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ABSTRACT 

 

Micro-generation and low-carbon heat could potentially form part of the UK's 

decarbonisation strategy. This study examines the potential impacts of micro-CHP, 

solar PV and air-source heat pumps on distribution networks, using minute-scale 

electricity generation and demand data from field studies. These data are augmented 

by simulated data for a fuel cell micro-CHP profile, based on the heat demand of an 

average UK household. The value of using minute-scale rather than lower frequency 

data is more accurate information on peaks in household demand. 

An analysis of the economic implications of micro-CHP concludes that micro-CHP 

would have to fall in price for it to be economically viable for the household. 

Moreover, emissions benefits are limited and prone to decline. 

The supply and demand profiles of the various technologies were used with network 

design software (IPSA-Power), and models of real world distribution networks, to 

understand their potential impacts on distribution networks. Two sub-urban networks 

were analysed, with similar results, indicating the results can be generalised. For 

each minute of data, a steady state load flow analysis was performed in order to 

approximate a dynamic power system analysis.  

Stirling engine micro-CHP has only minor impacts on the distribution network, 

principally through reducing power losses. Fuel cell micro-CHP can have 

considerable benefits through reducing losses and power flows, however one more 

than 60% of homes install fuel cell micro-CHP these benefits will be reduced. The 

other technologies tend to have greater detrimental impacts on networks through less 

frequent but greater voltage rise (solar PV), increased power flows (heat pumps) and 

increased losses (both solar PV and heat pumps). Micro-CHP can worsen the effects 

of solar PV and mitigate the effects of heat pumps if the technologies are deployed 

on the same network. 
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1 INTRODUCTION 

The UK Parliament has legislated, through the Climate Change Act (2008), for  an 

80% reduction in CO2 emissions from 1990 levels by 2050. It will be necessary to 

largely decarbonise domestic heating in order to meet this target (DECC, 2013). A 

commonly mentioned approach is to electrify heating, using low-carbon electricity 

(DECC, 2012, DECC, 2013, Staffell, 2014). However this approach could place a 

large and potentially costly additional burden on the electricity system (National 

Grid, 2011). Combined Heat and Power (CHP) potentially offers low-carbon 

distributed generation in communities, and smaller versions, named micro-CHP, 

have been developed for deployment within houses (Staffell, 2014, DECC, 2012). 

Combined Heat and Power is the cogeneration of both heat and electricity through 

the capture and usage of ‘waste’ heat from electricity generation processes. Other 

micro-generation or low-carbon heat technologies include solar PV and heat pumps. 

Most installed CHP capacity provides energy to industries, and what little does serve 

domestic buildings is mostly in the form of large-scale CHP for district heating 

serving multiple residences, rather than in individual-dwelling micro-CHP (Hinnells, 

2008). However, with the need to decarbonise heating, micro-CHP is a viable low 

carbon option, with its main competitors being District Heating (DH), heat pumps 

and boilers using low-carbon gas such as hydrogen or biogas. Micro-CHP has been 

in development for a number of years, with several field trials being carried out, 

especially in Japan, where full scale deployment has started (Staffell and Green, 

2012, Staffell and Green, 2009).  
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The chapter will first provide background on: micro-CHP technologies (Section 1.1), 

solar PV and heat pumps (Section 2.2), and electricity distribution networks (Section 

1.3). Then the thesis questions will be detailed in Section 1.4, and the novel 

contribution of the study will be summarised in Section 1.5. An outline of the rest of 

the thesis is provided in Section 1.6. 

1.1 Background of micro-CHP 

There are two primary groups of micro-CHP device. The first are those that generate 

electricity through combusting gas in engines. The second are those generate 

electricity in fuel cells. Of the former, the main technologies are Stirling engine and 

internal combustion engine devices, whereas of the latter, the main fuel cells used for 

stationary applications are Solid Oxide Fuel Cells (SOFCs) and Polymer Electrolyte 

Membrane Fuel Cells (PEMFCs or PEMs) (Hawkes et al., 2009).  

1.1.1 Stirling engines 

Stirling engines are a reasonably well established technology, using external 

combustion of fuel to drive a piston to produce electricity. A number of papers have 

claimed that Stirling engines will be the fastest growing micro-CHP device in the 

short term (Hawkes and Leach, 2005, Hudson et al., 2011, Alanne et al., 2010). The 

advantages of Stirling engines are: that they are more technically mature (Alanne et 

al., 2010); have a high overall efficiency (Hudson et al., 2011, Kuhn et al., 2008); 

can combust a variety of fuels, including petroleum and solid fuels (such as biomass) 

in addition to natural gas (Alanne et al., 2010, De Paepe et al., 2006); and that they 

can respond rapidly to load changes (Hawkes and Leach, 2005).  

The main disadvantage is their low electrical efficiency (Staffell, 2009, De Paepe et 

al., 2006), however other papers have claimed that their low electrical efficiency is 

an advantage (Kuhn et al., 2008), as it leads to a high heat-to-power ratio more 

consistent with building demands, but other papers claim their high heat-to-power 

ratio (12:1) only makes them suitable for very large buildings (Carbon Trust, 2011), 

though other sources place the heat-to-power ratio as low as 5:1 (De Paepe et al., 

2006). The emissions reduction of micro-CHP is claimed to be dependent on the 

amount of exported electricity (Hawkes and Leach, 2005), and Staffell (2009) has 

claimed that the low electrical efficiency of Stirling engines could increase 



Chapter 1: Introduction 

25 

emissions. A simulation of Stirling engine operation by Alanne et al. (2010) found 

no CO2 mitigation, which would indicate that the low electrical efficiency is a 

disadvantage.  

1.1.2 Internal Combustion Engines 

Like Stirling engines, internal combustion engines also work on natural gas, but 

using internal rather than external combustion. While they have a higher electrical 

efficiency than Stirling engines, around 16-27% (Maalla and Kunsch, 2008, 

Possidente et al., 2006, Onovwiona et al., 2007), and consequently a better heat to 

power ratio, of around 3:1 (Cockroft and Kelly, 2006), leading to more exported 

electricity and thus better mitigation prospects, they also have a number of 

disadvantages. These disadvantages include noisy operation, regular maintenance of 

moving parts (Kuhn et al., 2008) and inflexibility of output, generally needing to 

operate at constant output (Staffell, 2009), and being unable to operate below half 

power (De Paepe et al., 2006). They also tend to have a higher power output, and are 

considered more applicable to larger buildings (Kuhn et al., 2008).  

Despite the disadvantages, a number of papers include internal combustion engines 

in lists of potential domestic micro-CHP technologies (Maalla and Kunsch, 2008, 

Possidente et al., 2006, Onovwiona et al., 2007, De Paepe et al., 2006, Staffell, 2009, 

Kuhn et al., 2008). In fact, Onovwiona et al. (2007) consider them to be the prime 

mover of choice for micro-CHP applications, due to the well-proven technology, 

robust nature, reliability and reasonable cost, however many of these advantages 

could also apply to Stirling engines. Another advantage mentioned by Possidente et 

al. (2006) is their large electric power range; however, any output over 5kWe, with 

the heat-to-power ratios that ICEs have would produce more thermal energy than 

most UK homes need, making them only suitable for large buildings.  

Their higher electrical efficiency compared with Stirling engines could be considered 

an advantage as mentioned earlier, but it is rarely listed as such in the literature. Also 

it is only when operating at full capacity that ICEs achieve electrical efficiencies 

greater than 20% (Onovwiona et al., 2007). Table 1.2 provides a summary and 

comparison of the efficiencies of Stirling engine, ICE and fuel cell micro-CHP. Due 

to their disadvantages, ICEs are not examined further in this study. 
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 Electrical 

efficiency 

Thermal 

efficiency 

Overall 

efficiency 

Heat-to-power 

ratio 

Internal 

Combustion 

23% 58% 81% 2.5:1 

Stirling 15% 75% 90% 5:1 

 

Fuel cell  30-45% 55-45% 85-90% 1.8:1 to 1:1 

Table 1.1 Overview of micro-CHP efficiencies in the literature. Data 

derived from values given in the literature (Staffell, 2009, Hawkes et al., 2009, 

De Paepe et al., 2006, Hawkes and Leach, 2005, Maalla and Kunsch, 2008, 

Kuhn et al., 2008, Possidente et al., 2006, Onovwiona et al., 2007, Spendelow et 

al., 2011). 

1.1.3 Fuel cell micro-CHP 

Unlike Stirling or internal combustion engines, fuel cells generate electricity through 

the chemical conversion of hydrogen, with waste heat being a by-product. Fuel cells 

have the advantage of having higher electrical efficiencies than gas fired micro-CHP, 

potentially as much as three times higher (Hawkes et al., 2009) which leads to lower 

heat to power ratios, of between 2:1 and 1:1 (Hawkes et al., 2011), noticeably lower 

than the ratio of heat-to-power demands in most properties (Staffell, 2009). But in 

the long term, the low heat-to-power ratios may be an advantage, as rises in 

insulation leads to lower heat demand, thus lowering the heat-to-power demand ratio 

in households and making them more suited to fuel cell micro-CHP (Hawkes et al., 

2011).  

Further advantages mentioned in the literature are the high overall efficiencies of 

fuel cells, which can reach 90% (Onovwiona and Ugursal, 2006). Fuel cells also 

have good part load characteristics, being able to maintain their high efficiencies at 

low power output (Hawkes et al., 2011, Onovwiona and Ugursal, 2006). Their lack 

of moving parts also makes fuel cells quieter than the mechanical, gas-fired, micro-

CHP (Hawkes et al., 2009), while also lowering the maintenance costs, but the 

ancillary systems required by fuel cell micro-CHP would incur additional 

maintenance costs (Onovwiona and Ugursal, 2006). 
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The hydrogen fuel is normally produced from natural gas by a built-in reformer. 

Some fuel cells can run directly on natural gas, though this could reduce their 

lifetime (Staffell, 2009). The principal fuel cells used in stationary applications are 

Solid Oxide Fuel Cells (SOFCs) and Polymer Electrolyte Fuel Cells (PEMFCs), 

though others can potentially be used, such as Phosphoric Acid Fuel Cells (PAFCs), 

Molten Carbonate Fuel Cells (MCFCs), and Alkaline Fuel Cells (AFCs). 

1.1.3.1 Solid Oxide Fuel Cells (SOFCs) 

Of the various fuel cell types SOFCs are considered the best for stationary 

applications such as micro-CHP. The majority of the literature on fuel cell micro-

CHP tends to mention both SOFCs and PEMFCs as potential micro-CHP prime 

movers, before going on to explain the advantages SOFCs have over PEMFCs, and 

focusing their research on SOFCs, but there are a few studies which claim PEMFCs 

are better suited to micro-CHP applications. 

Advantages of SOFCs are their ability to internally reform hydrogen and higher 

tolerance of fuel impurities. This leads to lower fuel processing costs (Hawkes et al., 

2009, Hawkes et al., 2011). The high operating temperature is also an advantage, 

leading to higher grade heat and more efficient heat transfers (Hawkes et al., 2009, 

Hawkes et al., 2011, Cockroft and Kelly, 2006). However, this higher temperature 

operation leads to more expensive material requirements, and greater sensitivity to 

thermal cycling, but this can be overcome by the increasing development of low 

temperature SOFCs (though still higher than other fuel cells, retaining the high grade 

heat benefits); such SOFCs could use a wider range of (cheaper) materials and are 

more resilient to cycling (Hawkes et al., 2011). Finally SOFCs tend to have higher 

electrical efficiencies than other fuel cells, theoretically up to 50% (Barelli et al., 

2011, Aki, 2007, Cockroft and Kelly, 2006), but this could lead to a lower heat-to-

power output, and the problems mentioned earlier as a result. 

The main disadvantages are largely due to their high operating temperature, being 

unable to cope with rapid cycling, and the high cost of materials (Hinnells, 2008), 

however as mentioned above, these could be overcome by developments in low 

temperature SOFCs.  
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1.1.3.2 Polymer Electrolyte Membrane fuel cells (PEMs) 

Despite much of the literature favouring SOFCs, PEMFCs are still a strong 

contender for a micro-CHP technology, with at least one major Japanese company 

using them in their ENE-FARM range of home fuel cell products (including micro-

CHP) (Tokyo Gas, 2013), and, like SOFCs, they are the subject of intense 

commercial research (Staffell, 2009). PEMFCs have been demonstrated to have 

higher overall efficiencies than SOFCs, and under ideal conditions can match SOFCs 

in electrical efficiency levels (Barelli et al., 2011) (however it is doubtful these 

conditions would be found in most domestic residences). PEMFCs also have the 

advantage of being more resilient to thermal cycling than SOFCs. 

However, PEMFCs also have significant drawbacks. First, they are much more 

sensitive to impurities than SOFCs, requiring more complex reforming and control 

systems to avoid fuel cell degradation, increasing the cost (P.Moçotéguy et al., 

2009), further increasing the cost is the use of precious metal electro-catalysts, 

normally platinum, necessary to ensure high power output (Hawkes et al., 2011). 

Second, their lower operating temperature requires more complicated (and thus more 

expensive) heat recovery systems (P.Moçotéguy et al., 2009).  

Some of these problems could be overcome through the development of high 

temperature PEMFCs, making them more tolerant to impurities and giving better 

heat outputs. But developments in this direction are less advanced than those towards 

low temperature SOFCs, and high temperature operation could bring other problems 

which can reduce output and hasten degradation (P.Moçotéguy et al., 2009). 

1.1.3.3 Other fuel cells 

In addition to SOFCs and PEMFCs, other devices such as PAFCs and AFCs could 

eventually see use in micro-CHP applications. Historically, there has been little 

interest in these technologies due to difficulties in overcoming the high 

manufacturing costs of PAFCs and the low lifetimes of AFCs (Staffell, 2009). 

However they potentially have higher tolerance for fuel impurities than SOFCs, and 

operate at temperatures that are higher than PEMFCs and lower than SOFCs 

(Staffell, 2009), which could make them well suited for micro-CHP applications if 

their difficulties could be overcome. MCFCs have been used for CHP, but only for 

large scale installations to date. 
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1.2 Other micro-generation or low-carbon heat 
technologies 

1.2.1 Solar PV 

Solar PV is another micro-generation technology. It generates electricity through the 

excitation of electrons by sunlight in semi-conductive materials (typically silicon). 

Solar PV installations will generate at least some electricity as long as there is 

sunlight, even if it is cloudy; though they will only generate their peak output in full 

sunlight, i.e. in the middle of a summer day. 

Solar PV has seen significant uptake in the UK (and internationally). It benefited 

from strong feed-in-tariff support, though growth has continued even after reductions 

in FiTs. As of late 2017, the total installed capacity in the UK is over 12 GW 

(Staffell et al., 2017b), and 5.5 GW of this is domestic installations (Ofgem, 2017). 

1.2.2 Heat pumps 

Heat pumps are an alternative low-carbon single dwelling heat provider, they work 

by using electrical energy to move heat energy from a colder external environment 

into the dwelling. They are able to achieve effective efficiencies (or Coefficients of 

Performance, CoP) greater than 1, as the electrical energy is not converted into heat 

but rather used to tap external heat sources. Typical CoPs are in the range of 2-4 

(DECC, 2013). There are two main types of heat pumps: air-source (ASHP), which 

take heat energy from the outside air; and ground-source (GSHP), which take heat 

energy from the ground. 

The DECC Future of Heating report (2013) indicates that large scale replacement of 

gas boilers with heat pumps is likely to be the way forward; though it acknowledges 

that there are uncertainties over the future of heating, specifically over the extent of 

electrification of heating and the future role of the gas networks.  

1.3 Electricity distribution networks 

In the UK currently there is a transmission network that delivers electricity to 14 

regional networks managed by 14 Distribution Network Operators (DNOs) owned 

by six companies (DECC, 2013). There are also six independent DNOs that run 

smaller networks within these, often for new housing developments. The regional 
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networks are further divided into smaller distribution networks, with high-voltage 

transmission lines feeding into medium-voltage lines, which then feed into low-

voltage distribution lines. Eventually these distribution lines will feed into a small 

low-voltage network of a few hundred homes fed by a single network transformer, 

which can have a rated capacity of 200 kVA to over 1 MVA  (Lakervi and Holmes, 

2003). It is networks such as this that are the focus of this thesis. These networks are 

currently designed for unidirectional power flows, and are optimised for current 

household demands. They are not optimised for the connection of large additional 

demands, such as heat pumps, or domestic micro-generation; either of these could 

cause disruptions to the network, such as voltage rise, increased losses or transformer 

overload (Infield et al., 2007, Thomson and Infield, 2007, Ackermann and Knyazkin, 

2002, Castro et al., 2014, Rogers et al., 2013).  

1.4 Research questions 

One issue surrounding the deployment of micro-CHP are the uncertainties over price 

and economic viability (Staffell and Green, 2012, Tokyo Gas Co. Ltd. and Panasonic 

Corporation, 2011, Alanne et al., 2010, Ren and Gao, 2010), which in turn will lead 

to uncertainties over uptake and penetration rates. Another is that the deployment of 

micro-CHP could have significant impacts on electricity distribution networks 

(Ackermann and Knyazkin, 2002, Acha et al., 2009, Aki et al., 2006, Thomson and 

Infield, 2007, Rogers et al., 2013), due to the export of electricity from properties 

with micro-CHP installed. This impact could vary considerably, not only due to the 

uncertainty over micro-CHP uptake, but also due to a variety of different operating 

profiles for micro-CHP. Further to this it’s possible that micro-CHP could help 

alleviate the extra burden placed on the electricity networks by the electrification of 

heating.  

The research questions that have been developed are: 

 How might micro-CHP affect the cost of heating and greenhouse gas 

emissions from households? 

 What impacts might micro-CHP have on distribution networks? 

 How are these impacts likely to compare with those of solar PV and heat 

pumps? 
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 What are the consequences of deploying combinations of both micro-CHP 

and other technologies on the same distribution network? 

The research questions are important because, to date, much of the studies into 

micro-CHP have largely focused on the impacts for a single household, generally in 

terms of carbon emissions or energy bill savings, and few have looked into the 

potential impacts on the energy system as a whole.  

However, any impact is dependant primarily on the future uptake of micro-

generation in the UK, hence the need for the first question on the list. As mentioned 

earlier there is still considerable uncertainty over how much of a role (if any) micro-

CHP will play in the UK’s energy mix. It is probable that uptake will depend 

primarily on two factors. First, the energy bill savings and overall economic benefit 

to the household; this will determine its future economic viability, which is 

especially vital if uptake depends solely on householder choice and economics. 

Second, on the extent to which it reduces carbon emissions, as this will make it more 

(or less) likely to be subsidised and will determine if it is a valid low-carbon 

technology. 

The second question is concerned with the impacts that micro-CHP could have on 

distribution networks, which will manifest through reductions in demand from, and 

even exports of electricity to, the network(s) from those homes with micro-CHP 

installed. If significant amounts of electricity are exported, it could force distribution 

network operators to both change the way they operate, and to upgrade their existing 

distribution networks. The impacts will naturally be dependent on the uptake of 

micro-CHP examined in the first question. But there will also be other factors 

involved, including the heat profile of the homes with micro-CHP, operating profiles 

of micro-CHP, the heat-to-power ratio of micro-CHP (dependent on the type of 

micro-CHP used, and the future development of micro-CHP) and the heat-to-power 

ratio of the house. The heat-to-power ratio of micro-CHP, is known for existing 

micro-CHP devices that have been developed, and the heat-to-power ratios of future 

devices are largely predictable. The current heat profile of UK houses varies but 

these variations are predictable through gas consumption statistics. The operating 

profiles of micro-CHP are technology-specific. Engine-based micro-CHP would 

operate like existing boilers, causing large peaks in usage, potentially leading to 

large amounts of electricity being exported at these times. Fuel cell micro-CHP 



Potential impact of micro-generation on electricity distribution networks 

 

32 

would operate at a constant low level of output, while a backup boiler would be used 

to satisfy peaks in heat demand from the household, leading to a constant low level 

of electricity output, which would in theory have much less impact on the 

distribution networks. 

Once the potential export of electricity from homes with micro-CHP and the number 

of such homes is known this information would then have to be examined in the 

context of how distribution networks operate in order to determine the impacts upon 

them.  

The third question is concerned with how the impacts of micro-CHP compare to 

those of other technologies. Solar PV, also being a micro-generation technology, 

would have similar impacts to micro-CHP on distribution networks; though its 

impacts would be felt most on summer days rather than at peak heating times. Heat 

pumps would place additional demand on distribution networks, which may also 

cause disruption. 

The final question is concerned with how combinations of micro-generation 

technologies would impact a distribution network. It is expected that micro-CHP and 

solar PV could complement each other, as the former generates electricity primarily 

in winter, while the latter generates electricity on summer days. It is also expected 

that as micro-CHP is generating at times of peak demand, it could offset the 

additional demand of heat pumps. 

1.5 Novel contribution of this study 

The key novelties of this study are an examination of the effects of micro-CHP on 

distribution networks and the use of high-resolution minute-scale field trial data. 

While there have been previous studies of the impacts on electricity networks of all 

three technologies mentioned here, they have all been either limited in scope, have 

used only simulated data or have used lower resolution data than used here. There 

have been studies that used minute scale data to analyse network impacts (Rogers et 

al., 2013, Thomson and Infield, 2007); however, the data was simulated, rather than 

taken from field trials as the data in this research is. The studies also only examined 

engine-based micro-CHP (alongside either heat pumps or solar PV). Castro et al. 

(2014) examined the impacts of solar PV using half-hourly field trial data, but only 
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on the summer day of lowest load. To date the impacts of fuel cell micro-CHP on 

UK distribution networks have not been examined.  

1.6 Thesis Outline 

Chapter 2 examines the literature and existing research surrounding micro-CHP and 

distribution networks, providing a critical assessment of the literature and identifying 

gaps in the existing knowledge. Chapter 3 gives an overview of the data used in the 

research and provides the initial analysis into the economic and emissions reduction 

potential of micro-CHP; thus answering the first research question: ‘How might 

micro-CHP affect the cost of heating and greenhouse gas emissions from 

households?’ Chapter 4 details the methodology used in the examination of the 

impacts of micro-CHP on electricity distribution networks, giving an overview of the 

modelling software and how it was used to generate the results. Chapter 5 gives an 

analysis of these results, detailing the impacts that micro-CHP has on distribution 

networks; and thus answers the second research question: ‘What impacts might 

micro-CHP have on distribution networks?’ Chapter 6 gives further analysis of the 

results, examining how solar PV and heat pumps can impact networks, both on their 

own and in combination with micro-CHP; thus answering the final two research 

questions: ‘How are these impacts likely to compare with those of solar PV and heat 

pumps?’ and ‘What are the consequences of deploying combinations of both micro-

CHP and other technologies on the same distribution network?’ Chapter 7 provides a 

summary of the research. 
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2 LITERATURE REVIEW 

In this chapter, the current scientific knowledge surrounding micro-CHP is 

summarised and analysed. The contribution micro-CHP can make to decarbonisation 

is examined in Section 2.1 and the economic benefits for households that install 

micro-CHP in Section 2.2. Other micro-generation and low-carbon heating options 

are summarised in Section 2.3. The challenges micro-CHP, and other micro-

generation or heating technologies, can pose for electricity distribution networks and 

previous research on the subject is discussed in Section 2.4. A summary and an 

outline of the research questions is given in Section 2.5. 

2.1 Fuel sources for micro-CHP and its contributions to 
decarbonisation 

This section examines the current state of three potential fuel sources for micro-

CHP: natural gas; biomass/biogas; and hydrogen. It also looks at the potential 

contribution micro-CHP can make to decarbonisation of the energy sector. 

2.1.1 Natural Gas 

 

Almost all micro-CHP installed to date runs on natural gas. Despite this micro-CHP 

can still contribute to decarbonisation by avoiding the use of more carbon intensive 

grid electricity. Stirling engines appear to offer the poorest carbon savings, with both 

Carbon Trust (2011) and Staffell and Green (2012) estimating them at -4% to 12%, 
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for a typical house, based on field trials, meaning it’s possible that they could 

increase carbon emissions. Other figures for the carbon reductions of Stirling engines 

are within this range, but tend towards the higher end, such as in Peacock and 

Newborough (2005) with 10% carbon savings. However, this result is based on the 

modelling of Stirling micro-CHP, rather than household trials like the other papers. 

Internal combustion engines tend to have higher carbon savings, of around 12-21% 

(Carbon Trust, 2011), and fuel cells are higher still with a 16-40% reduction in 

carbon emissions (Peacock and Newborough, 2005). The large variance in the results 

is mainly due to the fact that micro-CHP can produce different carbon savings for 

different houses, depending on their heat consumption. The carbon savings of micro-

CHP come from offsetting grid electricity through the generation of onsite 

electricity. The amount of electricity generated is dependent on the amount by which 

the micro-CHP is used, which is in turn dependant on the heat demand of the 

property. Thus large houses with high heat demand produce large carbon savings, 

while smaller houses produce fewer carbon savings. 

However, many of the emissions reductions mentioned above are assuming current 

grid carbon levels, and as the carbon intensity of grid electricity falls, the carbon 

savings of micro-CHP will also fall, and eventually become negative. Hawkes et al. 

(2011) examined how emissions savings of SOFC micro-CHP and heat pumps are 

affected by grid carbon intensity, and produced the graph shown in Figure 2.1. They 

deduce that micro-CHP will provide better carbon savings than heat pumps until the 

marginal emissions factor of grid electricity is below 0.45 kgCO2/kWh, and that it 

will provide at least some savings as long as the marginal emissions factor is above 

0.2 kgCO2/kWh. They go on to claim that the marginal emissions factor will remain 

above 0.45 kgCO2/kWh until 2025, which seems likely, as the UK will probably still 

be using at least some natural gas. Peacock and Newborough (2005) also examine 

this and conclude that as long as the marginal emissions factor is above 0.33 

kgCO2/kWh, fuel cell micro-CHP will generate carbon savings. But the use of the 

marginal, rather than average, emissions factor in this case assumes that all of the 

grid carbon that is offset by the use of micro-CHP comes from natural gas (or coal), 

which may only be the case if it is generating electricity at peak times; this is 

particularly dubious for fuel cell micro-CHP which is better suited to providing 

baseload heat than to meeting peak heating demands (Hawkes et al., 2009).  
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Figure 2.1 Sensitivity of average CO2 reduction to the marginal emissions 

factor of grid electricity (Hawkes et al., 2011). 

As Hawkes et al. (2011) only examined SOFCs, there is no indication in the 

literature of how Stirling and internal combustion engine micro-CHP is affected by 

the decarbonisation of the grid. Of course, this problem could be avoided if 

alternative carbon-neutral fuels were used by micro-CHP. 

2.1.2 Bioenergy 

Of the micro-CHP technologies mentioned in chapter 1 (Section 1.2), only Stirling 

engines can directly combust biomass, with both other technologies requiring 

gasification of biomass into biogas before utilisation (Dong et al., 2009). Biogas is a 

suitable fuel for SOFC micro-CHP, requiring only a reformer (similarly to natural 

gas) before it can be used, and could even be internally reformed (Farhad et al., 

2010).  

The supply of bioenergy, however, is by no means certain. One study suggests that 

bioenergy plays an important role across all sectors, but sets an import limit of 350 

TWh, with the majority of this used in the transport sector, and just 5.5 TWh used 

for residential/service sector heat (Winskel et al., 2009). Another estimates that just 

35 TWh of biomass could be produced domestically using unused arable land (with 

no mention of how much would go to meet heat demand) (Martınez-Perez et al., 

2007). Compare these values with the annual gas use for domestic heating of 300 

TWh (BEIS, 2016), and it implies that bioenergy can meet only a few percent of heat 

demand. 
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Meanwhile studies into conversion of the gas network provide differing information. 

One claims that bio-methane will be the main competitor to hydrogen in the long 

term, and will supply around a quarter of heat, even if the gas network is 

reconfigured to deliver hydrogen (Demoullin, 2012). Another study, which looks at 

the possibility of bio-methane injection into the gas network, suggests that long term 

only 6% of the gas supply could come from bio-methane, and that almost all of it 

would be used in industry (Dodds and McDowall, 2013). 

Hence while bioenergy is a potential carbon-neutral fuel for micro-CHP, the 

literature throws considerable doubt the role it could play in meeting future heat 

demand. 

