ANÁLISIS DE PÉRDIDAS TÉCNICAS EN REDES PRIMARIAS DE DISTRIBUCIÓN

KATHERINE ALZATE CORREA ROBERT ALBEY CORTES ALONSO

Proyecto de grado para optar al título de Ingeniero Eléctrico

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERIAS PROGRAMA DE INGENIERIA ELÉCTRICA PEREIRA 2019

ANÁLISIS DE PÉRDIDAS TÉCNICAS EN REDES PRIMARIAS DE DISTRIBUCIÓN

KATHERINE ALZATE CORREA ROBERT ALBEY CORTES ALONSO

Director

Oscar Gómez Carmona Doctor en Ingeniería Eléctrica Docente Programa de Tecnología Eléctrica

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERIAS PROGRAMA DE INGENIERIA ELÉCTRICA PEREIRA 2019

CONTENIDO

INTROI	DUCCIÓN	6
1. AS	PECTOS GENERALES	8
1.1	Perdidas Técnicas	8
1.2	Resolución CREG 015 del 2018	9
1.3	Modelo de Carga	10
1.4	Factor de perdida	11
2. INS	STRUCTIVO DIGSILENT	13
2.1	Creación De Un Nuevo Proyecto	13
2.2	Creación De Un Sistema Desbalanceado	22
2.3	Flujo De Carga	24
2.4	Creación De Un DPL	25
2.5	Archivo final	
3. SIS	STEMA DE PRUEBA Y RESULTADOS	
3.1	Sistema de Prueba y Casos Analizados	
3.2	Resultados	
4. CO	DNCLUSIONES	
5. BIE	BLIOGRAFÍA	41
ANEXC)S	42

