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20 Abstract

21 The field of comparative morphology has entered a new phase with the rapid generation 

22 of high-resolution three-dimensional data. With freely available 3D data of thousands of 

23 species, methods for quantifying morphology that harness this rich phenotypic 

24 information are quickly emerging.  Among these techniques, high-density geometric 

25 morphometric approaches provide a powerful and versatile framework to robustly 

26 characterize shape and phenotypic integration, the covariances among morphological 

27 traits. These methods are particularly useful for analyses of complex structures and 

28 across disparate taxa, which may share few landmarks of unambiguous homology. 

29 However, high-density geometric morphometrics also brings challenges, for example 

30 with statistical, but not biological, covariances imposed by placement and sliding of 

31 semilandmarks and registration methods such as Procrustes superimposition. Here, we 

32 present simulations and case studies of high-density datasets for squamates, birds, and 

33 caecilians that exemplify the promise and challenges of high-dimensional analyses of 

34 phenotypic integration and modularity. We assess: (1) the relative merits of “big” high-

35 density geometric morphometrics data over traditional shape data; (2) the impact of 

36 Procrustes superimposition on analyses of integration and modularity; and (3) 

37 differences in patterns of integration between analyses using high-density geometric 

38 morphometrics and those using discrete landmarks. We demonstrate that for many skull 

39 regions 20-30 landmarks and/or semilandmarks are needed to accurately characterize 

40 their shape variation, and landmark-only analyses do a particularly poor job of capturing 

41 shape variation in vault and rostrum bones. Procrustes superimposition can mask 

42 modularity, especially when the number of landmarks is low and they covary in parallel 
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43 directions, but this effect decreases with increasing landmark number or more 

44 biologically complex covariance patterns.  Landmark-only and landmark-plus-sliding-

45 semilandmark analyses of integration are generally congruent in overall pattern of 

46 integration, but landmark-only analyses tend to show higher integration between 

47 adjacent bones, especially when landmarks placed on the sutures between bones 

48 introduces a boundary bias. Allometry may be a stronger influence on patterns of 

49 integration in landmark-only analyses, which show stronger integration prior to removal 

50 of allometric effects compared to analyses including semilandmarks.  High-density 

51 geometric morphometrics has its challenges and drawbacks, but our analyses of 

52 simulated and empirical datasets demonstrate that these potential issues are unlikely to 

53 obscure genuine biological signal. Rather, high-density geometric morphometric data 

54 exceeds traditional landmark-based methods in characterization of morphology and 

55 allow more nuanced comparisons across disparate taxa.  Combined with the rapid 

56 increases in 3D data availability, high-density morphometric approaches have immense 

57 potential to propel a new class of studies of comparative morphology and phenotypic 

58 integration.

59

60 Introduction

61 Big data approaches to morphological studies have entered a new phase in recent 

62 years, due to the ubiquity of high-resolution imaging tools, such as micro-CT imaging 

63 and surface scanning and photogrammetry (Davies et al. 2017).  Open databases 

64 (Morphosource, Phenome10K, Digimorph, Morphomuseum, and institutional sites) now 
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65 host 3D image files for tens of thousands of specimens, meaning that obtaining access 

66 to 3D scans representing a substantial proportion of the extant, and even extinct 

67 diversity, for clades as large as all vertebrates, is rapidly become the expectation, rather 

68 than a pipe dream. These new datasets open new possibilities for investigating 

69 biological questions (Collyer et al. 2014), including comparative analyses that can begin 

70 to quantify and analyse morphology at an extremely high level of detail across wider 

71 taxonomic scales (Fig. 1). 

72 To date, most comparative studies using geometric morphometrics (GM) 

73 comparing morphology in a quantitative framework have either sampled closely related 

74 taxa that share substantial numbers of landmarks of unambiguous homology (i.e., Type 

75 I/II landmarks following Bookstein (1991)) or sample a broader taxonomic scope but 

76 using a much reduced number of landmarks. Alternatively, analyses may use traditional 

77 metrics, such as linear measurements, which capture some aspect of the morphology of 

78 functionally analogous regions (e.g. rostrum) that can be compared directly across 

79 diverse taxa, but provide very limited detail on morphology and cannot be used to 

80 reconstruct shape (Marugán-Lobón and Buscalioni 2003). Recent years have seen 

81 development and refinement of geometric morphometric expansions of alternatives to 

82 homologous landmarks (Bookstein 1991), with application of 3D sliding semilandmarks 

83 or pseudolandmarks. Published definitions of semilandmarks and pseudolandmarks are 

84 inconsistent and often interchangeable, but here, we refer to semilandmarks as those 

85 whose initial position is relative to landmarks with biological homology, whereas 

86 pseudolandmarks are entirely automatically placed without reference to anatomically 

87 defined landmarks, for example from sampling uniformly from a surface mesh (e.g., 
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88 auto3dgm, Boyer et al. 2015; Generalized Procrustes Surface Analysis, Pomidor et al. 

89 2016). Detailed descriptions, discussions, and comparisons of these methods (Adams 

90 et al. 2004; Adams et al. 2013; Bardua et al. 2019a; Bookstein et al. 2002; Boyer et al. 

91 2015; Gonzales et al. 2016; Gunz and Mitteroecker 2013; Gunz et al. 2005; 

92 Mitteroecker and Gunz 2009; Rohlf and Marcus 1993; Vitek et al. 2017; Zelditch et al. 

93 2004) demonstrate the promise these methods offer for quantifying regions that are 

94 poorly characterized by use of only discrete landmarks, due to the lack of unambiguous 

95 homology across specimens or the presence of large areas without any appropriate 

96 structures at which to place landmarks. The lack of points of unambiguous homology 

97 becomes increasingly challenging with comparative studies across large clades.  For 

98 example, ongoing work by our research team on tetrapod skulls identified a total of 12 

99 Type I landmarks that could be reliably placed across the full cranial diversity of that 

100 clade, meaning that the vast majority of cranial morphology would go unsampled (Fig. 

