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Genetic Risk for Alzheimer Disease
Is Distinct from Genetic Risk for

Amyloid Deposition
Ganna Leonenko ,1* Maryam Shoai,2* Eftychia Bellou,1 Rebecca Sims,1 Julie Williams,1,3

John Hardy,2,4 and Valentina Escott-Price,1,3

the Alzheimer’s Disease Neuroimaging Initiative

Objective: Alzheimer disease (AD) is the most common form of dementia and is responsible for a huge and growing
health care burden in the developed and developing world. The polygenic risk score (PRS) approach has shown 75 to
84% prediction accuracy of identifying individuals with AD risk.
Methods: In this study, we tested the prediction accuracy of AD, mild cognitive impairment (MCI), and amyloid deposition
risks with PRS, including and excluding APOE genotypes in a large publicly available dataset with extensive phenotypic
data, the Alzheimer’s Disease Neuroimaging Initiative cohort. Among MCI individuals with amyloid-positive status, we
examined PRS prediction accuracy in those who converted to AD. In addition, we divided polygenic risk score by biological
pathways and tested them independently for distinguishing between AD, MCI, and amyloid deposition.
Results: We found that AD and MCI are predicted by both APOE genotype and PRS (area under the curve [AUC] = 0.82%
and 68%, respectively). Amyloid deposition is predicted by APOE only (AUC = 79%). Further progression to AD of indi-
viduals with MCI and amyloid-positive status is predicted by PRS over and above APOE (AUC = 67%). In pathway-specific
PRS analyses, the protein–lipid complex has the strongest association with AD and amyloid deposition even when genes
in the APOE region were removed (p = 0.0055 and p = 0.0079, respectively).
Interpretation: The results showed different pattern of APOE contribution in PRS risk predictions of AD/MCI and amy-
loid deposition. Our study suggests that APOE mostly contributes to amyloid accumulation and the PRS affects risk of
further conversion to AD.
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Alzheimer disease (AD) is the most common form of
dementia in elderly people and is a major health

problem worldwide.1 The clinical diagnosis is typically char-
acterized by progressive loss of memory and cognitive func-
tion. In the past decade, numerous relevant susceptibility
loci, genes, and pathways have been identified2–6 that
have improved the understanding of this complex disease.
However, the risk for developing AD involves multiple

genetic and environmental components, with the APOE
genotype7 having the strongest genetic effect.2

Amyloid-beta (Aβ) plays a key role in the pathogenesis
of AD, but little is known about the process of its formation
in the brain. Identification of the earliest pathological sig-
nature of AD requires longitudinal measurements of Aβ
deposition in the brain by positron emission tomography
(PET) or by measurements of Aβ reduction in
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cerebrospinal fluid (CSF). Although Aβ is necessary for
the pathologic diagnosis of AD, it is not sufficient in itself
to cause cognitive dysfunction and clinical AD. It has
been shown that amyloid deposition has low specificity
for predicting development of AD.8,9

The preclinical stage of AD starts with mild impair-
ment in cognitive domains (MCI) and includes a syn-
drome featuring relatively isolated memory deficits.10

In 2011, the National Institute on Aging and
Alzheimer’s Association created separate sets of diagnostic
guidelines for the symptomatic or “clinical” stages of
AD,11,12 where AD represents the “disease” and “dementia”
represents the clinical syndrome. Thus, a person may pro-
gress from MCI to dementia (due to AD), but both MCI
and dementia cases may or may not be AD.

Studying individuals who develop MCI and then fur-
ther progress to AD requires detailed longitudinal datasets.
The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
is a multicenter study designed to assess the utility of vari-
ous biomarkers for detecting early changes associated with
MCI and AD. It includes collection of neuroimaging data,
clinical and cognitive assessments, and information on
demographics and individual genetic profiles.

The polygenic risk score (PRS) approach aggregates
the effects of multiple genetic markers identified through
genome-wide association studies (GWASs)2 and has
shown great potential in identifying an individual’s risk of
developing AD.13,14 A few studies have recently used AD
PRS to predict mild cognitive functions and clinical
MCI15; however, only one has suggested that PRS could
identify MCI in middle aged adults16 more effectively
than the APOE locus alone. The PRS approach has also
been applied to biological pathways related to AD but was
not more predictive than APOE alone.17 The implementa-
tion of polygenic hazard score (PHS; closely related to
PRS18) analysis in the ADNI data showed that PHS is
associated with AD biomarkers (CSF and PET) in individ-
uals without AD,19 and that higher PHS was associated
with greater rates of cognitive and clinical decline, even
after controlling for APOE status20; however, its predictive
value was not quantified.