2.1.3 Hydrogen 

As mentioned in the discussion of fuel cells in chapter one (Section 1.1.3), they work 

by converting hydrogen to electricity and heat through chemical processes. Most fuel 

cell micro-CHP systems require a reformer to convert natural gas to hydrogen. If 

hydrogen were available directly, fuel cell micro-CHP could potentially be 

manufactured more cheaply as a reformer would not be required if the hydrogen 

purity were sufficiently high (Staffell and Green, 2012).  

While hydrogen is widely used in industry, studies examining the future of the 

hydrogen, anticipate large scale production and distribution of hydrogen taking off 

from around 2035 or later (McDowall and Eames, 2007, Barreto et al., 2003, 

WETO-H2, 2006), it could start earlier if the price of carbon were high enough to 

justify it. Staffell et al. (2017a) outline several future energy scenarios, a number of 

which included widespread hydrogen use. They found that the use of hydrogen could 

be a more cost effective way of decarbonising heating than full electrification. 

Hydrogen itself is not a primary fuel. Rather, it is an energy carrier that needs to be 

manufactured and is only low-carbon if the manufacturing lifecycle emissions are 

low.  The most common methods are reforming or gasifying hydrocarbons, and 

electrolysis of water.  The emissions from reforming and gasifying depend on the 

presence and efficiency of any carbon capture and storage (CCS), while the lifecycle 

emissions from electrolysis depend on the carbon intensity of the electricity supply.  

CCS systems will always emit some CO2 while electrolysis is potentially near zero-

carbon if the electricity is produced from renewable or nuclear generation. 
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Electrolysis is a mature technology, having been used for decades, and is currently 

supplying 4% of global hydrogen demand (Fuel Cell Today, 2012). 

In most scenarios, the most common hydrogen production method is steam methane 

reforming of natural gas with CCS. Nuclear and renewables (generally large scale 

offshore wind) also play an important role, especially if hydrogen use is envisioned 

to be more widespread (WETO-H2, 2006, Dodds and Demoullin, 2012, McDowall 

and Eames, 2007, UKCCC, 2016, Staffell et al., 2017a).  

Research has been done examining the potential of fully converting the UK gas 

network to carry hydrogen, using the UK MARKAL energy systems model. This 

research suggests that such conversion could take place from 2045 onwards, with 

replacement of the transmission network and upgrading of the distribution network 

(Dodds and Demoullin, 2012, Dodds and McDowall, 2013). In such a scenario, a 

substantial proportion of domestic heating (approximately 25%) is supplied by fuel 

cell micro-CHP, with much of the rest coming from heat pumps and some hydrogen 

boilers. This is one of the few future heating scenarios in the literature where micro-

CHP would appear to play a major long term heating role. 

2.1.4 Areas of uncertainty 

From the literature examined in this section, it would appear there is still uncertainty 

over the household emissions savings resulting from the installation of micro-CHP, 

with most papers indicating a range of savings and limited field trial data. There is 

also uncertainty over how emissions savings will change as the gird is decarbonised. 

It may be beneficial for this thesis to conduct further research into the emissions 

reduction potential of micro-CHP. This leads to the latter part of the first research 

question: ‘How might micro-CHP affect the cost of heating and greenhouse gas 

emissions from households?’ 

2.2 Economics of micro-CHP 

2.2.1 Broad factors affecting the economics and expected energy 
cost savings of micro-CHP 

Installation of micro-CHP has the potential to reduce the costs of household energy 

bills. These savings occur as the result of energy efficiency improvements and the 
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use of cheaper fuels in place of expensive grid electricity (Alanne et al., 2010). The 

most important driver of economic performance is the relative price of electricity to 

the fuel used (commonly known as the ‘spark gap’ for natural gas fuel) (Hawkes et 

al., 2011). These savings, like the decarbonisation contributions, can vary 

considerably, from €200 (£165) per annum (Alanne et al., 2010) to $7900 (£4800) 

(Greene et al., 2011) (though the latter figure seems very optimistic, it also takes into 

account gas savings as well as electricity savings, while in theory gas use should 

increase with use of micro-CHP, also, in the UK a typical energy bill, even for a 

larger house, is £1500-3000). In the UK a study by Staffell and Green (2009) 

suggested that use of micro-CHP could increase household energy bills in 30%, due 

to the low value of exported electricity; but, that savings of £600-750 per annum 

were possible with a Feed in Tariff of 10 p/kWh, indicating a potential reliance on 

FiTs. In addition to FiTs, other factors affecting bill savings include the heat demand 

of the house (higher heat demand means more electricity generated) and the type of 

micro-CHP, with better electrical efficiency producing more savings (as these 

devices will produce more electricity).  

In order to be economically feasible the capital investment in the micro-CHP system 

should be equal to (or lower) the cumulated savings during a suitable payback period 

(Alanne et al., 2010): 

 
��,���� =

(1 + �)� − 1

�(1 + �)�
����� 

3-1 

Where ��,���� is the maximum capital investment (or break-even price), ����� is the 

annual savings � is the real interest rate and � is the payback period. Most of the 

literature assumes a payback period of ten years, and a real interest rate of 2-5%. 

This combined with the range of savings above, gives us a range of ideal micro-CHP 

prices, from £1,300 to £37,000, using the initial range mentioned above (£165 to 

£4800). However, as has been mentioned, the upper value for savings might be 

unrealistically high. Some preliminary calculations, based on typical UK demands 

(DECC, 2011) suggest that the savings should be in the area of a few hundred 

pounds. Assuming an upper limit on savings of £750 as suggested by Staffell and 

Green (2009) (with a FiT of 10p/kWh), this gives us a smaller range of micro-CHP 
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prices from £1,300 to £5,700, with Stirling engines towards the lower end of the 

scale and fuel cells towards the upper end.  

2.2.2 Current and future costs of micro-CHP 

Greene et al. (2011) provide a summary of costs in the US. Stirling and internal 

combustion engines are priced at $13,000 (£8,000) and $35,000 (£21,000) 

respectively, and fuel cell micro-CHP at $50,000 (£30,000). Dodds and Hawkes 

(2014) state that the cost of a 1 kW fuel cell micro-CHP device in Japan is between 

£13,000 and £17,000. All these figures are outside the cost range established earlier, 

which implies that for micro-CHP to be economically viable, costs will have to fall. 

However, lower costs have been estimated by the Sweett Group (2013), on behalf of 

DECC, who claim the cost of engine-based micro-CHP to be between £1,445 and 

£6,182 per kW, with an average of £3,258 per kW. Though these figures are for 

micro-CHP in the 10-20 kW size range, and from a limited amount of data. They 

also estimate a cost of £4,500 for fuel cell micro-CHP, though again from limited 

data. 

Most of the literature on future costs focuses on fuel cell micro-CHP devices. This is 

presumably due to the fact that Stirling and internal combustion engines are mature 

technologies. Learning curves for fuel cell stacks can be difficult to estimate, due to 

the lack of historical data, and the inaccessibility of data on manufacturing costs due 

to the privacy of the companies producing them (Neij, 2008). Thus most studies 

assume a learning rate by basing it on historical price data. Two studies, both 

instigated by the US Department of Energy have attempted to predict and set targets 

for future fuel cell micro-CHP prices. One, conducted by Spendelow et al. (2011) 

based its projections comments from both stakeholders and the research community, 

it set a 2015 target of $1,200 for a 2kWe fuel cell micro-CHP system, and a 2020 

target of $1,000. The other by Maru et al. (2010) based its conclusions on data from 

a panel of experts, and was independent of stakeholder predictions, it predicted that a 

1 kW SOFC micro-CHP system would cost $1,000-3,000 in 2015, and $1,000-2,000 

in 2020. Both sets of results are within the previously estimated cost range; however, 

given that fuel cell costs in Japan were still over £13,000 in 2014 (Dodds and 

Hawkes, 2014), it would seem these targets and predictions were inaccurate. 
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Staffell and Green, over two reports, use historical data for fuel cell micro-CHP 

prices, taken mostly from deployment in Japan under the Large Scale Residential 

Fuel Cell Demonstration Project (2005-2009) (Staffell and Green, 2009). They 

estimate, in their first report (Staffell and Green, 2009), that based on historic data 

that fuel cell micro-CHP has a learning rate of 17.5%, and that for targets to fall 

below £2,000 by 2025, a learning rate of at least 19% would be needed, which is 

unlikely to be achieved. Their subsequent report (Staffell and Green, 2012) was 

somewhat more detailed analysing both the fall in prices of individual fuel cell 

stacks and micro-CHP devices as a whole, giving a better indication of the driving 

factors of micro-CHP prices. They suggest that other optimistic price forecasts fail to 

take into account the full cost. This is due to them being based primarily on the 

falling prices of the fuel cells themselves and fail to account for the fact that the rest 

of the micro-CHP system (referred to as ‘Balance of Plant’) is a major cost which is 

unlikely to fall substantially in price as it is comprised of components that are 

technologically mature. The report suggests a realistic long term target of £2,300 

/kW. A subsequent analysis by Staffell et al. (2017a) estimated the cost of fuel cell 

micro-CHP in Japan in 2020 to be £4,500 to £9,000. One final interesting suggestion 

that comes out of Staffell and Green (2012) is that 80% of the ‘Balance of Plant’ cost 

is due to the gas-to-hydrogen reformer, and that removing this could halve the total 

system cost.  

Assuming annual savings of £750 and a ten year payback period, the break-even 

price of fuel cell micro-CHP would be £6,700. Subtracting each of the estimated, 

predicted or actual micro-CHP costs from this price would give a range of Net 

Present Values (NPVs) for micro-CHP, summarised in Table 2.1.  

Source  Type of price  
Micro-CHP 
price (£) 

Net Present 
Value (£) 

Greene et.al. (2011)  US prices at the time 30,000 -23,300 
Dodds and Hawkes (2014) Japanese prices at the time 15,000 -8,300 
Sweett Group (2013)  Estimate of cost in the UK 4,500 2,200 
Spendelow et. al. (2011)  US target for 2020 price 700 6,000 
Maru et. al. (2010)  US prediction for 2020 price 1000 5,700 
Staffell and Green (2012)  Realistic long term price target 2,300 4,400 
Staffell et. al. (2017)  Prediction for Japan 2020 price 6,750 50 

Table 2.1 Summary of prices for fuel cell micro-CHP. Listing the prices in 

the literature, and the resulting NPV assuming annual savings of £750 and a 10-

year payback period. 
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2.2.3 Areas of uncertainty 

The examination of the literature in this section indicates there is still uncertainty 

over the annual energy cost savings of micro-CHP technologies and over the future 

costs of micro-CHP. The thesis may be able to add to the existing body of research 

by further examining the economic savings of micro-CHP, and potentially estimating 

the required break-even price of micro-CHP technologies. This leads to the first part 

of the first research question: ‘How might micro-CHP affect the cost of heating and 

greenhouse gas emissions from households?’ 

2.3 Other low-carbon heating and micro-generation 
options 

2.3.1 Heat Pumps  

GSHPs have been in use throughout North America and Europe for several years 

(Omer, 2008), and make up the majority of existing UK installations (Singh et al., 

2010). They have an advantage over ASHPs in that the ground that they draw their 

heat from areas which are at an (approximately) constant temperature of 10 oC all 

year round, giving them a better performance in winter than the ASHPs which draw 

their heat from colder air.  They are considered to be the most efficient form of heat 

generation, having a CoP of 3-4, with the greatest potential for carbon reduction 

(even before decarbonisation of the electricity supply) (Cockroft and Kelly, 2006). 

However, they are difficult to install, due to having to bury the pipes in the ground, 

and consequently have high installation costs of $10,000-20,000 (£6,000-12,000) 

(Omer, 2008) and have, to date, been mostly restricted to new-build properties 

(Hewitt et al., 2011). A study of heat pumps in Germany indicated that GSHPs 

would have a CoP of around 4 (Miara et al., 2010). In UK field trials, GSHPs have 

performed poorly, with efficiencies of 2-3, and average efficiencies of 2.54 (Energy 

Saving Trust, 2013a) and 2.74 (after improvements in operation strategies) (DECC, 

2014); a more recent field trial saw GSHPs achieve average CoPs of 2.77 in winter 

and 2.93 in summer (Love et al., 2017). 

ASHPs have seen increasing uptake in recent years likely due to their lower price 

and ease of retrofit (Singh et al., 2010). However, they have a more variable CoP, 

which depends on the changing air temperature, and thus have the problem of low 

efficiency in the winter, when demand is at a maximum. It has been suggested that 
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they are suitable for mild and moderate regions, including European maritime 

climates (which includes much of the UK), where the temperature seldom drops 

below 0 oC. Again, evidence from Germany indicates CoPs of around 3 (Miara et al., 

2010). But, as with GSHPs, UK field trials produced poorer results, with CoPs 

between 1.5 and 2.5, with a mean of 2.16 (Energy Saving Trust, 2013a),  2.34 (after 

improvements in operation strategies) (DECC, 2014), and 2.41 in winter and 2.64 in 

summer (Love et al., 2017). 

2.3.2 Solar PV 

Solar PV is a well established distributed generation technology in the UK (and 

internationally). Despite this there is still variation in their estimated savings across 

different sources. Energy Saving Trust (2017) estimate economic savings between 

£260 and £305 per annum for a 4 kWp system, depending on location; while UK 

Power (2013) estimates £460 per annum for a 3.5 kWp system, and Which? (2018) 

estimate £292 per annum for a 4 kWp system. All of these are lower than some of 

the potential savings of fuel cell micro-CHP. 

2.4 Challenges and opportunities facing electricity 
networks 

Currently, distribution networks are not well suited for the connection of generation 

devices, largely due to the fact that the power-flow is radial and unidirectional, with 

no redundancy (Ackermann and Knyazkin, 2002). The networks are designed to 

supply energy to homes, not take it from them. But distributed generation can still be 

implemented, with the main advantage being that it reduces losses in the system. The 

optimal loss reduction scenarios involve situating distributed generation in ideal 

locations in the network (Acharya et al., 2006). However, as it is homeowners and 

not DNOs that decide if distributed generation is installed, there is no guarantee of it 

being situated in the best location.  

Soroudi et al. (2011) propose a list of objectives for distributed generation: 

investment deferral in network capacity, loss reduction, reliability improvement, 

reducing cost, increasing investment incentives, reducing cost of energy not 

supplied, and emission reduction. Micro-CHP may be capable of fulfilling many of 

these objectives. 
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In addition to the above objectives for distributed generation, changes will have to be 

made in the operation of distribution networks in order to accommodate distributed 

generation. Distribution networks are currently managed passively, if distributed 

generation is to be incorporated without large overhead costs, it may be necessary for 

DNOs to switch to more active management of distribution networks (Currie et al., 

2004). There was an EU project underway in Germany, DISPOWER, which aimed 

to develop an active management scheme. A paper on the project raises several 

issues of note (Donkelaar and Scheepers, 2004). It recognises that distributed 

generation can achieve some of the objectives mentioned in the last paragraph.  But, 

it also states that the current passive network approach will provide major challenges 

in the future, and that there is need to look for more cost effective methods of 

network management, where distributed generation and distribution networks are 

more integrated. The paper also claims that the UK’s ambitious distributed 

generation targets could incur substantial additional costs for reserve and balancing.  

2.4.1 The challenge of electrifying heat provision 

One of the most important areas where changes will occur as a result of a shifting 

energy paradigm is in the electricity networks themselves. The UK electricity system 

has rapidly varying dispatchable capacity that is capable of meeting demand.  

Current electricity demand has higher intraday variations than interseasonal 

variations. If heating is electrified, a large interseasonal peak demand will develop in 

winter, as heat demand is much higher than electricity demand, as shown in Figure 

2.3. Even accounting for the fact that heat pumps generate 2 to 4 times as much heat 

as the electricity they use, this could lead to the overloading of the electricity 

network unless major upgrade works are initiated.  

 

 

Image not available in online version 

 

 

Figure 2.2 Daily UK Heat Profile (DECC, 2012). 
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UKCCC (2016) have suggested that the full electrification of heating may not be 

cost-effective, even with the reduction in energy requirements brought on by heat 

pumps with a high Coefficient of Performance. Some studies, such as Rogers et al. 

(2013), have suggested that the additional generation from micro-CHP could be used 

to support the operation of heat pumps. The electrification of transport, also 

examined by UKCCC, could cause further problems for the electricity network. 

2.4.2 Advantages and issues of micro-CHP 

A potential advantage of using micro-CHP is that it can work well in conjunction 

with heat pumps (Rogers et al., 2013). If micro-CHP operation is heat-led, then it 

should generate electricity at the same time that heat pumps are drawing electricity 

from the network. Therefore, when there is a large peak in electricity demand due to 

heat pumps, there will be a peak in the electricity being supplied by micro-CHP. This 

will help alleviate the need for additional reserve capacity in the network, while also, 

depending on where the micro-CHP is located in relation to the heat pumps, reducing 

the need to upgrade the network to provide additional heat capacity. 

Another possible advantage of micro-CHP (and other distribution technologies, such 

as solar PV) is in reduction of losses on the network (Acha et al., 2009, Ackermann 

and Knyazkin, 2002). Generation of energy locally means less electricity needs to 

travel through the wires of the network, where losses can occur. 

One potential drawback of micro-CHP (and other micro-generation technologies) is 

that large amounts of locally generated electricity could lead to instances of voltage 

rise on the network (Infield et al., 2007, Thomson and Infield, 2007). Voltage rise is 

defined as voltages on the network rising to levels outside of legal limits. 

2.4.3 Previous studies involving micro-generation and networks 

Acha et al. (2009) examine the impacts of including micro-CHP and charging of 

hybrid vehicles on a network. They used an optimal power flow tool, which coupled 

the gas and electricity networks via the micro-CHP, to analyse the network on an 

hourly timescale, using simulated data. The study examined two scenarios, a ‘plug 

and forget’ scenario where use of CHP and charging of vehicles happened whenever 

the owners wished, and ‘loss minimisation’ which provided incentives for operating 

CHP and charging vehicles at optimal times. In both scenarios operation of micro-
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CHP was heat led, and the paper concluded that the CHP power injections were 

substantial in reducing peak load. 

Another paper looked at the use of micro-CHP plants to support the local operation 

of electric heat pumps, studying a housing development of 128 dwellings supplied 

by a 200 kVA transformer, using simulated minute-scale data (Rogers et al., 2013). 

It identified the problem of heat pumps adding 3-6 kW of demand per house for 

distribution transformers designed to handle 1.4-9.8 kW per house, thus there was a 

distinct possibility of overloading the supply transformer, and the results showed that 

if more than 16 dwellings installed heat pumps (with no CHP), the transformer 

would overload. The technologies used were air source heat pumps, Stirling engine 

micro-CHP and large and small internal combustion micro-CHP. The study did not 

examine fuel cell micro-CHP. The results of the study showed that the best 

combination of technologies was small IC micro-CHP and heat pumps, with 48 of 

the former and 80 of the latter, thus supplying all the homes and achieving a carbon 

saving of 38.6%; however, this was assuming 2012 grid carbon emissions.  

Several studies look at the optimum placement of distributed generation (both micro-

CHP and other technologies) on the network in order to minimise losses or to best 

affect voltage levels (Acharya et al., 2006, Quezada et al., 2006, Acha et al., 2009, 

Rao et al., 2013). The issue with this focus on placement is that there is no real 

mechanism by which either DNOs or government can dictate where on a network 

micro-CHP (or other micro-generation) may be placed.  

Some papers (Ackermann and Knyazkin, 2002, Acha et al., 2009) indicate that one 

of the main ways that micro-generation can affect distribution network operations is 

through reducing network losses. Both papers focus on developing equations relating 

distributed generation and total network load to network losses, and estimating the 

loss reduction at times of peak generation and demand. 

Other papers such as Infield et al. (2007) and Thomson and Infield (2007) suggest 

the impacts on voltage levels will be a key concern of micro-generation, particularly 

voltage rise (i.e. where voltage levels rise above regulation limits). UK regulations 

stipulate that voltage levels should remain within 94% and 106% of the rated voltage 

(National Grid, 2004); though there is some leeway (as long as the network does not 



Potential impact of micro-generation on electricity distribution networks 

 

48 

spend more than 10 minutes at a time above outside these limits there is no cause for 

concern). 

Ocha et al. (2006) used a multi-objective index to examine network impacts. this 

index consisted of four parameters: real and reactive power losses, instances of 

voltage drop (and rise), the current capacity of conductors, and instances of short 

circuit. Each parameter was weighted according to its potential impact, with losses 

receiving the highest weighting, followed by instances of voltage drop/rise. The 

network was examined at maximum and minimum periods of demand.  

A subsequent paper (Ocha and Harrison, 2011), examining how to minimise network 

losses, asserted that simply examining power losses at times of maximum and 

minimum demand fails to account for the impact of variable distributed generation 

output. They demonstrate that such an approach can both over- and under-estimate 

overall energy losses depending on the size of the distributed generation. In order to 

get a full picture of how variable distributed generation affects energy losses it is 

necessary to undertake a multi-period optimal power flow analysis, in this case of 

hourly periods over the course of a year. In this paper the distributed generation 

under consideration was micro-wind turbines. 

Thomson and Infield (2007) used minute-scale simulated data of Stirling engine 

micro-CHP and solar PV to estimate their impacts on the network through load flow 

analysis. They find that two scenarios, where 100% of homes have micro-CHP and 

where 50% of homes have solar PV give rise to voltages in excess of regulations. 

Castro et al. (2014) used half-hourly field trial data to examine the impacts of solar 

PV on electricity voltage levels. They did this by using load flow analysis to 

examine the impact of solar PV on maximum voltage levels during the summer day 

of lowest demand. They found that more than 30% of the network having solar PV 

would cause voltage rise issues. 

2.4.4 Areas of uncertainty 

While there have been a number of studies that have investigated the potential 

impacts of micro-generation and low-carbon heating on electricity distribution 

networks, to date there have been few that have used real world field trial data. The 

only study listed here that did limited its examination to solar PV, and used only 
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half-hourly data, rather than the minute-scale data, utilised in several of the studies 

that used simulated data. Most studies referenced here also only examined one part 

of the potential impacts, either voltage levels, network losses, or transformer power 

flows. One study did examine both voltage levels and network losses, but there is 

still a lack of a comprehensive analysis of all the potential impacts of micro-CHP on 

distribution networks. All the studies here that did examine the impacts of micro-

CHP only examined the impacts of engine-based micro-CHP, none have examined 

the impacts of fuel cell micro-CHP. There is clear need for further study into all the 

impacts of micro-CHP on distribution networks, along with those of solar PV and 

heat pumps, using high-resolution real world data. This drives the choice of the last 

three research questions: ‘What impacts might micro-CHP have on distribution 

networks?’, ‘How are these impacts likely to compare with those of solar PV and 

heat pumps?’ and ‘What are the consequences of deploying combinations of both 

micro-CHP and other technologies on the same distribution network?’ 

2.5 Chapter Summary 

This chapter has examined the literature around micro-generation, low carbon heat, 

and distribution networks. It has found that there is uncertainty over the economic 

benefits of micro-CHP, and the emissions reduction potential of micro-CHP. It is 

possible that further research in the area will contribute to the body of scientific 

knowledge on these issues.  

There are a number of ways in which micro-generation and low carbon heat can 

impact electricity distribution networks. Heat pumps may place a considerable 

additional electrical burden on electricity networks, which may be mitigated by the 

presence of local generation from micro-CHP devices. Both micro-CHP and solar 

PV could benefit the network through reducing losses; however, both could cause 

problems to the network through raising voltage levels. 

To date there have been a few studies examining the impacts of micro-generation 

and low-carbon heat on distribution networks, though all but one have used 

simulated data, and looked at a limited range of technologies and impacts. The one 

study that did use field trial data used only half-hourly data, rather than high 

frequency minute-scale data, and only examined solar PV and its impacts on voltage 

levels. None of the studies have examined the impacts of fuel cell micro-CHP. 
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There is still some uncertainty over the economic and emissions reduction potential 

of micro-CHP, and considerable uncertainty over the distribution network impacts of 

micro-generation and low-carbon heat. To address these uncertainties, four research 

questions were devised: 

 How might micro-CHP affect the cost of heating and greenhouse gas 

emissions from households? 

 What impacts might micro-CHP have on distribution networks? 

 How are these impacts likely to compare with those of solar PV and heat 

pumps? 

 What are the consequences of deploying combinations of both micro-CHP 

and other technologies on the same distribution network? 
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3 INITIAL DATA ANALYSIS 

This chapter contains the details of the field trial data used throughout the thesis. It 

also contains: an examination of the benefits of using high frequency minute-scale 

data, an analysis of the correlation between micro-CHP generation and household 

demand, and an analysis of the economic and emissions reduction benefits of micro-

CHP. 

3.1 Chapter Introduction 

The aims of this chapter are to present the data that will be used throughout the 

thesis, and perform some initial analysis on that data. The analysis will have four 

purposes: first, to demonstrate the higher information value of minute-scale data over 

ten-minute or half-hourly data; second, to examine how well micro-CHP generation 

correlates to household demand, as the more likely it is that micro-CHP will be 

generating at peak times, the more useful it is (from an economic, emissions, and 

network perspective); third, to examine the emissions reductions that occur as a 

result of micro-CHP; and fourth, to examine the economic benefit, to the household, 

of installing micro-CHP. The last three of these will contribute to answering the first 

research question: ‘How might micro-CHP affect the cost of heating and greenhouse 

gas emissions from households?’. There will also be a brief examination of the 

economic and emissions reduction benefits of installing solar PV and heat pumps in 

the household, in order to compare micro-CHP against those technologies. 



Potential impact of micro-generation on electricity distribution networks 

 

52 

The methodologies used in this chapter are outlined in Section 3.2, while the data 

being used throughout the thesis is summarised in Section 3.3. A comparison of one-

minute data with lower frequency data is presented in Section 3.4. The correlation of 

micro-CHP generation to household demand is analysed in Section 3.5, the 

emissions savings of micro-CHP in Section 3.6, and the economic savings in Section 

3.7. Section 3.8 compares the results with those in the literature, and Section 3.9 

provides a summary of the chapter. 

3.2 Chapter methodologies 

3.2.1 Comparing different resolution data 

The data used in this analysis (summarised in Section 3.3) was high-resolution 

minute-scale data. In order to demonstrate the benefit of using high-resolution data, 

it is compared against lower resolution data; specifically ten-minute and half-hourly 

data. The lower resolution data was generated by aggregating the one-minute data. 

Two simple Python scripts were developed that went through the data and provided 

an average generation or demand value for every half-hour and ten-minute period. 

This data was then compared against the one-minute data in order to determine the 

amount of information lost when aggregating the data. The data was compared for a 

random day in each month, on order to test if there were significant differences in the 

effects of aggregation throughout the year. 

3.2.2 Correlation of generation to demand 

 

The correlation of generation to demand is examined using the Pearson correlation 

coefficient, defined as: 
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The coefficient gives an indication of the correlation between two sets of data. The 

coefficient is a value between -1 and +1; with +1 being perfect positive correlation, -

1 being perfect negative correlation and 0 being no correlation. In addition, there is 

an examination the proportion of generated electricity that is exported instead of 

being used in the household, and how micro-CHP changes the household's grid 

electricity demand profile. This is shown through frequency histograms of 
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generation, export and adjusted grid demand (i.e. how much electricity households 

take from the grid after taking micro-CHP generation into account, also referred to as 

household electricity import) are produced. This is to show how micro-CHP reduces 

the number of high demand periods, and how often the use of micro-CHP results in 

high levels of export. Also examined is the average daily demand and generation 

profiles for the winter and summer months, to get an idea of how well micro-CHP 

matches household demand and by how much it reduces peak demand. 