101 1).  Even for less speciose clades, such as the 32 extant genera of caecilian 

102 amphibians, this can be a highly limiting factor due to a large degree of variation in bone 

103 presence and suture patterns (Bardua et al. 2019b).  The second point is an issue at 

104 any scale of analysis, as many structures will only have discrete points, such as 

105 sutures, at their boundaries, meaning that most of the shape of the structure will be 

106 unsampled. For example, even in a clade with relatively conserved morphology such as 

107 birds, a high degree of bone fusion has limited previous studies to a small number of 

108 landmarks (e.g., 11-17 landmarks in Bright et al. 2016; Klingenberg and Marugan-Lobon 

109 2013)  (Fig 1). 
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110 While semilandmarks and pseudolandmarks are now frequently deployed to 

111 circumvent these landmark-only issues (Polly 2008), questions have been raised about 

112 their necessity and applicability for the study of phenotypic integration and other topics 

113 in which the covariance structure of shape data is important (Cardini 2018; Lele and 

114 Richtsmeier 1990; Richtsmeier and Lele 2001). Phenotypic integration refers to the 

115 correlation or covariance of traits due to genetic, developmental, or functional 

116 interactions (Olson and Miller 1958), and analysis of these relationships among traits 

117 relies on accurate quantification of their morphology and their correlations or 

118 covariances. Pseudolandmarks have not yet been used in studies of integration, and 

119 their use in such studies is likely hindered by their lack of reference to biological 

120 homology. In contrast, many studies have used semilandmarks to quantify the 

121 relationships among different elements or regions of structures ranging from the 

122 vertebrate skulls and mandibles (e.g.,Bardua et al. 2019a; Bardua et al. 2019b; Felice 

123 and Goswami 2018; Marshall et al. 2019; Parr et al. 2016; Watanabe et al. 2019; 

124 Zelditch et al. 2009) to fish fins (Du et al. 2018; Larouche et al. 2018) to trilobite cranidia 

125 (Webster and Zelditch 2011). For this reason, we focus here on the use of 

126 semilandmarks (and more specifically, sliding semilandmarks) in studies of phenotypic 

127 integration, and more broadly, on their contribution to comparative studies of 

128 morphological evolution.   

129 The concerns about using semilandmarks for such analyses fall into two 

130 categories.  First, and most broadly, all geometric morphometric data, including Type I/II 

131 landmarks as well as semilandmarks, require registration prior to analysis in order to 

132 remove the non-shape aspects of position, orientation, and isometric size.  The most 
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133 common method of registering specimens is generalized Procrustes superimposition 

134 (Rohlf 1990; Rohlf and Slice 1990), which is a least-squares approach that mininizes 

135 variance across an entire landmark (and/or semilandmark) configuration and rescales 

136 each configuration to unit centroid size.  Because this approach minimizes variance 

137 across the entire configuration, it can have the effect of spreading variance across 

138 landmarks. In other words, it may shift variance from more variable landmarks to less 

139 variable ones and imposes a common scaling on a structure that may have differential 

140 scaling in different regions (Baab 2013; Klingenberg 2009), both of which can alter the 

141 covariance structure of the landmarks and change the inferred pattern of integration 

142 among traits.  It has been recently asserted that this effect may be exacerbated in larger 

143 geometric morphometric datasets, such as those generated through the application of 

144 semilandmarks, although such an effect was not demonstrated, and assumed that the 

145 effects would reduce the ability to detect biological modularity in data (Cardini 2018).  

146 Second, and more specifically, it has also been asserted that closely packed 

147 semilandmarks may falsely inflate the pattern of modularity (the division of structures 

148 into highly-integrated, but semi-independent subunits) because the position of each 

149 semilandmark is conditional on its neighbours and therefore multiplication of 

150 semilandmarks could increase the total covariance within a putative module. For these 

151 reasons, it has been suggested that “big data” is not necessarily better data when it 

152 comes to geometric morphometric analyses, especially analyses of phenotypic 

153 integration and modularity (Cardini 2018).  

154 Here, we examine these issues and their potential impact on phenomic analyses 

155 of phenotypic integration.  To do so, we first assess whether the gains are worth these 
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156 potential drawbacks by considering: 1) do high-density semilandmark datasets actually 

157 capture shape better than Type I/II landmarks data?.  If so, we then consider the 

158 practical consequences of using these high-density data, or geometric morphometric 

159 more generally, for analyses of phenotypic integration, by addressing: 2) does 

160 Procrustes superimposition mislead analyses of phenotypic integration and modularity; 

161 and 3) how do analyses of integration with high-dimensional semilandmarks compare to 

162 those with only landmarks?

163

164 The effect of high-density geometric morphometric data on shape analyses

165 To quantify whether high-density semilandmark data adds important additional 

166 information on morphology, we analysed two datasets. The first dataset is from recently 

167 published study of the cranium of caecilian amphibians (Fig 2A, B), with 16 crania 

168 regions quantified across 32 genera using 53 landmarks and 687 curve and 729 surface 

169 sliding semilandmarks (Bardua et al. 2019b).  The second is a recently published 

170 dataset of squamates (Fig 2D, E), with 13 cranial regions quantified in 174 species with 

171 47 landmarks and 595 curve and 580 surface sliding semilandmarks (Watanabe et al. 

172 2019).  To examine how many landmarks/semilandmarks are required to capture the 

173 shape of a region in these datasets, we implemented Landmark Sampling Evaluation 

174 Curve (LaSEC) analysis, using the ‘lasec’ function in the R package LaMDBA 

175 (Watanabe 2018). This function subsamples the original dataset through random 

176 addition of landmarks and semilandmarks, determining the fit of each reduced dataset 

177 to the complete dataset, and repeating this for a selected number of iterations. Fit is 
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178 calculated based on Procrustes distance between the full and subsampled datasets with 

179 respect to position of the specimens in high-dimensional morphospace (i.e., not position 

180 of the landmarks). We performed LaSEC for 1) landmarks-only and 2) subsampled 

181 landmarks and semilandmarks (curve and surface points) for the caecilian and 

182 squamate datasets, for individual cranial regions.  The function generates a sampling 

183 curve (Fig. 2C, F), where a plateau in the curve signifies stationarity in characterization 

184 of shape variation and fewer landmarks than the plateau indicates inadequate 

185 characterization. We compared the fit of the landmark-only and full datasets and also 

186 determined the number of landmarks and semilandmarks that would have been 

187 sufficient for each region, given a required fit of 0.9, 0.95 and 0.99 between the reduced 

188 and complete datasets (Tables 1 and 2).  To compare the relative contribution of curve 

189 and surface semilandmarks to shape characterization, we further conducted LaSEC 

190 analysis comparing the fit of landmarks and curve sliding semilandmarks to the full 

191 dataset of landmarks and curve and surface sliding semilandmarks for the squamate 

192 dataset. 