Contenido de Figuras

Figura 2. Ventana nombre del proyecto 13 Figura 3. Características del sistema 14 Figura 4. Administrador de datos 14 Figura 5. Carpeta del proyecto 14 Figura 6. Formato de dibujo 15 Figura 7. Panel de trabajo 15 Figura 8. Ejemplo de un circuito 16 Figura 9. Datos básicos de la lónea 16 Figura 10. Datos básicos de un tipo de línea nueva 17 Figura 11. Tipo de línea 17 Figura 13. Datos de flujo de carga de un tipo de línea nueva 18 Figura 14. Datos básicos de una carga 19 Figura 15. Flujo de carga para elemento carga 19 Figura 16. Valores de los exponentes 19 Figura 17. Creación de tipo de carga 20 Figura 18. Modelo de potencia constante 20 Figura 21. Modificación de las características red externa 21 Figura 22. Datos del runero de fases de una línea 23 Figura 24. Selección de fases a seleccionar. 23 Figura 25. Modificación de las características red externa 21 Figura 24. Selección de fases a seleccionar. 23 Figura 25. Modificación de fases a seleccionar. 23<	Figura 1. Creación nuevo proyecto	13
Figura 3. Características del sistema 14 Figura 4. Administrador de datos 14 Figura 5. Carpeta del proyecto 14 Figura 6. Formato de dibujo 15 Figura 7. Panel de trabajo 15 Figura 8. Ejemplo de un circuito 16 Figura 9. Datos básicos de la ndoo 16 Figura 10. Datos básicos de la línea 17 Figura 11. Tipo de línea 17 Figura 12. Datos básicos de un tipo de línea nueva 18 Figura 13. Datos de flujo de carga de un tipo de línea nueva 18 Figura 14. Datos básicos de una carga 19 Figura 15. Flujo de carga para elemento carga 19 Figura 16. Valores de los exponentes 19 Figura 17. Creación de tipo de carga 20 Figura 20. Red externa 21 Figura 21. Modificación de las características red externa 21 Figura 23. Selección del nuero de fases de una línea 23 Figura 24. Selección de fases para un sistema desbalanceado 23 Figura 25. Modificación de fases as eleccionar 23 Figura 27. Conexión de carga 24 Figura 28. Flujo de carga 25 Figura 29. Opcion	Figura 2. Ventana nombre del proyecto	13
Figura 4. Administrador de datos 14 Figura 5. Carpeta del proyecto 14 Figura 5. Carpeta del proyecto 15 Figura 6. Formato de dibujo 15 Figura 7. Panel de trabajo 15 Figura 9. Datos básicos de lo nodo 16 Figura 10. Datos básicos de la línea 17 Figura 11. Tipo de línea 17 Figura 12. Datos básicos de un tipo de línea nueva 18 Figura 13. Datos de flujo de carga de un tipo de línea nueva 18 Figura 14. Datos básicos de una carga 19 Figura 15. Flujo de carga para elemento carga 19 Figura 16. Valores de los exponentes 19 Figura 17. Creación de tipo de carga 20 Figura 20. Red externa. 20 Figura 21. Modélo de potencia constante 20 Figura 21. Modélificación de las características red externa 21 Figura 22. Datos del transformador 22 Figura 23. Selección de nuero de fases de una línea 23 Figura 24. Selección de las características red externa 21 Figura 25. Modificación de las características red externa 22 Figura 26. Visualización de las características red externa 23 </td <td>Figura 3. Características del sistema</td> <td>14</td>	Figura 3. Características del sistema	14
Figura 5. Carpeta del proyecto 14 Figura 6. Formato de dibujo 15 Figura 7. Panel de trabajo 15 Figura 8. Ejemplo de un circuito 16 Figura 9. Datos básicos de la línea 17 Figura 10. Datos básicos de un tipo de línea nueva 18 Figura 11. Tipo de línea 17 Figura 13. Datos básicos de un tipo de línea nueva 18 Figura 13. Datos básicos de una carga 19 Figura 15. Flujo de carga para elemento carga 19 Figura 17. Creación de tipo de carga 20 Figura 18. Modelo de potencia constante 20 Figura 20. Red externa. 21 Figura 21. Modificación de las características red externa 21 Figura 22. Datos del transformador 22 Figura 23. Selección de laces a seleccionar. 23 Figura 24. Selección de fases a seleccionar. 23 Figura 25. Modificación de lases a seleccionar. 23 Figura 30. Creación de un DPL 26 Figura 31. Selección de matriz 27 Figura 32. Código en DPL 26 Figura 33. Creación de matriz para el script. 28 Figura 34. Selección de matriz para el s	Figura 4. Administrador de datos	14
Figura 6. Formato de dibujo 15 Figura 7. Panel de trabajo 15 Figura 8. Ejemplo de un circuito 16 Figura 9. Datos básicos de la nodo 16 Figura 10. Datos básicos de la nodo 16 Figura 10. Datos básicos de un tipo de línea nueva 17 Figura 11. Tipo de línea 17 Figura 12. Datos básicos de un tipo de línea nueva 18 Figura 13. Datos de flujo de carga de un tipo de línea nueva 18 Figura 15. Flujo de carga para elemento carga 19 Figura 16. Valores de los exponentes 19 Figura 17. Creación de tipo de carga 20 Figura 18. Modelo de potencia constante 20 Figura 20. Red externa 21 Figura 21. Modificación de las características red externa 21 Figura 22. Datos del transformador 22 Figura 23. Selección de fases para un sistema desbalanceado 23 Figura 24. Selección de fases a seleccionar 23 Figura 25. Modificación de fases a seleccionar 23 Figura 26. Visualización de la conexión del elemento 24 Figura 27. Conexión de carga desbalanceada 24 Figura 30. Creación de nutriz 27	Figura 5. Carpeta del proyecto	14
Figura 7. Panel de trabajo 15 Figura 8. Ejemplo de un circuito 16 Figura 9. Datos básicos del nodo 16 Figura 10. Datos básicos de la línea 17 Figura 11. Tipo de línea 17 Figura 12. Datos básicos de un tipo de línea nueva 18 Figura 13. Datos de flujo de carga de un tipo de línea nueva 18 Figura 14. Datos básicos de una carga 19 Figura 15. Flujo de carga para elemento carga 19 Figura 17. Creación de tipo de carga. 20 Figura 18. Modelo de potencia constante 20 Figura 20. Red externa 21 Figura 21. Modificación de las características red externa 21 Figura 22. Datos del transformador 22 Figura 23. Selección de lases para un sistema desbalanceado 23 Figura 24. Selección de la conexión del elemento 24 Figura 27. Conexión de carga desbalanceada 24 Figura 28. Opción de de arga 25 Figura 29. Opciones del flujo de carga 24 Figura 20. Creación de matriz 27 Figura 23. Selección de DPL 26 Figura 30. Creación de la conexión del elemento 24 <td< td=""><td>Figura 6. Formato de dibujo</td><td>15</td></td<>	Figura 6. Formato de dibujo	15
Figura 8. Ejemplo de un circuito16Figura 9. Datos básicos de l ndo16Figura 10. Datos básicos de la línea17Figura 11. Tipo de línea17Figura 12. Datos básicos de un tipo de línea nueva18Figura 13. Datos de flujo de carga de un tipo de línea nueva18Figura 14. Datos básicos de una carga19Figura 15. Flujo de carga para elemento carga19Figura 16. Valores de los exponentes19Figura 17. Creación de tipo de carga20Figura 18. Modelo de potencia constante20Figura 20. Red externa20Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador22Figura 23. Selección de la uero de fases de una línea23Figura 24. Selección de la corexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de nuer DPL26Figura 31. Selección de matriz27Figura 32. Código en DPL26Figura 33. Creación de matriz27Figura 34. Selección de matriz27Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección de matriz27Figura 38. Guardar circuito exportado29Figura 39. Creación de matriz27Figura 30. Creación de matriz27Figura 33. Abrir proyecto existente28Figura 34. Selecci	Figura 7. Panel de trabajo	15
Figura 9. Datos básicos del nodo	Figura 8. Ejemplo de un circuito	16
Figura 10. Datos básicos de la línea17Figura 11. Tipo de línea17Figura 12. Datos básicos de un tipo de línea nueva18Figura 13. Datos de flujo de carga de un tipo de línea nueva18Figura 14. Datos básicos de una carga19Figura 15. Flujo de carga para elemento carga19Figura 16. Valores de los exponentes19Figura 17. Creación de tipo de carga20Figura 18. Modelo de potencia constante20Figura 20. Red externa20Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador22Figura 23. Selección de las características red externa21Figura 24. Selección de fases para un sistema desbalanceado23Figura 25. Modificación de las conexión del elemento24Figura 27. Conexión de carga24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de DPL26Figura 31. Selección de matriz27Figura 33. Creación de matriz27Figura 34. Selección de matriz27Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección de matriz27Figura 38. Guardar circuito exportado29Figura 39. Creación de matriz27Figura 30. Creación de matriz27Figura 37. Selección de matriz27Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30 </td <td>Figura 9. Datos básicos del nodo</td> <td>16</td>	Figura 9. Datos básicos del nodo	16
Figura 11. Tipo de línea.17Figura 12. Datos básicos de un tipo de línea nueva18Figura 13. Datos de flujo de carga de un tipo de línea nueva18Figura 14. Datos básicos de una carga19Figura 15. Flujo de carga para elemento carga.19Figura 16. Valores de los exponentes.19Figura 17. Creación de tipo de carga20Figura 18. Modelo de potencia constante20Figura 20. Red externa.20Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador.22Figura 23. Selección del nuero de fases de una línea23Figura 24. Selección de la conexión del elemento.24Figura 27. Conexión de carga24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga.24Figura 29. Opciones del flujo de carga24Figura 29. Opciones del flujo de carga.25Figura 30. Creación de no DPL26Figura 31. Selección de matriz para el script.26Figura 32. Código en DPL26Figura 33. Creación de matriz para el script.28Figura 34. Selección de matriz para el script.28Figura 35. Abrir proyecto existente.29Figura 36. Exportar archivo.29Figura 37. Selección de reporte completo30Figura 38. Guardar circuito exportado.29Figura 39. Creación de reporte completo30Figura 30. Selección de reporte completo30Figura 39. Creación de reporte completo30 <t< td=""><td>Figura 10. Datos básicos de la línea</td><td>17</td></t<>	Figura 10. Datos básicos de la línea	17
Figura 12. Datos básicos de un tipo de línea nueva18Figura 13. Datos de flujo de carga de un tipo de línea nueva18Figura 13. Datos de flujo de carga de un tipo de línea nueva18Figura 14. Datos básicos de una carga19Figura 15. Flujo de carga para elemento carga19Figura 16. Valores de los exponentes19Figura 17. Creación de tipo de carga20Figura 18. Modelo de potencia constante20Figura 20. Red externa20Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador22Figura 23. Selección de fases para un sistema desbalanceado23Figura 24. Selección de las consción del elemento24Figura 25. Modificación de las consción del elemento24Figura 27. Conexión de carga24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de mu DPL26Figura 31. Selección de matriz27Figura 32. Códig on DPL27Figura 33. Creación de matriz27Figura 34. Selección de matriz27Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección de matriz para el script28Figura 36. Exportar archivo29Figura 37. Selección de matriz para el script29Figura 37. Selección de matriz para el script29Figura 38. Guardar circuito exportado29Figura 39. Creación reporte completo30 <t< td=""><td>Figura 11. Tipo de línea</td><td>17</td></t<>	Figura 11. Tipo de línea	17
Figura 13. Datos de flujo de carga de un tipo de línea nueva18Figura 14. Datos básicos de una carga19Figura 15. Flujo de carga para elemento carga19Figura 16. Valores de los exponentes19Figura 17. Creación de tipo de carga20Figura 18. Modelo de potencia constante20Figura 20. Red externa20Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador22Figura 23. Selección de fases para un sistema desbalanceado23Figura 24. Selección de fases a seleccionar23Figura 25. Modificación de la conexión del elemento24Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 30. Creación de nDPL26Figura 31. Selección de DPL26Figura 32. Código en DPL26Figura 34. Selección de matriz27Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección de matriz27Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 30. Creación de matriz28Figura 36. Exportar archivo29Figura 37. Selección de matriz27Figura 36. Abrir proyecto existente28Figura 37. Selección de matriz29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30 </td <td>Figura 12. Datos básicos de un tipo de línea nueva</td> <td>18</td>	Figura 12. Datos básicos de un tipo de línea nueva	18
Figura 14. Datos básicos de una carga19Figura 15. Flujo de carga para elemento carga19Figura 16. Valores de los exponentes19Figura 17. Creación de tipo de carga20Figura 18. Modelo de potencia constante20Figura 19. Modelo de impedancia constante20Figura 20. Red externa21Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador22Figura 23. Selección de fases para un sistema desbalanceado23Figura 25. Modificación de las características a seleccionar23Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga24Figura 30. Creación de DPL26Figura 31. Selección de DPL26Figura 32. Código en DPL26Figura 33. Creación de matriz para el script27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo.29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 34. Selección de reporte completo30Figura 35. Abrir proyecto existente29Figura 36. Exportar archivo.29Figura 37. Selección de reporte completo30Figura 40. Selección de reporte completo30	Figura 13. Datos de flujo de carga de un tipo de línea nueva	18
Figura 15. Flujo de carga para elemento carga19Figura 16. Valores de los exponentes19Figura 17. Creación de tipo de carga20Figura 18. Modelo de potencia constante20Figura 19. Modelo de impedancia constante20Figura 20. Red externa21Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador22Figura 23. Selección de fases para un sistema desbalanceado23Figura 25. Modificación de las consción del elemento24Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga24Figura 30. Creación de DPL26Figura 31. Selección de DPL26Figura 32. Código en DPL26Figura 33. Creación de matriz27Figura 34. Selección de matriz27Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo.29Figura 37. Selección de matriz27Figura 38. Guardar circuito exportado29Figura 39. Creación de matriz para el script.28Figura 36. Exportar archivo.29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 34. Selección de reporte completo30Figura 34. Selección de reporte completo30Figura 37. Selección de reporte completo30Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30	Figura 14. Datos básicos de una carga	19
Figura 16. Valores de los exponentes19Figura 17. Creación de tipo de carga20Figura 18. Modelo de potencia constante20Figura 19. Modelo de impedancia constante20Figura 20. Red externa21Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador22Figura 23. Selección del nuero de fases de una línea23Figura 24. Selección de fases para un sistema desbalanceado23Figura 25. Modificación de las carga desbalanceada24Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 30. Creación de un DPL26Figura 31. Selección de matriz27Figura 32. Código en DPL26Figura 33. Creación de matriz27Figura 34. Selección de matriz27Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 37. Selección de matriz para el script29Figura 37. Selección de matriz para el script29Figura 37. Selección de matriz para el script29Figura 37. Selección de sportado29Figura 37. Selección de reporte completo20Figura 37. Selección de reporte completo30Figura 39. Creación de reporte completo30Figura 39. Creación de reporte completo30Figura 39. Creación de reporte completo30	Figura 15. Flujo de carga para elemento carga	19
Figura 17. Creación de tipo de carga20Figura 18. Modelo de potencia constante20Figura 19. Modelo de impedancia constante20Figura 20. Red externa21Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador22Figura 23. Selección del nuero de fases de una línea23Figura 24. Selección de fases para un sistema desbalanceado23Figura 25. Modificación de fases a seleccionar23Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de DPL26Figura 31. Selección de matriz27Figura 32. Código en DPL26Figura 34. Selección de matriz27Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 30. Creación de reporte completo30	Figura 16. Valores de los exponentes	19
Figura 18. Modelo de potencia constante20Figura 19. Modelo de impedancia constante20Figura 20. Red externa21Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador22Figura 23. Selección del nuero de fases de una línea23Figura 24. Selección de fases para un sistema desbalanceado23Figura 25. Modificación de fases a seleccionar23Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de DPL26Figura 31. Selección de matriz27Figura 33. Creación de matriz27Figura 34. Selección de matriz27Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 30. Creación de reporte completo30	Figura 17. Creación de tipo de carga	20
Figura 19. Modelo de impedancia constante20Figura 20. Red externa21Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador22Figura 23. Selección del nuero de fases de una línea23Figura 24. Selección de fases para un sistema desbalanceado23Figura 25. Modificación de fases a seleccionar23Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de DPL26Figura 31. Selección de matriz27Figura 33. Creación de matriz27Figura 34. Selección de matriz27Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 40. Selección de reporte completo30	Figura 18. Modelo de potencia constante	20
Figura 20. Red externa21Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador22Figura 23. Selección del nuero de fases de una línea23Figura 24. Selección de fases para un sistema desbalanceado23Figura 25. Modificación de fases a seleccionar23Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de DPL26Figura 31. Selección de matriz27Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 40. Selección de reporte completo30	Figura 19. Modelo de impedancia constante	20
Figura 21. Modificación de las características red externa21Figura 22. Datos del transformador22Figura 23. Selección del nuero de fases de una línea23Figura 24. Selección de fases para un sistema desbalanceado23Figura 25. Modificación de fases a seleccionar23Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de DPL26Figura 31. Selección de matriz27Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 40. Selección de reporte completo30	Figura 20. Red externa.	21
Figura 22. Datos del transformador22Figura 23. Selección del nuero de fases de una línea23Figura 24. Selección de fases para un sistema desbalanceado23Figura 25. Modificación de fases a seleccionar23Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de DPL26Figura 31. Selección de matriz27Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 40. Selección de reporte completo30	Figura 21. Modificación de las características red externa	21
Figura 23. Selección del nuero de fases de una línea23Figura 24. Selección de fases para un sistema desbalanceado23Figura 25. Modificación de fases a seleccionar23Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de un DPL26Figura 31. Selección de DPL26Figura 32. Código en DPL27Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 40. Selección de reporte completo30	Figura 22. Datos del transformador	22
Figura 24. Selección de fases para un sistema desbalanceado23Figura 25. Modificación de fases a seleccionar.23Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de un DPL26Figura 31. Selección de DPL26Figura 32. Código en DPL26Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script.28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 40. Selección de reporte completo30	Figura 23. Selección del nuero de fases de una línea	23
Figura 25. Modificación de fases a seleccionar.23Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de un DPL26Figura 31. Selección de DPL26Figura 32. Código en DPL27Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 40. Selección de reporte completo30	Figura 24. Selección de fases para un sistema desbalanceado	23
Figura 26. Visualización de la conexión del elemento24Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de un DPL26Figura 31. Selección de DPL26Figura 32. Código en DPL27Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 40. Selección de reporte completo30	Figura 25. Modificación de fases a seleccionar	23
Figura 27. Conexión de carga desbalanceada24Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de un DPL26Figura 31. Selección de DPL26Figura 32. Código en DPL27Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación de reporte completo30Figura 40. Selección de reporte completo30	Figura 26. Visualización de la conexión del elemento	24
Figura 28. Flujo de carga24Figura 29. Opciones del flujo de carga25Figura 30. Creación de un DPL26Figura 31. Selección de DPL26Figura 32. Código en DPL27Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación reporte completo30Figura 40. Selección de reporte completo30	Figura 27. Conexión de carga desbalanceada	24
Figura 29. Opciones del flujo de carga25Figura 30. Creación de un DPL26Figura 31. Selección de DPL26Figura 32. Código en DPL27Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación reporte completo30Figura 40. Selección de reporte completo30	Figura 28. Flujo de carga	24
Figura 30. Creación de un DPL26Figura 31. Selección de DPL26Figura 32. Código en DPL27Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación reporte completo30Figura 40. Selección de reporte completo30	Figura 29. Opciones del flujo de carga	25
Figura 31. Selección de DPL26Figura 32. Código en DPL27Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación reporte completo30Figura 40. Selección de reporte completo30	Figura 30. Creación de un DPL	26
Figura 32. Código en DPL.27Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script.28Figura 35. Abrir proyecto existente.28Figura 36. Exportar archivo.29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación reporte completo30Figura 40. Selección de reporte completo30	Figura 31. Selección de DPL	26
Figura 33. Creación de matriz27Figura 34. Selección de matriz para el script28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación reporte completo30Figura 40. Selección de reporte completo30	Figura 32. Código en DPL	27
Figura 34. Selección de matriz para el script.28Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo.29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación reporte completo30Figura 40. Selección de reporte completo30	Figura 33. Creación de matriz	27
Figura 35. Abrir proyecto existente28Figura 36. Exportar archivo29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación reporte completo30Figura 40. Selección de reporte completo30	Figura 34. Selección de matriz para el script	28
Figura 36. Exportar archivo.29Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación reporte completo30Figura 40. Selección de reporte completo30	Figura 35. Abrir proyecto existente	28
Figura 37. Selección objeto29Figura 38. Guardar circuito exportado29Figura 39. Creación reporte completo30Figura 40. Selección de reporte completo30	Figura 36. Exportar archivo	29
Figura 38. Guardar circuito exportado29Figura 39. Creación reporte completo30Figura 40. Selección de reporte completo30	Figura 37. Selección objeto	29
Figura 39. Creación reporte completo	Figura 38. Guardar circuito exportado	29
Figura 40. Selección de reporte completo	Figura 39. Creación reporte completo	30
	Figura 40. Selección de reporte completo	30
Figura 41. Guardar reporte final en pdf	Figura 41. Guardar reporte final en pdf	31
Figura 42. reporte final en pdf	Figura 42. reporte final en pdf	31