3.2.3 Calculation of economic and emissions savings 

To calculate the economic and emissions savings of micro-CHP, it is necessary to 

compare the cost and benefits (either monetarily or emissions-wise) of micro-CHP to 

the cost of generating an equivalent amount of heat and electricity from a standard 

boiler and the electricity grid. The most straightforward way to calculate this is to 

compare the heat output and the gas used by the micro-CHP unit to a counterfactual 

regular boiler (with a heat efficiency of 0.9). The heat output is calculated by 

multiplying the generated electricity by the heat to power ratio (6:1 in the case of the 

Stirling engine, 1:1 in the case of the fuel cell): 

���� 	���������	��	�������� 	(��ℎ)

= �����������	���������	��	�������� 	(��ℎ)

∗���� 	��	����� 	�����	��	��������  
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The gas used is calculated by dividing the heat output by the thermal efficiency (0.77 

for the Stirling engine, 0.45 for the fuel cell): 

���	����	��	�������� 	(��ℎ) =
�����������	���������	��	�������� 	(��ℎ)

���������	����������	��	��������
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The micro-CHP unit will use more gas than the boiler but also generates electricity; 

this extra gas consumption is effectively used to generate the electricity output: 

���������	���	����	��	��������	�������� 	����������	������	(��ℎ)

= �����	���	����	��	�������� 	(��ℎ) − ���	����	��	������	(��ℎ) 
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Where the gas used by the boiler is simply the heat output divided by the boiler 

efficiency of 0.9. 
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The emissions associated with the generated electricity can be calculated by finding 

the emissions caused by the extra gas used. These emissions can then be compared to 

the emissions associated with generating the same amount of grid electricity, to find 

the overall emissions savings resulting from micro-CHP: 

��������	�������	(���2)

= �������� 	�����������	����������	(��ℎ)

∗����	������	�����	(���2/��ℎ) − �����	���	����	(��ℎ)

∗������	���������	��	���	(���2/��ℎ) 
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For the purposes of calculating the economic benefit, the electricity used by the 

household is separated from that exported (as these have different economic values). 

This is done comparing the electrical output against the household demand for each 

minute of the year. Any time the generated electricity is greater than the household 

demand the excess is exported, and the total exported electricity is the sum of the 

exported electricity for each minute of the year. The electricity used in the house will 

be the total electricity generated less the electricity exported, and the economic 

benefits will be the economic gain (from avoided imports of grid electricity and tariff 

income) minus the cost of the extra gas used, like so: 

������	��������	����	(£)

= �������	����	������	(��ℎ) ∗�����	��	����	�����������	(£/��ℎ)

+ 	�����	�����������	���������	(��ℎ) ∗����������	������	(£/��ℎ)

+ �����������	��������	��	����	(��ℎ) ∗������	������	(£/��ℎ)

− �����	���	����	(��ℎ) ∗�����	��	���		(£/��ℎ) 
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3.3 Summary of the Data 

The generation profiles of Stirling engines and the demand profiles of households 

have been taken from in-house measurements, from a field trial conducted by the 

Consumer Led Network Revolution project, which was co-funded by Ofgem’s Low 

Carbon Network Fund and by an electricity distribution network operator, Northern 

Powergrid. British Gas, EA Technology, Durham University and Newcastle 

University were also involved (CLNR, 2014). 

The CLNR project conducted separate field trials (referred to in the project as 'test 

cells') of a number of technologies, including Stirling engine micro-CHP, solar PV 
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and heat pumps. Test cell 4 trialled micro-CHP, while test cells 3 and 5 trialled heat 

pumps and solar PV respectively. 

Test Cell 4 of the CLNR project was comprised of 11 domestic locations where 

micro-CHP units have been installed. The micro-CHP unit is a Baxi Ecogen Stirling 

engine, with a maximum heat output of 6 kW, a maximum electrical output of 1kW, 

and an overall efficiency of 90% (Baxi, 2010), producing a heat to power ratio of 

6:1, an electric efficiency of 13%, and a heat efficiency of 77%. The homes also 

contained a secondary boiler to provide additional heat output if required. 

For test cell 4, trial monitoring began in December 2012 and ended in March 2014. 

The trial monitoring data was collected by British Gas. At each location, two 

parameters were measured: the electrical consumption and generation of the micro-

CHP engine, and the amount of electricity imported (or exported) from the grid by 

the house as a whole. These parameters were measured in average Watts generated, 

or consumed, for each minute. 

Data completeness varied across the 11 locations, which included 8 semi-detatched 

homes, 2 detached homes and 1 terraced home. Figure 3.1 summarises the data 

completeness of each location over the monitoring period. 

It can be seen that one of the locations (1) does not have any household import data. 

Most of the other locations have data for varying periods between November 2012 

and March 2014. Some locations have notably less data than others, such as 3 and 

10, and on closer inspection, a substantial amount of the data is missing, with data 

for these locations being 79% and 33% complete respectively, location 8 also only 

has six months of whole house import data; because of the incompleteness of the 

data these locations have been excluded from the analysis.  
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Figure 3.1 Availability of field trial data over time. The black bars show the 

periods for which data is available. 

 

A total of seven locations were available to be studied, summarised in Table 3.1 

Trial Participant Reference Data Availability 

2 November 2012 – October 2013 

4 December 2012 – March 2014 

5 November 2012 – March 2014 

6 November 2012 – October 2013 

7 February 2013 – March 2014 

9 December 2012 – March 2014 

11 January 2013 – March 2014 

Table 3.1 Trial locations used in the analysis, and the dates for which data is 

available. 

O
ct

-1
2

Ja
n

-1
3

M
ay

-1
3

A
u

g-
1

3

N
o

v-
1

3

Fe
b

-1
4

1 mCHP Generation

1 Household Import

2 mCHP Generation

2 Household Import

3 mCHP Generation

3 Household Import

4 mCHP Generation

4 Household Import

5 mCHP Generation

5 Household Import

6 mCHP Generation

6 Household Import

7 mCHP Generation

7 Household Import

8 mCHP Generation

8 Household Import

9 mCHP Generation

9 Household Import

10 mCHP Generation

10 Household Import

11 mCHP Generation

11 Household Import



Chapter 3: Initial data analysis 

57 

In each data set there were occasional minutes where data was missing. In these 

cases the data was estimated by taking the average over the data for that time period 

for every other day in the month. For example, if data for Wednesday 19th June, at 

20:04 was missing, the data would be estimated by averaging over the data at 20:04 

on every other weekday in June. If the missing data point had occured on a Saturday 

or Sunday, the data for all other weekend days in the month would be averaged over. 

It was felt that other weekdays or weekends in the month would have the most 

similar daily demand or generation profile, and thus would provide the best estimate.  

Every data set was missing six days of data in August. These were estimated by 

averaging over the  existing August data, in the same way as outlined above. 

For privacy purposes, it was not possible to use or show the individual household 

profiles in this research, therefore only the average data over all loactions is used. 

This data is shown in full in Figure 3.2. 

The experimental data was compared against the demand data for an average house, 

in order to test its validity. Figure 3.3 shows (for January only, but the similarity 

holds for other months), that the average heat generation profile of the Stirling 

engine micro-CHP in the trial is similar to that of an average house, though with 

lower values. This would be due to the fact that the Stirling engine is not providing 

all the heat for the homes in the trial, some is provided by a backup boiler. 

The overall electricity demand was also compared against the national average. the 

average total annual household demand of homes in the trial was 4,400kWh. 

According to government statistics, the average household demand in 2013 (the year 

of the trial) was 4,300kWh (in subsequent years the demand has declined slightly to 

just under 4,000kWh) (BEIS, 2017). Given that the national average of household 

demand is similar to that in the trial, it would be reasonable to assume that the homes 

in the trial represent the national average. 
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Figure 3.2 Stirling engine generation and household import

all locations in the field trial, for each minute of 2013

Potential impact of micro-generation on electricity distribution networks 

 

Stirling engine generation and household import, averaged over 

all locations in the field trial, for each minute of 2013. 

, averaged over 
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Figure 3.3 Comparison of Stirling engine generation against average heat 

demand. Here the heat output of the Stirling engines in the trial is compared 

against that of a typical UK house (Summerfield et al., 2015), for an average 

January day.  

Test cell 3 trialled heat pumps in 89 homes, and test cell 5 trialled solar PV in 155 

homes (CLNR, 2015). As with test cell 4, these trials measured generation and 

demand data minutely, and the average data over all homes is used in this research. 

3.3.1 Development of fuel cell micro-CHP profiles 

While the field trial was limited to Stirling engine micro-CHP, it is possible to 

estimate the profile of other micro-CHP technologies. Fuel cells will operate rather 

differently from Stirling engines, as frequent on/off cycling, as seen in the Stirling 

engine profiles will cause degradation and reduce the operational lifespan. Therefore, 

their operational profile will need to be one that stays on for long periods in order to 

meet baseload heat demand. In this research it is assumed that fuel cell micro-CHP 

would operate continuously for long periods of time, several hours per day, if not all 

day, in order to provide base-load heat. 

Using a profile of UK heat demand in average homes (Summerfield et al., 2015), is it 

possible to estimate the demand profile for a 1 kW fuel cell micro-CHP device (see 

Figures 3.4 and 3.5). The fuel cell runs at full power (1 kW) during the months of 

January to April, and October to December. Between May and September, the fuel 
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cell operates in essentially two modes. Between 03:50 and 21:40 the fuel cell 

generates at full capacity (1 kW) or half capacity (0.5 kW) in July and August, and 

between 22:20 and 03:10 it produces no output. There are two transitionary periods 

(03.10-03.50, and 21.40-22.20) separating the on/off phases. These operational 

profiles are such in order to best match the heat demand profile. The generation 

profile used for the fuel cell does result in some excess heat production, though it is 

assumed that the houses in question would have water tanks in which hot water can 

be stored, and then used at peak times. The amount of storage needed to 

accommodate the excess heat was calculated to be equivalent to a 30-litre hot water 

tank, which is considerably smaller than most domestic hot water tanks. The 

electricity demands of a house with fuel cell micro-CHP were assumed to be the 

same as those in the Stirling engine field trial (where the electrical demand is the 

sum of the measured micro-CHP generation and electricity imported from the grid).  

 

Figure 3.4 January fuel cell heat generation compared with average daily 

heat demand. 
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Figure 3.5 June fuel cell heat generation compared with average daily heat 

demand. 
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It is expected that minute-scale data will provide more accurate information than 

lower resolution data. In order to test this, the minute-scale data will be compared 
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The ways in which the data changes when aggregating to lower resolutions was 
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generator would vary less than a household containing various electrical devices. 

Analysis of days in other months provided similar results. 

 

Figure 3.6 Household demand for different data resolutions. Demonstration 

of how the household demand data is affected by changing between one-minute, 

ten-minute and half-hourly data, for a typical day in October. 

 

Figure 3.7 Stirling engine generation for different data resolutions. 

Demonstration of how the Stirling engine generation data is affected by 

changing between one-minute, ten-minute and half-hourly data, for a typical 

day in October. 
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The changes to the annual peak demand and generation can be considerable. Table 

3.2 shows how the peak demand or generation changes as the data is aggregated. 

Household demand is particularly affected, with the peak being over 1kW higher 

when using one-minute data rather than lower frequency data; also when aggregating 

to half-hourly data, the peak shifts to a different day of the year. The peaks in solar 

PV generation and heat pump demand also change by a few hundred Watts, while 

the peak in Stirling engine micro-CHP generation changes only slightly. Again, as 

grid operation is particularly concerned with peaks in demand, such differences 

could have an effect when observing the impacts of micro-generation and low-

carbon heat on the electricity network. 

Household 
demand 

Stirling Engine 
generation 

Solar PV 
generation 

Heat Pump 
demand 

One-minute         
Peak value 
(kW) 4.7 0.81 3.7 1.4 

Time of peak 
23/11/2013 

17:01 
13/02/2013 

06:41 
30/03/2013 

11:17 
19/11/2013 

18:42 

Ten-minute         
Peak value 
(kW) 3.6 0.78 3.5 1.3 

Time of peak 
23/11/2013 

17:00 
11/11/2013 

06:40 
30/03/2013 

11:10 
19/11/2013 

18:40 

Half-hourly         
Peak value 
(kW) 3 0.76 3.4 1.2 

Time of peak 
26/12/2013 

17:00 
11/11/2013 

06:30 
30/03/2013 

11:00 
19/11/2013 

18:30 

Table 3.2 Changes to the demand and generation peaks when using high 

frequency data. 

3.5 Correlation and export 

Table 3.3 shows the main results of the analysis of the generation and export of 

micro-CHP, and the Pearson Correlation Coefficient (PCC). This shows that both 

Stirling engine and fuel cell generation has weak positive correlation to household 

demand, meaning that while it is more likely that the micro-CHP will be generating 

at times of high demand, it cannot be relied upon to do so. Also of concern from a 

network perspective is the amount of generation being exported. While for Stirling 

engines this is reasonably low, for fuel cells more than half of the generated 

electricity is exported. Given that the data is averaged over several houses, it is 
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reasonable to assume that much of the exported electricity is being exported to the 

grid at times of low demand across the electricity network, which is not ideal. 

Type Total Annual 

Generation 

(kWh) 

Total Annual 

Export (kWh) 

Percentage of 

Generation 

Exported 

Demand-to-

Generation 

(PCC) 

Stirling Engine 1040 118 11% 0.224 

Fuel Cell 6700 3310 49% 0.339 

Table 3.3 Summary of the generation, export and correlation to demand of 

Stirling engine and fuel cell micro-CHP. 

The generation and export profiles of both micro-CHP technologies can be analysed 

using frequency histograms. Figure 3.8 shows that the Stirling engines, on average, 

spend over a third of the year generating no electricity, and less than 5% of the year 

generating more than 500 W. Figures 3.9 and 3.10 show how the presence of micro-

CHP changes the demand profile of the household, comparing how much electricity 

is taken from the grid in a normal household with no micro-CHP, to how much is 

imported from (or exported to) the grid with each micro-CHP technology.  

In Figure 3.9, the “Stirling engine” histogram and the “no micro-CHP” histogram are 

quite similar in appearance. The biggest differences between the two are that the 

“Stirling engine” histogram shows a reduction in demand across the import side of 

the graph; while also showing added export, although export occurs for only around 

10% of the year, with half of that time spent exporting small amounts of electricity 

(<200 W). Figure 3.10 shows that Stirling engine homes also spend less time 

importing large amounts of electricity from the grid (i.e. amounts over 1000 W). 

Fuel cells produce a more dramatic change, exporting electricity to the grid 78% of 

the time. At the other end of the demand spectrum, fuel cells almost eliminate high 

demand periods, with the house now spending less than 1% of the year taking more 

than 1000 W from the grid, and no time taking more than 1400 W. 
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Figure 3.8 Histogram of Stirling engine generation frequency, note when the 

engine is not generating it has negative output due to parasitic power loss, thus 

the <0 column effectively indicates no generation. 

 

 

Figure 3.9 Comparison of frequency of household demand with no micro-

CHP, with Stirling micro-CHP and with Fuel cell micro-CHP. The black bar 

represents the point of zero demand, all values to the left indicate export from 

the house to the grid, all values to the right represent import from the grid to 

the house. 
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Figure 3.10 Cumulative import frequency of homes with no, Stirling engine 

and fuel cell micro-CHP. The black bar represents the point of zero demand. 

Diurnal net demand profiles show how micro-CHP devices modify apparent 

electricity consumption. Figures 3.11 and 3.12 show the average daily demand 

profiles for January and July respectively, providing an example of how demand 

profiles change in winter (when energy use is highest) and summer (when it is 

lowest). Figure 3.11 shows that in winter, Stirling engines provide a significant 

reduction in demand between 6am and 9am, and throughout the late afternoon and 

evening, reducing the evening peak in electricity demand. There is also almost no 
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export to the grid from Stirling engines, and when export does occur this tends to be 

between 6am and 8am, and mid-afternoon. This morning and evening peak 

reduction, along with minimal export, is broadly beneficial from the perspective of 

the electricity network, as evening demand is reduced while little reverse power flow 

is introduced. Figure 3.12 shows that in the summer, Stirling engines have only brief 

periods when they reduce demand, in this case in early morning and mid-afternoon. 

These results are in line with expectation because of the heat-driven nature of the 

device and the coincidence of domestic peak heat and electrical demand. 

 

Figure 3.11 Stirling engine and fuel cell generation and net demand for 

January (average day). 
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Figure 3.12 Stirling engine and fuel cell generation and net demand for July 

(average day). 

Fuel cells cause more significant changes to demand profiles than Stirling engines. 

Figure 3.11 shows that winter households with fuel cell micro-CHP spend nearly all 

their time exporting electricity to the grid, with exports being highest during the 

night. In summer (Figure 3.12) the change is much less severe; the fuel cell schedule 

shown in Figure 3.5 explains that there is no generation during the night, and half-

power generation during the day, and thus there is only moderate export during the 

day with the exception of early morning. This export peak is caused by heating 

systems warming up while householders are still asleep and not in need of electricity.  

3.6 Energy use and emissions savings 

Electrical efficiency is 13% for Stirling engine micro-CHP and 45% for fuel cell 

micro-CHP, with the efficiency of a counterfactual boiler assumed to be 90%. A 

Stirling engine micro-CHP device supplies 1040 kWh of electricity and 8365 kWh 

of heat per year, while a fuel cell will supply 6700 kWh electricity and 7350 kWh of 

heat; these values do not match the established heat-to-power ratios (6:1 and 1:1) due 

to parasitic power loss sapping some of the electrical output, lowering the amount of 
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electricity supplied.  Using the process outlined in Section 3.2.3, the extra gas used 

by the micro-CHP device can be calculated and compared to that of the gas needed 

to generate an equivalent amount of electricity from a combined-cycle gas turbine 

(CCGT).

Stirling engine Fuel Cell 

Electricity generated (kWh) 1040 6700 

Heat generated (kWh) 8370 7350 

Gas used by micro-CHP (kWh) 10860 16330 

Gas used by conventional boiler (kWh) 9290 8160 

Effective gas used to generate micro-CHP's 
electrical output (kWh) 1570 8170 

Gas used by a CCGT to generate same 
amount of electricity (kWh) 2080 13500 

Gas saved compared to CCGT (kWh) 510 5330 

Emissions saved compared to CCGT (kgCO2) 102 1066 

Table 3.4 Breakdown of gas used by micro-CHP device and comparison 

with a boiler and CCGT, the emissions assume a gas emissions factor of 0.2 

kgCO2/kWh (Lelyveld and Woods, 2010). 

Table 3.4 compares Stirling engine and fuel cell micro-CHP gas use, factoring the 

respective heat-to-power ratios and efficiencies, to calculate the overall primary gas 

consumption and hence CO2 emissions. More gas is consumed in a micro-CHP 

equipped house compared to a house with just a conventional boiler and grid 

electricity, but less gas is used overall, resulting in global emissions savings. The 

emissions savings from the fuel cell micro-CHP are considerably greater than those 

from the Stirling engine micro-CHP, by a factor of 10. Of course, the comparison 

with gas consumed by a CCGT is unrealistic as grid electricity (which is what the 

micro-CHP is offsetting through its generation) is generated from a mix of coal, gas, 

nuclear and renewable sources. In order to determine the actual carbon savings it is 

necessary to compare the emissions of the extra gas consumed by micro-CHP to 

generate the electricity output, and the average carbon intensity of the grid electricity 

it is replacing, using equation 3-5. 

For 2013, the year of the trial, the average grid carbon intensity was 470 gCO2/kWh, 

and the emissions savings profile (when comparing against the hourly average grid 

carbon level) for the whole year is shown in Figure 3.14. The total emissions saving 
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for Stirling engine micro-CHP is 175 kgCO2, while that for fuel cell micro-CHP is 

1514 kgCO2. When compared against annual household emissions, this equates to a 

4% saving for Stirling engine micro-CHP and a 35% saving for fuel cell micro-CHP. 

However, average grid carbon intensity varies annually, and Table 3.5 shows this for 

the period from 2009 to 2015 (Earth Notes, 2016), demonstrating that in recent years 

there has been a considerable fall in grid emissions, and correspondingly a fall in the 

emissions savings from micro-CHP. It is also worth noting that for 2013, when 

comparing against average grid carbon intensity, the savings are greater than when 

comparing against hourly grid carbon intensity. This fits with the fact that micro-

CHP output only weakly correlates with peaks in demand, when grid carbon 

intensity is likely to be at its highest. Assuming the grid carbon factor continues to 

decline, emissions savings from micro-CHP will also decline, eventually becoming 

negative, as shown in Figures 3.14 and 3.15; once the grid carbon factor falls below 

222 gCO2/kWh, Stirling engine micro-CHP will no longer assist in reducing 

emissions and once it falls below 212 gCO2/kWh neither will fuel cell micro-CHP. 

This is particularly concerning given the latest data, which indicates that average 

grid carbon intensity for 2017 was down to 237 gCO2/kWh. 

 

 

Figure 3.13 Hourly emissions savings for the whole year. 
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Year 

Average Grid 
Carbon intensity 
(gCO2/kWh) 

Stirling engine 
carbon savings 
(kgCO2) 

Fuel cell carbon 
savings (kgCO2) 

2009 429 222 1609 

2010 444 227 1689 

2011 436 227 1639 

2012 496 274 2066 

2013 470 233 1835 

2014 419 200 1524 

2015 367 135 1103 

Table 3.5 Average grid carbon intensity and carbon savings for Stirling 

engines and fuel cells for each year from 2009-2015. 

 

Figure 3.14 How carbon savings change with average grid carbon intensity, 

for Stirling engines and fuel cells. 
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Figure 3.15 Close up of Figure 3.14 at the point where carbon savings become 

negative.  

If micro-CHP were to only to offset marginal grid emissions, i.e. only offset 

electricity from gas fired plants, then it would continue to avoid 100 kgCO2, for 

Stirling engines, and 1000 kgCO2, for fuel cells, even as overall grid emissions fall. 

However, it would be difficult to guarantee that micro-CHP does this. 
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carbon neutral sources, then emissions savings will improve considerably. In this 

case all the electricity generated by the micro-CHP device will be carbon neutral and 

so, given the 2013 grid carbon intensity value of 470 gCO2/kWh, Stirling engine 

micro-CHP would save 490 kgCO2 and fuel cell micro-CHP would save 3150 

kgCO2. While these savings would still decline as grid carbon intensity declined, 

they would never become negative. These figures are comparing against a house 

which is heated by a boiler also using carbon neutral fuel, and drawing electricity 

from the grid. 

As for heat pumps and solar PV; using 2013 grid carbon intensity, a heat pump 

would save 500 kgCO2 considerably more than a Stirling engine but only a third of 

what a fuel cell would save; while solar PV would save 1700 kgCO2, 200 kgCO2 

more than a fuel cell and nearly 10 times the savings of a Stirling engine. The 

savings of solar PV will decline as the electricity supply is decarbonised; however, 

the savings of heat pumps will increase (as they are replacing a gas based heat 
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around 400 kgCO2/kWh heat pumps will achieve better savings than fuel cell micro-

CHP. Thus as of 2015 heat pumps should already be achieving better savings than 

micro-CHP. 

3.7 Economic savings 

In order to calculate the economic savings the following tariffs and prices are 

assumed: a grid electricity purchase price of 14.05 p/kWh; an electricity generation 

tariff of 13.45 p/kWh; an electricity export (sales) tariff of 4.85 p/kWh; and a gas 

purchase price of 4.29 p/kWh (Energy Saving Trust, 2013b, Energy Saving Trust, 

2014). The costs and income are calculated in comparison to the baseline case of a 

household on the gas network with a gas boiler and drawing all its electricity from 

the grid. Table 3.6 gives a breakdown of the annual costs, savings and income of the 

micro-CHP units. Two important points can be drawn from this: first that the 

economic benefit of fuel cell micro-CHP is over six times that of Stirling engine 

micro-CHP; and that in both cases, generation tariff income makes up the majority of 

the annual gain. Thus the economic benefit of micro-CHP is highly dependent on 

tariff support from the government. 

The cost of a Stirling engine micro-CHP unit used in the trial was £9,000 (Baxi, 

2010), while fuel cell costs are estimated to be £14,000 (Harikishan R. Ellamla et al., 

2015). Using these figures and the annual savings the net present value of the 

installation can be calculated. The NPV is defined as: 

��� =	∑
��

(���)�
− ��

�
���         3-7 

where T is the lifetime of the installation, t is the year, Rt is the monetary return in 

year t, i is the interest rate (assumed to be 5%) and C0 is the initial capital cost of the 

installation. The results of the calculation are shown in Table 3.6. The negative 

NPVs indicate that neither technology is yet capable of paying for itself over time. 

The price of Stirling engine micro-CHP would need to fall by more than 80% in 

order to break even over a 10-year period, while fuel cell micro-CHP requires a 

smaller fall in price of 30% to break even. Table 3.8 illustrates potential changes to 

the 10-year break-even price given the removal of the export tariff, generation tariff, 

or both. In chapter 2 (Section 2.2.2), a suggested long term price for fuel cell micro-

CHP was £2,300 (Staffell and Green, 2012). All of the break-even prices in Table 
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3.7, except the one with no tariffs of any kind, are above this value. This suggests 

that in the long term fuel cell micro-CHP could still be profitable provided some 

tariff support is maintained. 

 

 

Stirling Engine micro-CHP Fuel Cell micro-CHP 

Total Generated (kWh) 1042 8173 

Electricity used in house 
(kWh) 924 3683 

Electricity exported (kWh) 118 3312 

Extra gas used compared to 
a conventional boiler (kWh) 1570 8161 

Savings from avoided grid 
electricity (£) 130 517 

Generation Tariff Income 
(£) 140 941 

Export Tariff Income (£) 6 161 

Cost of Extra Gas (£) 67 350 

Total Monetary Gain (£) 209 1269 

Current Capital Cost (£) 9000 14000 

NPV with a 10 year payback 
period (£) -7386 -4201 

Time to break even at 
current price (years) >50 17 

Break-even price with a 10 
year payback period (£) 1614 9799 

Table 3.6 A summary of the economic savings of micro-CHP. This shows 

the electricity generated by the micro-CHP units, where it is used (i.e. in the 

house or exported to the grid), the extra gas required, and the costs and savings 

that arise from the above. 
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Table 3.7 Changes in 10 year break-even price in the absence of tariffs. 

For heat pumps, the annual energy bill savings are only £20, considerably low, due 

to the high price of electricity in comparison to natural gas. There was no additional 

income through the Renewable Heat Incentive (RHI) in 2013, as the RHI began in 

2014. Under the 2014 RHI the heat pump would receive 7.3 p/kWhth (Ofgem, 

2018b), giving an additional £570 per annum, for a total of £590. This gives heat 

pumps a break-even price of approximately £4,000. Under the RHI in 2018, this 

income rises to £810 per annum, giving a break-even price of £5,500. Solar PV 

achieves annual savings of £910, resulting in a break-even price of £7,000, under 

2013 tariffs (Ofgem, 2018a); under 2018 tariffs these savings fall to £460, giving a 

break-even price of £3,500. Thus of all the technologies the one with the largest 

annual return and thus the highest break-even price is fuel cell micro-CHP. 

3.8 Comparison with previous micro-CHP research 

In previous literature, carbon reduction of -4% to 12% is estimated for Stirling 

engine micro-CHP (Alanne et al., 2010, Carbon Trust, 2011, Staffell and Green, 

2012, Peacock and Newborough, 2005) and so the number shown here, a 4% carbon 

emissions saving for Stirling engine micro-CHP, is consistent with those from the 

literature. The main previous field trial undertaken in the UK, the one by Carbon 

Trust (2011), also found average carbon savings of 4% for Stirling engines, again 

consistent with the value here. Fuel cell emissions savings were 35%, within the 16-

40% range in the literature (Peacock and Newborough, 2005). The grid carbon 

intensity below which emissions savings become negative was also examined in the 

literature, with Hawkes et al. (2011) estimating it to be 200 gCO2/kWh for fuel cell 

micro-CHP. The value here is only slightly above that estimate, at 212 gCO2/kWh. 

Stirling Engine micro-CHP Fuel Cell micro-CHP 

Break-even price with tariffs 1614 9799 

Break-even price no export 
tariff 1568 7396 

Break-even price no 
generation tariff 533 2533 

Break-even price no export 
or generation tariff 486 1290 
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Alanne et al. (2010) estimates the economic savings from micro-CHP to be £165, 

while Carbon Trust (2011) estimates similar savings of £169, with a generation 

reward and -£11 without a generation reward, the savings here (£209 for Stirling 

engines) were above both these values, but the savings were in accordance with the 

range suggested in another paper of £200-250 (De Paepe et al., 2006). On the whole, 

the results from the field trial are mostly consistent with the literature. The 

previously mentioned Carbon Trust (2011) field trial found, annual savings of £158, 

using a Stirling engine with a heat-to-power ratio of 12:1, this heat-to-power ratio is 

double that of the Stirling engine used here, which may explain the smaller savings. 

The savings from fuel cells here were £1,269, higher than the £750 suggested by the 

literature (Staffell and Green, 2009), though their FiT was 10 p/kWh while the one 

used here was 13.45 p/kWh. Using a 10 p/kWh FiT with the data in this research 

produces savings of around £1,000, still a higher saving. It may be that the simulated 

fuel cell profiles in this research used the fuel cell for more of the year, thus 

generating more electricity and higher monetary returns.  