193 These analyses demonstrate that landmark-only datasets do not fully capture the 

194 variation of these analysed structures, with the fit between landmark-only and full 

195 landmark + semilandmark datasets ranging between 0.24 to 0.81 for individual cranial 

196 regions.  To achieve a fit of 0.95 to a high-density dataset, cranial regions need to be 

197 sampled by >20 landmarks and semilandmarks.  While this cannot distinguish between 

198 the value of large numbers of landmarks and similarly large numbers of curve and/or 

199 surface sliding semilandmarks, it is uncontroversial that semilandmarks can sample 

200 more morphology than Type I/II landmarks. In these datasets, for example, our attempt 
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201 to maximize representation of cranial structures with Type I/II landmarks resulted in 2-7 

202 landmarks sampled per region, in comparison to the >20 landmarks and semilandmarks 

203 that our analyses estimated are needed to represent the variation in each region.  Thus, 

204 landmark data alone are insufficient to fully characterize morphological variation for 

205 many datasets. In terms of the respective contribution of curve and surface sliding 

206 semilandmarks to characterizing variation, the addition of curve sliding semilandmarks 

207 alone is a vast improvement on landmark-only analyses, with a fit of over 0.9 for all 

208 cranial regions in squamates and approaching a near perfect fit to the full dataset for 

209 relatively flat structures.  However, it is important to note that the reason a similar 

210 analysis would be less informative, and thus was not conducted, for the caecilian 

211 dataset, is that some of the most variable regions, including the maxilla and pteryoid, 

212 required the use of non-homologous curves to accommodate variably present 

213 structures, such as the tentacular canal (Bardua et al. 2019a; Bardua et al. 2019b). 

214 These curves were then excluded, with only landmarks and surface sliding 

215 semilandmarks used in further analyses. Thus, although curves may capture much of 

216 the morphological variation of the full landmark, curve, and surface dataset for many 

217 structures, they can be problematic and inapplicable in some of the most interesting, 

218 highly variable regions, particularly as comparisons expand across increasingly 

219 disparate taxa. Similarly, surface points cannot always be applied to all structures, such 

220 as the extremely narrow palatal region of snakes. Both curve and surface sliding 

221 semilandmarks provide important and complementary information on shape variation 

222 and our results demonstrate that both are improvements over analyses of landmarks 

223 alone for characterizing complex morphologies.
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224 This result is further demonstrated by examining patterns of variance across 

225 landmarks and semilandmarks (Fig. 2).  While the overall distribution of variance is 

226 similar in both datasets, large areas of the cranium are unsampled in landmark-only 

227 datasets, and thus some regions that are highly variable across taxa, such as the 

228 maxillopalatine of caecilians, are inadequately represented by landmarks. Thus, high-

229 density configurations clearly contain important aspects of shape variation that is not 

230 captured by landmark-only analyses.

231       

232 The effect of Procrustes superimposition on analyses of modularity

233 In order to assess how Procrustes superimposition impacts covariance patterns 

234 between landmarks and the ability to recover modular patterns from them, we 

235 performed a controlled series of simulation experiments in which we varied the degree 

236 of variability at each landmark, the direction of covariation, and the number of 

237 landmarks.  Each experiment is described in detail below.  

238 Experimental samples were modelled by randomly perturbing landmarks around 

239 a base configuration (or “archetype”; Fig. 3A) based on a multivariate normal covariance 

240 matrix V that we varied systematically with each experiment (Fig. 3B).  Each instance of 

241 V was given two modules in which covariances among landmarks (and semilandmarks) 

242 within modules was higher than between modules.  The number of rows and columns 

243 (landmark coordinates) in V and the magnitude of their covariances was varied to match 

244 the conditions of each experiment.  Residual variation was then simulated by post-

245 multiplying the Cholesky decomposition of V by a kp x n matrix of points drawn from n 
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246 univariate normal distributions with mean of 0 and variance v, where k is the number of 

247 landmarks (and semilandmarks), p is the dimensionality of each landmarks (or 

248 semilandmark), and n is the number of individuals in the sample.  This multiplication 

249 produces a matrix of n individuals with kp landmarks (and semilandmarks) with 

250 covariance V.  Finally, the residuals were added to the base configuration of landmarks 

251 (and semilandmarks) to produce a sample of shapes (Fig. 3D).  Each simulated dataset 

252 consisted of 500 individual shapes unless otherwise noted.

253 Note that covariance between the x and y (and z) axes of a landmark produces a 

254 scatter of variation that has a directional orientation.  For example, if a landmark has 

255 equal variances in both the x and y axes, any covariance between them will produce an 

256 ellipse of points with a major axis at an angle of 45º.  For convenience, all coordinates 

257 were given the same variance, which produced this 45º angle in all landmarks (either in 

258 a positive or negative direction).  For experiments where a more directionally complex 

259 covariance pattern was desired, individual scatters of simulated residual points were 

260 rotated into new orientations (i.e., the ellipsoids in Figure 3B were pivoted around their 

261 corresponding landmark into new orientations), which is equivalent to altering the 

262 variances and covariances of their coordinates.

263 In each experiment, we assessed the effect of Procrustes superimposition on 

264 recoverability of modules using two metrics: (1) we tested whether the original modular 

265 pattern was significantly supported after Procrustes superimposition using the CR 

266 coefficient randomization test (Adams 2016) and (2) we compared the modules 

267 recovered from the original and Procrustes superimposed shapes using hierarchical 

268 clustering analysis.  The CR test determines whether ratio of covariation within and 
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269 between the original modules is strongly enough preserved to produce a statistically 

270 significant correlation compared to randomized modules.  CR values are high when 

271 between module correlations are higher than within module correlations (i.e., when 

272 modules are not distinct) and they decline toward 0 as modularity becomes stronger.  

273 Significance is tested by randomizing landmarks between modules and comparing the 

274 observed CR value with the distribution of randomized values (Adams 2016).  The 

275 hierarchical clustering analysis used Ward’s minimum variance linkage algorithm on a k 

276 x k covariance matrix using canonical correlations between landmarks (Goswami and 

277 Polly 2010). This approach minimizes total within-cluster variance to cluster landmarks 

278 and was used to determine whether the same organisation of traits (i.e. modules) was 

279 recovered before and after Procrustes superimposition and whether that pattern 

280 matched the modules constructed in V.  Hereafter, we refer to the original simulated 

281 shapes before Procrustes superimposition as “naturally superimposed”, and we discuss 

282 the assumptions and implications of that concept further below.   The number of 

283 significant modules in each cluster was estimated by comparing the observed 

284 eigenvalue structure to a null distribution derived from a Monte Carlo simulation using 

285 the same base shape but with zero covariance with 100 iterations (see Goswami and 

286 Polly 2010; Polly and Goswami 2010).  All analyses were performed in Mathematica 

287 (Wolfram Research, 2018) using the Modularity for Mathematica (v. 2.0) and Geometric 

288 Morphometrics for Mathematica packages (Polly 2019; Polly and Goswami 2010).  

289  
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290 Experiment 1:  Direction of covariance

291 In this experiment, the direction of landmark covariance was systematically 

292 altered (Fig. 3E-G).  A simple archetype of eight landmarks arranged in a rectangle with 

293 two modules of four landmarks symmetrically arranged to the left and right of the 

294 archetype’s centroid was used.  Correlations between landmarks within each module 

295 was set at 0.8, except for the second test where one module was given completely 

296 invariant landmarks except for a small amount of uncorrelated noise.  In the first test, 

297 the orientation of covariance in the left module was set at positive 45º with respect to 

298 the length of the archetypal rectangle and in the right module it was set at 135º, which is 

299 90º to the first module (Fig. 3E).  In the second test, the left module had four invariant 

300 landmarks and the right module was identical to the right module in the first test (Fig. 