Contenido de Tablas

Tabla 1. Perdidas de potencia activa en el sistema de distribución nivel 2 en la hora 20	34
Tabla 2. Perdidas de potencia activa en el sistema de distribución 2 en un periodo de 24	
horas	35
Tabla 3. Diferencias porcentuales de perdidas técnicas a partir de la demanda conocida	36
Tabla 4. Diferencias porcentuales de perdidas técnicas en sistema balanceado y	
desbalanceado	37
Tabla 5. Corriente cabecera del circuito sistema desbalanceado modelo Z	37
Tabla 6. Corriente cabecera del circuito sistema desbalanceado modelo P	38
Tabla 7. Corriente cabecera del circuito sistema balanceado	38

Contenido de Graficas

Grafica 1. Comportamiento de la de	emanda en las cargas	36
------------------------------------	----------------------	----

INTRODUCCIÓN

Un sistema eléctrico de potencia se compone de diferentes elementos tales como líneas, transformadores, cargas, fuentes de generación, entre otros. En particular, la red de distribución empieza su composición desde la subestación de distribución, pasando por los tramos de líneas conectados en su extremo a los transformadores de distribución hasta llegar a su final con las cargas, las cuales son conocidas como los usuarios. "Las perdidas técnicas constituyen una parte de la energía que no es aprovechada y que el sistema requiere para su operación, es decir, es la energía que se requiere en los diferentes equipos, redes y elementos que forman parte del sistema de distribución y que sirve para conducir y transformar la electricidad" [1]. En Colombia existen entes de regulación como la Comisión de Regulación de Energía y Gas (CREG) encargada de regular las actividades de prestación de servicios públicos domiciliarios como la energía y el gas. En el año 2018 dio a conocer la resolución CREG 015 del 2018 donde se estipula las metodologías para la remuneración de la distribución de energía, en la cual se encuentra los pasos establecidos para el cálculo del índice de perdida según el nivel de tensión, con el cual le será remunerado al operador de red el nivel de perdidas en su sistema.

Con la ayuda de herramientas computacionales, como por ejemplo DigSilent, se logra desarrollar simulaciones de un sistema eléctrico con sus características reales, realizando un flujo de carga y variando las conexiones o modelando la carga de forma deseada para lograr obtener resultados como lo son las pérdidas técnicas del sistema.