3.9 Chapter Summary 

This chapter has provided a summary of the data used throughout the thesis. It 

comprises of field trial data from the CLNR project, and a simulation of fuel cell 

generation profiles, which are based on UK household heat demand. The field trial 

data is high frequency minute-scale data of: household and heat pump demand, and 

Stirling engine micro-CHP and solar PV generation. It is demonstrated that the use 

of high frequency minute-scale data provides more information than lower frequency 

ten-minute or half-hourly data, especially on times of peak demand. Such accurate 

data should be important from a grid perspective. 

This chapter also examined the economic and emissions saving potential of Stirling 

engine and fuel cell micro-CHP. It found that Stirling engines produce savings of 

4%, while fuel cells produce savings of 35%, however, both these values will decline 

as the grid is decarbonised, and may become negative. Long term it is probable that 

micro-CHP will only be a valid low-carbon heating option if it utilises a carbon 

neutral fuel source. 

Stirling engine micro-CHP produces limited savings for the household of £209 per 

annum. Fuel cell micro-CHP produces considerably better savings of over £1,200, 
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which is also higher than the savings of either heat pumps or solar PV. However, 

neither technology produces enough savings to cover their current capital cost. Fuel 

cells would have to fall in price to £9,000 or less to become economically viable, 

while Stirling engines would need to fall to £1,500. But even should prices fall to a 

point where micro-CHP in the form studied in this paper becomes economically 

attractive, the ongoing decarbonisation of the electricity network will steadily reduce 

the emissions case for micro-CHP. A potential boost to micro-CHP would however 

be from an alternative low-carbon fuel supply, which in practice would mean 

hydrogen (the limitations of biogas were discussed in Section 2.1.2). 
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4 METHODOLOGY OF 

NETWORK ANALYSIS 

A distribution network model was developed to explore the potential impacts of 

micro-CHP, and other micro-generation technologies, on local distribution networks. 

This chapter explains the choice of method, the development of a model, and the 

calibration and evaluation of the model.  

4.1 Chapter Introduction 

As mentioned in Section 2.4.2 and 2.4.3, some studies (Ackermann and Knyazkin, 

2002, Acha et al., 2009) indicate that one of the main ways that micro-generation can 

affect distribution network operations is through reducing network losses. Others, for 

example Infield et al. (2007) and Thomson and Infield (2007), suggest the impacts 

on voltage levels will be a key concern of micro-generation, particularly voltage rise. 

An alternative approach by Rogers et al. (2013) focuses on the network transformer 

and if it is overloaded. Ideally, the chosen methods should be able to examine all 

three of these parameters.  

Examination of the network modelling environment determined that the best way to 

examine these parameters was through load flow analysis. Load flow analysis uses a 

specific generation and demand state and network structure to solve the steady 

operation state to provide voltages and power flows in the electricity system (Wang 

et al., 2008). While load flow analysis is a steady state analysis, by performing a load 
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flow analysis for each time period in a set of time series data (in this study for each 

minute of the data), an approximation of a dynamic power system analysis can be 

achieved. 

The chapter begins with an examination of a variety of network modelling software 

and justification for the choice of IPSA-Power (Section 4.2). There is then an 

examination of how the network is modelled within IPSA (Section 4.3) followed by 

an overview of the Python scripts used to perform analysis with IPSA and an outline 

of the scenarios (Section 4.4). The model is then tested and validated (Section 4.5), a 

discussion of the limitations of the model is presented (Section 4.6), and a summary 

of the chapter provided (Section 4.7). 

4.2 The IPSA modelling environment 

IPSA is a distribution network planning system in which electricity networks are 

defined and analysed, and which is capable of performing load flow analysis.  IPSA 

has a complex network design system, allowing the design and testing of a wide 

range of networks from large meshed distribution and transmission systems to small 

isolated networks and anything in between (IPSA-Power, 2017). 

Other power systems analysis software was examined for potential use. This 

software included PSS/E (SIEMENS, 2017), DIgSILENT Power Factory 

(DIgSILENT, 2017), ETAP (ETAP, 2017) and OpenDSS (EPRI, 2017). All of these 

could perform the necessary functions (i.e. load flow analysis). But only 

DIgSILENT, like IPSA, allowed automated analysis through the use of Python code, 

which the researcher was already experienced with. The fact that the models of real 

world distribution networks, obtained for use in this research from Northern 

Powergrid, were designed in IPSA made IPSA the software of choice for this 

research.  

As mentioned above, a key advantage of IPSA for this research was its ability to 

interface with the Python coding software, an easy to use scripting interface which 

allowed powerful customisation and automation of data input and  modification, and 

performing of load flow analyses. This automation is essential for performing load 

flow analyses for each data entry in a set of time series data, as discussed in the 

previous section (Section 4.1). TNEI also provided extensive support and training for 

the use of IPSA, which was also a major beneficial factor of the software. The 
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automation of load flow analysis through the use of Python was essential for this 

research. Without such interface, it would be necessary to manually run a load flow 

analysis for each minute of the field trial data. Instead with Python, it is possible to 

write code that automates the process of running load flow analyses of the field trial 

data. 

4.3 Development of an IPSA model 

A model of a UK distribution network (the 'Maltby' network) was obtained from the 

distribution network operator Northern Powergrid. The Maltby distribution network 

is a low voltage (433 V) distribution network in South Yorkshire serving part of a 

rural town. The network serves 249 homes fed from a single fixed tap 11 kV-433 V 

transformer. A few hundred homes is typical for a distribution network, though 249 

is towards the higher end of what is normal. The transformer is thus also larger than 

average, having a capacity of 1 MVA. Even then the transformer still spends a small 

amount of time being overloaded. Brief periods of overload however, are not 

necessarily a problem, provided they do not become too frequent or last for extended 

periods of time, which shortens the operational lifetime of the transformer; a 

suggested upper limit for overload is 1.5 times the rated capacity (Wang et al., 2008). 

The network is modelled as 34 feeders (i.e. loads), each comprising a small group of 

homes. The number of homes for each load ranging from 2-14. The network itself 

consists of 36 nodes or busbars, one either side of the transformer and one for each 

load connection. The wider network is essentially modelled as a grid in-feed, from 

which all the required electricity can be sourced (and any excess electricity sent). 

The diagram of the network from the IPSA model is shown in Figure 4.1. 

4.3.1 Representing micro-generation and heat pumps on the 
network 

Modelling distributed generation on the network can be done one of two ways: either 

as a negative load, or as a generator. If it were modelled as a negative load, for each 

time-step, the micro-generation output would be subtracted from the household 

demand, to create a new household demand to be assigned to the appropriate load on 

the network. For example, if a feeder consists of 7 homes, three of which have 

micro-CHP; for each minute of the year the load on that feeder would be found by 

multiplying the household demand (from the input data) by 7, and subtracting three 
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times the micro-CHP generation. If the demand were higher than the generation then 

the feeder would have a positive load, if generation were higher than demand then 

the feeder would have a negative load, and would be exporting electricity back to the 

grid. If micro-generation were instead modelled as a generator, then in the network 

model each busbar with a feeder attached to it would also need a generator attached 

to it. The load on the feeder would simply be the number of homes multiplied by the 

household demand (plus any extra demand from heat pumps). The output of the 

generator will be the micro-CHP or solar PV output, multiplied by the number of 

homes on the feeder that have either of those technologies installed. In both cases the 

heat pump profiles from the data would be modelled as an additional load on the 

feeder.   

The question then is which of the two approaches is more appropriate. In the process 

of developing the model both approaches were tested, for a scenario where all homes 

have Stirling engine micro-CHP. It was found that there was a less than 0.1% 

difference between all results for the two approaches, suggesting that either method 

would be appropriate. Modelling micro-generation as a generator on the network has 

the advantage of keeping the generation data separate from the load data, making it 

easier to extract and utilise after load flow analysis has been performed. It was 

primarily for this reason that the modelling as generators method was chosen. 

Modelling micro-CHP and solar PV as generators, which is essentially what they 

are, also made the model a more accurate representation of a real world network with 

micro-generation. 

To model micro-generation in the IPSA model of the Maltby network, a generator 

was added to each busbar which had a feeder attached to it, resulting in the network 

shown in Figure 4.1. The code automating the load flow analysis could then 

calculate the amount of generation that should come from the group of homes on that 

feeder (using the generation profile and the number of homes with micro-CHP 

installed), and assign that generation value to the generator in IPSA.   

It is possible that there would be network issues within the feeders themselves, i.e. 

on the wires running into/out of each individual home. However, since the 

agglomeration of multiple homes onto one feeder is an approach used by DNOs 

themselves when modelling networks, it is assumed that any such issues are of 

minimal concern. 
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Figure 4.1 Diagram of the Maltby network, after generators have been 

added for this research. Black arrows indicate loads, circles with sine waves 

inside indicate generators, two overlapping circles with an arrow through one 

indicates a transformer, the small grid indicates a grid in-feed and the black 

dots where lines meet indicate busbars (aka nodes). 

4.3.2 Parameters to be monitored 

The analysis of the network focuses on three key parameters: the voltage levels 

across the network, power flows through the transformer, and the losses across the 

network; as one of the main concerns with the deployment of micro-generation is 

that it could lead to voltage rise on distribution networks, while reduction of network 

losses is often mentioned as a benefit of micro-generation. Examining voltage levels 

involves identifying when the voltage at any node on the network exceeds regulation 

limits and noting how often this happens throughout the year, as well as identifying 

the maximum and minimum recorded voltage levels on the network across the whole 
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year. Losses on the network are examined by totalling the real and reactive losses 

across all cables on the network between the transformer and the various loads, as 

well as examining the real and reactive losses across the transformer itself.  

The power flow through the transformer and the power drawn from the grid are also 

examined. The power flow across the transformer indicates whether the transformer 

is overloaded at any point (most likely due to the excess demand caused by heat 

pumps) and if this is reduced by micro-generation, or if the micro-generation itself is 

overloading the transformer, through generating too much electricity that lead to 

large upstream power flows through the transformer. The power drawn from the grid 

is measured to examine the extent to which the presence of micro-generation reduced 

the amount of electricity drawn from the grid and to monitor how often (if at all) the 

network becomes a net exporter of electricity to the grid, due to micro-generation 

during periods of low demand. 

4.3.3 Model data 

The data used in this research is the same as that detailed in the previous chapter 

(Section 3.3). This comprises field trial Stirling engine micro-CHP, solar PV and 

heat pump data and simulated fuel cell micro-CHP data.  

4.4 Developing a system to run load flow analysis 

Two Python scripts were developed to run load flow analyses on the Stirling engine 

and fuel cell data and generate useful outputs. The first of these scripts converts the 

demand and generation profiles, and the number of homes with and without micro-

CHP on each feeder, into a table detailing the total load (and generation) at each 

feeder, over an entire year. The second script then took this table and used it to run a 

load flow in IPSA for every minute of the year, and output a table of results. 

The first Python script (detailed in Figure 4.2) takes data from two input files, and 

outputs a data file for the second piece of code. The first input file is the annual 

profiles of the household demand, Stirling engine generation and fuel cell generation 

(and later in the research solar PV generation and heat pump electrical demand). 

These profiles are the same as those from the data described in Section 3.3. The first 

input file remains unmodified throughout all the runs of the model for all the various 

scenarios. The second input file is the number of homes at each feeder on the 
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network along with the number of those homes with either Stirling engine or fuel 

cell CHP (and later solar PV and heat pumps). That input file contains lists of: the 

number of homes on each feeder (which does not change), the number of homes with 

Stirling engine micro-CHP, the number with fuel cell micro-CHP, the number with 

heat pumps and the number with solar PV. This data was modified for the various 

scenarios, the number of homes with micro-CHP, solar PV or heat pumps changed 

based on the penetration of those technologies in each scenario. Examples of all the 

input (and output) data files are given in Appendix A. 

The first piece of code uses these two input files to determine the amount of demand 

and generation at each feeder and generator on the network, for each minute of the 

year. This data is then outputted into a spreadsheet which serves as the input file for 

the second Python script. 

 

Figure 4.2 Flow diagram of the first Python script, producing the load and 

generation profiles for each feeder and generator on the network. 

The second Python script, detailed in Figure 4.3, uses the load and generation 

database generated by the first script to perform the load flow analysis. For each 

minute of the year, the code reads in the data on the load and generation, assigns 

each load or generation value to the correct location on the network within IPSA and 



Potential impact of micro-generation on electricity distribution networks 

 

86 

then instructs IPSA to perform a load flow analysis. The code then gathers all the 

necessary results from within IPSA and writes them to an output file, after which it 

moves on to the next minute and repeats the process. The results collected are: 

 the total power load on the network; 

 the branch power losses (i.e. the losses on the cables that make up the 

distribution network); 

 the transformer power losses (i.e. the losses across the transformer(s) on the 

network); 

 the tap position of the transformer; 

 the total power generation from distributed generation in the network; and, 

 the voltage levels at each busbar of the network. 

 

Figure 4.3 Flow diagram of the second Python script, automating the 

process of instructing the IPSA program to run a load flow for each minute of 

the year, using the data generated in the first piece of Python code. 

4.4.1 Outputs generated by the Python scripts 

For each set of input data, the code instructs IPSA to perform a total of 525,600 load 

analyses, one for each minute of the year. Thus for each minute of the year a set of 

data will be generated which will include: 

 the total power load on the network; 

 the total power generation on the network; 

 the power losses across all branches (cables) on the network; 
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 the power losses across the transformer(s); 

 the transformer tap position; and, 

 the per unit voltage level at all busbars on the network (34 in total, in the case 

of the Maltby network). 

From these results it is possible to determine if at any time voltage levels exceed 

statutory limits, if the transformer is overloaded, and if power is flowing upstream 

across the transistor. Any of these could destabilise the network, or damage the 

components of the network. It is also possible to determine the number of minutes in 

the year for which any and all of these conditions apply, any of which could be 

problematic to the network if they occur for substantial periods of time.  

4.4.2 The scenarios that were tested 

By running the code many times, with different deployments of Stirling engine and 

fuel cell micro-CHP on the network, it is possible to build up an idea of how the 

presence of such devices could affect the distribution network. For the purposes of 

this research the amount of CHP was varied between no homes and all homes on the 

network, in increments of 10%, for each of the two technologies (Stirling engines 

and fuel cells). In order to get an idea of how location might affect the impacts two 

scenarios were run for each 10% increment. In the first, micro-CHP is spread evenly 

across the network (i.e. 10% of the homes on each busbar have micro-CHP); while in 

the second micro-CHP is bunched at the end of the network (i.e. 10% of the busbars 

have micro-CHP installed in all homes on the busbar). An example of these 

scenarios is given in Figure 4.4. 

The impacts of solar PV and heat pumps were similarly examined; though only in 

25% increments, and only for scenarios where the technologies were evenly 

distributed across the network. Combinations of micro-CHP and solar PV or heat 

pumps on the network, were also examined by adding differing amounts of micro-

CHP to each of the solar PV or heat pump scenarios. These micro-CHP amounts 

were added in 25% increments. For example, there would be combinations of 25% 

solar PV with 25%, 50%, 75% and 100% micro-CHP, and the same for each other 

25% increment of solar PV. It was assumed that homes would not have both heat 

pumps and micro-CHP, as these are both technologies that supply low-carbon heat to 

the household. Therefore, a 25% heat pump penetration would only be tested in 

combination with 25%, 50% and 75% micro-CHP, a 50% heat pump penetration 
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with 25% and 50% micro-CHP and a 75% heat pump penetration with just a 25% 

penetration of micro-CHP.  

 

Figure 4.4 The 20% Stirling engine scenario, for both bunched and evenly 

spread Stirling engine micro-CHP. 20% of the homes at each busbar have 

Stirling engine micro-CHP (rounded to the nearest whole number). In the even 

scenario (red lines) the micro-CHP is spread evenly across all feeders, while in 

the bunched scenario (green lines) all the micro-CHP is on the upper feeders.  

If, for example the network had 100% Stirling engines, the red and green bars 

would be the same length as the blue ones. 
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4.4.3 Determining voltage limits 

Voltage rise (or drop) is defined as voltage levels on the network deviating too much 

from the rated voltage. The threshold for an unacceptable rise (or drop) is defined by 

regulations or guidelines governing the operation of distribution networks. The limits 

used in this research were drawn from two sources: the EN50160 regulations 

(European Committee for Electrotechnical Standardization, 1999), and the 

Electricity Safety, Quality and Continuity Regulations (2002). The first is an EU-

wide standard, while the second is a UK statutory limit. EN50160 indicates that 

network voltages should remain within ±10% of the rated voltage (though they can 

exceed this for up to 5% of the time, on a weekly basis). The Electricity Safety, 

Quality and Continuity Regulations state that networks should not exceed of +6% or 

-10% the rated voltage under normal operating conditions. Therefore, in this research 

both the amount of time the network exceeds the +6%/-10% limit and the amount of 

time it exceeds the ±10% limit were examined. Throughout the remainder of the 

research, per unit voltage is often used, as it is easier to use this to evaluate voltage 

levels against regulation limits. Per unit voltage is simply the actual voltage level (in 

volts) divided by the rated voltage level (also in volts). For example, for a rated 

voltage of 230 V, an actual voltage of 240 V would be recorded as 1.043 PU. 

4.4.4 Extracting specific results from the model output data 

Once the outputs from the second piece of code are generated, they are examined in 

Excel, and specific results are extracted for each scenario: 

 the number of minutes in the year for which the voltage exceeds regulations, 

both the +6%/-10% limit and the ±10% limit; 

 the maximum and minimum voltage levels on the network, throughout the 

year; 

 the branch losses on the network (i.e. the losses across all the wires on the 

network) for the whole year; 

 the transformer losses on the network for the whole year; 

 the maximum power flow through the transformer, across the entire year; 

 the number of minutes in the year for which the transformer is overloaded; 

and, 

 the number of minutes in the year for which the network as a whole exports 

electricity. 

Excel is used to identify how many minutes of the year any busbar is outside of 

voltage regulations, how many minutes of the year the transformer is overloaded, 
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and the number of minutes for which electricity is exported to the wider network 

through the grid in-feed. All of these results are in the form of ‘number of minutes 

for which x exceeds y’, and were calculated using conditional formulas to identify 

when limits were exceeded and then counting the number of times these conditions 

were met. 

The maximum and minimum voltages on the network for the year were found by 

simply using Excel to find the maximum or minimum value from all the data points 

for each busbar for each minute of the year. The maximum power flow through the 

transformer was found in a similar fashion. 

The branch and transformer losses were found by summing the respective losses 

over the entire year.  

4.5 Evaluating the network model 

4.5.1 Evaluating whether micro-generation can affect 
neighbouring networks 

This research examines one distribution network in isolation, assuming that the 

presence of micro-CHP on one network has no or minimal impacts on other 

networks. Specifically assuming that the presence of micro-CHP on a network does 

not have an impact on the voltage levels or power flows of neighbouring distribution 

networks. To test this assumption, a hypothetical setup was established consisting of 

two Maltby networks side by side. As with the original Maltby network, each of 

these two networks are fed by a single fixed tap transformer. Only now the two 

transformers are connected to a larger 35 to 11 kV transformer, which is in turn 

connected to the wider network. In real life neighbouring networks would not be 

identical, and a single 35 to 11 kV transformer will often serve several distribution 

networks, not just two. Despite this, the setup examined here should be sufficient to 

at least determine if there are impacts on other networks. 

The two networks were labelled A and B. Micro-CHP was added to network A, but 

not to network B, and the parameters of both networks were monitored. This was 

done to see if the presence of micro-CHP on one distribution network affected the 

neighbouring distribution network. Five scenarios were examined, one with no 

micro-generation or heat pumps on either network, three with 100% of homes on 
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network A having micro-generation (Stirling engine micro-CHP, fuel cell micro-

CHP and solar PV), and one with 100% of homes on network A having heat pumps. 

Tables 4.3 to 4.7 detail the results of these tests. Table 4.3 examines the networks 

with no micro-generation deployment and confirms that the results from the two 

networks are identical. It also shows the baseline results for the main transformer. 

The remaining tables show the results for all the homes on the first network having 

different types of micro-generation. The first network is obviously affected. As for 

the second network, voltage levels and network losses are unaffected, the only slight 

change is that the maximum power flow through the transformer on the second 

network is slightly higher. As for the main transformer serving both networks, the 

only changes are that when micro-CHP is present on the network, the maximum 

power flowing through that transformer is reduced (due to electricity being generated 

locally), while when heat pumps are present the maximum power flow is increased 

(due to increased electricity demand on the network). Given the minimal impacts on 

the second network resulting from micro-generation being present on the first 

network, it was judged that it was valid to examine an individual distribution 

network in isolation. 

 

Network A Network B 
Main 
Transformer 

Minutes of Voltage over regulations 0 0 

Minutes of Voltage under regulations 26 26 

Max Power through transformer 
(MVA) 1.33 1.33 2.97 

Minutes of transformer overload 26 26 0 

Max Voltage (PU) 1.05 1.05 

Min Voltage (PU) 0.91 0.91 

Total branch loss (MWh) 10.6 10.6 

Total transformer loss (MWh) 15.2 15.2 62.4 

Table 4.1 Examining two identical networks, each with no micro-

generation. The first column looks at the impacts on the first network and its 

transformer, the second at the second network and its transformer and the 

third column looks at the impacts on the transformer serving both networks. 
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Net A 100% Stirling Network A Network B 
Main 
Transformer 

Minutes of Voltage over regulations 567 0 

Minutes of Voltage under regulations 13 26 

Max Power through transformer (kVA) 1.16 1.33 2.74 

Minutes of transformer overload 9 26 0 

Max Voltage (PU) 1.06 1.05 

Min Voltage (PU) 0.93 0.91 

Total branch loss (MWh) 7.63 10.6 

Total transformer loss (MWh) 10.7 15.2 51.5 

Table 4.2 Examining two identical networks, on one (A) all homes have 

Stirling engine micro-CHP. The first column looks at the impacts on the first 

network and its transformer, the second at the second network and its 

transformer and the third column looks at the impacts on the transformer 

serving both networks. 

 

Net A 100% FC Network A Network B 
Main 
Transformer 

Minutes of Voltage over regulations 364000 0 

Minutes of Voltage under regulations 2 26 

Max Power through transformer (kW) 1.03 1.33 2.58 

Minutes of transformer overload 2 26 0 

Max Voltage (PU) 1.08 1.05 

Min Voltage (PU) 0.93 0.91 

Total branch loss (MWh) 7.57 10.6 

Total transformer loss (MWh) 10.6 15.2 50.3 

Table 4.3 Examining two identical networks, on one (A) all homes have fuel 

cell micro-CHP. The first column looks at the impacts on the first network and 

its transformer, the second at the second network and its transformer and the 

third column looks at the impacts on the transformer serving both networks. 
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Net A 100% Solar Network A Network B 
Main 
Transformer 

Minutes of Voltage over regulations 124000 0 

Minutes of Voltage under regulations 20 26 

Max Power through transformer (kW) 1.33 1.33 2.97 

Minutes of transformer overload 18 26 0 

Max Voltage (PU) 1.14 1.05 

Min Voltage (PU) 0.93 0.91 

Total branch loss (MWh) 15.1 10.6 

Total transformer loss (MWh) 20.8 15.2 55.7 

Table 4.4 Examining two identical networks, on one (A) all homes have 

solar PV. The first column looks at the impacts on the first network and its 

transformer, the second at the second network and its transformer and the 

third column looks at the impacts on the transformer serving both networks. 

 

Net A 100% HP Network A Network B 
Main 
Transformer 

Minutes of Voltage over regulations 0 0 

Minutes of Voltage under regulations 179 26 

Max Power through transformer (kW) 1.57 1.33 3.39 

Minutes of transformer overload 140 26 56 

Max Voltage (PU) 1.05 1.05 

Min Voltage (PU) 0.88 0.91 

Total branch loss (MWh) 22.8 10.6 

Total transformer loss (MWh) 31.6 15.2 97.6 

Table 4.5 Examining two identical networks, on one (A) all homes have heat 

pumps. The first column looks at the impacts on the first network and its 

transformer, the second at the second network and its transformer and the 

third column looks at the impacts on the transformer serving both networks. 

4.5.2 Other assumptions that need to be tested 

One other assumption is that results from the Maltby network will also hold true for 

other networks. To test this, some of the scenarios were also tested on another 

network, the 'Darlington Melrose' network. This network model was also obtained 

from Northern Powergrid, and like the Maltby network is situated in a suburban area, 
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though it contains fewer homes than the Maltby network. The results from the two 

networks are examined and compared in the subsequent chapters (Section 5.4 and 

6.4). It was found that as penetrations of micro-generation and/or heat pumps are 

increased, the results from the Darlington Melrose network follow the same trend as 

the Maltby network. This indicates that the implications from the Maltby network 

should hold true for other networks. 

In a similar vein, while the Maltby network has a fixed tap transformer, it is possible 

(though uncommon) for other networks to have variable tap transformers, where the 

voltage output of the transformer can be raised or lowered to help regulate voltage 

levels on the network. As with the previous test, this is also examined in more detail 

in the results chapters (Section 5.3 and 6.4). The same trends in the results as micro-

generation and/or heat pumps are increased is observed, though the variable tap 

network is better able to mitigate these trends. This would indicate that networks 

with variable tap transformers can accommodate more micro-generation and heat 

pumps before they start to cause problems. 

4.6 Limitations of the data and the model 

The models, and data, used within this research which have been described above are 

not perfect representations of reality. The models have a number of limitations which 

need to be taken into account, and the impacts of these limitations should be assessed 

before proceeding with the research. These limitations include: the small sample size 

of the data and the fact that the data used is simply an average over several homes; 

the models not simulating the entire distribution network, with the loads in the 

models being aggregates of the loads of several homes on the network; the 

assumption within the model that cable reactance does not vary and that loads are 

evenly distributed across all phases of the three phase supply; and, the assumption 

that the power factor of the loads (and generators) on the network is fixed, leading to 

a lack of consideration of fluctuating reactive power flows. 

4.6.1 Limitations of the data 

One of the key limitations of the data used in this research is its small sample size. 

The micro-CHP generation and household demand data from the CLNR field trial 

was taken from just seven households, a relatively small sample size, and in this 
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research the average of these seven households is being used. It is assumed that all 

homes on the network are identical, and all have the demand and generation profile 

from an average house. The issue with this is that naturally all homes on the network 

will have different profiles, with peaks in demand and generation at different times. 

This is not as much of an issue as each feeder in the network model is made up of 

several homes (the average number of homes per feeder is 7.4), so multiplying the 

average demand (or generation) by the number of homes on a feeder should produce 

a similar demand profile to the total demand from several different homes, which is 

what the demand (or generation) profile at the feeder would be. 

Where the data does become a problem is when looking at the impacts on the 

transformer. Averaging over several homes has the effect of smoothing out the 

demand profile. Peaks and troughs in the demand become less pronounced, reducing 

their impacts. Thus averaging over 249 homes would produce a smoother profile 

than averaging over seven homes. The impacts on the transformer are dependent on 

the total demand profile of all 249 homes, which in reality would be considerably 

'smoother' than multiplying the average demand profile of seven homes by 249, 

which is done here. Thus, the impacts on the transformer seen in this research are 

likely to be over-estimated compared to the impacts that would be seen in reality, i.e. 

the modelled losses on the transformer and the power flows through the transformer 

are likely to be greater than in reality. 

4.6.2 Limitations of the model 

4.6.2.1 Cables within the feeders shown in the model 

The first limitation of  the model itself is that not all of the network is modelled. In 

the network model being used in this research homes are grouped together in order to 

represent loads (shown as feeders in the network model). What these feeders 

represent in reality are further network cables leading to individual loads. The power 

flow will also exhibit voltage drop (or rise) across these cables, which is not 

represented in the model. Given that voltage drop is relative to total load the voltage 

drop on these cables should be smaller than that exhibited on the main cables that are 

shown in the network model. This would be due to the loads on these cables being of 

the size of individual households rather than the size of groups or multiple groups of 
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households, which would be the load on the cables that are represented in the 

network model. 