301 3F).  In the third test of this experiment, the orientation of variation in both modules was 

302 such that each landmark had a positive covariance pointing away from its respective 

303 module’s center (Fig. 3G).  

304 In the first test in this experiment, Procrustes superimposition altered the 

305 covariance pattern so much that the original modules were unrecoverable. Despite 

306 having a strongly modular pattern that was easily recovered from the naturally 

307 superimposed data, the modules were not recovered from the Procrustes superimposed 

308 shapes.  The pattern of covariance was strongly altered by Procrustes superimposition, 

309 which is seen visually in Figure 3E and indicated by their comparatively high CR value 

310 (CR = 1.27; P = 0.94).  Note that the centroids of the original shapes are highly variable 

311 in their position, with an unconstrained scatter that is nearly as large as the scatter of 

312 points around any of the landmarks (Fig. 3E).  The stability of the centroid point turns 
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313 out to be an important factor determining how much Procrustes superimposition alters 

314 the covariance pattern of the landmarks.

315 The second test, in which one module consisted of invariant landmarks, 

316 performed no better and arguably worse in terms of module recoverability (Fig. 3F).  

317 The two modules were not recoverable even from the naturally superimposed data, 

318 largely because the “invariant” module is not truly modular because its landmarks do not 

319 covary.  The dendrogram based on the naturally superimposed shapes recovered a 

320 tight cluster between the four landmarks in the right module, but they were not 

321 significantly distinguished from the landmarks of the left “module” based on the 

322 eigenvalue variance randomization tests.  Similarly, only one module was recovered 

323 from the Procrustes superimposed data, but there was no hint of similarity between the 

324 landmarks of the right module in the dendrogram.  CR was also high and non-significant 

325 (CR=1.14; P=0.30).  The position of the centroid of the naturally superimposed shapes 

326 was more constrained than in the first test, although it was still quite variable.  

327 In the third test, in which the direction of variation was symmetrically radial in 

328 each module instead of perfectly parallel, the true modular pattern was easily recovered 

329 (Fig. 3G). Variability in the position of the centroid in the naturally superimposed shapes 

330 was much less than in the previous two tests, and much smaller than the variability at 

331 individual landmarks.  The relative consistency of the position of the centroid is a result 

332 of the symmetry of the landmark variability.  Because the original centroids are close 

333 together, changes in the overall pattern of covariance due to Procrustes superimposition 

334 are small. The CR test indicated that the original modules were recoverable after 

335 Procrustes superimposition (CR=0.51; P=0.00). 
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336 This experiment suggests that the symmetry (or lack thereof) in the directions of 

337 covariance patterns within and between modules affects variability in position of the 

338 centroid from one shape to the next and that the degree of variation in the position of 

339 the centroid relative to variation in individual landmarks is a major determinant of how 

340 much Procrustes superimposition, which recenters shapes on their centroids, alters the 

341 covariance structure.

342 Experiment 2:  Magnitude of variance

343 One possible interpretation of the first experiment is that the less variation there is in 

344 shape, the more constrained will be the position of the centroid and the less the 

345 covariance pattern will be altered by Procrustes superimposition.  In the second 

346 experiment, we therefore tested whether the magnitude of shape variation has an effect 

347 on recoverability of modular patterns.  It does not.

348 This experiment used the same directional covariance structure as in the first test of 

349 the previous experiment (Fig. 3E) but systematically varied the amount of variance in 

350 the landmark coordinates (Fig. 3H-J).  The first test in Experiment 2 was stochastically 

351 identical to the first test in Experiment 1 (CR=1.25; P=0.93).  In the second and third 

352 tests, the variance at each landmark was reduced to 80% and 60% respectively (and 

353 the strength of covariance was maintained at 0.8).  Even though variation in the position 

354 of the centroid was progressively smaller in the second and third tests (Fig. 3I, J), the 

355 CR coefficient remained approximately the same (CR=1.24 & 1.25; P=0.90 & 0.93) and 

356 the original modules were not recovered from the Procrustes superimposed data.  
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357 Even though the centroid position was less variable in the second and third tests, 

358 the effect of Procrustes superimposition on the covariance structure remained 

359 approximately constant because the centroid remained just as variable with respect to 

360 the variation at the individual landmarks.  The translational and rotational components of 

361 Procrustes superimposition therefore had a proportionally similar effect on the relative 

362 positions of the landmarks (and therefore their covariance structure) regardless of the 

363 absolute magnitude of shape variation.  This experiment shows that it is not the 

364 magnitude of shape variation per se that matters.

365 Experiment 3:  Number of landmarks

366 The third experiment doubled and tripled the original number of landmarks to 

367 determine whether additional landmarks help minimize the effect of Procrustes 

368 superimposition (Fig. 4A-C).  They do not (at least not without the contribution of other 

369 factors, as explained below).  The first test in this experiment (Fig. 4A) was 

370 stochastically identical to that in Figure 3E (CR=1.28; P=0.96).  In the second test, four 

371 new landmarks were added to each module positioned one-quarter of the way toward 

372 the respective center of the module (Fig. 4B).  In the third test, four more landmarks 

373 were added, these equidistant from the original four landmarks along the periphery of 

374 each module (Fig. 4C).  The direction of covariation of the new landmarks in each 

375 module was identical to its original four.  

376 The addition of landmarks had no substantial effect on variation in the position of 

377 the centroid of the naturally superimposed shapes, and only minor improvements in the 

378 CR test (CR=1.11 & CR=1.09; P=0.88, P=1.00) and offered no improvement in the the 

Page 17 of 42

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

18

379 recoverability of modules.  Because the additional landmarks covary in the same 

380 direction and with the same magnitude as the original landmarks, they do not constrain 

381 the position of the centroid and are thus equally affected by the Procrustes 

382 superimposition process.  Therefore, the effects of Procrustes superimposition on 

383 covariance structure are not increased by the addition of landmarks (or semilandmarks), 

384 contra Cardini (2018), but neither are they decreased.  