El objetivo de este trabajo es realizar el cálculo de pérdidas técnicas en un sistema de distribución por medio de la herramienta DigSilent, analizando las pérdidas técnicas presentes en una red primaria con valores conocidos de potencia en las cargas. Todo este proceso se realizó a partir de diferentes escenarios para lograr determinar cómo impacta el modelo de la red y de las cargas en el valor del índice de pérdidas técnicas

El documento se encuentra organizado en tres capítulos. En el capítulo de aspectos generales se realiza una explicación de conceptos tales como perdidas técnicas, modelos de cargas, una explicación corta de la resolución 015 de 2018 en cuanto a la temática tratada, factor de perdida, entre otras.

En el capítulo Instructivo DigSilent se desarrolla un breve instructivo para el manejo del software DigSilent, explicando su manejo básico para poder desarrollar un flujo de carga de un sistema eléctrico de potencia, la forma en como agregar los diferentes componentes como nodos, cargas, tramos, entre otros elementos que conforma un sistema de distribución, y como observar los resultados obtenidos. Además, se explica cómo desarrollar un DPL, herramienta disponible en DigSilent para lograr desarrollar la programación de un sistema eléctrico, en nuestro caso el DPL desarrollado es para correr un flujo de carga de 24 horas.

En el capítulo casos analizados y resultados se realiza una descripción del sistema de distribución utilizado en el análisis, especificando las características del sistema, los tipos de conductores utilizados, las conexiones de las cargas, entre otras especificaciones técnicas del sistema. Se desarrolla una explicación de los casos analizados explicando en el consiste cada

uno de estos y las características que cada uno presenta. Por último, en este capítulo se encuentra consignado los resultados obtenidos en las simulaciones, realizando las diferentes pruebas para determinar el impacto de los modelos utilizados en el valor de pérdidas técnicas en el sistema.

1. ASPECTOS GENERALES

Para lograr comprender y desarrollar el objetivo de este trabajo, el cual consiste el calcular las perdidas técnicas en una red primaria de un sistema de distribución, se deben tener claro ciertos conceptos.

1.1 Perdidas Técnicas

Las pérdidas de un sistema de distribución se clasifican en dos grupos, el primero son las perdidas no técnicas, "las cuales consisten en aquellas perdidas que se presentan por el consumo de usuarios no suscriptores o contrabando, error en la medición de contadores de energía, errores en consumo de aquellos usuarios facturados por estimación de su consumo, fraude o hurto por parte de usuarios suscriptores a la empresa distribuidora, entre otros" [1]. El segundo grupo son las perdidas técnicas, , las cuales se definen como "una parte de la energía que no es aprovechada y que el sistema requiere para su operación, es decir, es la energía que se pierde en los diferentes equipos, redes y elementos que forman parte del sistema de distribución y que sirven para conducir y transformar la electricidad y pueden ser determinados por métodos mesurables y analíticos con las herramientas que dispone la empresa distribuidora, sean estas hardware, software, instrumentos de medición, otros" [1], en otras palabras la perdidas técnicas son aquellas que se presentan en el momento de la transmisión de la energía eléctrica por características técnicas de los elementos que componen el sistema.

Este tipo de pérdidas son evidenciadas por todo distribuidor de energía, además son imposibles de eliminar completamente, solo se logran reducir mejorando la red, por ejemplo, ya sea por medio de una mejor distribución de las cargas o por mejoras en equipos que componen el sistema. Es por ello por lo que se realizan estudios de flujos de carga, donde en este caso se realizan simulaciones cambiando características básicas del sistema como lo son los modelos de la carga y la conexión de estas (balanceadas y desbalanceadas) para así observar cuál de estos casos es que muestra menores perdidas y tratar de llevar las características de la red lo más parecido a las simuladas. Es de aclarar que existen otros tipos de metodologías para la reducción de estas pérdidas, como lo son estudios de analizar la ubicación optima de transformadores y usuarios, realizar estudios de reconfiguración de alimentadores, revisión de los criterios de expansión, proyección de la carga, entre otros [2].

Las perdidas técnicas pueden ser clasificadas según la causa que la origina o según el elemento. Cuando se habla de clasificación según el elemento se hace referencia a las pérdidas por transporte, que se dan en la líneas de transmisión, subtransmisión, etc., y a las perdidas por transformación, que como su nombre lo indica se presentan en elementos de transformación de energía como lo son los transformadores. Cuando se hace referencia a la clasificación según la causa de origen se tienen dos tipos de perdidas, las perdidas por efecto Joule, la cual ocurre debido a la transferencia de energía eléctrica a través de un conductor de resistencia R. Este tipo de pérdidas se logran manifestar mediante el calentamiento de los cables conductores del sistema o mediante el calentamiento de los bobinados de los transformadores, y se consideran perdidas variables ya que dependen de la demanda del sistema; y las perdidas por histéresis y corrientes parasitas, que son perdidas fijas ya que

siempre se dan durante el momento de la energización del sistema. La perdida por histéresis se presenta durante el proceso de magnetización y desmagnetización que provoca calentamientos en el material que indican disipación de energía y las perdidas por corrientes parasitas o de Foucault se deben a las corrientes inducidas sobre el material ferromagnético como consecuencia de estar sometido a un campo magnético variable con el tiempo [3].

1.2 Resolución CREG 015 del 2018

La comisión de regulación de energía y gas (CREG) presentó la resolución 015 en el año 2018 en la cual se establece la metodología para la remuneración de la actividad de distribución de energía eléctrica en el sistema interconectado nacional [4]. En el sistema de distribución objeto de este estudio se cuenta con una tensión nominal de operación de 13.2kV la cual según la resolución es llamada nivel 2, que comprende tensiones nominales mayores o iguales a 1kV y menores de 30kV. El capítulo 7 de la resolución expone sobre las pérdidas de energía eléctrica, en la cual se determina los índices de perdidas por nivel de tensión, debido a que las pérdidas técnicas son inevitables, se realiza una remuneración en el costo de servicio, conociendo este término como perdidas reconocidas. Según la resolución 015 estas pérdidas son reconocidas según el nivel de tensión. Para el caso del nivel de tensión 2 el índice de pérdida es calculado con la media y la desviación estándar de los índices de perdidas aprobados a todos los operadores de red (OR), basándose en este resultado los OR son divididos en dos grupos, el primero compuesto por aquellos OR cuyos índices de perdidas sean iguales o inferiores a la suma de la media más la desviación estándar y el segundo grupo está compuesto por aquellos que registran al menos un índice con valor superior a la media más la desviación estándar.

Cuando el OR se encuentra en el segundo grupo debe presentar un estudio de perdidas técnicas, teniendo en cuenta cumplir con los siguientes criterios [4]:

- Desarrollar un estudio con base en el análisis técnico y flujos de carga de su sistema.
- Utilizar la información topológica real de todo su sistema a la fecha de corte, haciendo uso de un modelo de impedancia constante.
- En ningún punto del sistema se pueden presentar factores de potencia menores a 0.9.
- No se puede contar en ningún punto del sistema con valores de tensión inferiores a los establecidos en las normas vigentes.

Si un OR perteneciente al primer grupo considera la posibilidad de presentar un estudio de perdidas técnicas también debe de cumplir con los criterios anteriores. Es a partir de lo mencionado anteriormente que las empresas distribuidoras realizan o contratan personas para la realización de estudios de perdidas técnicas.

En nuestro caso, se realizó el estudio al sistema de distribución cumpliendo con los criterios exigidos por la resolución 015, además de realizar un estudio adicional haciendo uso de un modelo de potencia constante.

1.3 Modelo de Carga

Un modelo de carga es la representación matemática de la relación que existe entre la potencia activa y reactiva de la carga conectada a una barra, la tensión y frecuencia en la barra. Se pueden identificar dos tipos de modelos de carga, el modelo de carga estática y el modelo de carga dinámica. Los modelos de carga estáticos son comúnmente utilizados debido a que presentan una complejidad menor, ya que utilizan ecuaciones algebraicas, a diferencia de los modelos dinámicos que utilizan ecuaciones diferenciales, en este trabajo se hace uso del modelo de carga estática. [5]

Un modelo de carga estática es aquel que muestra la potencia activa y reactiva de la carga en cualquier instante mediante ecuaciones algebraicas dependientes del voltaje (magnitud y frecuencia) para el mismo instante de tiempo.

1.3.1 Modelo de carga de potencia constante (Tipo P)

Es aquel en el cual la potencia no varía con el voltaje. Para el caso de un aumento de tensión, la corriente disminuirá para mantener la potencia de la carga en un valor constante, lo que se traduce en un aumento de la impedancia. El modelo de la carga es el siguiente:

$$\begin{array}{l} P = P_0 & (1.1) \\ Q = Q_0 & (1.2) \end{array}$$

Donde P es la potencia activa y Q es la potencia reactiva, el subíndice 0 denota los valores nominales.