It is possible to get an idea of an estimate of the upper limit on the voltage drop (or 

rise) that would be seen on these cables, by examining the voltage drop (or rise) seen 

on the cables that are represented in the network model. This is done by comparing 

the difference in voltage levels between busbars that are represented in the model, 

during periods of high demand and generation on the network. The average voltage 

drop (at times of high demand) from one busbar to the next adjacent busbar is 0.003 

PU, whilst the average voltage drop from the transformer busbar to busbars at the 

end of the network is 0.025 PU. The average voltage rise (at times of high 

generation) from one busbar to the next is 0.002, whilst the average voltage rise 

between the transformer busbar and busbars at the end of the network is 0.02. It 

would be expected that the voltage drop (or rise) on the wires within the feeders 

would be at the lower end of this range, due to the lower load and the shorter cables 

(reducing the resistance, which contributes to voltage drop). thus it would be 

expected that the voltage drop experienced by cables that are within the feeders in 

the network model would likely be less than 0.01 PU. Thus over the course of a year, 

it would be expected that there would be slightly more instances of voltage drop or 

rise than are exhibited by the model. However, the model will still indicate whether 

micro-generation and low carbon heat has an impact on voltage levels, and the scale 

of that impact and how it changes as the amount of micro-generation and low carbon 

heat on the network is increased, even if it does not capture the full picture. 

The wires within the feeders that are not represented in the network model will also 

exhibit power losses that are not captured in the modelling process. As with the 

voltage drop, these power losses will be relatively small compared to the power 

losses on the parts of the network that are modelled. This would be due to the lower 

amounts of power flowing through these wires compared to the power flowing 

through the cables that are modelled. 

4.6.2.2 Cable Reactance and Phase Imbalance 

Cable reactance can have an impact on voltage levels on the network, with higher 

cable reactance leading to higher voltage drops, and greater power losses. The 

network model used in this research had built in values for cable impedances(i.e. 
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resistance and reactance), both positive sequence and zero sequence. However, the 

model did not account for fluctuations in the reactance. These fluctuations occur as a 

result of changes in frequency, which in turn are caused by changes in the load.  

Given the modelling process uses a series of steady state load flow analyses, it does 

not account for the effects of fluctuating loads. As a result, there may be times where 

the reactance differs from the rated value, which could increase voltage drop, or 

voltage rise and either increase or decrease losses in the cables, all of which would 

not be captured by the model. 

Both networks modelled in this research are three-phase networks. In the model 

there is an assumption that all the loads are evenly distributed across the three 

phases, whereas in reality this would not be the case. In reality each individual home 

would connect to one of the three phases. As a result of this there would be 

fluctuations in the spread of load across the three phases, there may be times where 

the homes on one phase have significantly higher, or lower demand than the homes 

on another phase. It may also be the case that a disproportionate amount of 

distributed generation in the network is connected to one of the phases. Either of 

these would result in phase imbalance which can have several effects. 

Firstly, such imbalances can affect the reactance of the cable, which in turn has 

effects on the voltage drop and losses in the cable as discussed above. The imbalance 

between the phases can also directly cause increases in both voltage drop and power 

losses, as well as decreasing the efficiency of the network transformer, leading to 

further losses. Therefore, it may be that the losses derived from this research are 

underestimated, as will also be the case with instances of voltage drop. Phase 

imbalance as a result of unequally distributed household demand is not as much of 

an issue, as this research primarily compares networks with distributed generation to 

networks without, and the demand imbalances would exist in either case. Of more 

concern are imbalances due to uneven distribution of generation, where the greatest 

cause of imbalance would be more homes connected to one of the phases choosing to 

install distributed generation than homes on the other phases. This would be more of 

an issue with low amounts of distributed generation on the network (the fewer 

generators there are on the network, the higher the possibility that they are all on one 

phase). Thus any such imbalances are likely to have more of an effect on networks 
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with low amounts of distributed generation (where the overall impacts are lower) 

than networks with high amounts of distributed generation. 

4.6.2.3 Reactive Power flows 

Reactive power arises in circuits as a result of current and voltage being out of phase. 

In power systems this often arises as a result of inductive loads, such as motors, 

which are more common in industrial rather than domestic customers. The primary 

cause of reactive power demand from domestic customers is AC-DC converters. 

Distributed generation typically produces no reactive power. In this research the 

reactive power is assumed to be a fixed proportion of the total load (i.e. there is a 

constant power factor, the ratio of real to reactive power).  

One of the impacts of reactive power on the network is increased losses, which are 

accounted for in this research as both real and reactive power losses are monitored, 

however increases or decreases in reactive power losses as a result of a fluctuating 

power factor are not accounted for. Also not accounted for are the impacts on 

voltage levels, reducing or increasing the flow of reactive power in a system can 

cause voltage drop or rise respectively. As a result of assuming a fixed power factor 

it is possible that there will be fluctuations in voltage levels due to changing amounts 

of reactive power which are not represented in the model. 

4.7 Chapter summary 

The IPSA-Power network modelling software has been chosen for this research over 

other alternatives due to its ability to work in conjunction with Python scripts for 

automation of load flows, and due to the fact that the network models obtained for 

this research were developed in IPSA. The network being used is the Maltby 

network. It consists of 249 homes served by a 1 MVA, 11–433 kV transformer. The 

homes are modelled as 34 different loads (or feeders) on the network, each 

consisting of a group of homes. Micro-generation on the network is modelled as a 

generator on each feeder. Heat pumps are modelled as additional load.  

The key parameters to monitor are: 

 Voltage levels on the network, both the maximum and minimum voltage 

levels and the number of minutes in the year for which voltage levels exceed 

the aforementioned limits. 



Chapter 4: Methodology of network analysis 

99 

 Losses on the network, both the branch losses (i.e. power losses across the 

wires and cables that make up the network) and the transformer losses (i.e. 

the losses across the network transformer). 

 Power flows through the transformer, including the maximum power through 

the transformer and the number of minutes in the year that the transformer 

spends being overloaded. 

 The number of minutes in the year for which the network exports electricity. 

The input data is be the same as that detailed in chapter 3 (Section 3.3), combined 

with data on the penetration of micro-generation and heat pumps on the network. It 

is fed into a Python script to determine the load and generation on each feeder and 

generator on the Maltby network. A second Python script instructs IPSA to assign all 

the values generated by the previous script to the relevant points on the network, 

then perform a load flow and then extract and record in an output file the results, for 

each minute of the year. From this output file specific results are extracted: 

 the number of minutes in the year for which the voltage exceeds regulations, 

both the +6% and -10% limits; 

 the maximum and minimum voltage levels on the network, throughout the 

year; 

 the branch losses on the network (i.e. the losses across all the wires on the 

network) for the whole year; 

 the transformer losses on the network for the whole year; 

 the maximum power flow through the transformer, across the entire year; 

 the number of minutes in the year for which the transformer is overloaded; 

and, 

 the number of minutes in the year for which the network as a whole exports 

electricity. 

The scenarios being tested are 10% increments of Stirling engine and fuel cell micro-

CHP on the network, both bunched together and evenly spaced. Also being tested are 

25% increments of solar PV and heat pump penetration on the network and 

combinations of 25% increments of micro-CHP with either solar PV or heat pumps. 

A key assumption, that a single distribution network can be examined in isolation, is 

tested. This is done by constructing a hypothetical two network, done by adding a 

duplicate of the Maltby network to the existing IPSA model, in order to simulate two 

side by side networks. It is found that the presence of micro-generation or heat 

pumps on one of these networks did not affect the other.  
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Further testing examines the differences if a variable tap transformer is used in place 

of a fixed tap transformer. Also being tested is if the results from the Maltby network 

would hold true for other networks, and they do. A full analysis of the results from 

these two tests is presented with the evaluations of the main results from the model 

in the following two chapters. 
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5 IMPACTS OF MICRO-CHP 

ON DISTRIBUTION 

NETWORKS 

5.1 Chapter Introduction 

This chapter aims to understand the impacts that micro-CHP could have on the 

operation and stability of electricity distribution networks.  

To begin with there is an examination of distribution network stability using range of 

metrics (Section 5.2). This is followed by an examination of if and how the impacts 

of micro-CHP could change if the network uses a variable tap transformer as 

opposed to a fixed tap transformer (Section 5.3). The results are then tested to see if 

they are network specific by examining another distribution network and seeing if 

that produces similar findings (Section 5.4). Then there is a discussion of the 

implications of the results, an examination of what changes occur if half-hourly or 

ten-minute data is used in palace of one-minute data, and a comparison of the results 

with other similar research in the literature (Section 5.5). Finally, there is a summary 

of the results and discusses some of the implications they have for the operation of 

electricity distribution networks (Section 5.6). 
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5.2 Implications from the model for how micro-CHP 
might affect distribution networks 

In examining the impacts of micro-CHP on distribution networks, there were four 

key metrics that were looked at (as outlined in Chapter 4): voltage levels on the 

network; energy losses on the network and the transformer; stress on the local 

transformer; and the amount of time the network as a whole spends exporting 

electricity 

5.2.1 Overview of the baseline scenario 

A baseline scenario, with no micro-generation (CHP or otherwise), is used as a 

reference to understand the impacts of deploying micro-generation.  

The results of IPSA modelling for the baseline scenario are summarised in Table 5.1. 

Several of the results examined involved the levels of voltage on the network. 

Specifically examined were the number of minutes throughout the year for which 

voltage levels go either above or below regulation limits and the maximum and 

minimum voltage levels on the network. The regulation limits used were drawn from 

the Electricity Safety, Quality and Continuity Regulations (2002), which state that 

networks should not exceed of +6% or -10% the rated voltage under normal 

operating conditions. 

In the baseline scenario, the voltage reduces by more than 6% of the rated voltage 

(i.e. below 0.94 PU) for 26 minutes, which would not be an operational concern for 

the network as this amounts to just 0.005% of the year. At no point do voltage levels 

exceed +10% of the rated voltage. One thing of note for voltage levels is that all 

instances of voltage drop occurred in November and December, i.e. during times of 

high winter demand. 

Losses on the network are relatively minor, with branch losses and transformer 

losses each totalling 2% of demand (4% altogether). The power flows through the 

transformer do exceed its rated capacity. While the transformer only spends 26 

minutes overloaded (just 0.005% of the year) the power flow through the transformer 

rises to 1.33 MVA, over 30% higher than the rated power of 1 MVA. Short term 

overloading of power transformers is not uncommon on electricity networks, 

provided that the power flow does not exceed 1.5 times the rated capacity (which in 

this case would be 1.5 MVA), and that periods of overload do not last for more than 
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half an hour (Wang et al., 2008). When aggregating the minute-scale data up to half-

hourly data, it can be seen that the transformer does not spend any half-hour period 

overloaded. 

Simulation Baseline 

Minutes voltage is under 0.94 PU  26 

Minutes voltage is over 1.1 PU  0 

Branch losses (MWh) 10.6 

Branch losses (% of demand) 0.02 

Transformer losses (MWh) 15.2 

Transformer losses (% of total demand) 0.02 

Max power through transformer (MVA) 1.33 

Minutes of transformer overload 26 

Max Voltage (PU) 1.05 

Min Voltage (PU) 0.91 

Table 5.1 Statistics of the network for the baseline scenario. 

5.2.2 Impacts of micro-CHP on network voltage levels 

5.2.2.1 Changes to instances of voltage drop 

Increasing micro-generation within the network by deploying micro-CHP would be 

expected to reduce instances of undervoltage caused by high demand. Figure 5.1 

shows the impact of micro-CHP deployment on voltage drop (i.e. the number of 

times voltage falls below regulation limits) in the modelled network. For Stirling 

engine micro-CHP, there is a gradual decline until instances of voltage drop are 

eventually halved when all homes on the network deploy Stirling engine micro-CHP. 

For fuel cell micro-CHP there is a similar decline in instances of voltage drop, with 

the higher power output relative to Stirling engines meaning that the decline is 

greater, with voltage drop almost eliminated at deployment in all homes. In both 

cases, if micro-CHP is bunched together at one end of the network, the initial decline 

in instances of voltage drop is more gradual because the micro-CHP in these 

bunched areas has almost no impact on areas of the network with no micro-CHP, 

which still experience a voltage drop. 
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Figure 5.1 Instances of voltage drop for Stirling engine and fuel cell micro-

CHP. Changes in the amount of time voltage levels on the network spend below 

regulation limits, for different amounts of homes on the network having micro-

CHP. 

5.2.2.2 Changes to instances of voltage rise 

While deploying either micro-CHP technology would not raise voltage levels above 

the upper limit of +10%, both technologies, at sufficient concentrations, raise voltage 

levels above the lower limit of +6%.  

5.2.2.3 Changes to maximum and minimum voltage levels 

Stirling engine micro-CHP increases both maximum and minimum voltage levels by 

at most 0.02 PU (Figure 5.2). While fuel cell micro-CHP increases the minimum 

voltage level by at most 0.06 PU and the maximum voltage level by at most 0.03 PU 

(Figure 5.3). This difference between the two is caused by the differences in 

generation profiles between Stirling engines and fuel cell micro-CHP.  Stirling 

engine generation fluctuates with heat demand while fuel cells operate at a constant 

output. Since they both have the same maximum output of 1 kW, and since the 

maximum voltage level is likely to occur when Stirling engine generation is at its 

peak, they are similar changes to the maximum voltage. However, the minimum 

voltage will occur when Stirling engines are generating less electricity, while fuel 
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cells will still be operating at either full or potentially half output, hence why fuel 

cells affect the minimum voltage level by more than Stirling engines. 

 

Figure 5.2 Changes to maximum and minimum voltage levels when Stirling 

engine micro-CHP is deployed on the network. 

 

Figure 5.3 Changes to maximum and minimum voltage levels when fuel cell 

micro-CHP is deployed on the network. 

5.2.3 Impacts of micro-CHP on network losses 

Network losses are split into two types: the branch losses, which are the losses on the 

wires and cables that make up the network (Figure 5.4); and the transformer losses, 

which are the losses across the transformer (Figure 5.5).  
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Deploying Stirling engine micro-CHP on the network causes both the branch and 

transformer losses to gradually decline, by up to 3 MWh per year. This decline is 

caused by reduced demand for grid electricity when Stirling engines are present, 

meaning less energy is flowing through the transformer and wires, and thus less is 

being lost.  

The impacts of fuel cell micro-CHP are more complicated. Losses across the 

transformer initially decline, and then begin to rise again. The initial decline, as with 

Stirling engines, is due to reduction in demand for grid electricity, leading to less 

power flows through the transformer. The subsequent rise is due to increases in the 

amount of time the network becomes an exporter of electricity, meaning the total 

power flows through the transformer will rise; just that much of the power will now 

be flowing in the opposite direction. As for the branch losses, for evenly spaced 

micro-CHP, power flows are initially reduced before increasing again as more 

electricity is generated locally. In the case of fuel cell micro-CHP being bunched at 

one end of the network, the losses are more linear. While bunched up fuel cell micro-

CHP significantly reduces the power flows to those parts of the network where it is 

present, this is mitigated by a considerable amount of the generated electricity 

flowing to other areas of the network, leading to a more gradual reduction in the total 

amount of power flowing around the network. 

 

Figure 5.4 Total annual branch losses on the network. Changes in the 

amount of energy lost on the wires and cables of the network over an entire 

year, for different amounts of homes having micro-CHP. 
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Figure 5.5 Total annual transformer losses on the network. Changes in the 

amount of energy lost across the network transformer over an entire year, for 

different amounts of homes having micro-CHP. 

5.2.4 Impacts of micro-CHP on the network transformer 

Two metrics are used to understand the impacts of micro-CHP on the transformer: (i) 

the number of minutes in the year the transformer spends being overloaded; and, (ii) 

the maximum power flow through the transformer. 

The modelled transformer has a power rating of 1 MVA. Exceeding this rating leads 

to overheating and degradation of the transformer, which shortens its operational 

lifespan. The impacts of micro-CHP on both of metrics is generally beneficial. As 

seen in Figures 5.6 and 5.7, the presence of micro-CHP, either fuel cells or Stirling 

engines, causes a steady decline in both the number of minutes of overload and the 

maximum power through the transformer, with the decline being steeper in the case 

of fuel cell micro-CHP. This decline will be due to the presence of micro-CHP 

reducing demand for grid electricity, and especially reducing instances of high 

demand for grid electricity (as seen in Section 3.3.1) which are most likely to put 

strain on the transformer. This indicates that the presence of micro-CHP on the 

network could extend the operational lifespan of the transformer by reducing the 

strain on it. 
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Figure 5.6 Instances of transformer overload with micro-CHP on the 

network. Changes in the amount of time the network transformer spends being 

overloaded, for different amounts of homes having micro-CHP. 

 

Figure 5.7 Maximum power flow through the transformer with micro-CHP 

on the network. Changes to the maximum power through the transformer, for 

different amounts of homes having micro-CHP. 
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to the wider grid. Figure 5.8 shows how instances of export increase as the number 

of homes with micro-CHP increases. Stirling engine micro-CHP causes relatively 

few instances of export. Even when all homes have Stirling engine micro-CHP, the 

network spends less than 10% of the year exporting electricity. Fuel cell micro-CHP 

has much more of an impact, and when all homes have fuel cell micro-CHP, the 

network spends over 75% of the year being a net exporter of electricity. The only 

impact of this export identified by the model would be an increase in transformer 

losses due to “reverse” power flows across the transformer, accounted for in the 

transformer losses, which have already been examined in Section 5.2.3. The export 

of electricity may have impacts further upstream on the wider electricity network 

which are not captured in the modelling process used in this research. 

 

Figure 5.8 Amount of time a network with different levels of micro-CHP 

exports electricity.  
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Losses on the network, power flows through the transformer and net export from the 
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are minor and the maximum and minimum voltage levels are unaffected. 
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Only the instances of voltage exceeding regulations are affected, as shown in Figure 

5.9 and 5.10. Here it can be seen that although starting from the same baseline, the 

presence of micro-CHP on the network reduces instances of voltage drop by slightly 

less at low levels of micro-CHP, but slightly more at high levels of micro-CHP, 

though the change is only of the order of a few minutes of the year, and thus 

relatively small.  

 

Figure 5.9 Comparison between fixed and variable tap networks for 

instances of voltage drop for Stirling engine micro-CHP.  
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Figure 5.10 Comparison between fixed and variable tap networks for 

instances of voltage rise for Stirling engine micro-CHP. 

5.4 Comparison with another network 
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although for the Darlington Melrose network the values are generally lower than for 

the Maltby network.  

For example, Table 5.3 shows changes in voltage drop when micro-CHP is present 

on the networks. Both networks see similar proportional falls in instances of voltage 

drop when micro-CHP is present, although as a percentage of the baseline value, the 

fall is greater for the Darlington Melrose network.  

Darlington 
Stirling engines 

Maltby 
Stirling 
engines 

Darlington 
Fuel Cells 

Maltby 
Fuel Cells 

0% 14 26 14 26 

50% 9 19 2 6 

100% 4 14 0 2 

Table 5.2 Comparison of instances of voltage drop on the Maltby and 

Darlington Melrose networks. 

The reason for the reduced impact of micro-CHP on the Darlington network is most 

likely its smaller size. Reduced overall demand and shorter distances for electricity 

to travel to reach homes will contribute to reduced instances of voltage drop and 

reduced network losses. The reduced overall demand will also lead to lower stress on 

the transformer. Although the transformer is also smaller than is on the Maltby 

network, the reduction in demand will still lead to less instances of overload as the 

demand is reduced by more than the capacity of the transformer, the transformer on 

the Darlington Melrose network is 20% smaller than on the Maltby network, while 

Darlington Melrose has 25% fewer homes. 

5.5 Discussion 

The outputs from the model indicate that the biggest impact of micro-CHP is in 

reducing losses on the network. Stirling engine micro-CHP causes a linear decrease 

in losses as the amount of micro-CHP on the network is increased, with branch and 

transformer losses eventually reducing by 30% compared to the baseline when all 

homes on the network have installed micro-CHP.  

Fuel cell micro-CHP has a bigger impact on network losses than Stirling engine 

micro-CHP, though the reduction in losses follows a different profile as fuel cell 

micro-CHP is installed. When fuel cell micro-CHP is bunched together at the end of 
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the network, there is a linear reduction in losses as more micro-CHP is installed, 

similar to what occurs with Stirling engine micro-CHP. When fuel cell micro-CHP is 

evenly distributed across the network, losses initially decline, until 60% of the 

network has fuel cell micro-CHP, after which losses rise again. At 60% of the 

network having micro-CHP losses are reduced by 63%, though this rises to just a 

30% reduction when all homes have fuel cell micro-CHP. 

5.5.1 Does high temporal resolution data provide more insight 
than lower resolution data? 

This question was already examined to some extent in chapter 3 (Section 3.4). Here 

the effects of aggregating data will be examined further, by looking at the differences 

to the results from the network modelling when using half-hourly and ten-minute 

data.  

5.5.1.1 Half-hourly data 

When using half hour data, there are far fewer instances where voltage exceeds 

regulations. There are no instances of voltage drop in scenarios when using half-

hourly data. The maximum voltage levels when using half-hourly data are similar to 

those seen in the one-minute data, but the minimum voltage levels are higher (by 

about 0.08 PU) when using the half hour data, and the changes due to the presence of 

micro-CHP are not as great. Thus the half hour data captures less of the impacts of 

micro-CHP on network voltage levels. 

Losses on the network show the same overall trend as in the one minute case, but the 

actual numbers are 24-28% lower (depending on the scenario) than in the one-minute 

case. This is likely because the half-hourly data does not capture the highest 

instances of demand that the one minute data does, and it is these instances of high 

demand that cause the most losses on the network. 

The impacts on the transformer are also lower when using the half-hourly data, there 

are no instances where the transformer is overloaded, and the maximum power 

through the transformer is considerably lower, though is similarly reduced by the 

presence of micro-CHP; as with the network losses, this difference is due to the half 

hour data not capturing the highest instances of demand as the one minute data does. 
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The export follows a similar trend as with the one minute data, and the amount of 

time the network spends exporting electricity is similar when using one minute data; 

but the total amount of exported electricity does change. The total amount of export 

is reduced when using half-hourly data instead of one-minute data, with the size of 

the reduction declining as the total amount of generation, and thus export, increases. 

When half the homes deploy Stirling engine micro-CHP there is a 72% decline in 

annual export, which falls to 5% when all homes deploy fuel cell micro-CHP. 

5.5.1.2 Ten-minute data 

As with the half-hourly data, when using ten-minute data there were no instances 

where voltage levels dropped below regulations. The maximum voltage level is 

similar to that seen in the one-minute and half-hourly data. The minimum voltage 

levels are slightly lower when using ten-minute data than when using half-hourly 

data, but still higher than when using the one-minute data (by about 0.6 PU). Thus as 

with the half-hourly data, the ten-minute data gives less information on the impacts 

of micro-CHP on voltage levels. 

The network losses follow the same trend, but the actual losses are a 21-24% lower 

(depending on the scenario) than when using the one-minute data, but still higher 

than when using the half-hourly data. This will be for the same reason, that the ten-

minute data does not capture the instances of highest demand, which cause the most 

losses, as the one-minute data does. 

Impacts on the transformer are also reduced when using 10 minute data. At no point 

is the transformer overloaded, and the maximum power through the transformer is 

reduced, though not by as much as when using the half hour data; this is due to the 

ten-minute data not showing the periods of highest demand as the one-minute data 

does. 

The network export follows the same trend as when using the one minute data, and 

the amount of time the network spends exporting electricity is similar when using 

both ten-minute  and one minute data. As with the half-hourly data, the total annual 

export is reduced when using ten-minute data instead of one-minute data, and the 

reduction declines as generation increases, starting at a 44% reduction when half of 

homes deploy Stirling engine micro-CHP, and falling to a 3% reduction when all 

homes deploy fuel cell micro-CHP. 
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5.5.2 Comparison with the literature 

Of the papers looking at micro-CHP and networks discussed back in Chapter 2 

(Section 2.4.3). One performed similar research to what is presented in this chapter.  

Thomson and Infield (2007) examined the effects of installing micro-CHP and solar 

PV on  network voltage levels. They used 1.2 kWe micro-CHP devices and 2.16 kWp 

solar PV devices on a model comprising of six distribution networks. The parameters 

they examined were the mean peak voltages during typical winter and summer days, 

averaged over all connection points.  

The peak summer voltage can be compared with the maximum voltages found in this 

research. The summer voltage is used from their research as in all cases it was higher 

than the peak winter voltage, and thus would be the overall maximum voltage. For 

micro-CHP they examined scenarios where 0, 23% and 100% of the homes had 

micro-CHP. Although their research used voltage values in volts, these can simply 

be converted to per unit voltages by dividing over the rated voltage. In the three 

cases the maximum voltage was found to be 1.07 PU, 1.072 PU and 1.075 PU. The 

maximum voltages found in this research for similar amounts of micro-CHP were 

1.055 PU, 1.059 PU and 1.07 PU.  Therefore their baseline case shows a higher 

maximum voltage, potentially due to lower demands relative to the size of the 

network. But it also shows a similar maximum voltage when all homes have micro-

CHP and also shows a gradual increase in maximum voltage levels when micro-CHP 

is present on the network. The increase is smaller in their case, but this may be due 

to their higher baseline voltage. 

Their research did differ from that presented here in that they found that having 

100% Stirling on the network lead to voltages that exceeded +10% of the rated 

voltage. It is possible that this can be accounted for by their higher baseline voltage, 

meaning the presence of distributed generation raises voltages to higher levels. 

Alternatively it could just be that in their simulated data, Stirling engine micro-CHP 

generates more electricity than in the field trial data used here; recall that in chapter 

3, Figure 3.8 showed that, on average, Stirling engines in the trial spent very little 

time generating more than 600 W, and no time at their maximum output of 1 kW. 

What was not examined in their research was the number of instances of voltage rise. 

The literature on micro-generation has a tendency to focus on the metrics at times of 



Potential impact of micro-generation on electricity distribution networks 

 

116 

peak demand and generation. However this research looks at instances of voltage 

rise over the entire year as well as peak voltages, and has found that the presence of 

Stirling engines and especially micro-CHP can substantially increase instances of 

voltage rise, even if they cause only a small increase in peak voltage levels. This is 

potentially a significant impact for the operation and stability of networks which is 

not examined elsewhere in the literature. 

Ackermann and Knyazkin (2002) discussed potential impacts of distributed 

generation on networks. One possible impact they analysed was the impact on 

network losses. They performed an algebraic analysis of the impacts distributed 

generation might have on network losses and found that as long as distributed 

generation output is less than approximately double the load on the network losses 

will be reduced. Note this relationship is for the power output/demand and power 

losses at a specific point in time. This relationship can be examined using the data 

generated in this research. If their approximation holds true, then there should be a 

strong positive correlation between times that generation on the network exceeds 

twice the demand and times that losses are increased (compared to a case with no 

micro-generation). This can be done for fuel cell micro-CHP, when 50% of homes 

deploy micro-CHP, the correlation coefficient between times when generationis 

more than double demand and times when losses are increased is 0.79. When all 

homes deploy fuel cell micro-CHP, the correlation coefficient is 0.86. Both these 

values indicate strong positive correlation, consistent with the approximate 

relationship defined by Ackermann and Knyazkin (2002). 

5.6 Chapter Summary 

The aim of this chapter was to assess the potential impacts of different deployment 

levels of micro-CHP on electricity distribution networks, in order to determine if the 

deployment of micro-CHP would be beneficial or detrimental to the operation and 

stability of electricity distribution networks. To that end, four key metrics were 

examined: voltage levels on the network, energy losses on the network and the 

transformer, stress on the local transformer, and the amount of time the network as a 

whole spends exporting electricity. 

Stirling engine micro-CHP has some beneficial impacts on the network through 

reducing losses and reducing excess power flows through the transformer. Fuel cell 
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micro-CHP also benefits the network through reducing losses and excess power 

flows through the transformer, in both cases potentially by more than Stirling engine 

micro-CHP does. Neither technology has any significant detrimental impacts on the 

network. 
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6 NETWORK IMPACTS FOR 

COMBINATIONS OF SOLAR 

PV, HEAT PUMPS AND 

MICRO-CHP 

6.1 Chapter Introduction 

In this chapter, the IPSA model is used in an attempt to answer the research 

questions 'How are these impacts likely to compare with those of solar PV and heat 

pumps?’ and ‘What are the consequences of deploying combinations of both micro-

CHP and other technologies on the same distribution network?' The scenarios feature 

varying amounts of heat pumps and solar PV, and different combinations of micro-

CHP (either fuel cell or Stirling engine) and heat pumps or solar PV. 

The results from the model for solar PV, both with and without micro-CHP, are 

examined (Section 6.2). This is followed by a similar examination of the results for 

heat pumps (Section 6.3). Then, there is an examination of if and how the results 

may change if the network uses a variable tap transformer as opposed to a fixed tap 

transformer, and an exploration of how the results may change beyond the Maltby 

network by repeating the analysis on the Darlington Melrose network (Section 6.4). 