385 Experiment 4:  Direction of Covariance II

386 The first three experiments indicate that Procrustes superimposition has a strong 

387 effect on the covariance matrix, and thus recoverability of modules, when variation in 

388 position of the centroid is only loosely constrained relative to variation in the individual 

389 landmarks.  Neither the absolute variability nor the number of the landmarks have an 

390 effect, but the overall pattern of directionality of covariation in the landmarks does.  The 

391 effect of Procrustes superimposition was minimized in the third test of the first 

392 experiment when directionality of variation was symmetric with respect to both the 

393 center of each module and the centroid of the entire shape.  

394 Next, we tested how random patterns of directional variation within and between 

395 modules affect recoverability of modules (Fig. 4D-F).  Variation in real biological 

396 structures is much more directionally complex than any of the examples tested in the 

397 first experiment (e.g., Zelditch et al. 1993).  It is difficult to imagine a biological example 

398 in which trait variation across a complex morphology is structured in entirely parallel or 

399 perpendicular directions. Thus, in this experiment we randomly oriented the direction of 

400 covariance at each landmark to produce a pattern that is not strictly symmetric as in the 
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401 third test of the first experiment, but which varies in a more complex, and arguably more 

402 “biological”, manner than any of the examples in the first experiment.

403 The first test of experiment 4 used parameters identical to the first in experiment 2 

404 as a reference (Fig. 4D; CR=1.27; P=0.96), but in the second two tests (Fig. 4E, F) the 

405 directions of variation at each landmark were randomly rotated by 0º to 360º.  In both 

406 cases, the effect was to dramatically constrain the position of the centroid with respect 

407 to the variation in the landmarks, to improve recoverability as measured by CR 

408 (CR=0.42 & 0.74; P=0.00 & 0.01), and to recover the original modular patterns 

409 accurately.  While Procrustes superimposition had a small effect on the covariance 

410 matrix and the perceived closeness of relation between landmarks in each module, this 

411 effect was minimal.  

412 The results of the first experiment can now be reinterpreted in light of the fourth:  it 

413 is not symmetric shape variation that matters as much as the lack of systematically 

414 directional variation.  In both the first and second tests of the first experiment, the 

415 direction of variation at all landmarks was somewhat parallel.  In the first experiment all 

416 of the landmarks shared half of their variation as a vertical component, whereas in the 

417 second experiment all of the landmarks that varied shared their direction.  The 

418 symmetrical pattern in the third test of the first experiment performed no better than the 

419 random patterns in the second and third tests of the fourth experiment.  Regardless of 

420 whether the landmark variation is directionally random or symmetrical, the effect is to 

421 severely constrain variation in the position of the centroid relative to the landmarks, and 

422 therefore to minimize the effects of Procrustes superimposition on the covariance 

423 matrix.
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424 Experiment 5:  Direction of covariance and number of landmarks

425 If the complexity of the directional variation matters, then more landmarks should 

426 increase that complexity if their direction of variation is independent.  We tested that 

427 possibility in our fifth and final experiment (Fig. 4G-I).  We used the same 8, 16, and 24 

428 landmarks as in the third experiment, but this time randomly rotated the direction of 

429 variation at each landmark.  When the major axis of variation at each landmark is 

430 oriented in a different direction, increasing the number of landmarks has a positive 

431 effect on the recoverability of modules.  As the number of landmarks increased, the CR 

432 ratio declined (CR = 0.34 and P = 0.00 for k = 8, CR = 0.17 and P=0.00 for k= 16 and 

433 CR=0.18 and P=0.00 for k=24).  With 24 landmarks with randomly varying directionality, 

434 Procrustes superimposition had little visible effect on the covariance pattern or on the 

435 modularity dendrogram (Figure 4I).  

436 Further considerations on centroids and natural superimpositions

437 The original simulated shapes before Procrustes superimposition can be considered 

438 to be in their “natural” superimposition, especially if the base shape has a centroid size 

439 of one.  The concept of “natural superimposition” warrants philosophical consideration.  

440 It is a biologically vague idea, yet the crux of the issue of whether Procrustes 

441 superimposition alters the “real” covariances between landmarks depends upon the 

442 idea of a “natural superimposition”.  The strategy of the Procrustean paradigm in 

443 geometric morphometrics is to remove so-called “nuisance” parameters of size, 

444 translation, and rotation by translating landmarks (and semilandmarks) so that the 

445 centroid of each shape is at the origin, scaling them to have centroid size of one, and 
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446 rotating them to minimize the sum-of-squared distance between shapes.  Upon 

447 completion of the superimposition, the new shape data are placed in a single 

448 comparable coordinate system where their differences can be analysed, analogous to 

449 mean-centering normal variables and standardizing them to unit variance.  The strategy 

450 we adopt here assumes that individuals are generated by some process (e.g., 

451 ontogenetic development) that produces variants on a general theme (our base 

452 landmark configuration, which we refer to as the archetype after Richard Owen’s notion 

453 that vertebrate species were all variations on an underlying theme) with a covariance 

454 structure V that arises from the generating process.  Since our modelling procedure 

455 (Fig. 3A) generates residual variation from a multivariate normal covariance distribution 

456 with a mean of zero, the shapes are invariant with respect to translation and rotation; 

457 and since the residuals are all added to the same archetypal configuration of landmarks 

458 (and semilandmarks), they are also invariant in scale with respect to the process that 

459 generated them.  

460 Individual simulated shapes, however, do not have a centroid size of one, their 

461 individual centroids are not aligned, they are not in optimal alignment, and their shapes 

462 are not the same as the archetype.  Figure 3C shows two simulated shapes along with 

463 their centroids to illustrate this fact.  Instead, having a centroid size of one, a centroid 

464 centred at the origin, and an archetypal shape are properties of the mean of the 

465 simulated shapes (Fig. 3D).   Thus, the simulated shapes are not aligned using 

466 Procrustes superimposition, but they are in the optimal alignment with regard to the 

467 process that generated them.  This difference between the two alignments is the source 

468 of Procrustes-induced covariance patterns. Accurately representing the natural 
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469 superimposition, and thus the processes generating shape variation, is a critical 

470 concern in most analyses employing geometric morphometrics, and thus understanding 

471 the cause of these deviations is an important theoretical and practical consideration.  