In this study, we estimate the predictive accuracy of
PRS differentiating (1) AD cases versus controls, (2) MCI
cases versus controls, and (3) amyloid-positive versus
amyloid-negative individuals. We also investigate whether
(4) the AD PRS can predict individuals with MCI who
will progress to AD and those who will remain with MCI,
with positive amyloid deposition.

Recently, GWASs and exome/genome sequencing
have implicated, with varying degrees of confidence, lipid
metabolism, the innate immune system, and endosomal
vesicle recycling in late onset AD pathogenesis.21,22

Therefore, we also examined the pathway-specific PRS
association using these recently identified pathways6

related to AD risk.

Materials and Methods
ADNI: Setting/Clinical Description
Data used in the preparation of this article were obtained from
ADNI, a publicly available database (https://adni.loni.usc.edu).
The primary goal of ADNI has been to test whether serial mag-
netic resonance imaging (MRI), PET, other biological markers,
and clinical and neuropsychological assessment can be combined
to measure the progression of MCI and early AD. The data were
collected for about 900 individuals between ages 55 and 90 years.
The initial 5-year study (ADNI1) followed participants for 2 to
3 years, with repeated imaging scans and psychometric measure-
ments every 6 or 12 months. All ADNI participants provided
written informed consent. The ADNI project was extended as
the ADNI-GO and ADNI2, studies with a proportion of new
and original ADNI1 participants.

Clinical diagnosis and genetic information were available
for 770 individuals from the ADNI1, ADNI-GO, and ADNI2
studies. Longitudinal data contained information about clinical
assessments from the first visit (baseline) to the latest available
visit, with mean follow-up time of approximately 5 years. Details
of the ADNI design, participant recruitment, clinical testing, and
additional methods have been previously reported elsewhere.23,24

Table 1 shows the classification of diagnosis and number
of individuals whose diagnosis remained stable during the study.
It also presents the diagnostic categories and the numbers of
individuals within those diagnostic categories at the latest assess-
ment, which were used for the analyses.

To assess amyloid deposition, the latest MRI PET scans
from 663 participants were used in the analysis (AV45 ligand
threshold of 1.11). In this study, we used the individuals’ diagno-
sis at the latest point of assessment. We then tested whether AD
PRSs were associated with AD, MCI, and amyloid status in 3 main
analyses: (1) AD versus controls, (2) MCI versus controls, and
(3) amyloid-positive versus amyloid-negative status (Table 2).

ADNI: Genotyping and Quality Control
A total of 770 samples from ADNI1/GO/2 set were whole-
genome sequenced (WGS) and genotyped using the Illumina
(San Diego, CA) Omni 2.5M BeadChip (42,732,452 variants).
WGS calls were made using the Broad Institute best practices
(BWA & GATK HaplotypeCaller).

Basic quality control checks were performed using stan-
dard procedure.25 Single nucleotide polymorphisms (SNPs)
were excluded where genotype missingness was >0.02, Hardy–
Weinberg equilibrium p value was <1e-6, and SNP minor allele
frequency was <0.01. This retained 7,808,548 SNPs for the
analyses. Matching those SNPs with the latest publicly available
GWAS AD summary statistics2 reduced that number to
5,771,686.
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Generating PRS
Generation of PRS requires 2 independent datasets: summary
statistics of association with AD in a discovery sample; and a
test sample, which is independent of the discovery sample and
contains genotypes for each individual.26 As the discovery
sample, we used summary statistics from the powerful GWAS

(17,008 AD cases and 37,154 controls) of the International
Genomics of Alzheimer’s Project (IGAP Stage 1).2 PRSs were
generated using SNPs with AD association p ≤ 0.5 in the
IGAP dataset, as it has been reported as having the best pre-
diction accuracy.13 The SNPs were then linkage disequilib-
rium (LD) pruned (r2 = 0.1 and 1,000kb window), keeping
the SNPs most associated with AD. The number of SNPs
after the LD pruning was 162,957. We included APOE ε2
and ε4 allele genotypes directly into the PRS with effect sizes
B = −1.04 and B = 1.55 for ε2 and ε4, respectively, calcu-
lated in the ADNI data, while excluding the APOE region
(chromosome 19:44,400–19:46,500kb).13 Prior to all analyses,
the PRSs were adjusted for the 8 principal components and then
standardized.