El modelo de potencia constate es una típica representación de la carga industrial que contiene gran cantidad de motores. Este modelo es válido para pequeñas variaciones de voltaje en un rango de variación entre 75 - 120% del voltaje nominal y se asume que la potencia permanece constante frente a la variación de la tensión, mientras que la corriente en la carga disminuye con el aumento en la tensión [6].

1.3.2 Modelo de carga de impedancia constante (Tipo Z)

Es aquel en el cual la potencia varia de forma directa con el cuadrado del voltaje. Esto quiere decir que ante un aumento de la tensión, necesariamente debe aumentar la corriente para mantener la impedancia. El modelo de la carga es el siguiente:

$$P = P_0 \left(\frac{V}{V_0}\right)^2$$
(1.3)
$$Q = Q_0 \left(\frac{V}{V_0}\right)^2$$
(1.4)

Donde P es la potencia activa, Q es la potencia reactiva y V es la tensión en la barra, el subíndice 0 denota los valores nominales.

El modelo de impedancia constante es una típica representación de la carga residencial caracterizada por elementos como resistencias, calentadores, alumbrado y carga reactiva pequeña como los motores de electrodomésticos. Este modelo establece como condición que la impedancia de la carga permanece constante [6].

1.3.3 Modelo de carga de corriente constante (Tipo I)

Es aquel en el que la potencia se relaciona directamente con el voltaje. Esto quiere decir que ante un aumento de la tensión, la corriente no varía, por lo cual tanto la potencia como la impedancia de la carga varían. El modelo de la carga es el siguiente:

$$P = P_0 \left(\frac{V}{V_0}\right)$$
(1.5)
$$Q = Q_0 \left(\frac{V}{V_0}\right)$$
(1.6)

Donde P es la potencia activa, Q es la potencia reactiva y V es la tensión en la barra, el subíndice 0 denota los valores nominales.

1.3.4 Modelo de carga polinomial o ZIP

El modelo polinomial es ampliamente utilizado y muestra la relación entre la potencia y la tensión mediante una ecuación polinomial y corresponde a una combinación lineal de los modelos de carga a potencia, corriente e impedancia constante. El modelo de la carga es el siguiente:

$$P = P_0 \left(P_1 \left(\frac{v}{v_0} \right)^2 + P_2 \left(\frac{v}{v_0} \right) + P_3 \right)$$
(1.7)
$$Q = Q_0 \left(Q_1 \left(\frac{v}{v_0} \right)^2 + Q_2 \left(\frac{v}{v_0} \right) + Q_3 \right)$$
(1.8)

Los coeficientes P_1 , P_2 , P_3 y Q_1 , Q_2 , Q_3 representan la proporción de cada una de las componentes.

1.4 Factor de perdida

Es la relación entre las perdidas medias, a las pérdidas que corresponden al pico de la carga. Este factor indica el grado en el cual las pérdidas durante la demanda máxima se mantienen desde el principio hasta el fin del periodo considerado [7]. El cálculo de las pérdidas generalmente se realiza durante la demanda máxima, sin embargo evaluar las perdidas en un día significaría repetir los cálculos para cada estado de operación, una simplificación de este procedimiento puede lograr por medio del factor de perdidas [8]. La fórmula para calcular dicho factor es la siguiente:

$$F_{perdida} = \frac{\sum D_i^2}{D_M^2 \times T}$$
(1.9)

Donde D_i es la demanda leída en cada intervalo de tiempo, D_M es la demanda máxima en un periodo de tiempo y T es el número de hora en el periodo de tiempo considerado.

2. INSTRUCTIVO DIGSILENT

Para realizar el análisis se usó el software Power Factory DigSilent. Este capítulo presentará una guía básica de cómo realizar el montaje de sistemas de distribución haciendo uso de elementos tales como cargas, nodos, líneas, fuentes de alimentación del sistema, entre otros elementos, además de cómo realizar un código básico en DPL para ejecutar un flujo de potencia de 24 horas, variando los valores tanto de potencia como el factor de potencia en las cargas hora a hora. Se enseñará además como visualizar los resultados obtenidos al correr el flujo de carga y como exportar estos datos aun documento PDF.

2.1 Creación De Un Nuevo Proyecto

Para crear un proyecto nuevo nos dirigimos a la parte superior izquierda de la pantalla y dar click en Archivo > Nuevo > Proyecto como lo indica la Figura 1.

Figura 1. Creación nuevo proyecto

Se abre una ventana llamada Proyecto – Proyecto.IntPrj, donde se coloca nombre al proyecto y se da click en OK como se muestra en la Figura 2.

Proyecto	Proyecto.IntPrj		X
Datos	Básicos	Nombre Prueba	ок
Comp Proyec Proyec Almac Migrae	artir to Derivado to Combinado enamiento ción	Tiempo de Inicio 31/12/1969 19:00:00 Tiempo Final 07/02/2106 01:28:15 Ajustes del Proyecto Proyecto\Ajustes\Ajustes del Proyecto 	Cancelar Contenido
Descri	oción	Nuevo Red Nuevo Caso de Estudio Cambiar ajustes Tomar de Proyecto existente Ajustar a Valores Estándares	
		Figura 2 Ventana nombre del provecto	

Figura 2. Ventana nombre del proyecto

Luego se abre otra ventana donde se determinan características como el nombre de la red y la frecuencia del sistema y se de click en OK como se muestra en la Figura 3.

R	ed - Red.ElmNet *		x
	Datos Básicos	Nombre Red	ОК
	Flujo de Carga	Gráfica ▼ →	Cancelar
	Cortocircuito VDE/IEC	Color 1	Contenido
	Cortocircuito Completo	Frequencia Nominal 60 Hz	Contenido
	Cortocircuito ANSI		
	IEC 61363	Propietario	

Figura 3. Características del sistema

Después abrimos el administrador de datos (ver figura 4) y allí podremos ver la carpeta creada del proyecto donde se observa la biblioteca, casos de estudio, escenarios de operación y modelo de red, esto se observa en la figura 5.

HIVO EDITAR VISTA INSERTAR DA	tos c	ÁLCULO SALIDA	HERRAMIENTAS	VENTANA AY	UDA
	ج ک				A 2
Fi	gura 4	Administrador de	datos		
	-				
Administrador de Datos - \co1016048923 :					• X
	ā (∞ ∰ 🔳 🖓	<u>76</u> 28 27	ư ư	
■ ■ Base de Datos ▶ 1000 Biblioteca		Nombre	Tipo •	Objeto modificado •	Objeto modi
Configuración	63	BalanceadotipoP		02/10/2018 13:09:14	co101604{ 🔺
Sistema	63	MV Distribution Network(02/10/2018 14:17:03	co1016048
RelanceadotingD	63	Proyecto(1)		03/10/2018 14:54:20	co1016048 =
VGB BalanceadotipoP MV Distribution Network(2)		Prueba		10/10/2018 16:50:07	co1016048
Provecto(1)	63	ejemplo		10/10/2018 16:06:10	co101604
⊿ 🖾 Prueba	63	ejemplo_trafo		10/10/2018 16:30:20	co1016048
▷ 🖄 Diblioteca		Ajustes		24/09/2018 16:09:02	Administr
🖉 🚰 Casos de Estudio		Papelera de Reciclaje		24/09/2018 16:09:02	Administr
Escenarios de Operación					
Aiuctor					
⊳ vei Ajusies					
▷ I ejemplo trafo					
Ajustes					
Papelera de Reciclaje					

Figura 5. Carpeta del proyecto

Ahora si podemos comenzar con la creación del sistema eléctrico.

El programa permite hacer más grande el panel de trabajo, ya que la plantilla que viene por defecto puede llegar a ser pequeña para realizar el sistema eléctrico, para esto se da click derecho en el espacio de trabajo, seguido de formato de dibujo, después aparece una ventana llamada formato de dibujo, elegimos el de nuestra preferencia, para este caso se usara el A1 y luego damos click en OK, esto se observa en la Figura 6.

Diagrama	Formato de Dibujo - Diagramas\Red\Settings\Format.SetGrfpage *	Σ
Imprimir Definir el Área de Impresión Formato de Dibujo	Tamaño del Dibujo C Vertical Formato A1 Editar Nuevo	OK
Capas Mostrar Bloque de Título Mostrar Leyenda Mostrar Bloque de Leyenda de Colores Modo de Congelamiento Panel de Navegación Coloreo del Diagrama	Formato para Impresión Formato Vuevo	Contenido
Resultados para los Elementos de Borde Resultados de Barras Resultados para Barras de Cortocircuito Crear Caja de Resultado Adicional Crear Caja de Texto de Resumen de Áreas	Offset para impresión Horizontal 0 ★ mm Vertical 0 ★ mm	

Figura 6. Formato de dibujo

En la parte derecha del programa se observan los elementos disponibles para la creación de un sistema eléctrico, donde se cuenta con diferentes tipos de elementos como nodos, líneas, fuentes, transformadores, condensadores, etc.; se da click en el elemento y luego se da click dentro del panel de trabajo como se muestra en la figura 7.