472 The reason why the centroids are not perfectly aligned is because the generating 

473 process used in these examples makes no explicit reference to the centroid.  Instead, 

474 the generating process produces random deviations from an archetypal configuration of 

475 landmarks with a modular covariance pattern.  Each deviation has its own centroid, 

476 centroid size, and orientation relative to the archetype.  One can imagine other 

477 generating processes that do make reference to the centroid (or, at very least, to a 

478 landmark that has an invariant position).  For example, the development of the 

479 tribosphenic molar involves a process of tissue growth that begins with the apex of a 

480 particular tooth cusp (the protoconid) and via a cascade of molecular signalling and 

481 folding produces additional cusps in a complex pattern around the original one (Jernvall 

482 1995; Thesleff and Sahlberg 1996).  One can therefore say that the natural alignment of 

483 tribosphenic tooth shapes is invariant at the protoconid cusp tip with a variance and 

484 covariance structure determined by the cascade of subsequent cusp formation.  Polly 

485 (2005) simulated tooth shapes using an analogous cascading process that started with 

486 the protoconid landmark.  But even in this example, the protoconid cusp is not 

487 equivalent to the centroid, which varies in its relative position depending on the 

488 arrangement of other cusp landmarks.

489 If there were a generating process that began with an object’s centroid, such as 

490 development of a radially symmetric structure like a coral polyp (c.f., Budd et al. 1994) 

491 the “natural” and Procrustes superimpositions could be nearly identical once 
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492 standardized for size, rotation, and translation.  But, as our experiments show, a 

493 complex pattern in the direction of variation around landmarks with respect to one 

494 another coupled with strong covariance has the effect of constraining the location of the 

495 centroid, regardless of the generating process.  The greater the complexity, the greater 

496 the constraint on the centroid position, and the more similar the “natural” and Procrustes 

497 superimpositions.  

498 Presuming that real biological shapes have similar directional diversity of landmark 

499 variation within modules as in our fifth experiment, our results suggest that Procrustes 

500 superimposition is unlikely to interfere with the recoverability of modular patterns, even 

501 when the number of landmarks is small.  Properties that matter for recoverability of 

502 modular patterns include: 1) variation in directional variation within and between 

503 modules and 2) centroids whose “natural” position varies little in proportion to variation 

504 in individual landmarks. Properties that do not matter for recoverability of modular 

505 patterns include: 1) total number of landmarks (or semilandmarks) and 2) absolute 

506 magnitude of shape variation.

507 Thus on the question of whether the use of sliding semilandmarks exacerbates the 

508 effect of Procrustes superimposition on covariance structure (Cardini 2018), the results 

509 of our third experiment suggest that adding landmarks neither improves nor inhibits the 

510 recoverability of modules. The fact that the direction of variation in sliding 

511 semilandmarks tends to be fairly uniform as a result of their fitting procedure (e.g., 

512 Perez et al. 2006) suggests that they will not improve recoverability to the same extent 

513 as covarying landmarks (or non-sliding semilandmarks) whose direction varies with 

514 respect to one another.  However, sliding semilandmarks improve representation of 

Page 23 of 42

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

24

515 complex structures, such as surfaces, far beyond the abilities of landmarks, and thus 

516 the increased complexity, and added variation in directionality of variation, will constrain 

517 centroid variation, improve the Procrustes fit relative to the ‘natural superimposition’, 

518 and thus increase the accuracy of recovering modules for biological structures. 

519

520 Comparing analyses of integration with landmark and semilandmark datasets

521 In the above sections, we demonstrate that high-density semilandmark datasets add 

522 important detail on morphology beyond that which is captured by Type I/II landmarks.  

523 In addition, our simulations indicate that Procrustes superimposition does not mislead 

524 analyses of integration in biologically realistic scenarios, i.e. those with complex 

525 directions of variation sampled by geometric morphometric data, regardless of number 

526 of landmarks or semilandmarks.  Finally, we address the question of how using 

527 semilandmarks in analyses of integration and modularity may change results and 

528 interpretations of these quantities, compared to analyses based on landmarks alone.  

529 Because semilandmarks and sliding semilandmarks are not independent of each other 

530 due to their fitting procedure, there are expected effects on analyses of integration and 

531 modularity.  Specifically, adjacent semilandmarks and sliding semilandmarks will be 

532 correlated because their placement is relative to each other, in addition to any biological 

533 correlation amongst the structures they represent.  The effect of this fitting may be to 

534 exaggerate the correlations or covariance of proximal semilandmarks relative to those 

535 farther away, which may increase the appearance of modularity across regions.  On the 

536 other hand, landmarks (and also curves based on element boundaries) may have the 
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537 opposite effect.  Because Type I landmarks in a structure such as a skull will be largely 

538 limited to sutures between elements, they may suffer from boundary bias, exaggerating 

539 the apparent integration of those elements compared to aspects of their respective 

540 morphologies that are not located at their point of juncture.  It is important to recognize 

541 that both approaches suffer from statistical artefacts due to the nature of the data 

542 collection approach and may have opposing biases in reconstructing trait integration 

543 and modularity.  Thus, the comparison of results generated by these different 

544 approaches is critical for identifying the magnitude and impact of their respective biases 

545 and artefacts.  

546 In two recent studies of variational or static (Marshall et al. 2019) and 

547 evolutionary (Bardua et al. 2019b) integration and modularity in caecilian crania, we 

548 conducted extensive analyses of integration across 16-17 cranial regions using 66 

549 (Idiocranium russeli), 68 (Boulengerula boulengeri) or 53 (32 caecilian genera) 

550 landmarks and 1363-1558 curve and surface sliding semilandmarks.  These datasets 

551 were analysed using Covariance Ratio (CR) analysis (Adams 2016) and a maximum 

552 likelihood approach (Goswami and Finarelli 2016), with allometric and phylogenetic (for 

553 the intergeneric analysis) corrections.  In both studies, results were compared across 

554 analyses of the full dataset and analyses of the landmark-only datasets.  In the 

555 intergeneric study of evolutionary modularity, both datasets significantly supported a 

556 highly modular pattern (16 module model, full dataset CR = 0.59, p < 0.01; landmark-

557 only dataset CR = 0.88, p < 0.01).  Despite supporting a modular pattern, the landmark-

558 only dataset returned a CR much closer to one, indicating relatively more integration 

559 among modules. In particular, the major differences were increased integration of the 
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560 bones forming the cranial vault, which, in landmark-only analyses are defined entirely by 

561 their sutures (mainly with each other), and reduced within-region integration in the 

562 landmark-only analyses, as expected. (Bardua et al. 2019b; SI Fig. 2).  A similar result 

563 is observed in the intraspecific study of two species of caecilieans (Marshall et al. 2019), 

564 with all analyses again significantly supporting a highly modular skull. For example, 

565 covariance ratio analyses of the 17-module model for Idiocranium russeli were highly 

566 significant for the full dataset before (CR = 0.621, p < 0.001) and after (CR = 0.519, p < 

567 0.001) allometric correction and with the landmark-only dataset before (CR = 0.851, p < 