A total of 441 ADNI participants were part of original
IGAP summary statistics.2 To overcome a potential bias in PRS
analysis due to overlapping samples, we used a simulation
approach we previously described.14 In brief, first we assessed the
variation in the SNPs’ effect sizes using 1,000 simulations when
randomly excluding 266 cases and 173 controls (matching the
numbers of overlapping samples). The variation in the IGAP
effect sizes due to the overlap was estimated in terms of standard
deviation (SDIGAP = 0.053) from the mean (ie, the original
IGAP SNP beta-coefficient [BetaIGAP]). Then, new IGAP
genome-wide summary statistics were simulated 10,000 times
with adjusted effect sizes (Betaadjusted) and p values for each SNP.
Betaadjusted was sampled from a normal distribution with
mean = BetaIGAP and SD = 0.053*SEIGAP; p valuesadjusted were

TABLE 1. Clinical Classification of Diagnosis in ADNI Dataset

Diagnosis Description
Samples with Diagnosis at
the First Time Point, n

Samples with Diagnosis at
the Last Time Point, n

Samples Stable
over Time, n

Usage for
Analysis

Stable control
to control

262 224 200 Controls

Stable MCI
to MCI

459 289 267 MCI

Stable AD to AD 47 174 46 AD

Conversion control
to MCI

0 20 0 Exclude

Conversion MCI
to AD

1 50 0 MCI

Conversion MCI
to control

1 8 0 Exclude

Conversion AD
to MCI

0 5 0 MCI

Diagnosis description–classification of clinical diagnosis made for each participant and each time point. Second column shows number of participants
with baseline diagnosis. Third column shows number of participants at the last point of diagnosis. Fourth column shows number of participants who
did not change their diagnosis at the last assessment from baseline diagnosis. Last column shows clinical classification of individuals based on the last
available diagnosis for our analyses.
AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; MCI = mild cognitive impairment.

TABLE 2. ADNI Phenotypes and PET Amyloid Status

Samples,
n

n (% of
MCI)

n (% of
AD)

n (% of
controls)

Amyloid
positive

357 162
(47%)

120
(69%)

65
(29%)

Amyloid
negative

304 148
(43%)

18
(10%)

128
(57%)

NA 89 34
(10%)

36
(21%)

31
(14%)

All
samples

770 344 174 224

Shows number of individuals with positive/negative amyloid for clini-
cally diagnosed samples (MCI, AD, and controls).
AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging
Initiative; MCI = mild cognitive impairment; NA = not available;
PET = positron emission tomography.
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redefined accordingly. At each simulation, SNPs were reselected
and repruned based on LD r2 = 0.1 and 1,000kb window. The
prediction accuracies (areas under the receiver operator curve
[AUCs]) reported in the Results section are presented as means
from these 10,000 simulations.

Genome-wide and Pathway-Specific PRS
Predictions
Initially, we tested whether PRSs are associated with AD risk
(AD cases vs controls) in the ADNI dataset. Then we assessed
whether the AD PRS can distinguish individuals with MCI from
cognitively normal controls and amyloid-positive from amyloid-
negative individuals. Finally, we assessed whether PRS can predict
AD risk over and above APOE in MCI individuals who have had
positive amyloid deposition (to be precise, the MCI individuals
who converted to AD between the baseline and final time of
assessment vs nonconverters). All analyses were performed using
logistic regression models with the following predictors:
(1) APOE (ε2 + ε4), (2) PRS without APOE, and (3) full PRS
model (predictors 1 and 2 together). Gender and age were
used as covariates in all analyses. We tested whether the PRS
significantly improves the model fit over and above APOE
alone with the anova() function in R. We report the accuracy
of the models in terms of AUC. In addition, we calculated
PRS prediction accuracies (AUCs) in the extremes of PRS
distribution for individuals whose PRS score was greater or
smaller than �1.5 SD from the PRS mean.