Figura 7. Panel de trabajo

Para este ejemplo se crea una red con 10 nodos, 6 cargas, 2 redes externas y 4 líneas como se muestra en la figura 8.

NOTA: para colocar elementos que vayan conectados a dos nodos primero se deben colocar los nodos y luego el elemento (líneas, transformadores, seccionadores, etc.)

Figura 8. Ejemplo de un circuito

Para cambiar las características de los elementos se da doble click sobre el elemento, a continuación se explicará cada uno de los elementos usados en este proyecto.

2.1.1 Nodos

Para la creación de nodos se escoge en la barra de elementos y se ubica en el panel de trabajo, para modificar las características de estos elementos se da doble click sobre él y luego se abrirá una ventana como se muestra en la figura 9. En esta ventana se observa los datos que se pueden cambiar para este proyecto los cuales son el nombre de este, su tipo de sistema (AC, DC), su fases (ABC, ABC-N, 2 fases, etc.) y la tensión nominal, luego de colocar los valores deseados se da click en OK.

6 Q Q Q [] 87%	Terminal - Red\Terminal.ElmTerm	AL BRE CROSS OF THE TRANSFE
	Datos Básicos	Nombre Terminal
	Flujo de Carga	Tipo 🔍 🔿 Cancelar
	Cortocircuito VDE/IEC	Zona V
	Cortocircuito Completo	Área V +
· · · · · · · · ·	Cortocircuito ANSI	Cubículos
	IEC 61363	
· · · · · ·	Cortocircuito DC	L Fuera de Servicio
	Simulación RMS	Tipo de Sistema AC Viso Barra V
Interruptor	Simulación EMT	Tecnología de Fases ABC
· · · <u>·</u> · · · · · · · · · · · · · · · · · ·	Armónicos/Calidad de Energi	Tensión Nominal
i ∎• · · ·	Protección	Línea-Línea 110, kV
	Flujo Óptimo de Potencia	Fase-tierra 63,50853 kV
	Confiabilidad	
	Confiabilidad de Generación	T Aterrizado
	Seccionamiento de Puntos	
	Descripción	

Figura 9. Datos básicos del nodo

2.1.2 Líneas

Para la creación de líneas se escoge en la barra de elementos y se ubica en el panel de trabajo, dando doble click sobre el elemento aparece la ventana donde se logran cambiar las

características principales de las líneas como se muestra en la figura 10, en esta ventana se puede cambiar el nombre de la línea, el tipo, número de líneas en paralelo y longitud de línea.

Figura 10. Datos básicos de la línea

El cambio de tipo de línea se puede escoger un tipo predeterminado o crean uno nuevo si se tienen todos los valores del conductor, ver figura 11. Para ese proyecto se crearon varios tipos de líneas, debido a que se tenían diferentes calibres, para la creación de este nuevo tipo de línea se da click en tipo > Nuevo tipo de proyecto > Tipo de línea, estando allí se hacen cambios en la pestaña de datos básicos y en la pestaña de flujo de carga, en la primera ventana se editan los campos de nombre, tensión nominal, corriente Maximina, frecuencia nominal, la opción de cable aéreo, el número de fases, la resistencia y la reactancia como se muestra en la figura 12. En la pestaña de flujo de carga se modifican los valores de la resistencia y el material del conductor como se observa en la figura 13, después de contar con los valores se da click en OK.

Figura 11. Tipo de línea

Load Row VDE/IEC Short-Circuit Complete Short-Circuit ANSI Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Harmonics/Power Quality Protection Dptimal Power Flow	Rated Voltage Rated Current Nominal Frequency Cable / OHL System Type Parameters per Le AC-Resistance F Reactance X	13.2 0.275 60. Overhead Line AC R(20°C) 0.53 0.333	kV kA Hz V Pł	ıases 3 n/km	▼ Pa	Number of Neut irameters per Length Z AC-Resistance R0'	rals 0 -	Ohm/km
VDE/IEC Short-Circuit Complete Short-Circuit ANSI Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Harmonics/Power Quality Protection Optimal Power Flow	Rated Current Nominal Frequency Cable / OHL System Type Parameters per Le AC-Resistance F Reactance X*	0.275 60. Overhead Line AC ength 1.2-Sequen R*(20°C) 0.53 0.333	kA Hz V Pł	nases 3 n/km	▼ Pa	Number of Neut irameters per Length Z AC-Resistance R0'	rals 0 💌 ero Sequence 0.	Ohm/km
Complete Short-Circuit ANSI Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Harmonics/Power Quality Protection Optimal Power Flow	Nominal Frequency Cable / OHL System Type Parameters per Le AC-Resistance F Reactance X'	60. Overhead Line AC ength 1,2-Sequent R(20°C) 0.53 0.333	Hz Pł Ce Oh	ases 3 n/km	▼ Pa /	Number of Neut rameters per Length Z AC-Resistance R0'	rals 0 💌 ero Sequence 0.	Ohm/km
ANSI Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Harmonics/Power Quality Protection Optimal Power Flow	Cable / OHL System Type Parameters per Le AC-Resistance F Reactance X'	Overhead Line AC ength 1.2-Sequent R'(20°C) 0.533	Př Př Ce Oh	nases 3 m/km	▼ Pa	Number of Neut irameters per Length Z AC-Resistance R0'	rals 0 rals 0	Ohm/km
IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Harmonics/Power Quality Protection Optimal Power Flow	System Type Parameters per Le AC-Resistance F Reactance X'	AC ength 1,2-Sequen R'(20°C) 0.53	Pł Pł Oh Oh	nases 3 m/km	▼ Pa	Number of Neut rameters per Length Z AC-Resistance R0'	rals 0 💌 ero Sequence	Ohm/km
DC Short-Oircuit RMS-Simulation EMT-Simulation Hamonics/Power Quality Protection Optimal Power Flow	Parameters per Le AC-Resistance F Reactance X'	ngth 1,2-Sequen R'(20°C) 0.53	Ce Oh	m∕km ➡	Pa /	rameters per Length Z AC-Resistance R0'	ero Sequence	Ohm/km
RMS-Simulation EMT-Simulation Harmonics/Power Quality Protection Optimal Power Flow	AC-Resistance F Reactance X'	R'(20°C) 0.53	0h	m∕km ✦	4	AC-Resistance R0'	0.	Ohm/km
EMT-Simulation Harmonics/Power Quality Protection Optimal Power Flow	Reactance X'	0.333						
Harmonics/Power Quality Protection Optimal Power Flow	Reactance X'	0.333	06					⇒
Protection Optimal Power Flow			On	m/km	F	Reactance X0'	0.	Ohm/km
Optimal Power Flow								
Reliability								
Generation Adequacy								
Cable Sizing								
Description								

X

Line Type - Equipment Type Library\Aluminio 2/0.TypLne × Basic Data Parameters per Length 1,2-Sequence OK Max. Operational Temperature 80. degC Cancel VDE/IEC Short-Circuit AC-Resistance R'(20°C) 0.53 Ohm/km Complete Short-Circuit Conductor Material Auminiur -ANSI Short-Circuit Parameters per Length 1,2-Sequence Parameters per Length Zero Sequence DC Short-Circuit RMS-Simulation ٠ Susceptance B' 0 uS/km Susceptance 80' uS/km EMT-Simulation Harmonics/Power Quality ۲ ۲ Ins. Factor 0 Conductance G' 0 uS/km Protection Reliability Cable Sizing Description

Figura 13. Datos de flujo de carga de un tipo de línea nueva

NOTA: A todas las líneas se les tiene que modificar los valores vistos en la figura 10. Si alguna línea tiene las mismas características de otra lo que se hace es seleccionar el tipo de línea ya creado dando click en tipo > seleccionar tipo de proyecto > tipo de línea, y aparece la venta con los tipos de líneas ya creadas, se selecciona el tipo deseado y se da click en OK.

2.1.3 Cargas

Para la creación de cargas se escoge el elemento se coloca en el panel de trabajo y se da doble click sobre este para modificar sus características, donde se abre una ventana para hacer los cambios al nombre (ver figura 14), después se da click en la pestaña de flujo de carga donde se hacen los cambios de potencia activa, reactiva o factor de potencia, todo depende de los valores con los que se cuente, ya que en modo de entrada se pueden cambiar los valores de entrada como se muestra en figura 15.