568 0.001) and after allometric correction (CR = 0.738, p < 0.001). As before, the landmark-

569 only analyses returned CR values closer to one, suggesting more integration than the 

570 analysis of the full dataset, and removing allometric effects resulted in reduced CR 

571 values, supporting a more modular pattern. Despite this overall consistency across 

572 datasets and analyses, examination of the pairwise CR values between regions, in 

573 addition to the mean CR across the full cranium, suggests the allometry may have a 

574 stronger influence on landmark-only analyses. For example, in the Idiocranium russeli 

575 dataset, landmark-only analyses identify 49 out of 120 region pairs with CR values 

576 greater than 0.9, with some exceeding a value of one (indicating integration).  Following 

577 removal of allometry, only 16 region pairs show CR values greater than 0.9, and the 

578 overall pattern of integration across regions is congruent with the analysis of the full 

579 dataset. Allometric correction did not have a similar effect on the analyses of the full 

580 dataset.  These results, while supporting that analyses are largely consistent across 

581 datasets, suggest that allometry may have a stronger influence on recovered patterns of 

582 integration in landmark-only datasets. If so, this effect may reflect the tendency for many 
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583 landmarks to be placed at element boundaries, resulting in a stronger signal of structure 

584 size relative to the complexity of its shape, which the latter being better captured by 

585 semilandmarks.  

586

587 Conclusions

588 Capturing and quantifying morphology using high-resolution imaging has opened the 

589 door to high-density morphometric data analysis with semilandmarks or 

590 pseudolandmarks.  Our analyses on both simulated and empirical datasets demonstrate 

591 that semilandmarks provide far more comprehensive, as well as accurate, 

592 characterizations of morphological variation than analysis of landmarks alone, which 

593 suffer from limitations to points that can be identified repeatedly on specimens and often 

594 leave large areas of complex structures entirely unsampled.  However, these gains in 

595 quantifying morphology raise questions about the biases that these datasets may bring, 

596 in terms of quality of data, procedural artefacts, and ability to accurately recover 

597 attributes such as trait integration.  Here we demonstrate that some of the concerns with 

598 geometric morphometric analysis of trait integration and modularity are unlikely to affect 

599 analyses of complex structures, such as those encountered in biological specimens. We 

600 also demonstrate that increasing landmark or semilandmark sampling alone does not 

601 exacerbate issues with procedures such as Procrustes analysis.  We further suggest 

602 that analyses incorporating semilandmarks may be less influenced by boundary bias 

603 and allometric effects, which may exaggerate degree of integration across regions in 

604 landmark-only analyses, while analyses of sliding semilandmark may exaggerate within- 
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605 region integration and between-region modularity. It remains a continuing challenge to 

606 develop methods that alleviate these effects.  In doing so, we should prioritize improving 

607 the representation of morphology, rather than limiting future studies to existing methods 

608 that quantify complex structures with a small number of lengths or landmarks and leave 

609 much of the available biological information unused (Collyer et al. 2014). Similarly, most 

610 existing methods for the analysis of phenotypic integration and modularity are overly 

611 simplistic and incapable of accurately conveying the complex hierarchy of relationships 

612 across traits.  Furthermore, most of these methods have not been developed or tested 

613 for high-density datasets, which will certainly present new challenges as these datasets 

614 become increasing common in studies of phenotypic integration and morphological 

615 evolution.  It is thus critical to remember that all methods have costs and benefits, 

616 including both landmarks and semilandmarks.  Nonetheless, the benefits of high-density 

617 geometric morphometrics for more precisely representing morphology solves many 

618 issues with reconstructing the evolution of complex structures across disparate taxa and 

619 is a promising path forward for “Big Data” approaches to comparative morphology. 

620
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788 Figure Captions

789 Figure 1.  Characterization of morphologically disparate taxa. The disparity of biological 

790 shapes and presence and absence of homologous structures, as exemplified in this 

791 sample of diapsids and amphibians (A) and the difficulty of locating discrete landmarks 

792 in some taxa, such as the strongly sutured skulls of birds (B) present challenges for the 

793 quantitative analysis of morphology.  High-density semilandmarks (C) can capture the 

794 morphology of complex regions with far more detail and allow for comparisons of 

795 homologous structures across disparate taxa, resulting in (D) massive increases in 

796 dataset size for studies of comparative morphology (Felice and Goswami 2018)(Felice 
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797 and Goswami 2018)(Felice and Goswami 2018)(Felice and Goswami 2018)(Felice and 

798 Goswami 2018; Watanabe et al. 2019).

799 Figure 2. Landmark-only (A, D) and full landmark and semilandmark configurations (B, 

800 E) and landmark sampling curves generated by LaSEC for C) the frontal bone of 

801 caecilians and F) the supraoccipital of squamates. Colours in A, B, D, and E indicate 

802 Procrustes variance at each landmark position, demonstrating that full and landmark-

803 only configurations produce similar overall patterns but that some areas of high or low 

804 variance are entirely unsampled in landmark-only analyses. Sampling curve (C, F) 

805 illustrate that 25–35 landmarks and semilandmarks are required to confidently and 

806 robustly characterize the shape variation in these individual bones.

807 Figure 3.  Simulation experiments 1 and 2 of the effect of Procrustes superimposition 

808 on covariance patterns and recovery of biological modules. Starting with a base 

809 archetype (A), we perturbed variances and covariances (B) in each experiment, with 

810 resultant effects on shape centroids (C), to generate a sample of “naturally 

811 superimposed” shapes (D), which are then subjected to Procrustes superimposition.  In 

812 experiment 1, we test the effect of direction of covariance, with covariances of two 

813 modules set at 90° to each other (E), one module of invariant landmarks (F), and both 

814 modules with covariances oriented away from their respective centroids (G).  In 

815 experiment 2, we vary the magnitude of variance, with variances initially identical to that 

816 of experiment 1 (H), and then reduced to 80% (I) and 60% (J).  For each experiment, 

817 landmark configurations are shown on the left, and clusters of recovered modules are 

818 shown on the right. 
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819 Figure 4. Simulation experiments 3 – 5 of the effect of Procrustes superimposition on 

820 covariance patterns and recovery of biological modules. In experiment 3, we increase 

821 landmark numbers from the eight landmarks of experiment 1 (A), to 16 landmarks (B), 

822 and 24 landmarks (C).  In experiment 4, we vary the directionality of landmarks, from 

823 the symmetric variation of experiment 1 (D) to random directions of variation (E, F).  

