since no assumptions can be made
about the relevance of any specific one. We randomly split the dataset into
three stratified subsets: training, validation, and test. Training data was
used to derive a set of candidate data-driven models, validation data to
optimize the models, and test data to evaluate the top performing model
performance and net benefit. These partitions were kept separate;
allocation was wholly random with the following ratios: 9:1 training to
test, and within the training set, 5:1 training to validation.
To quantify the importance of model complexity and to avoid the risk of

methodological over-fitting we constructed and evaluated models based
on several standard machine learning architectures: logistic regression,
Support Vector Machines (SVM),18 Random Forest, AdaBoost,19 and
Gradient Boosting Machine (GBM).20 Each architecture varies in its capacity
to handle complex relations between the predictor variables, as discussed
below.
In keeping with the broader population, attendances in our dataset

outnumbered non-attendances by 10 to 1. Such class imbalance can bias
models to the majority class. To counteract this, we separately tested the
effect of randomly under-sampling of the majority class, Synthetic Minority
Over-sampling Technique (SMOTE) over-sampling of the minority class,21

and altering class weights to penalize classification mistakes in the
minority class. AdaBoost or GBM models were excluded from this
procedure since class imbalance is internally handled by adaptive
boosting.
Hyper-parameters were optimized by 10-fold cross-validated grid-search

within the training subset (Supplementary Table 2). Average area under
the Receiver Operating Characteristic curve (AUC) was used for scoring, a
common classification metric that balances sensitivity and specificity.

Testing
The best candidate model was finally tested on the held-out test set,
quantifying performance separately by AUC and by average precision.
Average precision is a robust metric in the presence of class imbalance
since it excludes the ‘true negatives’ constituent in specificity, focusing
instead on precision, or positive predictive value.

Quantifying the effect of model dimensionality
The relation between the complexity of the model and its performance can
be quantified in two ways: first, by the differential performance of model
architectures varying in expressive capacity, and second, by creating
models based on the best architecture that vary systematically in the
number of input features. Here, we used the Gini-importance index from
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the best all-feature GBM model to rank each feature, and created separate
models including features incrementally added in rank order from 1 to 137,
evaluating the AUC at each step. Note no grid search was performed, as
this would be prohibitively expensive computationally and is unlikely to
alter the relative feature rank.

Impact modelling
The value of a predictive system depends on the relative cost of a lost
appointment, and the cost and efficacy of the intervention. The mean
‘reference’ cost of an MRI in the UK National Health Service for the latest
available reporting period (2015–2016) is £147.25,22 rounded to £150. The
cost of reminding a patient by telephone—which often requires more than
one call—is conservatively estimated at £6 within our institution, in broad
agreement with commercial rates. The reported intervention efficacy
ranges from 33 to 39%:11–13 here we conservatively choose the lower
value.
A set of derived metrics enables us to quantify the value of guided

intervention. Call efficiency, equal to the positive predictive value, is the
ratio of the number of correct interventions to the total number of
suggested interventions. The number needed to call, the number of
telephone calls required to prevent one non-attendance, is the reciprocal
of call efficiency. The net benefit of using a given predictive model
compared with intervening in all appointments, is given by the following
equation:

NBj ¼ B � TPRj � P � C � TPRj � P � C � FPRj � 1� Pð Þ � B � P � Cð Þ (1)

where NB is the net benefit, B is the average cost saving given the
intervention, TPR is the true positive rate, FPR is the false positive rate, P is
the prevalence of non-attendance, C is the cost of the intervention, and j is
the test parameter threshold. This allows us to estimate the net benefit
across a range of values for B and P, given reasonable values for C, across
the full range of j. To calculate of net benefit based on current values, we
set B= 50, C= 6, and P= 0.09, where B is the estimated value of a missed
appointment (£150) multiplied by the estimated efficacy of intervention
(33%). Our approach here is adapted from the established quantification of
net benefit in clinical investigation.23

The foregoing refers to operating benefit and excludes the capital cost
of building the model and support infrastructure. This will vary with the
capabilities of the institution: our own internally estimated one-off cost of
~£20,000 is plausibly representative, with long-term support absorbed into
existing analytic resource.
The benefit to an institution as a whole naturally depends on clinical

activity. Here, we take as representative the overall outpatient activity of
the average UK National Health Service Hospital Trust, estimated at
~800,000 events per year.1 The narrower activity related to MRI is
estimated at 20,000 annually per hospital trust.24

Analytic environment
All modelling was done in Python 2.7 and using open source packages.
Specifically, data pre-processing was conducted with NumPy,25 Pandas,26

and Scikit-Learn;27 geographic calculations with GeographicLib;28 and
visualizations with Matplotlib.29 All models were built using Scikit-Learn.
The hardware specification used was: 32 GB memory, Intel® Xeon(R) CPU
E5-2620 v4 @ 2.10 GHz × 32 processor, and GeForce GTX 1080/PCIe/SSE2
graphics.
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