Carga General - Red\Carga Gener	5).ElmLod			×
Datos Básicos	Nombre Carga General(5)			ОК
Flujo de Carga	Tipo 🔍 🕈			Cancelar
Cortocircuito VDE/IEC	Terminal Red\Termi	nal(2)\Cub 3	Terminal(2)	
Cortocircuito Completo	Zona 🔹			riguia
Cortocircuito ANSI	Á			Ir a
IEC 61363	Area			
Cortocircuito DC	Fuera de Servicio			
Simulación RMS	Tecnología 3F-'D'			
Simulación EMT	Considerar el Transformad	dor de Carga		
Armónicos/Calidad de Energí				
Flujo Óptimo de Potencia				
Estimación de Estado				
Confiabilidad				
Confiabilidad de Generación				
Descripción				

Figura 14. Datos básicos de una carga

Datos Básicos	Seneral Avanzado				ОК
Flujo de Carga	Modo de Entrada		Estándar		Cancelar
Cortocircuito VDE/IEC Cortocircuito Completo	Balanceado/Desbalance Punto de Operación	ado	Estándar P, Q P, cos(fi) I, cos(fi)	Valores actuales	Figura >>
EC 61363	Potencia Activa Potencia Reactiva	15, 0.	S, cos(fi) Q, cos(fi) I, P	15, kW 0. Myar	
Cortocircuito DC Simulación RMS	Tensión	1,	S, P S, Q		
Simulación EMT	Factor de Escalamient	1, alami	iento de la CarraFactor (1, le Escala de Zona: 1	
Armónicos/Calidad de Energi Flujo Óptimo de Potencia Estimación de Estado Confiabilidad Confiabilidad de Generación	2 menung har er ere				

Figura 15. Flujo de carga para elemento carga

NOTA: Para cambiar el exponente de potencia activa o reactiva se de doble click en la parte que se muestra en la figura 16 y luego se abre otra ventana donde se cambia el valor deseado (k, M, G, etc.).

Datos Básicos	General Avanzado			ОК
Flujo de Carga	Modo de Entrada	Estándar	•	Cancelar
Cortocircuito VDE/IEC	Balanceado/Desbalance	ado Balanceado	•	Emmer
Cortocircuito Completo	Punto de Operación		Valores actuales	rigura >>
Cortocircuito ANSI	Potencia Activa	15, kW	15, kW	Ir a
EC 61363				
Cortocircuito DC	Modificar Definiciones o	de Variablesstes\Unidades	\ElmLod-W.SetVariable	
imulación RMS	Filtro para		ОК	
imulación EMT	Nombre de clase	ElmLod	Cancelar	
rmónicos/Calidad de Energi	Nombre de Variable	×	Cancela	
lujo Óptimo de Potencia			Aplicar	
stimación de Estado	Ajustes Internos del I	Progr. f		
Confiabilidad	Unidad	p		
Confiabilidad de Generación	Exponente	u		
Descripción				
	Sustituido por	k M		
	Aiustes del Usuario	G		
	Unidad	P		
	-	E		

Figura 16. Valores de los exponentes

Para agregar el modelo de carga se crea un tipo de carga, esta se crea dando click en el tipo > nuevo tipo de proyecto > tipo de carga general, como se muestra en la figura 17, se abre una ventana en la cual aparece las pestañas de datos básicos y de flujo de carga, en la pestaña de datos básicos solo se nombra el tipo de carga, en la pestaña de flujo de carga se modifica el número de coeficiente de la potencia activa y reactiva, colocando 1 en la opción de coeficiente según el modelo deseado, para el modelo de potencia constante se coloca 1 en el coeficiente aP y aQ, ver figura 18, para el modelo de impedancia constante se colocan las otras opciones en cero y la última casilla se colocara en 1 automáticamente como se muestra en la figura 19.

0	General Load - Grid\T11073.E	ImLod					×
	Basic Data	Name	T11073				ОК
	Load Flow	Туре	Equipment	Type Library\Po	tencia	Cte	Cancel
	VDE/IEC Short-Circuit	Terminal	Select Glob	al Type	- 1	N16	
	Complete Short-Circuit	Zone	Select Proj	ect Type	>		Figure <<
	ANSI Short-Circuit	Area	New Proje	t Type	>	General Load Type (TypLod)	Jump to
	IEC 61363	Out of :	Paste Type			Complex Load (TypLodind)	
	DC Short-Circuit	Technolog	Remove Ty	rpe	_		_
	RMS-Simulation		der Load Transform	er			
	EMT-Simulation						
	Harmonics/Power Quality						
	Optimal Power Flow						
	State Estimation						
	Reliability						
	Generation Adequacy						
	Description						

Figura 17. Creación de tipo de carga

ieneral Load Type - Equipment Type Library\PotenciaCte.TypLod								
Basic Data	Voltage Depend	ence P			ОК			
Load Flow	Coefficient aP	1.	Exponent e_aP	0.	Cancel			
VDE/IEC Short-Circuit	Coefficient bP	0.	Exponent e_bP	1.				
Complete Short-Circuit	Coefficient cP	0.	Exponent e_cP	2.				
ANSI Short-Circuit	Voltage Depend	ence of Q]			
IEC 61363	Coefficient aQ	1.	Exponent e_aQ	0.				
DC Short-Circuit	Coefficient bQ	0.	Exponent e_bQ	1.				
RMS-Simulation	Coefficient cQ	0.	Exponent e_cQ	2.				
ENT Condition								

Figura 18. Modelo de potencia constante

General Load Type - Equipr	ment Type Library\Im	pedanciaCte.TypLo	bd		×
Basic Data	Voltage Depend	ence P			ОК
Load Flow	Coefficient aP	0.	Exponent e_aP	0.	Cancel
VDE/IEC Short-Circuit	Coefficient bP	0.	Exponent e_bP	1.	
Complete Short-Circuit	Coefficient cP	1.	Exponent e_cP	2.	
ANSI Short-Circuit	Voltage Depend	ence of Q			1
IEC 61363	Coefficient aQ	0.	Exponent e_aQ	0.	
DC Short-Circuit	Coefficient bQ	0.	Exponent e_bQ	1.	
RMS-Simulation	Coefficient cQ	1.	Exponent e_cQ	2.	
EMT-Simulation					

Figura 19. Modelo de impedancia constante

2.1.4 Red Externa

Para la creación de red externa se escoge en la barra de elementos y se ubica en el panel de trabajo, ver figura 20, se hacen los cambios necesarios, en la pestaña de datos básicos se crea su nombre, en la pestaña de flujo de carga se selecciona la opción de nodo slack para indicar que esta es la cabecera del circuito, y se coloca su voltaje de referencia en 1 y su ángulo en cero, ver figura 21.