For the pathway-specific analyses, we chose the latest pub-
lished 9 pathways that have been reported as playing a role in
AD pathogenesis, namely (1) protein–lipid complex assembly,
(2) regulation of beta-amyloid formation, (3) protein–lipid com-
plex, (4) regulation of amyloid precursor protein catabolic pro-
cess, (5) reverse cholesterol transport, (6) protein–lipid complex
subunit organization, (7) plasma lipoprotein particle assembly,
(8) tau protein binding, and (9) activation of immune response.6

Finally, to quantify the proportion of variance that remains
unexplained by the pathways together, we calculated and tested
PRS for the whole genome excluding these 9 pathways.

Pathway-specific PRSs were generated in the ADNI
dataset for each individual as described above with and without
the APOE region. The PRSs in this case were adjusted not only
for 8 principal components but also for age and gender and then
standardized.

The results were considered significant if the resulting p value
was ≤1.85 × 10−3 = 0.05/(3 scenarios × 9 pathways), corresponding
to the Bonferroni correction for multiple comparisons.

Results
The prediction accuracy of AD cases (n = 174) versus
controls (n = 224) at the last assessment point was
AUCAPOE = 76% and AUCPRS = 75%, for APOE alone
and for PRS without APOE, respectively (Table 3, first
row). The best prediction accuracy (AUCFULL = 82%) was
achieved with the full model, which includes both APOE
and PRS. An analysis of variance test (last column of

Table 3) confirmed that PRS significantly improves the
prediction accuracy of the model over and above APOE
(p = 1.7 × 10−13). A similar pattern of results was observed
when we compared MCI individuals at the last point of
assessment (n = 344; see Table 1 for details) with controls;
however, the accuracy was reduced (AUCAPOE = 62%,
AUCFULL = 68%). Again, PRS significantly improves the
prediction accuracy of MCI risk over and above APOE
(p = 2.5 × 10−11). Figure 1 shows standardized density
plots of polygenic risk scores in AD cases (red line), controls
(blue line), and MCI (orange line), where the mean of the
PRS for the latter is between the means of the PRS for AD
cases and controls. Interestingly, the results for prediction
of amyloid deposition by PRS follows a different pattern;
APOE alone significantly predicted amyloid deposition with
AUCAPOE = 76%, and PRS did not improve the prediction
accuracy further.

When we tested the full PRS model for prediction
of individuals at the extremes of polygenic score distribu-
tion (�1.5 SD from the PRS mean), the prediction accu-
racy as expected increased (AUC = 94% for AD vs
controls and AUC = 91% for MCI vs controls).

We tested whether the PRS can predict progression
to AD in individuals with MCI. Of 459 individuals with
MCI at the baseline assessment, 441 had known amyloid
deposition status (270 were amyloid-positive and 171 were
amyloid-negative). The prediction accuracy of amyloid
deposition in this subsample was AUCAPOE = 79% by
APOE alone and PRS did not improve the prediction
accuracy (p = 0.48; Fig 2). Of 270 amyloid-positive indi-
viduals, 112 have progressed to AD and 150 individuals
remained MCI as of the last point of assessment. In this
case, PRS did predict AD progression (AUCAPOE = 63%
and AUCFULL = 69%), significantly improving the predic-
tion over and above APOE (p = 0.0002; see Fig 2).

Finally, we calculated pathway-specific PRSs and
tested them for association with risk for AD, MCI, and
amyloid deposition. The results are presented in Table 4.
The majority of pathways were significantly associated
with AD risk; however, this association was mostly driven
by the APOE region. Two pathways (protein–lipid com-
plex, protein–lipid complex subunit) remained significant
after removing genes in the APOE region. When we
excluded all pathways from the whole genome PRS, we
observed that a substantial part of variance still remained
unexplained (p = 2.2 × 10−14; last row of Table 4). Com-
paring amyloid-positive versus amyloid-negative individuals,
the same 2 protein-lipid–related pathways and additionally
reverse cholesterol transport were significant after removing
genes in the APOE region. The association results of the
9 pathways’ PRS with MCI risk were nominally significant
for all pathways, and the association was mostly attributed
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to APOE. This clearly demonstrates that the pathways that
contain the APOE region are strong predictors of amyloid
deposition. Protein–lipid complex has shown the strongest
association with AD and amyloid deposition risk in all the

analyses. The overlap of genes in the 3 pathways above is
presented in Figure 3.27

Finally, we tested these pathways’ PRS for association
with amyloid deposition in individuals with MCI and with
their further progression to AD when their amyloid deposi-
tion status was positive. We found that protein–lipid com-
plex, protein–lipid complex subunit organization, and reverse
cholesterol transport pathways are also associated with amy-
loid deposition even after exclusion of the APOE region
(Table 5, 4th column).