The results are then compared to those from similar research in the literature 
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(Section 6.5). Finally, the results are summarised and some of the implications they 

have for the operation of electricity distribution networks are discussed (Section 6.6). 

6.2 Impacts of solar PV on distribution networks 

This section investigates the potential effects of domestic scale solar PV on 

distribution networks, to see both how they compare to the effects of micro-CHP, 

and how the effects of solar PV are affected by the additional presence of micro-

CHP on the network.  

A variety of scenarios were examined, firstly four solar PV only scenarios, where 

25%, 50%, 75% and 100% of the homes on the network are examined. Then for each 

of these four solar PV scenarios, four levels of micro-CHP were added (again 25%, 

50%, 75% and 100%), for each of the two types of micro-CHP. Thus giving a total 

of 36 scenarios being analysed (four solar PV only scenarios, sixteen solar PV and 

Stirling engine micro-CHP scenarios, and sixteen solar PV and fuel cell micro-CHP 

scenarios). 

6.2.1 Impacts of solar PV on network voltage levels 

As can be seen in Table 6.1, solar PV slightly reduces instances of voltage drop, 

though not by as much as either Stirling engine or fuel cell micro-CHP. The reduced 

impact is due to the fact that all instances of voltage drop occur during time of peak 

demand in November and December, when solar PV is generating little to no 

electricity. Of more concern are the impacts of solar PV on voltage rise. Table 6.1 

also shows that solar PV can have a large impact on instances of voltage rise. Solar 

PV can, in sufficient quantities, causes the network to exceed the +10% limit. Half 

the homes having solar PV causes the network to exceed the limit for a few minutes 

of the year, and 75% and 100% of homes having solar PV causes the network to 

exceed the limit for 1.6% and 5.3% of the year. This would indicate that large 

amounts of solar PV on a single network can have considerable destabilising effects, 

through increasing instances of voltage rise. 

Minimum voltage levels are slightly increased (by up to 0.02 PU) by the presence of 

solar PV, but maximum voltage levels are increased almost linearly as the amount of 

solar PV on the network increases, by up to a total of 0.09 PU. 
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Percentage of 
homes with solar 
PV 

Minutes 
of voltage 
under 0.94 
PU 

Minutes 
of voltage 
over 1.1 
PU 

Maximum 
voltage 
(PU) 

Minimum 
voltage 
(PU) 

0% 26 0 1.05 0.91 

25% 24 0 1.08 0.92 

50% 22 2 1.1 0.93 

75% 20 8780 1.12 0.93 

100% 20 27880 1.14 0.93 

Table 6.1 Impacts of solar PV on network voltage levels. 

The results from the model indicate that the effects of solar PV on voltage levels 

could have considerable impacts on the operation of distribution networks. The 

increase in instances of voltage rise caused by the presence of solar PV may 

necessitate network reinforcement and changes to the way networks are operated in 

order to minimise instances of voltage rise. 

6.2.2 Impacts of solar PV on network losses 

At low levels of solar PV on the network, the losses are slightly reduced, but not by 

as much as micro-CHP, as shown in Figure 6.1. However; as more homes on the 

network have solar PV, the losses increase. The losses with high amounts of solar 

PV rise above the amount of losses in the baseline case; eventually increasing the 

total losses by 13.6 MWh, a 60% increase, when all homes deploy solar PV. 

Compare these losses with those of micro-CHP scenarios which were always 

reduced, compared to the baseline case. This increase is due to the considerable 

amounts of electricity being generated by the solar PV flowing around the network 

and upstream through the transformer. 
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Figure 6.1 Total annual losses on the network when solar PV is present. 

Changes to the branch and transformer losses when solar PV is present on the 

network. 

6.2.3 Impacts of solar PV on the transformer 

Solar PV does not affect the maximum power through the transformer; this would be 

due to the solar PV not generating electricity when the load on the transformer is 

greatest. However, there is a slight impact on the number of minutes for which the 

transformer is overloaded. Solar PV does reduce instances of transformer overload 

but only by a third, at most. Not by as much as either Stirling engine (which reduces 

it by two thirds) or fuel cell micro-CHP (which almost eliminates it). The reduced 

impacts will be due to the moments when the transformer being overloaded 

occurring when there is high demand on the network, which in the UK is most likely 

to be winter evenings, which is also when the solar PV will be generating little to no 

electricity due to an absence of sunlight. This would indicate that solar PV has lower 

benefits for the network transformer than either micro-CHP technology. 

6.2.4 Impacts of solar PV on network export 

The presence of solar PV on the network causes the network to spend a considerable 

amount of time exporting electricity, much more than a network with Stirling engine 

micro-CHP does, but less than half as much time as a network with a similar amount 

of fuel cell micro-CHP does. 
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6.2.5 Impacts of solar PV in conjunction with micro-CHP 

Micro-CHP and solar PV in conjunction will reduce instances of voltage drop more 

than either does in isolation, as shown in Figures 6.2 and 6.3. Though at high levels 

of micro-CHP, increasing solar PV has little impact. 

 

Figure 6.2 Instances of voltage drop when both solar PV and Stirling engine 

micro-CHP are present on the network. How different levels of Stirling engine 

micro-CHP on the network change the impacts of solar PV. 

 

Figure 6.3 Instances of voltage drop when both solar PV and fuel cell micro-

CHP are present on the network. How different levels of fuel cell micro-CHP on 

the network change the impacts of solar PV. 
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Stirling engine micro-CHP slightly increases instances of network rise, but only by a 

small amount compared to solar PV in isolation. Figure 6.4 shows that fuel cell 

micro-CHP can considerably increase the already high instances of voltage rise. Here 

when half the homes on the network have fuel cell micro-CHP it doubles the 

instances of voltage rise compared with solar PV in isolation, and when all homes 

have micro-CHP the instances of voltage rise are more than tripled.  

The maximum voltage level is raised slightly by the presence of micro-CHP, with 

micro-CHP raising the voltage level by 0.02-0.03 PU, much as it does without solar 

PV. Minimum voltage levels are unaffected by solar PV and micro-CHP has the 

same impact on the minimum voltage levels as it does on networks with no solar PV. 

 

Figure 6.4 Instances of voltage rise when both solar PV and fuel cell micro-

CHP are present on the network. How different levels of fuel cell micro-CHP on 

the network change the impacts of solar PV on the amount of time voltages on 

the network spend above regulation limits. 
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CHP deployment to moderate levels (50% & 75%), leads to losses being reduced at 

low levels of solar PV, and increased at high levels of solar PV. Further increasing 

deployment to all homes, almost always increases the losses compared to when there 

is solar PV with no micro-CHP. Overall, at low levels of micro-CHP generation, 

losses are reduced, but at higher levels, micro-CHP compounds the losses of solar 

PV. What is going on in the network is that, generally, micro-CHP is always 

reducing losses during times of high demand and low solar generation (i.e. winter) 

but increasing losses during times of high solar PV generation, and when micro-CHP 

generation gets high, the increase in losses during times of high solar generation 

starts to exceed the reduction in losses during times of low solar generation, which 

leads to an overall increase in losses on the network, leading to the trends seen in 

Figures 6.8 and 6.9. 

 

Figure 6.5 Branch losses when Stirling engine micro-CHP and solar PV are 

present on the network. How different levels of Stirling engine micro-CHP on 

the network change the impacts of solar PV on the network branch losses. 
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Figure 6.6 Transformer losses when Stirling engine micro-CHP and solar 

PV are present on the network. How different levels of Stirling engine micro-

CHP on the network change the impacts of solar PV on the network 

transformer losses. 

 

Figure 6.7 Branch losses when fuel cell micro-CHP and solar PV are present 

on the network. How different levels of Stirling engine micro-CHP on the 

network change the impacts of solar PV on the network branch losses. 
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Figure 6.8 Transformer losses when fuel cell micro-CHP and solar PV are 

present on the network. How different levels of fuel cell micro-CHP on the 

network change the impacts of solar PV on the network transformer losses. 

When it comes to stresses on the transformer, with the maximum power level being 

unchanged by the presence of solar PV, the presence of micro-CHP on the network 

as well just changes this as it would on networks with no solar PV. The number of 

minutes for which the transformer is overloaded are reduced by the presence of 

micro-CHP alongside solar PV (as seen in Figures 6.9 and 6.10), except in the 

instance where all homes on the network have both fuel cell micro-CHP and solar 

PV, at which point the amount of transformer overload rises again, though is still 

considerably lower than in the baseline case. This increase is likely due to the sheer 

amount of electricity now being exported upstream, as a result of both solar PV and 

fuel cell micro-CHP, starting to overload the transformer periodically. 
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Figure 6.9 Instances of transformer overload when both Stirling engine 

micro-CHP and solar PV are present. How different levels of Stirling engine 

micro-CHP on the network change the impacts of solar PV on the network 

transformer losses. 

 

Figure 6.10 Instances of transformer overload when both fuel cell micro-CHP 

and solar PV are present. How different levels of fuel cell micro-CHP on the 

network change the impacts of solar PV on the network transformer losses. 
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The amount of time the network spends exporting electricity is increased by the 

presence of micro-CHP alongside solar PV. For Stirling engine micro-CHP while the 

amount of network increases with the amount of Stirling engine micro-CHP, the 

overall trend as solar PV is increased remains similar. With fuel cell micro-CHP as 

more units are installed on the network, the presence of solar PV has less of an 

impact on the amount of time the network spends exporting electricity, mainly due to 

the fact that with fuel cell micro-CHP the network already spends most of the year 

exporting electricity. 

Overall, the presence of micro-CHP on a network which already has solar PV can 

worsen the effects of solar PV on voltage rise. It can also have mixed impacts on the 

network losses (depending on the levels of micro-CHP and solar PV), and have 

beneficial impacts on power flows through the transformer, except at high levels of 

both solar PV and fuel cell micro-CHP. 

6.3 Impacts of heat pumps on distribution networks 

This section investigates the potential effects of heat pumps on distribution 

networks, to see both how they compare to the effects of micro-CHP, and how the 

effects of heat pumps are affected by the additional presence of micro-CHP on the 

network.  

As with solar PV, a variety of scenarios were examined, firstly four heat pump only 

scenarios, where 25%, 50%, 75% and 100% of the homes on the network install heat 

pumps. Then for the first scenario (25% heat pumps), three levels of micro-CHP 

(25%, 50%, 75%) were added for each of the two micro-CHP technologies. Note 

there is no 25% heat pump and 100% micro-CHP scenario as it is assumed that 

homes would only install one technology as they both provide low-carbon heat. For 

the 50% heat pump scenario, two levels of micro-CHP are added (25% and 50%), 

and for the 75% heat pump scenario, one level of micro-CHP is added (25%), for 

each of the two technologies. This gives a total of sixteen scenarios examined: four 

heat pump only scenarios, six scenarios with heat pumps and Stirling engine micro-

CHP and six scenarios with heat pumps and fuel cell micro-CHP. 
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6.3.1 Impacts of heat pumps on voltage levels 

Figure 6.11 shows that heat pumps can increase the amount of time voltage levels on 

the network fall below the -6% regulation limit. Instances of voltage falling below 

0.94 PU more than triple (compared to the base case) if 50% of the network has heat 

pumps, and increase more than eightfold when all homes on the network have heat 

pumps. When all homes on the network have heat pumps, the voltage level even 

drops below the -10% limit for 14 minutes of the year. These changes will be due to 

the additional electricity demand that heat pumps place on the network driving down 

voltage levels, and as a result of these changes network operators will likely have to 

reinforce the network in the presence of heat pumps. These impacts of heat pumps 

on instances of voltage drop are lower than the impacts of micro-CHP (especially 

fuel cell micro-CHP) and solar PV on instances of voltage rise. This would suggest 

that the network is better able to accommodate increases in demand than the 

presence of micro-generation, at least from a voltage level perspective. 

 

Figure 6.11 Instances of voltage drop when heat pumps are present on the 

network. Showing changes to the number of minutes for which voltage on the 

network falls below regulation limits. 

6.3.2 Impacts of heat pumps on network losses 

As shown in Figure 6.12, heat pumps increase losses on both the wires and 

transformer on the network, in comparison to micro-CHP which lowers these losses. 

When all the homes on the network have heat pumps, the losses are increased by 32 

MWh, for comparison the best reduction in network losses achieved by (fuel cell) 

micro-CHP is 16 MWh.  As with the voltage levels, this increase is due to the extra 

electricity demand heat pumps place on the network. 
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Figure 6.12 Changes to losses on the network when heat pumps are present. 
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Figure 6.13 Instances of transformer overload when heat pumps are present 

on the network. 

 

Figure 6.14 Maximum power flow through the transformer when heat pumps 

are present on the network. 

6.3.4 Impacts of heat pumps in conjunction with micro-CHP 

Figures 6.15 and 6.16 show that both Stirling engine and fuel cell micro-CHP reduce 

instances of voltage drop in a similar fashion, though fuel cells produce a greater 

reduction, when heat pumps are present on the network. With higher levels of micro-

CHP and lower levels of heat pumps, instances of voltage drop are still reduced 

compared to the baseline case. Micro-CHP causes the same amount of increase to the 

minimum voltage levels; though, in the case of high levels of heat pumps, the 

increase is from a lower level. These changes in the instances of voltage drop will be 

due to the generation from micro-CHP, offsetting the additional demand of heat 

pumps. 
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Figure 6.15 Instances of voltage drop when Stirling engine micro-CHP and 

heat pumps are present on the network. How different levels of Stirling engine 

micro-CHP adjust the changes caused by heat pumps to the amount of time 

voltages on the network are below network limits. 

 

Figure 6.16 Instances of voltage drop when fuel micro-CHP and heat pumps 

are present on the network. How different levels of fuel cell micro-CHP adjust 

the changes caused by heat pumps to the amount of time voltages on the 

network are below network limits. 
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The losses on the network are reduced by the presence of micro-CHP. Stirling 

engines will only slightly reduce the losses on the network compared to cases with 

just heat pumps, and in all scenarios with heat pumps and Stirling engine micro-

CHP, losses are higher than the baseline case. Fuel cells reduce losses by more than 

Stirling engines do, by around 30-50%, as shown in Figures 6.17 and 6.18. Losses in 

most cases with both heat pumps and fuel cell micro-CHP are less than those in the 

baseline network, until at least 75% of the homes have heat pumps, at which point 

losses are still higher than the baseline case even when micro-CHP is also present. 

 

Figure 6.17 Branch losses when fuel cell micro-CHP and heat pumps are 

present on the network. How different levels of fuel cell micro-CHP adjust the 

changes caused by heat pumps to the branch losses on the network. 
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Figure 6.18 Transformer losses when fuel cell micro-CHP and heat pumps 

are present on the network. How different levels of fuel cell micro-CHP adjust 

the changes caused by heat pumps to the transformer losses on the network. 

As with other parameters, the impacts of heat pumps on the transformer are 

mitigated by the presence of micro-CHP on the network, with fuel cell micro-CHP 

causing a greater change than Stirling engine micro-CHP. Once again at low levels 

of heat pumps and higher levels of Stirling engines, minutes of transformer overload 

(Figure 6.19) are reduced compared to a network with no micro-generation, and in 

all other scenarios with heat pumps and Stirling engine micro-CHP the minutes of 

overload are increased relative to a network with no micro-generation. Conversely; 

with fuel cell micro-CHP and heat pumps, the minutes of transformer overload 

(Figure 6.20) are reduced if at least 50% of homes on the network has fuel cell 

micro-CHP or if only 25% of homes have heat pumps and another 25% have fuel 

cell micro-CHP; if more than 25% of homes have heat pumps and 25% or less 

homes have fuel cell micro-CHP instances of overload are increased. The maximum 

power through the transformer is reduced by the presence of micro-CHP, by a 

consistent amount compared to all scenarios with just heat pumps. Stirling engines 

reduce it by up to 150 kW, and fuel cells reduce it by up to 250 kW. 
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Figure 6.19 Instances of transformer overload when Stirling engine micro-

CHP and heat pumps are present on the network. How different levels of 

Stirling engine micro-CHP adjust the changes caused by heat pumps to the 

amount of time the network transformer is overloaded. 

 

Figure 6.20 Instances of transformer overload when fuel cell micro-CHP and 

heat pumps are present on the network. How different levels of fuel cell micro-

CHP adjust the changes caused by heat pumps to the amount of time the 

network transformer is overloaded. 
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voltage rise caused by micro-CHP. Micro-CHP can also reduce the effects of heat 

pumps on network losses and power flows through the transformer. 

6.4 Impacts on different network setups 

As in the previous chapter (Sections 5.3 & 5.4), it will be beneficial to examine the 

results when the model uses differing networks. Two alternate network setups are 

here examined: the results from the Maltby network if it were to have a variable tap 

transformer, and the results from the Darlington Melrose network. 

6.4.1 Solar PV and heat pump results on a variable tap network 

When solar PV was tested on a variable tap network, the only results that changed 

were the voltage levels (much the same as with micro-CHP).  Table 6.2 shows the 

changes to instances of voltage drop and rise when comparing fixed and variable tap 

networks. Instances of voltage drop are almost unchanged. Instances of voltage rise 

are considerably different. The number of minutes for which voltage levels exceed 

the +10% limit are considerably reduced, by almost 100% in the 75% solar PV 

scenario and by 82% in the 100% solar PV scenario. This would suggest (as the 

micro-CHP results did) that variable tap transformers can mitigate the impacts of 

micro-generation on instances of voltage rise. 

Fixed Tap   Variable Tap 

Minutes 
voltage is 
under 0.94 
PU 

Minutes 
voltage is 
over 1.1 PU 

Minutes 
voltage is 
under 0.94 
PU 

Minutes 
voltage is 
over 1.1 PU 

0% 26 0 26 0 

25% 24 0 24 0 

50% 22 2 21 0 

75% 20 8680 20 3 

100% 20 27900 20 5090 

Table 6.2 Instances of voltage drop and rise on variable and fixed tap 

networks for different percentages of homes having solar PV. 

For heat pumps, when using a variable tap network rather than a fixed tap network 

there are almost no changes to instances of voltage drop (there are no instances of 

voltage rise in either case). The one minor change is in the 25% heat pump scenario 
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where the number of minutes the voltages on the network spend below the -6% limit 

is reduced by one, from 38 to 37 minutes. 

6.4.2 Solar PV and heat pump results on the Darlington Melrose 
network 

Table 6.3 shows the differences in results from the network modelling, for solar PV, 

between the Maltby and Darlington Melrose networks. As with the comparison of 

micro-CHP in the previous chapter (Section 5.5), the changes to both networks 

follow a similar trend as the presence of solar PV on the networks is increased; 

though the results for the Darlington Melrose network are lower than those for the 

Maltby network. As stated in the previous chapter, the slightly lower results on the 

Darlington Melrose network are due to its smaller size compared to the Maltby 

network. 

 

Baseline 50% Solar   100% Solar 

Darlington Maltby Darlington Maltby Darlington Maltby 

Minutes of Voltage over 
regulations (1.1 PU) 0 0 0 2 4652 5090 

Minutes of Voltage under 
regulations 14 26 12 22 12 20 

Max Power through 
transformer 980 1330 980 1310 980 1310 

Minutes of Transformer 
overload 13 30 11 18 11 18 

Max Voltage 1.04 1.05 1.07 1.1 1.11 1.14 

Min Voltage 0.92 0.88 0.92 0.9 0.92 0.9 

Total branch loss (MWh) 8.1 10.6 7.1 8.4 12.4 14.8 

Total transformer loss 
(MWh) 7.5 15.2 6.6 12 11.1 21.4 

Table 6.3 Results from the model for the Darlington Melrose and Maltby 

networks when solar PV is present. 

As with solar PV and micro-CHP, when heat pumps are present, both networks show 

similar trends in the results, as shown in Table 6.4. Again the values of the results on 

the Darlington Melrose network are consistently lower than those on the Maltby 
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network. As before this difference can be attributed to the smaller size of the 

Darlington Melrose network. 

 

Baseline 50% Heat Pumps 100% Heat Pumps 

Darlington Maltby Darlington Maltby Darlington Maltby 

Minutes of Voltage 
over regulations (1.1 
PU) 0 0 0 0 0 0 

Minutes of Voltage 
under regulations 14 26 36 77 90 180 

Max Power through 
transformer 980 1330 1080 1440 1180 1570 

Minutes of 
Transformer overload 13 30 35 62 90 140 

Max Voltage 1.04 1.05 1.04 1.05 1.04 1.05 

Min Voltage 0.92 0.91 0.9 0.9 0.89 0.88 

Total branch loss 
(MWh) 8.1 10.6 12.6 14.5 18.8 21.9 

Total transformer loss 
(MWh) 7.5 15.2 11.7 20.7 17.4 31.1 

Table 6.4 Results from the Darlington Melrose and Maltby networks when 

heat pumps are present. 

6.5 Discussion 

Solar PV and heat pumps are both shown to have considerably greater effects on 

networks than micro-CHP; having detrimental impacts due to instances of voltage 

rise in the case of solar PV, and power flows through the transformer in the case of 

heat pumps. Heat pumps also increased losses on the network, as did higher (>70%) 

penetrations of solar PV. Solar PV also causes the network to spend much time 

exporting electricity, though not as much as fuel cell micro-CHP does. The presence 

of micro-CHP alongside these other technologies can exacerbate the impacts of solar 

PV, but can mitigate the impacts of heat pumps. 

When heat pumps are present on the network they can have a considerable impact on 

power flows through the transformer. Heat pumps raise instances of transformer 

overload, beyond 1.5 times the rated capacity when 75% of homes install them. This 

would indicate that heat pumps may necessitate the installation of larger 
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transformers on networks where they are present. The presence of micro-CHP on the 

network can mitigate the impacts of heat pumps, reducing the effects on the 

transformer and network losses.  

Solar PV causes the network to spend some time exceeding the +10% limit. As with 

heat pumps, solar PV will likely necessitate reinforcement of the network to mitigate 

its impact on voltage levels. Solar PV can, at penetration levels over 75%, cause 

network losses to increase. These impacts are increased by the presence of micro-

CHP, only slightly in the case of Stirling engines, but substantially in the case of fuel 

cell micro-CHP, now instances of voltage rising above +10% exceed 5% of the year 

when at least 75% of the network has solar PV and at least 50% has fuel cell micro-

CHP. Solar PV may be of more concern to the smooth operation of the network than 

micro-CHP, due to its more promising uptake potential and just as high (compared to 

fuel cell micro-CHP) or higher (compared to Stirling engine micro-CHP) network 

impacts; though the impacts of fuel cell micro-CHP when it is present on networks 

alongside solar PV are also of concern for the operation of distribution networks. 

6.5.1 Comparison with the literature 

Solar PV has been more extensively examined in the literature than micro-CHP, one 

particular paper is of interest, as examines the impacts of solar PV on the same 

network examined in this research. Castro et al. (2014) examined the impact of solar 

PV on the Maltby distribution network. They used half hour data, and examined the 

impacts of solar PV on maximum voltage levels during the summer day of lowest 

demand. They found that the network can accommodate up to 30% of homes having 

solar PV without any voltage rise issues. This is similar to findings in this research 

which suggests that more than 25% of the network having solar could cause voltage 

rise issues.  

The previous chapter compared the micro-CHP results from this research with 

micro-CHP results from research in the literature that examined the impacts of 

micro-CHP and solar PV on distribution networks (Thomson and Infield, 2007). It is 

now possible to also compare the solar PV results, and the combined solar PV and 

micro-CHP results, with the results from that research. Thomson and Infield (2007) 

examined networks where 30% and 50% of the homes had solar PV. They compared 

the voltage levels against the EN50160 standard (±10%) and found that the 30% 
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solar PV penetration did not cause voltage rise issues, but the 50% solar PV 

penetration did. The research here also found that the 50% solar PV data pushed 

network voltages over the +10% limit. 

Thomson and Infield (2007) also looked at combing solar PV and Stirling engine 

micro-CHP on distribution networks, as this research did. They examined two 

combinations, 50% PV and 100% micro-CHP and 28% PV and 23% micro-CHP. 

The first of these combinations was also studied in this research, and the latter 

should be similar to the 25% PV 25% micro-CHP combination in this research. The 

first of their combinations led to voltages in excess of the +10% limit, they found 

that adding micro-CHP to a network which already had 50% PV caused the 

maximum voltage to rise by 1 V. The research here found that adding 100% micro-

CHP to a network with 50% PV led to a voltage rise of 2 V, a similar increase. Their 

second combination: 28% solar PV and 23% Stirling engine micro-CHP did not 

result in voltages exceeding the +10% limit, examining a 25% solar PV and 25% 

micro-CHP penetration in this research found the same result. 

Rogers et al. (2013) examined using micro-CHP to support the operation of heat 

pumps, focusing on transformer overload. They found that just 12.5% of the network 

having ASHPs would cause overload on the transformer. In this research there were 

instances of transformer overload even with no heat pumps, though it was found that 

25% of homes having heat pumps (the smallest penetration examined) would lead to 

instances of overload increasing by 30%. They also found that 63% of heat pumps 

and 38% Stirling engine micro-CHP produced no instances of transformer overload. 

This finding is contrary to the research presented here, where even having 50% heat 

pumps and 50% Stirling engine micro-CHP leads to a 70% increase in instances of 

overload. It may be that their simulated data showed a better correlation between 

times of peak micro-CHP generation and peak heat pump demand than the real 

world data used in this research, which would explain the discrepancy. 

Ackermann and Knyazkin (2002), as discussed in the previous chapter, found that as 

long as distributed generation output is less than approximately double the load on 

the network losses will be reduced. The correlation between instances of losses 

increasing and instances of generation being greater than double the demand was 

tested for solar PV, as it was for fuel cell micro-CHP, for penetrations of 50% and 

100%. With 50% solar PV the correlation coefficient between generation being more 
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than double the demand and network losses being increased was 0.8, and for 100% 

solar PV it was 0.85. Both indicating strong correlation conforming to the 

approximate relationship suggested by Ackermann and Knyazkin (2002). 

6.6 Chapter Summary 

The aim of this chapter was to assess the potential impacts of different deployment 

levels of solar PV and heat pumps on electricity distribution networks, both on their 

own and in combination with micro-CHP. In order to both compare the effects of an 

alternate low-carbon heating technology (heat pumps) and an alternate micro-

generation technology (solar PV) to those of micro-CHP, and to see how the 

presence of micro-CHP on the same network can change the effects of these 

technologies. 

Solar PV causes voltage levels on the network to rise beyond statutory limits. When 

50% or of homes on the network have solar PV, the network will spend some time in 

breach of the +10% limit. Network losses are initially lowered by the presence of 

solar PV, but as deployment increases they rise again, eventually exceeding the 

losses in the baseline case. The presence of micro-CHP (especially fuel cell micro-

CHP) on the network alongside solar PV can exacerbate the impacts of the latter on 

instances of voltage rise and network losses. 

The presence of heat pumps on the network could increase instances of voltage drop, 

though by less than micro-generation (both solar PV and micro-CHP) increases 

instances of voltage rise. They will also increase network losses, and can raise power 

flows through the transformer to concerning levels (i.e. >1.5 times the rated 

capacity). The presence of micro-CHP on the network alongside heat pumps could 

reduce their effects on voltage drop, network losses and power flows through the 

transformer. 
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7 SUMMARY 

This chapter summarises the overall conclusions of the thesis in Section 7.1. 

Following this, opportunities for future work are suggested in section 7.2. Then an 

overview of the key findings in section 7.3 concludes the work. 

7.1 Overall Summary 

Micro-CHP has been considered as a potential low-carbon heating source in the UK 

for at least the last two decades. It has seen uptake in Japan and commercial units are 

available in the UK. Though micro-CHP remains a fringe technology in the UK, and 

there is uncertainty regarding its uptake potential. Also uncertain are the economic 

benefits of micro-CHP to the household, the contribution micro-CHP can make to 

decarbonisation, and the impacts of micro-CHP on electricity networks. This 

research attempts to examine these uncertainties. 

Another micro-generation technology, solar PV, is also examined.  Having seen 

more uptake than micro-CHP, solar PV is a helpful technology to compare micro-

CHP against. There is also concern of the impacts of both micro-CHP and solar PV 

being present on the same network. 