824 Finally, in experiment 5, we combine the effects of experiments 3 and 4, by randomly 

825 rotating landmarks for the initial set of 8 landmarks (G), and then 16 landmarks (H) and 

826 24 landmarks (I). For each experiment, landmark configurations are shown on the left, 

827 and clusters of recovered modules are shown on the right. 

828

829

830

831
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833 Tables
834

835 Table 1. Results from performing LaSEC with 1000 iterations on individual cranial 

836 partitions of extant caecilian datasets. Values for Fit = 0.9, 0.95, and 0.99 denote the 

837 median number of randomly subsampled landmarks degree of fit (0 to 1) of randomly 

838 subsampled landmark configurations and fixed-only datasets to the respective full high-

839 dimensional coordinate data. Separate analysis of landmarks + curve sliding 

840 semilandmarks was not conducted for caecilians, as curves for some regions (e.g., 

841 maxilla) were not homologous and removed prior to analyses. For details and definitions 

842 of cranial regions, see Bardua et al. (2019b).

# 

landmarks
# landmarks + 

semilandmarks

Fit = 

0.90

Fit = 

0.95

Fit = 0.99 Fit of 

landmark-only 

dataset

Basisphenoid 4 155 15 25 69 0.583

Frontal 4 125 13 21 61 0.617

Jaw joint 3 50 13 19 37 0.306

Maxillopalatine 

(interdental shelf)

4 110 13 19 52 0.782

Maxillopalatine 

(lateral surface)

3 134 14 23 64 0.238
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Maxillopalatine 

(palatal surface)

5 75 13 19 44 0.602

Nasopremaxilla 

(dorsal surface)

7 148 13 21 61 0.684

Nasopremaxilla 

(palatal surface)

3 59 8 12 29 0.770

Occipital condyle 2 34 11 15 27 NA (only two 

landmarks)

Occipital region 5 153 16 27 73 0.605

Parietal 3 126 11 18 51 0.361

Pterygoid - 50 7 10 24 NA

Quadrate (lateral 

surface)

2 57 12 18 38 NA (only two 

landmarks)

Squamosal 4 104 15 25 61 0.574

Stapes - 20 10 12 17 NA

Vomer 3 69 12 18 41 0.538

843

844
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845 Table 2. Results from performing LaSEC with 1000 iterations on individual cranial 

846 partitions of extant squamate datasets. Values for Fit = 0.9, 0.95, and 0.99 denote the 

847 median number of randomly subsampled landmarks required for respective degree of fit 

848 of randomly subsampled landmark configurations to the respective full (landmark + 

849 curve and surface sliding semilandmark) dataset. Fit of Landmark-only and landmark + 

850 curve sliding semilandmark datasets compared to full dataset is also provided for 

851 comparison, demonstrating that the addition of curve sliding semilandmarks alone 

852 greatly improves representation of shape over landmark-only analyses (although see 

853 discussion regarding issues with curves for some highly-variable structures in the 

854 caecilian skull). The occipital condyle, pterygoid, and palatine are not listed as they lack 

855 either unique landmarks or surface sliding semilandmarks for some taxa. For details 

856 definitions of cranial regions, see Watanabe et al. (2019).

Squamates # LMs # curve 

sLMs

# surface 

sLMs

Fit = 

0.90

Fit = 

0.95

Fit = 

0.99

Fit of 

landmark-

only 

dataset

Fit of 

landmark 

+ curve 

dataset

Premaxilla 4 35 39 15 23 49 0.713 0.981

Nasal 4 40 42 15 25 54 0.664 0.977

Maxilla 5 65 92 16 27 74 0.696 0.913

Jugal 3 60 31 13 20 51 0.645 0.962

Frontal 4 40 86 14 25 66 0.721 0.993
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Parietal 4 60 34 16 28 64 0.647 0.987

Squamosal 3 30 19 17 25 43 0.452 0.993

Jaw joint 4 20 18 20 27 38 0.484 0.999

Supraoccipital 5 60 67 30 55 90 0.597 0.979

Occipital 

condyle

- 15 22 22 27 34 N/A

0.988

Basioccipital 4 60 58 14 26 66 0.805 0.982

857
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Characterization of morphologically disparate taxa. The disparity of biological shapes and presence and 
absence of homologous structures, as exemplified in this sample of diapsids and amphibians (A) and the 

difficulty of locating discrete landmarks in some taxa, such as the strongly sutured skulls of birds (B) 
present challenges for the quantitative analysis of morphology.  High-density semilandmarks (C) can 

capture the morphology of complex regions with far more detail and allow for comparisons of homologous 
structures across disparate taxa, resulting in (D) massive increases in dataset size for studies of 

comparative morphology (Felice and Goswami 2018; Watanabe et al. in press). 
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. Landmark-only (A, D) and full landmark and semilandmark configurations (B, E) and landmark sampling 
curves generated by LaSEC for C) the frontal bone of caecilians and F) the supraoccipital of squamates. 

Colours in A, B, D, and E indicate Procrustes variance at each landmark position, demonstrating that full and 
landmark-only configurations produce similar overall patterns but that some areas of high or low variance 
are entirely unsampled in landmark-only analyses. Sampling curve (C, F) illustrate that 25–35 landmarks 

and semilandmarks are required to confidently and robustly characterize the shape variation in these 
individual bones. 
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Simulation experiments 1 and 2 of the effect of Procrustes superimposition on covariance patterns and 
recovery of biological modules. Starting with a base archetype (A), we perturbed variances and covariances 

(B) in each experiment, with resultant effects on shape centroids (C), to generate a sample of “naturally 
superimposed” shapes (D), which are then subjected to Procrustes superimposition.  In experiment 1, we 

test the effect of direction of covariance, with covariances of two modules set at 90° to each other (E), one 
module of invariant landmarks (F), and both modules with covariances oriented away from their respective 
centroids (G).  In experiment 2, we vary the magnitude of variance, with variances initially identical to that 

of experiment 1 (H), and then reduced to 80% (I) and 60% (J).  For each experiment, landmark 
configurations are shown on the left, and clusters of recovered modules are shown on the right. 
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Simulation experiments 3 – 5 of the effect of Procrustes superimposition on covariance patterns and 
recovery of biological modules. In experiment 3, we increase landmark numbers from the eight landmarks of 
experiment 1 (A), to 16 landmarks (B), and 24 landmarks (C).  In experiment 4, we vary the directionality 
of landmarks, from the symmetric variation of experiment 1 (D) to random directions of variation (E, F). 

 Finally, in experiment 5, we combine the effects of experiments 3 and 4, by randomly rotating landmarks 
for the initial set of 8 landmarks (G), and then 16 landmarks (H) and 24 landmarks (I). For each 

experiment, landmark configurations are shown on the left, and clusters of recovered modules are shown on 
the right. 
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