Discussion
The pathological process related to AD starts long before
clinical onset and lasts approximately 15 to 20 years28 It is
widely believed that identifying individuals who have high
risk of AD earlier is essential for therapeutic strategies for
AD prevention and intervention.29 Due to the diagnostic
heterogeneity of MCI and different length of follow-up
assessments, the conversion rate to AD or other types of

FIGURE 1: Density plots of polygenic risk score (PRS) for
Alzheimer disease (AD), mild cognitive impairment (MCI), and
cognitively normal participants. Standardized individual PRS
scores for 3 phenotypes are shown (AD, MCI, and controls).

TABLE 3. PRS and APOE Predictions of AD/MCI/Controls/Amyloid Phenotypes in ADNI

Model
Statistical
Characteristics

AD vs Controls,
n = 174/224

MCI vs Controls,
n = 344/224

Amyloid Positive vs Amyloid
Negative, n = 357/304

APOE Beta1,3,4 [SE] 0.99 [0.13], −0.58 [0.22],
0.03 [0.01]

0.3 [0.1], −0.5 [0.17],
−0.02 [0.01]

1.08 [0.01], 0.2 [0.17], 0.04
[0.01]

p 1.06e-18 9.6e-5 <2.2e-16

AUCa/AUCb 0.72/0.76 0.58/0.62 0.72/0.76

PRS (p < 0.5)
without APOE

Beta2–4 [SE] 0.93 [0.12], −0.7 [0.2],
0.016 [0.015]

0.68 [0.1], −0.47 [0.18],
−0.007 [0.01]

0.3 [0.08], 0.13 [0.16],
0.023 [0.01]

p 2.7e-18 6.e-12 1.4e-3

AUCa/AUCb 0.74/0.75 0.66/0.67 0.58/0.58

Full PRS model Beta1–4 [SE] 0.93 [0.13], 0.88 [0.13],
−0.63 [0.24], 0.04 [0.02]

0.26 [0.1], 0.66 [0.1],
−0.47 [0.18], −0.002
[0.01]

1.06 [0.1], 0.22 [0.09], 0.22
[0.17], 0.05 [0.01]

p 1.9e-30 1.1e-12 2.3e-29

AUCa/AUCb 0.81/0.82 0.67/0.68 0.75/0.76

ANOVA p
(PRS above
APOE)

1.7e-13 1.8e-10 0.038

Beta1 = beta(e2 + e4), Beta2 = beta(PRS), Beta3 = beta(sex), Beta4 = beta(age). First column shows 3 scenarios where PRS predictions were made:
APOE alone, PRS without APOE, and full model (APOE plus PRS [p < 0.5]). Second column shows statistical characteristics that were calculated for
each model; these include effect size (beta) with SE, p values, and AUC (with and without gender and age) and p value of significance of PRS above
APOE model. Columns 3–5 represent 3 analyses with number of samples where different models were tested.
aAUC without taking gender and age into account.
bAUC where gender and age were used as predictors.
AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; ANOVA = analysis of variance; AUC = area under the curve;
MCI = mild cognitive impairment; PRS = polygenic risk score; SE = standard error.
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dementia varies widely over different studies.30,31 Iden-
tifying individuals with MCI and monitoring them
through biomarker measurements should provide a better

understanding of the process of progression from MCI to
AD. Although there is no generally accepted diagnostic
criteria that specifies MCI individuals who will convert

FIGURE 2: Diagram of prediction of amyloid deposition and further prediction of conversion of mild cognitive impairment (MCI)
individuals to Alzheimer disease (AD) in the sample that was first clinically diagnosed with MCI using APOE and AD polygenic risk score
(PRS). PRS predictions were first made for individuals who had baseline diagnosis of MCI. APOE alone and the full PRS model were used
to predict amyloid deposition. The same models were used to predict which MCI individuals would convert to AD versus those individuals
who had anMCI diagnosis using the latest clinical diagnosis. AUC = area under the curve; PET = positron emission tomography.