As an alternative low-carbon heating technology, which could have impacts on the 

electricity network through increased demand, heat pumps were also examined. This 

was to find their impacts on the network and compare them to micro-CHP and to 

examine if the impacts of heat pumps could be mitigated by the presence of micro-

CHP, and vice versa. 
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7.1.1 Types of micro-CHP 

Stirling engines are a well established technology, and are expected to be the fastest 

growing micro-CHP technology in the short term (Hawkes and Leach, 2005, Hudson 

et al., 2011, Alanne et al., 2010). They have the advantage of high overall efficiency, 

but the disadvantage of low electrical efficiency, and hence a high heat to power 

ratio. Internal combustion engines are a similarly well established technology, and 

have better electrical efficiency than Stirling engines. Yet, they have a number of 

disadvantages (detailed in Section 1.1.2), and no commercial presence in the UK. 

For these reasons ICEs are not considered in this research. 

Fuel cells have high electrical efficiencies, and correspondingly low heat to power 

ratios. They are the subject of considerable research, and are seen as a promising 

long term micro-CHP technology. Though there are fuel cell micro-CHP devices 

commercially available, their prices remain high at around £14,000 (Harikishan R. 

Ellamla et al., 2015). The main disadvantage of fuel cells is that they operate best 

when they are constantly on, as frequent on/off switching will degrade the fuel cell. 

This means that fuel cells are best suited to providing base-load heat, which can be 

topped up by a supplemental boiler at times of high demand. 

7.1.2 Key questions over micro-CHP deployment 

The main issues surrounding the deployment of micro-CHP are the uncertainties 

over price and economic viability (Staffell and Green, 2012, Tokyo Gas Co. Ltd. and 

Panasonic Corporation, 2011, Alanne et al., 2010, Ren and Gao, 2010), which in turn 

will lead to uncertainties over uptake and penetration rates. The deployment of 

micro-CHP could have significant impacts on electricity distribution networks 

(Ackermann and Knyazkin, 2002, Acha et al., 2009, Aki et al., 2006), due to the 

export of electricity from properties with micro-CHP installed. Also of interest is 

how micro-CHP compares against other micro-generation, specifically solar PV, and 

if it compounds the impacts of that technology. Heat pumps also have the potential 

to impact electricity networks through increasing demand, which may be mitigated 

by micro-CHP. 

The research questions that have been developed are: 
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 How might micro-CHP affect the cost of heating and greenhouse gas 

emissions from households? 

 What impacts might micro-CHP have on distribution networks? 

 How are these impacts likely to compare with those of solar PV and heat 

pumps? 

 What are the consequences of deploying combinations of both micro-CHP 

and other technologies on the same distribution network? 

7.1.3 Data used in the thesis 

The Stirling engine, household demand, solar PV and heat pump data used in this 

research all came from field trials conducted as part of the CLNR project, and was 

minute-scale data. The fuel cell data was simulated based on the heat demand of the 

average UK house and the assumption that fuel cells would provide base-load heat, 

being run at a constant level of output rather than fluctuating to meet changing heat 

demands. The total annual electricity demand of homes in the trial was compared to 

the annual electricity demand of the average UK household, and was found to be 

within 3% of the latter value, suggesting that homes in the field trial roughly 

corresponded to the average UK household. This was further supported by the fact 

that the generation profile of the Stirling engine micro-CHP matched the heat 

demand profile of a typical UK house. 

7.1.4 Changing patterns of grid electricity import as a result of 
micro-CHP 

When analysing the data, the amount of time in the year that the household spends 

importing different levels of electricity from the grid was examined. While both 

Stirling engines and fuel cells reduce the amount of time the household spends at all 

grid electricity consumption levels (above zero, that is), both technologies also 

considerably reduce the amount of time spent at high levels of grid electricity 

consumption (i.e. electricity consumptions of over 1 kW). Also demonstrated is the 

difference between the two technologies when it comes to household export of 

electricity. A household with Stirling engine micro-CHP spends less than 10% of the 

year exporting electricity, while a household with fuel cell micro-CHP spends over 

75% of the year exporting electricity. 
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7.1.5 Examination of the factors that could influence micro-CHP 
uptake 

The economic benefit to the household of Stirling engine micro-CHP is £200 per 

year for the homes in the field trial. The economic benefit for the simulated fuel cell 

micro-CHP is £1250 per year. Both these benefits are dependent on tariff support. 

The annual savings lead to break even prices of £1,700 and £10,000 for Stirling 

engine and fuel cell micro-CHP respectively. The cost of a Stirling engine micro-

CHP unit used in the trial was £9,000, while fuel cell costs are estimated to be 

£14,000 (Harikishan R. Ellamla et al., 2015, Dodds and Hawkes, 2014). Fuel cells 

could fall to as low as £2,300 /kWh (Staffell and Green, 2012), resulting in savings 

to the household, over a ten year period, of over £7,500. It is important to note that 

the annual economic benefit is dependent on current government tariffs. Despite this, 

as long as fuel cell micro-CHP continues to receive similar monetary compensation 

for exported electricity as it does now, the break-even price would still be above the 

long term price of £2,300, even if generation tariffs were removed entirely; though in 

this case the 10-year savings would be in the order of a few hundred pounds. 

The annual economic benefits of heat pumps and solar PV were found to be £520 

and £910 respectively, for the homes in the field trials. This gives break even prices 

of £4,000 for heat pumps and £7,000 for solar PV. 

Given the total electricity and heat generation of micro-CHP, and the average grid 

carbon intensity in the year of the trial (which was 2013) it is found that Stirling 

engines avoid 233 kgCO2 emissions while fuel cells avoid 1835 kgCO2 emissions. 

However, as the grid is decarbonised this value will decline. Using 2015 grid carbon 

levels the savings are reduced to 135 kgCO2 and 1103 kgCO2 for Stirling engine and 

fuel cell micro-CHP respectively, and this will decline further as the UK's electricity 

supply is decarbonised. If micro-CHP were to use a carbon-neutral fuel supply, such 

as either biogas or hydrogen, then it would deliver greater carbon savings, and would 

continue to deliver savings until grid carbon intensity becomes zero (at which point 

the carbon savings of micro-CHP would also be zero).  

For comparison, heat pumps avoid 500 kgCO2 emissions per year, whilst solar PV 

avoids 1700 kgCO2 per year. Like with micro-CHP, the emissions savings from solar 

PV will decline as the electricity grid is decarbonised. The emissions savings from 

heat pumps, on the other hand, will increase as the electricity grid is decarbonised. 
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7.1.6 Conditions for micro-CHP uptake 

The key barrier to micro-CHP uptake is the high capital cost relative to the lifetime 

savings. In order for micro-CHP to see substantial uptake in the UK the capital costs 

would have to fall to below £1,500 /kWh for Stirling engines and £9,500 /kWh for 

fuel cells; ideally tariff support would remain in place, otherwise costs would have to 

fall further, to as low as £400 /kWh for Stirling engines and £1,000 /kWh for fuel 

cells if all tariffs are removed. Studies have shown that the cost of fuel cell micro-

CHP could fall below £9,000 by 2020, with some claiming costs as low as £4,500 by 

2020, making fuel cells economically viable given current tariffs (Staffell and Green, 

2012, Maru et al., 2010, Spendelow et al., 2011, Staffell, 2014). Suggested long term 

prices of £2,000 to £3,000, would see fuel cells be economically viable even with the 

complete removal of generation (but not export) tariffs.  

Problematically as prices fall and so the economic case for micro-CHP improves, the 

emissions reduction benefits for micro-CHP could decline, due to the 

decarbonisation of the electricity network. When comparing the savings from micro-

CHP using grid carbon intensity figures from 2013 and 2015 there is a marked 

decline; Stirling engine savings fall from 233 kgCO2 per annum to 135 kgCO2 per 

annum and fuel cell savings fall from 1835 kgCO2 per annum to 1103 kgCO2 per 

annum. If fuel cell micro-CHP continues to use natural gas as a fuel source, the UK's 

grid carbon factor would have to remain above 212 gCO2/kWh. While there has been 

a significant decline in grid carbon intensity in recent years to 370 gCO2/kWh in 

2015 from 440 gCO2/kWh in 2010 (Hart-Davis, 2016), this is mainly due to the 

phasing out of coal, suggesting reductions in grid carbon intensity will likely level 

off in the near future. Assuming that natural gas were the only remaining carbon 

intensive fuel source in the electricity generation mix, it would need to continue to 

provide at least 60% of the UK's grid electricity for fuel cell micro-CHP to continue 

reducing emissions. Alternatively, the development of a hydrogen economy and the 

use of carbon-neutral hydrogen as a fuel source for fuel cell micro-CHP would also 

result in continuing emissions reduction. Research into the development of a 

hydrogen economy in the UK has found that it can bring considerable benefits to the 

UK (Dodds and Hawkes, 2014, Steinberger-Wilckens et al., 2017, UKCCC, 2016, 

Dodds et al., 2015), but is in no way guaranteed. 
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7.1.7 Developing a method to test the network 

Analysis of the literature identified three key network properties that may be affected 

by micro-generation and low-carbon heating: voltage levels, network losses and  

transformer overload (Acha et al., 2009, Ackermann and Knyazkin, 2002, Infield et 

al., 2007, Thomson and Infield, 2007, Rogers et al., 2013). Changes to voltage 

levels, leading to increased instances of voltage drop or rise could require network 

reinforcement to help the network better manage voltage levels and keep them within 

regulation limits. Increasing instances of transformer overload could require the 

installation of larger transformers. Reducing losses on the network is beneficial from 

an energy efficiency viewpoint. Load flow analysis (Wang et al., 2008) was 

determined to be the best way to examine the impacts of micro-generation and heat 

pumps on these three aspects of the network; with multiple analyses performed in 

order to use what is a steady state analysis to simulate a dynamic network. 

There are several network modelling programs capable of performing load flow 

analysis: IPSA Power (IPSA-Power, 2017), PSS/E (SIEMENS, 2017), DIgSILENT 

Power Factory (DIgSILENT, 2017), ETAP (ETAP, 2017) and OpenDSS (EPRI, 

2017). Of these IPSA power was chosen for use in this thesis for two primary 

reasons: its ability to automate load flow analysis through the use of Python code 

(which the researcher was already familiar with), and the fact that the network 

models obtained for analysis had already been designed in IPSA. The models in 

question were obtained from Northern Powergrid. The bulk of the research focused 

on the Maltby network, with examination of the Darlington Melrose network being 

used to test if the results from the Maltby network would hold true for other 

networks. 

The Maltby network itself is a large distribution network consisting of 249 domestic 

customers served by a single 1 MVA 11 kV to 433 V transformer. The domestic 

customers are an assortment of detached and semi-detached houses, with the bulk of 

the homes being semi-detached. The customers are modelled on the network as 34 

loads. Each load represents a group of 2-14 homes. The Darlington Melrose network 

serves 188 homes, also from a single transformer, this time 800 kVA, modelled in a 

similar fashion. 

Aside from the network itself, the input data consisted of the demand and generation 

profiles from the CLNR project (Section 7.1.3) and a table detailing of the number of 
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homes at each load point on the network, and the number of those homes that had 

micro-CHP, solar PV or heat pumps. This table could be modified to represent 

different penetrations of micro-generation and heat pumps on the network. 

The Python code used to automate the load flow analysis consisted of two scripts. 

The first of these took the demand and generation profile data and the data on the 

number of homes and micro-generation/heat pumps on each load point. It then 

calculated the load and generation amount for each network feeder for each minute 

of the year and put that data into a spreadsheet. The second script then took the data 

in that spreadsheet, and for each minute of the year instructed IPSA to assign the 

load and generation values to each point on the network, run load flow analysis and 

output the relevant results to a spreadsheet. The relevant results, obtained for each 

minute of the year, were: 

 The total power load on the network 

 The total power generation on the network 

 The power losses across all branches (cables) on the network 

 The power losses across the transformer(s) 

 The transformer tap position 

 The per unit voltage level at all busbars on the network (34 in total, in the 

case of the Maltby network) 

From these results, the relevant parameters mentioned at the beginning of this 

subsection can be identified, specifically: 

 The number of minutes in the year for which the voltage exceeds regulations, 

both the -6% limit and the +10% limit 

 The maximum and minimum voltage levels on the network, throughout the 

year 

 The branch losses on the network (i.e. the losses across all the wires on the 

network) for the whole year 

 The transformer losses on the network for the whole year 

 The maximum power flow through the transformer, across the entire year 

 The number of minutes in the year for which the transformer is overloaded 

 The number of minutes in the year for which the network as a whole exports 

electricity 

7.1.8 Testing of assumptions 

Three key assumptions were made in this research: a single distribution network can 

be examined in isolation; one minute data provides more information than 10-minute 
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or half-hour data; and the results from the Maltby network will hold true for other 

networks. All of these assumptions were tested as part of the research.  

In order to test if a single network can be monitored, a hypothetical network was 

constructed in IPSA which consisted of two Maltby networks linked together and 

served by a 35 to 11 kV transformer (each network still had its own 11 kV to 433 V 

transformer). One network had micro-generation and heat pumps added to it while 

the other network was left as it is. The network with micro-generation and heat 

pumps added behaved in the same way as when it is monitored in isolation. The 

other network was unaffected except for a 2% rise in the maximum power flow 

through the transformer. This indicates that a single network can be examined in 

isolation. 

The assumption that one minute data gives more information than 10-minute or half-

hour data was tested by analysing the 50% and 100% micro-CHP scenarios using 

ten-minute and half-hour data. It was found that losses are reduced when using less 

frequent data, by a few MWhs per annum. There are also no instances of transformer 

overload when using lower frequency data, except when heat pumps are present, 

compared with the one minute data when the network is overloaded for at least some 

of the year in all scenarios. There are also more instances of voltages exceeding 

regulations when using one minute data. For example, when using half hour data the 

network spends 0.2% of the year outside regulations when all homes have fuel cell 

micro-CHP, while using one minute data results in the network spending 69% of the 

year outside regulations. This indicates that one minute data does provide more 

information than 10-minute or half-hour data. 

The final assumption, that results from the Maltby network hold true for other 

networks, was tested in two ways: by examining another network and by examining 

the same network with a variable tap transformer rather than a fixed tap transformer. 

The other network was the Darlington Melrose network. The model for this network 

was also obtained from Northern Powergrid and contained just 188 homes, compared 

to Maltby's 249. Both of the alternate networks showed similar trends to the Maltby 

network as the penetration of micro-generation or heat pumps is increased; though 

the actual values of the parameters for the Darlington Melrose network were lower, 

due to its smaller size. Meanwhile, the Maltby network with a variable tap 

transformer was able to mitigate the increases in instances of voltage rise. 
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7.1.9 Results and implications 

7.1.9.1 Results of modelling the network with micro-CHP 

Micro-CHP was found, in the model, to have some beneficial impacts on the 

network, and one considerable detrimental impact. The negative impact that micro-

CHP can have is causing voltage rise on the network. Neither Stirling engine nor fuel 

cell micro-CHP causes voltage levels on the network to exceed +10% of the rated 

voltage.  

The benefits to the network are a reduction in instances of voltage dropping below 

the -6% limit, though from an already low baseline, a reduction in losses on the 

network and a reduction in power flows through the transformer. Losses on the 

network are reduced almost linearly as the amount of Stirling engine micro-CHP on 

the network is increased, by up to 29% below the baseline losses. Fuel cells reduce 

losses more rapidly than Stirling engines. However at higher penetrations, >60%, 

losses begin to rise again, and when all homes have fuel cell micro-CHP the losses 

are only 0.3 MWh lower than when all homes have Stirling engines. At the optimum 

penetration (from the perspective of reducing losses), of 60%, fuel cell micro-CHP 

reduces losses by 63%. In the baseline scenario, the transformer is overloaded for 26 

minutes of the year. Both Stirling engines and fuel cell micro-CHP reduce this. 

When all homes have Stirling engines the transformer spends 9 minutes of the year 

overloaded, and when all homes have fuel cells it spends 2 minutes of the year 

overloaded. 

The implications of these results are that micro-CHP has some benefit to the network 

through reducing losses, thereby saving energy, and through reducing power flows 

through the transformer which could avoid or delay needing to upgrade the 

transformer if network demands rise. They also imply that the network could 

accommodate all homes having Stirling engines without too many instances of 

voltage rise. The network could also accommodate 60% of homes having fuel cell 

micro-CHP, but any higher and there will be considerable increases to voltage rise 

potentially necessitating network reinforcement. 

7.1.9.2 Results of modelling the network with solar PV and heat pumps 

Solar PV has similar impacts to micro-CHP in the model. It reduces instances of 

voltage drop, though only down to 20 minutes of the year, a lower reduction than 
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micro-CHP. It also reduces losses, until the percentage of homes with solar PV rises 

above 25%, at which point losses begin to rise again, becoming higher than the 

baseline losses once 75% or more of homes on the network have solar PV. Solar PV 

does not reduce the peak power flow through the transformer, and only reduces 

instances of overload down to 18 minutes of the year (from 26), a smaller reduction 

than micro-CHP. 

Solar PV also has an impact on instances of voltage rise; the presence of solar PV 

can cause voltage levels to exceed the +10% limit, something that micro-CHP does 

not cause. Half the homes having solar PV causes the network to exceed the limit for 

a few minutes of the year, and 75% and 100% of homes having solar PV causes the 

network to exceed the limit for 1.6% and 5.3% of the year. 

The impacts of Stirling engines alongside solar PV on the network are largely 

negligible. The presence of fuel cell micro-CHP alongside solar PV on the network 

will exacerbate the impacts of solar PV on voltage rise, while slightly reducing 

instances of voltage drop, and further reducing the power flows through the 

transformer. Though when all homes have both fuel cell micro-CHP and solar PV, 

instances of transformer overload will rise. 

Heat pumps cause a considerable rise in electricity demand on the network. Through 

this they cause increases to instances of voltage drop, network losses and instances 

of transformer overload. Half the homes on the network having heat pumps cause 

instances of voltage dropping below -6% to triple compared to the baseline scenario; 

and they increase eightfold when all homes have heat pumps. Also when all homes 

have heat pumps network losses are more than doubled. The impacts heat pumps can 

have on the transformer are also considerable: increasing instances of overload up to 

fivefold when all homes have heat pumps. Once 75% or more of the homes on the 

network have heat pumps, the peak power flow through the transformer rises above 

1.5 times its rated capacity, which may cause the transformer to fail. The impacts of 

heat pumps on voltage levels and the transformer could necessitate network 

reinforcement. 

The presence of micro-CHP on the network alongside heat pumps will reduce their 

impacts on voltage levels, network losses and instances of transformer overload. The 

most considerable reduction is in power flows through the transformer. If 75% of 
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homes have heat pumps, and the rest have either Stirling engine or fuel cell micro-

CHP, the maximum power flow through the transformer will no longer exceed 1.5 

times its rated capacity. The implications of this are that the presence of micro-CHP 

could reduce or delay the need for network reinforcement caused by the presence of 

heat pumps. 

7.2 Further research 

Three avenues for further research are suggested in this section. They are: an 

examination of the ways in which storage of electrical energy can change the 

impacts of micro-generation, studies of rural and urban distribution networks (i.e. 

those most different from the networks examined in this research), and a study of the 

costs or savings to the network of micro-generation and heat pumps. 

7.2.1 Electrical Energy Storage 

By storing excess electricity generation from micro-generation devices, and using 

that stored energy at times of peak demand, EES has the potential to significantly 

change the import and export profile of households in which it is installed. Large 

scale EES can also be installed on the grid itself to mitigate the impacts of micro-

generation. 

Modelling in house energy storage should be a straightforward case of determining 

when micro-generation output exceeds demand, and when demand exceeds micro-

generation output. In the former case, any excess electricity generation is sent to 

storage, until the storage unit is full, at which point it is exported as usual. In the 

latter case, electricity is drawn from storage until the storage unit is empty. This 

should be achievable by running the demand and generation profiles through a piece 

of code. This code would subtract the demand from the generation and if the 

resulting value is positive add it to the storage, unless this would take the storage 

over a maximum value, in which case it is exported; if the value is negative it 

subtracts it from the storage, unless the storage is empty. The code would then 

output the original demand and generation, along with the amounts of electricity sent 

to and taken from the storage unit, the amount of export, and the total amount of 

electricity in the storage unit. For the purposes of IPSA modelling, the generator 

output could now be the generation value minus however much electricity is sent to 
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storage, and the demand for grid electricity could be the electricity import (after 

taking into account micro-generation) minus however much electricity is taken from 

the storage unit. The EES device could also be restricted to only being used at times 

of peak demand or generation, in order to have maximum impact. This could be done 

by modifying the code so that electricity is only sent to the storage device if the 

generation is above a certain value, and only drawn from the storage device if 

demand is above a certain value. Experimentation would be needed to find the 

optimum demand and generation values for which electricity would be sent to or 

drawn from the EES device. 

If modelling large scale EES on the grid itself, this could be done by adding another 

grid in-feed to the network model, but rather than having a variable output to meet 

the electricity demands of the network, as the first grid in-feed does, it would have a 

fixed electrical output or input. These fixed values would be calculated by analysing 

the demand and generation for the entire network, in a similar fashion to how the 

demand and generation for a single household was examined above. This analysis 

could be used to determine how much electricity is sent to or drawn from the EES, 

and these values could be used as the input/output of the second grid in-feed in the 

model. 

7.2.2 Study of urban and rural distribution networks 

Both of the networks examined in this research were located in towns, and while the 

findings here may hold true for other town and sub-urban networks, they may not do 

so for rural or urban networks. Testing such networks would be a matter of first 

obtaining models of urban and rural distribution networks, and then applying the 

same process used in this research.  Some changes may need to be made to the 

demand and generation profiles. Urban networks will tend to have smaller dwellings, 

leading to lower heat demand and thus lower micro-CHP output, and will likely have 

less roof space for solar PV. Therefore it can be expected that household demand, 

micro-CHP and solar PV generation and heat pump demand will all be lower in 

urban dwellings. Rural dwellings will be larger increasing electricity and heat 

demands, thus raising micro-CHP output and heat pump demands, along with the 

non-heat related electricity demands of the household. 
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Rural networks, being more spread out and thus having longer cables will likely have 

already greater network losses and instances of voltage drop, but may well see more 

uptake of micro-generation; micro-CHP will be attractive to large rural homes with 

high heat demands as they will get more use out of it, and thus earn more money 

from it, though this may be mitigated by the higher price of fuel for homes not on the 

gas network; similarly heat pumps may be an attractive heating option for rural 

homes, again as homes not on the gas network will benefit more from switching 

from heating with high fuel costs to electric heating, and as rural homes are likely to 

have a larger land area which lends itself to the more effective ground source heat 

pumps. As for the distribution networks, they are likely to see greater benefits from 

the presence of micro-CHP, and greater problems from the presence of solar PV and 

heat pumps. Urban networks are likely to see lower uptake of micro-generation and 

what micro-generation is installed will be smaller in scale. Heat based micro-

generation devices (i.e. micro-CHP and heat pumps) may be unlikely in very densely 

populated areas where heat networks could be a possibility, thus the impacts from 

micro-generation in these areas are likely to be lower. It should be kept in mind that 

this last paragraph has been entirely speculation on what the author expects the 

differences to be on other networks (plus the reasoning behind that speculation) to 

establish a rough hypothesis and more research will be needed to determine what the 

differences actually are. 

7.2.3 Study of the cost to the network from the impacts of micro-
generation and low-carbon heat 

While this research has examined the impacts on the networks of micro-generation 

and heat pumps, it has not examined what the cost (or benefit) of those impacts to 

the network might be. Such an examination would necessitate identifying what steps 

may need to be taken to reinforce the network against the impacts of micro-

generation and heat pumps. 

Two options have already been mentioned in this research, variable tap transformers 

and electrical energy storage. Both could go some way to mitigating the impacts of 

micro-generation. It would be necessary to identify, firstly by how much EES can 

avoid the impacts of micro-generation, and then the scale and cost of EES required. 

For the transformer it would be a case of determining the cost of replacing the fixed 

tap transformer with a variable tap transformer. The cost to the network of heat 
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pumps can also be analyses through transformer costs, this time through the cost of 

upgrading the transformer to one with a higher capacity, better able to cope with the 

increased electricity demand from heat pumps. 

Other voltage control measures include static synchronous compensators and 

network capacitors. As with EES and upgrading the transformer, the scale and 

associated costs of these technologies, for differing penetrations of micro-generation 

would need to be determined in order to establish the costs to the network of micro-

generation. 

Benefits to the network come through reducing power flows through the transformer 

and reducing network losses. Reducing power flows through the transformer could 

delay or negate the need for upgrades, thus the economic benefit to the network 

would be determined by identifying the money saved by not upgrading the 

transformer. 

7.3 Summary of key findings 

 Stirling engine micro-CHP saves the household £200 per annum, while fuel 

cell micro-CHP saves it £1250 per annum. These values lead to break-even 

prices of £1,700 and £10,000, both considerably lower than current prices. 

Though the cost of fuel cell micro-CHP is predicted to fall below that break-

even price in the future. Also, the savings from micro-CHP are highly 

dependent on FiT support. Solar PV saves the household £910 per annum, 

leading to a break-even price of £7,000, while heat pumps save the household 

£520 per annum, resulting in a break-even price of £4,000. 

 Carbon emissions are reduced by 233 kgCO2 per annum for Stirling engine 

micro-CHP and by 1835 kgCO2 per annum for fuel cell micro-CHP. Though 

both these values will decline as the grid is decarbonised, with savings from 

fuel cell micro-CHP becoming negative when grid carbon intensity falls 

below 212 gCO2/kWh. Solar PV saves 1700 kgCO2 per annum, while heat 

pumps save 500 kgCO2 per annum. As with micro-CHP, the carbon savings 

from solar PV will decline as the grid is decarbonised, though they will not 

become negative. The carbon savings from heat pumps will increase as the 

grid is decarbonised. 
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 Benefits to the network of micro-CHP include reducing instances of voltage 

drop, though from an already low baseline, and reducing network losses and 

power flows through the transformer. Stirling engines reduce losses by up to 

29% when all homes have them installed. Fuel cells reduce losses by at most 

63%, when 60% of homes have them installed. When more homes install fuel 

cell micro-CHP losses begin to rise again. 

 These results hold true for at least one other distribution network, which 

exhibits the same trends as the penetration of micro-CHP on the network is 

increased. Networks with variable tap transformers will not suffer as much 

from the increases to voltage rise caused by micro-CHP. For example 70% of 

homes having micro-CHP on such a network cause it to spend 6% of the year 

over voltage regulations, as opposed to 11% for networks with fixed tap 

transformers, however this is still a concerning amount of time for the 

network to be in breach of regulation limits. 

 Solar PV can increase voltage levels. High proportions (>50%) of homes 

having solar PV causes voltages to breach the upper +10% limit. Like fuel 

cell micro-CHP solar PV causes losses to at first fall, but once more than 

25% of homes have solar PV they will rise again, becoming higher than the 

baseline losses once 75% of homes have solar PV. Solar PV does little to 

reduce the maximum power flow through the transformer, and does not 

reduce instances of transformer overload by as much as micro-CHP. 

 The presence of fuel cell micro-CHP alongside solar PV can exacerbate the 

impacts of solar PV on voltage rise, and cause a greater increase in network 

losses. If all home share both technologies then it will lead to an increase in 

instances of transformer overload. 

 The presence of heat pumps on the network could cause an increase to 

instances of voltage drop, though only to 0.03% of the year at most, 

considerably less than the instances of voltage rise caused by micro-

generation. They could more than double electrical losses on the network. 

Their greatest impact would be through increases to power flows through the 

transformer. Half the homes having heat pumps would cause instances of 

transformer overload to more than double compared to the baseline case. If 

more than 75% of homes have heat pumps, the peak power flow through the 
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transformer could rise above 1.5 its rated capacity, which is considered an 

upper limit on transformer overload. 

 The presence of micro-CHP on the network in addition to heat pumps will 

reduce their impacts on instances of voltage drop, network losses and power 

flows through the transformer, with fuel cells reducing the impacts of heat 

pumps by more than Stirling engines micro-CHP. The biggest impact to be 

reduced is power flows through the transformer. In all measured scenarios 

featuring heat pumps and either micro-CHP technology, the power through 

the network transformer did not rise above 1.5 times its rated capacity. 



 

159 

REFERENCES 

2002. Electricity Safety, Quality and Continuity Regulations 2002. U.K. 

2008. Climate Change Act. 

ACHA, S., GREEN, T. C. & SHAH, N. 2009. Impacts of Plug-in Hybrid Vehicles 
and Combined Heat and Power technologies on Electricity and Gas 
Distribution Network losses. Sustainable Alternative Energy (SAE), 2009 
IEEE PES/IAS. Valencia. 