TABLE 4. Prediction of AD and Amyloid Deposition Risk with Pathway-Specific PRSs

Pathways
Genes,
n

AD (n = 174) vs
Controls (n = 224)

Amyloid Positive (n = 357) vs
Negative (n = 304)

Beta p
p (no APOE
region) Beta p

p (no APOE
region)

Protein–lipid complex assembly 20 0.87 3e-13 0.35 0.94 4e-21 0.4

Regulation of beta-amyloid formation 10 0.79 1.1e-11 0.09 0.81 8.9e-17 0.47

Protein-lipid complex 40 0.91 8.14e-14 5.5e-3 0.96 1.8e-21 7.9e-3

Regulation of amyloid precursor protein
catabolic process

12 0.79 1.1e-11 0.09 0.81 9.6e-17 0.49

Tau protein binding 11 0.77 3.1e-11 0.39 0.82 4.8e-17 0.6

Reverse cholesterol transport 17 0.84 2.4e-12 0.07 0.93 2.1e-19 0.03

Protein–lipid complex subunit
organization

35 0.92 8.e-14 0.03 0.97 9.67e-22 0.03

Plasma lipoprotein particle assembly 18 0.89 2e-13 0.66 0.94 3.6e-21 0.98

Activation of immune response 432 0.18 0.06 0.06 0.21 6.8e-3 0.01

Whole genome without all pathways – 0.93 2.2e-14 – 0.38 9.1e-6 –

First column shows names of pathways that were analyzed. Second column shows number of genes in each pathway. PRS pathway-specific effect sizes
with p values and p values (no APOE region) of the models are presented in columns 3–8 for AD vs controls and amyloid deposition status.
AD = Alzheimer disease; PRS = polygenic risk score.
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to AD, it is notable that an increase in amyloid plaques
that starts many years before clinical symptoms appear
plays an important role in brain degenerative changes.

A reasonable prediction accuracy can be achieved with
a PRS approach that uses genetic profile information and
relates it to AD risk.13,14 The PRS and its modifications have

been assessed for association with AD and AD-related phe-
notypes in a number of studies; however, the reported pre-
diction accuracies have not been entirely consistent. In this
study, we examined prediction accuracy that can be achieved
with APOE alone and with the full PRS model differentiat-
ing between AD, MCI, controls, and amyloid status.

We have shown that the best prediction accuracy
can be achieved with the PRS that includes APOE for
both AD versus controls and MCI versus controls analyses
(AUC = 82% and AUC = 68%, respectively). In both
analyses, the PRS improves the prediction accuracy by
about 8 to 9% compared to APOE alone, which replicates
the analyses in independent datasets published else-
where.13,14,16 Of course, GWASs indicate that APOE is
the strongest risk factor and other common genetic vari-
ants have smaller effect sizes. However, the APOE region
explains ~5% of SNP heritability, whereas the whole
genome explains ~24%.32 In addition, PRS prediction
accuracy shows a substantial increase in AUC, which
makes the PRS potentially clinically useful for disease risk
prediction. Furthermore, AD GWAS risk loci have greatly
expanded our understanding of the disease mechanisms.

As expected, the accuracy of MCI prediction is lower
than AD, which can be explained by the inclusion of a
subset of MCI individuals who will not develop AD. For
individuals with extreme PRS, the AUC reaches 90% and
above for both AD and MCI.

FIGURE 3: Overlap between 3 pathways: (1) protein–lipid
complex (P-L-C; 40 genes), (2) protein–lipid complex subunit
organization (35 genes), and (3) reverse cholesterol transport
(R-C-T; 17 genes).

TABLE 5. Prediction of Amyloid Deposition in Individuals with MCI and of Progression to AD in Individuals with
MCI and Positive Amyloid Deposition with Pathway-Specific PRSs

Pathways

Amyloid Positive (n = 270) vs
Amyloid Negative (n = 171)

MCI and Amyloid Positive
(AD [n = 112] vs MCI [n = 150])

Beta p
p (no APOE
region) Beta p

p (no APOE
region)

Protein–lipid complex assembly 1.11 1.92e-17 0.2 0.48 2.7e-4 0.81

Regulation of beta-amyloid formation 0.95 7.6e-14 0.2 0.30 9e-3 0.11

Protein–lipid complex 1.12 1.1e-17 3.1e-3 0.51 1.5e-4 0.23

Regulation of amyloid precursor protein catabolic
process

0.95 8.4e-14 0.2 0.3 9.4e-3 0.12

Tau protein binding 0.99 2.2e-14 0.2 0.2 0.08 0.24

Reverse cholesterol transport 1.05 1.9e-15 0.03 0.31 0.01 0.24

Protein–lipid complex subunit organization 1.1 1.2e-17 0.05 0.51 1.9e-4 0.64

Plasma lipoprotein particle assembly 1.09 3.4e-17 0.9 0.51 1e-4 0.31

Activation of immune response 0.18 0.068 0.09 0.08 0.54 0.76

Whole genome PRS without pathways 0.36 2.1e-3 – 0.6 8.8e-5 –

First column shows names of pathways that were analyzed. PRS pathway-specific effect sizes with p values and p values (no APOE region) of the
models are presented in columns 2–7.
AD = Alzheimer disease; MCI = mild cognitive impairment; PRS = polygenic risk score.
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The prediction of amyloid deposition showed a differ-
ent pattern. In the whole sample, the prediction accuracy
with APOE alone was 76% and the PRS did not improve
the accuracy any further (AUC remained 76%). Similar
results were obtained when we tested the prediction accu-
racy of amyloid deposition in individuals with MCI. How-
ever, when we looked at individuals who have already had
positive amyloid deposition and attempted to predict their
progression to AD, the best accuracy was observed with the
full PRS model, which includes the APOE region; however,
this also requires the PRS component.

Note that for all the models used, the best prediction
accuracy was achieved with a p value threshold of 0.5 for
AD-associated SNPs. The same threshold was previously
reported in studies that were done on different genotyping
arrays.13,14 For the best prediction accuracy in clinical prac-
tice, PRS should be generated on a set of SNPs in a way
that captures genetic liability of the whole genome.

The potential implication of these findings is that the
APOE gene affects amyloid deposition but that much of
the rest of the risk of disease is involved in the rate at which
amyloid deposition causes a neurodegenerative response.
Clinical trials have previously shown that there is little cor-
relation between AD progression and accumulation of amy-
loid plaques, supporting a hypothesis that AD development
may have 2 separated stages: amyloid dependent and amy-
loid independent.33 It is also known that the APOE gene
influences the deposition of amyloid in the brain34 and that
this is necessary but not sufficient for development of clini-
cal AD. Moreover, it has been shown that neuronal loss
and tangle numbers increase as AD progresses,35 unlike the
number of amyloid plaques, which reaches its maximum36

with the onset of clinical symptoms.
While analysis of early onset AD firmly implicated

amyloid precursor protein metabolism and Aß production in
the etiology of the disease, GWASs and exome and genome
sequencing have implicated with varying degrees of confi-
dence a number of potentially biologically relevant pathways
in late onset AD pathogenesis.21,22 Of course, pathway con-
struction is an imperfect art both because of the knowledge
base used in the generation of the pathways and because pro-
teins may have more than one function in more than one
cell type. Nevertheless, it is valuable to divide polygenic risk
by pathways both in terms of modeling the disease through
induced pluripotent stem cell technologies (one might like to
assign high or low risk by pathway) and in terms of eventu-
ally tailoring therapies to pathway deficits. To dissect AD
PRS by biologically relevant gene sets, we tested pathways
enriched in AD6 identified by IGAP. All pathways except
“activation of immune response” were highly significantly
associated with AD risk and amyloid deposition risk; how-
ever, most of the signal was attributed to the APOE region

alone. Protein–lipid complex showed the strongest associa-
tion with AD and amyloid deposition risk in all the analyses.

In conclusion, our results imply that APOE contrib-
utes to disease risk in a manner that is mechanistically dif-
ferent from the other genetic contributors to disease risk.
We speculate that APOE affects amyloid deposition and
that the PRS affects conversion from amyloid positivity to
AD. Therefore, in the context of the amyloid cascade
hypothesis, APOE acts prior to amyloid deposition and the
remaining genetic risk factors identified through GWASs
act between amyloid deposition and clinical onset of AD.
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