ACHARYA, N., MAHAT, P. & MITHULANANTHAN, N. 2006. An analytical 
approach for DG allocation in primary distribution network. International 
Journal of Electrical Power & Energy Systems, 28, 669-678. 

ACKERMANN, T. & KNYAZKIN, V. 2002. Interaction between Distributed 
Generation and the Distribution Network: Operation Aspects. IEEE/PES 
Transmission and Distribution Conference and Exhibition. IEEE. 

AKI, H. 2007. The Penetration of Micro CHP in Residential Dwellings in Japan. 
Power Engineering Society General Meeting, 2007. IEEE, 1-4. 

AKI, H., YAMAMOTO, S., KONDOH, J., MAEDA, T., YAMAGUCHI, H., 
MURATA, A. & ISHII, I. 2006. Fuel cells and energy networks of 
electricity, heat, and hydrogen in residential areas. International Journal of 
Hydrogen Energy, 31, 967-980. 

ALANNE, K., SÖDERHOLM, N., SIRÉN, K. & BEAUSOLEIL-MORRISON, I. 
2010. Techno-economic assessment and optimization of Stirling engine 
micro-cogeneration systems in residential buildings. Energy Conversion and 
Management, 51, 2635-2646. 

BARELLI, L., BIDINI, G., GALLORINI, F. & OTTAVIANO, A. 2011. An 
energeticeexergetic comparison between PEMFC and SOFC-based micro-
CHP systems. International Journal of Hydrogen Energy, 36, 3206-3214. 

BARRETO, L., MAKIHIRA, A. & RIAHI, K. 2003. The hydrogen economy in the 
21st century: a sustainable development scenario. International Journal of 
Hydrogen Energy, 267-284. 



Potential impact of micro-generation on electricity distribution networks 

 

160 

BAXI 2010. Ecogen: The Baxi Ecogen Dual energy System. In: BAXI (ed.). 

BEIS 2016. Digest of United Kingdom Energy Statistics 2016. In: DEPARTMENT 
OF BUSINESS, ENERGY & INDUSTRIAL STRATEGY (ed.). Office of 
National Statistics. 

BEIS 2017. Energy Consumption in the UK (ECUK) 2017 Data Tables. In: 
DEPARTMENT OF BUSINESS, ENERGY & INDUSTRIAL STRATEGY 
(ed.). 

CARBON TRUST 2011. Micro-CHP Accelerator. Carbon Trust. 

CASTRO, M., YELLEN, D., HOLLINGWORTH, D., MUKHERJEE, R., 
BARTECKZO-HIBBERT, C., WARDLE, R., DENT, C. & WAY, R. 2014. 
Review of the Distribution Network Planning and Design Standards for the 
Future Low Carbon Electricity System. Consumer Led Network Revolution. 

CLNR. 2014. CLNR - The Project [Online]. Consumer Led Network Revolution. 
Available: http://www.networkrevolution.co.uk/the-project/. 

CLNR 2015. SPECIFICATION OF DOMESTIC AND SME CUSTOMER DATA 
In: POWERGRID, N. (ed.). Consumer Led Network Revolution Project. 

COCKROFT, J. & KELLY, N. 2006. A comparative assessment of future heat and 
power sources for the UK domestic sector. Energy Conversion and 
Management, 47, 2349-2360. 

CURRIE, R. A. F., AUK, G. W., FOOTE, C. E. T., G.M.BURT & J.R.MCDONAID 
2004. Fundamental Research Challenges for Active Management of 
Distribution Networks with High Levels of Renewable Generation. Institute 
for Energy and the Environment, University of Strathclyde. 

DE PAEPE, M., D’HERDT, P. & MERTENS, D. 2006. Micro-CHP systems for 
residential applications. Energy Conversion and Management, 47, 3435-
3446. 

DECC 2011. Regional Energy Consumption Statistics. In: DEPARTMENT OF 
ENERGY AND CLIMATE CHANGE (ed.). Office of National Statistics. 

DECC 2012. The Future of UK Heating 2012. In: DEPARTMENT OF ENERGY 
AND CLIMATE CHANGE (ed.). 

DECC 2013. The Future of Heating: Meeting the challenge. In: DEPARTMENT OF 
ENERGY AND CLIMATE CHANGE (ed.). 

DECC 2014. Preliminary data from the RHPP heat pump metering programme. In: 
DEPARTMENT OF ENERGY AND CLIMATE CHANGE (ed.). 

DEMOULLIN, S. 2012. Assessment of the Feasibility and Benefits of the 
Conversion of the UK National Grid from Natural Gas to Hydrogen. 
University College London. 

DIGSILENT 2017. PowerFactory Applications. 

DODDS, P. E. & DEMOULLIN, S. 2012. Conversion of the UK gas system to 
transport hydrogen. International Journal of Hydrogen Energy, 38, 7189-
7200. 



References 

161 

DODDS, P. E. & HAWKES, A. 2014. The role of Hydrogen and Fuel Cells in 
providing affordable, secure low carbon heat, H2FC SUPERGEN, London, 
UK. 

DODDS, P. E. & MCDOWALL, W. 2013. The future of the UK gas network. 
Energy Policy, 60, 305-316. 

DODDS, P. E., STAFFELL, I., HAWKES, A. D., LI, F., GRÜNEWALD, P., 
MCDOWALL, W. & EKINS, P. 2015. Hydrogen and fuel cell technologies 
for heating: A review. International Journal of Hydrogen Energy, 40, 2065-
2083. 

DONG, L., LIU, H. & RIFFAT, S. 2009. Development of small-scale and micro-
scale biomass-fuelled CHP systems – A literature review. Applied Thermal 
Engineering, 29, 2119-2126. 

DONKELAAR, M. T. & SCHEEPERS, M. J. J. 2004. DISPOWER: A socio-
economic analysis of technical solutions and practices for the integration of 
distributed generation. ECN Policy Studies. 

EARTH NOTES. 2016. Earth Notes: A Note On Variations in UK/GB Grid 
Electricity CO2 Intensity with Time [Online]. http://www.earth.org.uk/note-
on-UK-grid-CO2-intensity-variations.html#fullyear2015. 

ENERGY SAVING TRUST 2013a. Detailed analysis from the second phase of the 
Energy Saving Trust’s heat pump field trial. In: DECC (ed.). 

ENERGY SAVING TRUST. 2013b. Our Calculations [Online]. Available: 
http://www.energysavingtrust.org.uk/Energy-Saving-Trust/Our-calculations 
[Accessed 31/09/2013. 

ENERGY SAVING TRUST. 2014. Feed-In-Tariffs scheme (FITs) [Online]. 
Available: www.energysavingtrust.org/Generating-energy/Getting-money-
back/Feed-In-Tariffs-scheme-FITs. 

ENERGY SAVING TRUST. 2017. Solar Panels Electricity [Online]. Available: 
http://www.energysavingtrust.org.uk/renewable-energy/electricity/solar-
panels. 

EPRI. 2017. Simulation Tool - OpenDSS [Online]. smartgrid.epri.com. Available: 
http://smartgrid.epri.com/SimulationTool.aspx. 

ETAP 2017. Distribution Network Analysis, Planning, Protection and ADMS  

EUROPEAN COMMITTEE FOR ELECTROTECHNICAL STANDARDIZATION 
1999. EN50160 Voltage characteristics of electricity supplied by public 
distribution systems. 

FARHAD, S., HAMDULLAHPUR, F. & YOO, Y. 2010. Performance evaluation of 
different configurations of biogas-fuelled SOFC micro-CHP systems for 
residential applications. International Journal of Hydrogen Energy 35, 3758-
3768. 

FUEL CELL TODAY 2012. Water Electrolysis and Renewable Energy Systems. In: 
FUEL CELL TODAY (ed.). 

GREENE, D. L., DULEEP, K. G. & UPRETI, G. 2011. Status and Outlook for the 
U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies 
and Assessment of Future Opportunities. Oak Ridge National Laboratory. 



Potential impact of micro-generation on electricity distribution networks 

 

162 

HARIKISHAN R. ELLAMLA, IAIN STAFFELL, PIOTR BUJLO, BRUNO G. 
POLLET & PASUPATHI, S. 2015. Current status of fuel cell based 
combined heat and power systems for residential sector. Journal of Power 
Sources, 293, 312-328. 

HART-DAVIS, D. 2016. Earth Notes: A Note on Variations in UK/GB Grid 
Electricity CO2 Intensity with Time [Online]. Earth Notes. Available: 
http://www.earth.org.uk/note-on-UK-grid-CO2-intensity-variations.html. 

HAWKES, A. & LEACH, M. 2005. Impacts of temporal precision in optimisation 
modelling of micro-Combined Heat and Power. Energy, 30, 1759-1779. 

HAWKES, A., STAFFELL, I., BRETT, D. & BRANDON, N. 2009. Fuel cells for 
micro-combined heat and power generation. Energy & Environmental 
Science, 2, 729. 

HAWKES, A. D., BRETT, D. J. L. & BRANDON, N. P. 2011. Role of fuel cell 
based micro-cogeneration in low carbon heating. Proceedings of the 
Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 
225, 198-207. 

HEWITT, N. J., HUANG, M. J., ANDERSON, M. & QUINN, M. 2011. Advanced 
air source heat pumps for UK and European domestic buildings. Applied 
Thermal Engineering, 31, 3713-3719. 

HINNELLS, M. 2008. Combined heat and power in industry and buildings. Energy 
Policy, 36, 4522-4526. 

HUDSON, L., WINSKEL, M. & ALLEN, S. 2011. The hesitant emergence of low 
carbon technologies in the UK: the micro-CHP innovation system. 
Technology Analysis & Strategic Management, 23, 297-312. 

INFIELD, D. G., SHORT, J., HORNE, C. & FRERIS, L. L. 2007. Potential for 
Domestic Dynamic Demand-Side Management in the UK. Power 
Engineering Society General Meeting, 2007. IEEE. Tampa, FL, USA  

IPSA-POWER. 2017. Power system analysis software - Ipsa 2 [Online]. Available: 
https://www.ipsa-power.com/?page_id=766. 

KUHN, V., KLEMES, J. & BULATOV, I. 2008. MicroCHP: Overview of selected 
technologies, products and field test results. Applied Thermal Engineering, 
28, 2039-2048. 

LAKERVI, E. & HOLMES, E. J. 2003. Distribution Network Design, Institution of 
Engineering and Technology. 

LELYVELD, T. & WOODS, P. 2010. Carbon emissions factors for fuels - 
Methodology and values for 2013 & 2016. Zero Carbon Hub. 

LOVE, J., SUMMERFIELD, A., BIDDULPH, P., WINGFIELD, J., MARTIN, C., 
GLEESON, C. & LOWE, R. 2017. INVESTIGATING VARIATIONS IN 
PERFORMANCE OF HEAT PUMPS INSTALLED VIA THE 
RENEWABLE HEAT PREMIUM PAYMENT (RHPP) SCHEME. UCL 
Energy Institute: RAPID-HPC. 

MAALLA, E. M. B. & KUNSCH, P. L. 2008. Simulation of micro-CHP diffusion 
by means of System Dynamics. Energy Policy, 36, 2308-2319. 



References 

163 

MARTıNEZ-PEREZ, N., CHERRYMAN, S. J., PREMIER, G. C., DINSDALE, R. 
M., HAWKES, D. L., HAWKES, F. R., KYAZZE, G. & GUWY, A. J. 2007. 
The potential for hydrogen-enriched biogas production from crops: Scenarios 
in the UK. Biomass and Bioenergy, 31, 95-104. 

MARU, D. H., SINGHAL, D. S. C., STONE, D. C. & WHEELER, M. D. 2010. 1–
10 kW Stationary Combined Heat and Power Systems Status and Technical 
Potential. National Renewable Energy Laboratory. 

MCDOWALL, W. & EAMES, M. 2007. Towards a sustainable hydrogen economy: 
A multi-criteria sustainability appraisal of competing hydrogen futures. 
International Journal of Hydrogen Energy, 32, 4611-4626. 

MIARA, M., GUNTHER, D., KRAMER, T., OLTERSDORF, T. & WAPLER, J. 
2010. Heat Pump Efficiency: Analysis and Evaluation of Heat Pump 
Efficiency in Real Life Conditions. Fraunhofer ISE: Federal Ministry of 
Economics and Technology. 

NATIONAL GRID 2004. The Grid Code. NATIONAL GRID COMPANY PLC. 

NATIONAL GRID 2011. UK Future Energy Scenarios. NATIONAL GRID 
COMPANY PLC. 

NEIJ, L. 2008. Cost development of future technologies for power generation—A 
study based on experience curves and complementary bottom-up 
assessments. Energy Policy, 36, 2200-2211. 

OCHA, L. F. & HARRISON, G. P. 2011. Minimizing Energy Losses: Optimal 
Accommodation and Smart Operation of Renewable Distributed Generation. 
IEEE TRANSACTIONS ON POWER SYSTEMS, 26, 198-205. 

OCHA, L. F., PADILHA-FELTRIN, A. & HARRISON, G. P. 2006. Evaluating 
Distributed Generation Impacts With a Multiobjective Index. IEEE 
TRANSACTIONS ON POWER DELIVERY, 21, 1452-1458. 

OFGEM 2017. Feed-in Tariff Installation Report 30 September 2017. 

OFGEM. 2018a. Feed in Tariffs (FiT) rates [Online]. Available: 
https://www.ofgem.gov.uk/environmental-programmes/fit/fit-tariff-rates. 

OFGEM. 2018b. Tariffs and payments: Domestic RHI [Online]. Available: 
https://www.ofgem.gov.uk/environmental-programmes/domestic-
rhi/contacts-guidance-and-resources/tariffs-and-payments-domestic-
rhi/current-future-tariffs. 

OMER, A. M. 2008. Ground-source heat pumps systems and applications. 
Renewable and Sustainable Energy Reviews, 12, 344-371. 

ONOVWIONA, H. I. & UGURSAL, V. I. 2006. Residential cogeneration systems: 
review of the current technology. Renewable and Sustainable Energy 
Reviews, 10, 389-431. 

ONOVWIONA, H. I., UGURSAL, V. I. & FUNG, A. S. 2007. Modeling of internal 
combustion engine based cogeneration systems for residential applications. 
Applied Thermal Engineering, 27, 848-861. 

P.MOÇOTÉGUY, LUDWIG, B., J.SCHOLTA, Y.NEDELLEC, D.J.JONES & 
ROZIÈRE, J. 2009. Long-TermTesting in DynamicMode of HT-



Potential impact of micro-generation on electricity distribution networks 

 

164 

PEMFCH3PO4/PBI Celtec-P Based Membrane Electrode Assemblies for 
Micro-CHP Applications. Fuel Cells, 10, 299-311. 

PEACOCK, A. D. & NEWBOROUGH, M. 2005. Impact of micro-CHP systems on 
domestic sector CO2 emissions. Applied Thermal Engineering, 25, 2653-
2676. 

POSSIDENTE, R., ROSELLI, C., SASSO, M. & SIBILIO, S. 2006. Experimental 
analysis of micro-cogeneration units based on reciprocating internal 
combustion engine. Energy and Buildings, 38, 1417-1422. 

QUEZADA, V. H. M., ABBAD, J. R. & ROMÁN, T. G. S. 2006. Assessment of 
Energy Distribution Losses for Increasing Penetration of Distributed 
Generation. IEEE TRANSACTIONS ON POWER SYSTEMS, 21. 

RAO, R. S., RAVINDRA, K., SATISH, K. & NARASIMHAM, S. V. L. 2013. 
Power Loss Minimization in Distribution System Using Network 
Reconfiguration in the Presence of Distributed Generation. IEEE 
TRANSACTIONS ON POWER SYSTEMS, 28. 

REN, H. & GAO, W. 2010. Economic and environmental evaluation of micro CHP 
systems with different operating modes for residential buildings in Japan. 
Energy and Buildings, 42, 853-861. 

ROGERS, J., COOPER, S., HAMMOND, G. & MCMANUS, M. 2013. Use of 
micro CHP plants to support the local operation of electric heat pumps. 3rd 
International Conference in Microgeneration and Related Technologies in 
Buildings: Microgen 3. 

SIEMENS 2017. Power Transmission System Planning Software. 

SINGH, H., MUETZEB, A. & EAMESC, P. C. 2010. Factors influencing the uptake 
of heat pump technology by the UK domestic sector. Renewable Energy 35, 
873-878. 

SOROUDI, A., EHSAN, M. & ZAREIPOUR, H. 2011. A practical eco-
environmental distribution network planning model including fuel cells and 
non-renewable distributed energy resources. Renewable Energy, 36, 179-188. 

SPENDELOW, J., MARCINKOSKI, J. & PAPAGEORGOPOULOS, D. 2011. 
Micro CHP Fuel Cell System Targets. DOE Hydrogen and Fuel Cells 
Program Record. Department of Energy, United States of America. 

STAFFELL, I. 2009. FUEL CELLS FOR DOMESTIC HEAT AND POWER: ARE 
THEY WORTH IT? Doctor of Philosophy, University of Birmingham. 

STAFFELL, I. 2014. Fuel Cell Technologies. In: DODDS, P. E. & HAWKES, A. 
(eds.) The role of hydrogen and fuel cells in providing affordable, secure 
low-carbon heat. . H2FC SUPERGEN, London, UK. 

STAFFELL, I., DODDS, P., SCAMMAN, D., ABAD, A. V., MACDOWELL, N., 
WARD, K., AGNOLUCCI, P., PAPAGEORGIOU, L., SHAH, N. & EKINS, 
P. 2017a. The role of hydrogen and fuel cells in future energy systems: A 
H2FC Supergen white paper, London, UK, H2FC SUPERGEN. 

STAFFELL, I. & GREEN, R. 2012. The cost of domestic fuel cell micro-CHP 
systems. International Journal of Hydrogen Energy. 



References 

165 

STAFFELL, I., GREEN, R., GROSS, R. & GREEN, T. 2017b. Electric Insights 
Quaterly: January - March 2017. Drax. 

STAFFELL, I. & GREEN, R. J. 2009. Estimating future prices for stationary fuel 
cells with empirically derived experience curves. International Journal of 
Hydrogen Energy, 34, 5617-5628. 

STEINBERGER-WILCKENS, R., DODDS, P. E., KURBAN, Z., VELAZQUEZ 
ABAD, A. & RADCLIFFE, J. 2017. The role of hydrogen and fuel cells in 
delivering energy security for the UK, H2FC SUPERGEN, London, UK. 

SUMMERFIELD, A. J., ORESZCZYN, T., HAMILTON, I. G., SHIPWORTH, D., 
HUEBNER, G. M., LOWE, R. J. & RUYSSEVELT, P. 2015. Empirical 
variation in 24-h profiles of delivered power for a sample of UK dwellings: 
Implications for evaluating energy savings. Energy and Buildings, 88, 193-
202. 

SWEETT GROUP 2013. Research on the costs and performance of heating and 
cooling technologies. In: DEPARTMENT OF ENERGY AND CLIMATE 
CHANGE (ed.). 

THOMSON, M. & INFIELD, D. G. 2007. Network Power-Flow Analysis for a High 
Penetration of Distributed Generation. IEEE Transactions on Power Systems, 
22. 

TOKYO GAS. 2013. Development of the new model of a residential fuel cell, "ENE-
FARM" [Online]. http://www.tokyo-gas.co.jp/techno/stp1/00h1_e.html: 
Tokyo Gas. Available: http://www.tokyo-gas.co.jp/techno/stp1/00h1_e.html. 

TOKYO GAS CO. LTD. & PANASONIC CORPORATION. 2011. Tokyo Gas and 
Panasonic to Launch New Improved "Ene-Farm" Home Fuel Cell with 
World-Highest Power Generation Efficiency at More Affordable Price 
[Online]. Panasonic News. Available: 
http://panasonic.co.jp/corp/news/official.data/data.dir/en110209-2/en110209-
2.html 2014]. 

UK POWER. 2013. Breakdown of solar panel earnings and costs [Online]. 
Available: https://www.ukpower.co.uk/solar-panels/breakdown-of-solar-
panel-earnings-and-costs. 

UKCCC 2016. Next steps for UK heat policy. In: COMMITTE ON CLIMATE 
CHANGE (ed.). 

WANG, X.-F., SONG, Y. & IRVING, M. 2008. Load Flow Analysis, Springer, 
Boston, MA. 

WETO-H2 2006. World Energy Technology Outlook - 2050. European Comission. 

WHICH? 2018. Feed in tariff savings and earnings [Online]. Available: 
https://www.which.co.uk/reviews/feed-in-tariffs/article/feed-in-tariffs/feed-
in-tariff-savings-and-earnings. 

WINSKEL, M., MARKUSSON, N., MORAN, B., JEFFREY, H., 
ANANDARAJAH, G., HUGHES, N., CANDELISE, C., CLARKE, D., 
TAYLOR, G., CHALMERS, H., DUTTON, G., HOWARTH, P., 
JABLONSKI, S. & KALYVAS, C. 2009. Decarbonising the UK Energy 



Potential impact of micro-generation on electricity distribution networks 

 

166 

System: Accelerated Development of Low Carbon Energy Supply 
Technologies. UKERC Energy 2050 Research Report No. 2. UK ERC. 

 

 

 

 

 



 

167 

APPENDIX  A: DATA TABLES 

USED IN THE STUDY 

Time 

Mean mCHP power 
consumption & 
production 

Mean whole home 
power import 

01/10/2012 00:00 0 349 
01/10/2012 00:01 -18 342 
01/10/2012 00:02 -18 344 
01/10/2012 00:03 -18 462 
01/10/2012 00:04 -17 485 
01/10/2012 00:05 -17 352 
01/10/2012 00:06 -17 352 
01/10/2012 00:07 -17 349 
01/10/2012 00:08 -17 341 
01/10/2012 00:09 -17 339 
01/10/2012 00:10 -18 337 
01/10/2012 00:11 -17 336 
01/10/2012 00:12 -18 335 
01/10/2012 00:13 -18 335 
01/10/2012 00:14 -18 334 
01/10/2012 00:15 -18 334 
01/10/2012 00:16 -18 335 
01/10/2012 00:17 -17 334 
01/10/2012 00:18 -18 334 
01/10/2012 00:19 -17 334 
01/10/2012 00:20 -18 333 
01/10/2012 00:21 -18 333 
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01/10/2012 00:22 -18 333 
01/10/2012 00:23 -18 331 
01/10/2012 00:24 -18 203 
01/10/2012 00:25 -17 202 
01/10/2012 00:26 -18 202 
01/10/2012 00:27 -18 203 
01/10/2012 00:28 -18 201 
01/10/2012 00:29 -18 203 
01/10/2012 00:30 -17 201 
01/10/2012 00:31 -18 201 
01/10/2012 00:32 -17 200 
01/10/2012 00:33 -18 200 
01/10/2012 00:34 -18 200 
01/10/2012 00:35 -18 200 
01/10/2012 00:36 -17 199 
01/10/2012 00:37 -18 198 
01/10/2012 00:38 -18 197 

Table A 1 The CLNR test cell 4 field trial data, averaged all locations. Showing 

rows 1-40 of 789121. 

 

 

TIME Demand 
Stirling 
Generation 

FC 
Generation 

Heat Pump 
Demand 

Solar 
Generation 

01/01/2013 00:00 864.5 -1 960 190 0 
01/01/2013 00:01 482.5 -67.75 960 160 0 
01/01/2013 00:02 480.25 -58.75 960 160 0 
01/01/2013 00:03 649.75 -58.5 960 170 0 
01/01/2013 00:04 861.25 -58.5 960 160 0 
01/01/2013 00:05 979.25 -61 960 190 0 
01/01/2013 00:06 881 -54.5 960 230 0 
01/01/2013 00:07 957.42 -86.33 960 220 0 
01/01/2013 00:08 852.75 86 960 210 0 
01/01/2013 00:09 460.75 126.25 960 220 0 
01/01/2013 00:10 723 150 960 220 0 
01/01/2013 00:11 394.75 159.25 960 240 0 
01/01/2013 00:12 323.75 163.75 960 230 0 
01/01/2013 00:13 1027.75 166.5 960 250 0 
01/01/2013 00:14 702.25 39.5 960 250 0 
01/01/2013 00:15 727 -94 960 280 0 
01/01/2013 00:16 728 -58.25 960 300 0 
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01/01/2013 00:17 326 -58.5 960 290 0 
01/01/2013 00:18 585.75 -56.75 960 320 0 
01/01/2013 00:19 329.25 -57 960 290 0 
01/01/2013 00:20 604.25 -56.5 960 320 0 
01/01/2013 00:21 700.75 -56.75 960 330 0 
01/01/2013 00:22 319.5 -57 960 310 0 
01/01/2013 00:23 717.25 -85 960 330 0 
01/01/2013 00:24 697 -51 960 340 0 
01/01/2013 00:25 743.75 -24.5 960 300 0 
01/01/2013 00:26 289.75 -4.5 960 270 0 
01/01/2013 00:27 670.25 -35.5 960 250 0 
01/01/2013 00:28 670.25 -94.5 960 240 0 
01/01/2013 00:29 282.25 -58.5 960 290 0 
01/01/2013 00:30 340.5 -57 960 290 0 
01/01/2013 00:31 658.5 -57 960 260 0 
01/01/2013 00:32 264.25 -57.25 960 260 0 
01/01/2013 00:33 488.75 -57 960 260 0 
01/01/2013 00:34 654.5 -56.75 960 230 0 
01/01/2013 00:35 501.25 -73.25 960 270 0 
01/01/2013 00:36 313.75 -58.5 960 250 0 
01/01/2013 00:37 650.25 -50.25 960 300 0 
01/01/2013 00:38 264.5 -6.75 960 320 0 
01/01/2013 00:39 986.75 -43.5 960 310 0 

Table A 2 The demand and generation profiles used in the research. Showing 

rows 1-40 of 525600 

 

 

Feeder  

Number of 
homes on 
the feeder 

Number of 
homes with 
Stirling 
engine 
micro-CHP 

Number of 
homes with 
fuel cells 

Number of 
homes with 
heat pumps 

Number of 
homes with 
solar PV 

1.1 8 0 0 0 0 
1.2 8 0 0 0 0 
1.3 8 0 0 0 0 
1.4 8 0 0 0 0 
1.5 8 0 0 0 0 
1.6 8 0 0 0 0 
1.7 8 0 0 0 0 
1.8 8 0 0 0 0 
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2.1 6 0 0 0 0 
2.2 5 0 0 0 0 
2.3 5 0 0 0 0 
2.4 5 0 0 0 0 
2.5 12 0 0 0 0 
2.6 12 0 0 0 0 
2.7 12 0 0 0 0 
3.1 4 0 0 0 0 
3.2 11 0 0 0 0 
3.3 11 0 0 0 0 
3.4 7 0 0 0 0 
3.5 9 0 0 0 0 
3.6 10 0 0 0 0 
3.7 8 0 0 0 0 
4.1 3 0 0 0 0 
4.2 6 0 0 0 0 
4.3 2 0 0 0 0 
4.4 6 0 0 0 0 
4.5 6 0 0 0 0 
4.6 3 0 0 0 0 
4.7 2 0 0 0 0 
4.8 6 0 0 0 0 
4.9 6 0 0 0 0 
4.10 7 0 0 0 0 
4.11 7 0 0 0 0 
5 14 0 0 0 0 

Table A 3 Table of homes on each feeder of the Maltby network (the Micro-

generation Penetration file listed in the flowchart for the first Python script). 

Column 2 shows the (unchanging) total number of homes on the feeder. 

Columns 3-6 show the number of those homes with micro-generation or low-

carbon heat technologies, these numbers can be adjusted depending on the 

scenario. The current numbers represent the baseline scenario, with no micro-

generation or low-carbon heat. 
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Table A 4 Loads and Generators data file, the output of the first python script 

and the input file for the second. Showing columns 1-15 of 73 and rows 1-15 of 

525600. Columns 2-37 show the load on each feeder, while columns 38-73 would 

show the generation on each feeder. 
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Table A 5 Final output table for the baseline scenario. Showing columns 1-14 of 

48 and rows 1-15 of 525600. Column 2 is the total load on the network, Columns 
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3 and 4 the total real and reactive loads, columns 5 and 6 the total real and 

reactive generation, columns 7 and 8 the real and reactive branch losses, 

columns 9 and 10 the power flow into and out of the transformer, columns 11 

and 12 the real and reactive transformer losses, column 13 the tap position of 

the transformer and columns 14 to 48 (of which just the first is shown) the 

voltage level on each busbar of the network. 