🏟 🚳 🗟 👎 🕴 🕺 😫	꽃 🕼 성 📳 🔹 🖳 🗇 🗊 그 🙎 🖬 🖻 🛛 🗢 😺 🐉 🌮 👎 🚳	
2/2106 1:28:1 🐴 🔎 🏷 🗌	3205% 🖵 🖑 🍋 🙀 📮 🗃 🕂 🔟 🗃 📽 🚱 Σ 💷 📰 📰 🗶 🐰 🖻 📵 [13.2 kV 🖃 ABC 🖃	<u>a</u> .
y Case		· [
tive)		. → , , , , , , , , , , , , , , , , , ,
		— = :
) 2 (3 4) 4 (6 (7)
1		. ↓ ₩\$Y ₩Y E
	ž	. 22±" 5.0×**
1. A.		& \$
		Z
	· · · · · · · · · · · · · · · · · · ·	
▶	Figura 20. Red externa	। ∙ िं ० ० न ∙
FI المعالم الم	Inal Grid.ElmXnet	, ,
External Grid - Grid\Exte	Figura 20. Red externa	, С ф ф д . Х
External Grid - Grid\Exte Basic Data Load Row	Internal Grid.ElmXnet	х ок
External Grid - Grid\Exte Basic Data Load Row VDE/IEC Short-Circuit	Internal Grid.ElmXnet	X OK Cancel
External Grid - Grid\Exte Basic Data Load Flow VDE/IEC Short-Circuit Complete Short-Circuit	Internal Grid.ElmXnet	X OK Cancel Figure <<
External Grid - Grid\Exte Basic Data Load Row VDE/IEC Short-Circuit Complete Short-Circuit	Internal Grid.ElmXnet	X OK Cancel Figure << Jump to
External Grid - Grid\Exte Basic Data Load Row VDE/IEC Short-Grout Complete Short-Circuit ANSI Short-Circuit IEC 61363	Seriel Figura 20. Red externa mal Grid.ElmXnet Bus Type SL▼ Setpoint local ▼ Operation Point Angle 0. deg Voltage Setpoint 1. p.u. Reference Busbar ▼◆	X OK Cancel Figure << Jump to
External Grid - Grid\Exte Basic Data Load Flow VDE/IEC Short-Circuit Complete Short-Circuit IEC 61363 DC Short-Circuit	Seriel Figura 20. Red externa mal Grid.ElmXnet Bus Type SU → Setpoint local → Operation Point Angle 0. deg Voltage Setpoint 1. p.u. Reference Busbar →	X OK Cancel Figure << Jump to
External Grid - Grid\Exte Basic Data Load Row VDE/IEC Short-Circuit Complete Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation	Internal Grid.ElmXnet	X OK Cancel Figure << Jump to
External Grid - Grid\Exte Basic Data Load Row VDE/IEC Short-Circuit Complete Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation	Internal Grid.ElmXnet	X OK Cancel Figure << Jump to
External Grid - Grid\Exte Basic Data Load Flow VDE/IEC Short-Circuit Complete Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Hamonics/Power Quali	Seriel Grid.ElmXnet	X OK Cancel Figure << Jump to
External Grid - Grid\Exte Basic Data Load Flow VDE/IEC Short-Circuit Complete Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Hamonics/Power Quall Optimal Power Flow	Seriel Figura 20. Red externa rnal Grid.ElmXnet Bus Type Setpoint local Operation Point Operation Point I. p.u. Reference Busbar V Reference Busbar V Reference Deprational Limits Capability Curve V	X OK Cancel Figure << Jump to
External Grid - Grid\Exte Basic Data Load Flow VDE/IEC Short-Circuit Complete Short-Circuit ANSI Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation EMT-Simulation Hamonics/Power Row Reliability	Verial Figura 20. Red externa rnal Grid.ElmXnet Bus Type Setpoint Image Operation Point Image Voltage Setpoint Image Image <	X OK Cancel Figure << Jump to

Figura 21. Modificación de las características red externa

2.1.5 Transformadores

Para los transformadores, al igual que todos los elementos, se ponen en el panel de trabajo seleccionándolos de la tabla de elementos y escogiendo su posición en el panel de trabajo, cabe indicar que en el caso del transformador este de sebe conectar entre dos nodos (o tres si fuese tri-devanado), para configurar y definir sus características se da doble click sobre el elemento y se abre una ventana como se muestra en la figura 22, allí se modifica nombre y

se coloca un tipo ya sea nuevo o predeterminado por DigSilent. Si es nuevo aparece una ventana nueva donde se modifican todos los valores en datos básicos y en flujo de carga.

rmador de dos Devanados -	Ked (Transformador de dos L					
os Básicos	General Conductor a Tierra	/Neutro				01
o de Carga	Nombre Transforma	idor de dos Devanados				Canc
ocircuito VDE/IEC						
ocircuito Completo	Lado AT			Terminal(1)		Figura
ocircuito ANSI		Terminal(2)\Cub 4	-	Terminal(2)		Ir a
51363		(Terminal(2)(Cub_4		reminal(2)		
ocircuito DC	Zona Lado AT	· · · ·				
ulación RMS	Area Lado Al	• • • • • • • • • • • • • • • • • • • •				
ulación EMT	Fuera de Servicio					
ónicos/Calidad de Energí	Número de		Intercambiar C	Conexiones		
ección	Transformadores en paral	elo 1				
Óptimo de Potencia	Capacidades Térmicas					
nación de Estado	Fortes de desificació		Determined (c. 1.)	0.549/0		
fiabilidad	Autotransformador	1,	Potencia Nominai (act.)	U, MVA		
fiabilidad de Generación	 Elementer Suministrador 					
fiabilidad de Generación ionamiento de Puntos	Elementos Suministrados	10.15				
fiabilidad de Generación ionamiento de Puntos tripción	Elementos Suministrados Marcar elemen	itos en el Gráfico	E	ditar		
fiabilidad de Generación ionamiento de Puntos rripción po de Transformador de dos De	Elementos Suministrados Marcar elemen vanados - Biblioteca de Tipos\Tij	itos en el Gráfico po de Transformador de dos D	evanados.TypTr2	Editar		
fiabilidad de Generación ionamiento de Puntos rripción po de Transformador de dos De Datos Básicos	Elementos Suministrados Marcar elemen vanados - Biblioteca de Tipos\Tij Nombre	itos en el Gráfico po de Transformador de dos D Tipo de Transformador de d	evanados.TypTr2 Tos Devanados	Editar		ОК
fiabilidad de Generación ionamiento de Puntos rripción po de Transformador de dos De Datos Básicos Flujo de Carga Codeciziruío NDE/JEC	Elementos Suministrados Marcar elemen vanados - Biblioteca de Tipos\Tij Nombre Tecnología	itos en el Gráfico po de Transformador de dos D Tipo de Transformador de co Transformador Trifásico	evanados.TypTr2 los Devanados	Editar		OK Cancelar
fiabilidad de Generación ionamiento de Puntos tripción po de Transformador de dos De Datos Básicos Flujo de Carga Contocircuito VDE/JEC Contocircuito Comoleto	Elementos Suministrados Marcar elemen vanados - Biblioteca de Tipos\Tij Nombre Tecnología Potencia Nominal	ntos en el Gráfico po de Transformador de dos D Transformador Trifásico 1, MVA	evanados.TypTr2 los Devanados	Editar		OK Cancelar
iabilidad de Generación ionamiento de Puntos ripción bo de Transformador de dos De Datos Básicos Flujo de Carga Contocircuito VDE/JEC Contocircuito ANSI	Elementos Suministrados Marcar elemen vanados - Biblioteca de Tipos/Tij Nombre Tecnología Potencia Nominal Frecuencia Nominal	po de Transformador de dos D Transformador de dos D Transformador Trifásico 1, MVA 50, Hz	evanados.TypTr2 los Devanados	Editar		OK Cancelar
fiabilidad de Generación ionamiento de Puntos tripción Datos Básicos Flujo de Carga Contocircuito VDE/IEC Contocircuito Completo Contocircuito ANSI IEC 61363	Elementos Suministrados Marcar elemen vanados - Biblioteca de Tipos/Tij Nombre Tecnología Potencia Nominal Frecuencia Nominal Tensión nominal	ntos en el Gráfico po de Transformador de dos D Transformador de co Transformador Trifásico 1, MVA 50, Hz	evanados.TypTr2 los Devanados Grupo Vectorial	Editar		OK Cancelar
fiabilidad de Generación ionamiento de Puntos tripción Datos Básicos Flujo de Carga Contocircuito VDE/IEC Contocircuito Completo Contocircuito ANSI IEC 61363 Contocircuito DC	Elementos Suministrados Marcar elemen vanados - Biblioteca de Tipos/Tij Nombre Tecnología Potencia Nominal Frecuencia Nominal Tensión nominal Lado de Alta (AT)	ntos en el Gráfico po de Transformador de dos D Tipo de Transformador de o Transformador Trifásico 1, MVA 50, Hz 6, kV	evanados:TypTr2 tos Devanados Grupo Vectorial Lado de Alta (AT) YN Lado de Alta (AT) YN	Editar		OK Cancelar
fiabilidad de Generación ionamiento de Puntos tripción Do de Transformador de dos De Datos Básicos Flujo de Carga Cortocircuito VDE/IEC Cortocircuito Completo Contocircuito ANSI IEC 61363 Contocircuito DC Simulación RMS	Elementos Suministrados Marcar elemen vanados - Biblioteca de Tipos/Tij Nombre Tecnología Potencia Nominal Frecuencia Nominal Lado de Alta (AT) Lado de Baja (BT)	ntos en el Gráfico po de Transformador de dos D Transformador de d Transformador Trifásico 1, MVA 50, Hz 6, kV 6, kV	evanados:TypTr2 fos Devanados Grupo Vectorial Lado de Alta (AT) YN Lado de Baja (BT) YN	Editar		OK
iabilidad de Generación ionamiento de Puntos ripción Datos Básicos Flujo de Carga Contocircuito VDE/IEC Contocircuito Completo Contocircuito ANSI IEC 61363 Contocircuito DC Simulación RMS Simulación RMT	Elementos Suministrados Marcar elemen vanados - Biblioteca de Tipos/Tij Nombre Tecnología Potencia Nominal Frecuencia Nominal Lado de Alta (AT) Lado de Ajta (AT) Lado de Baja (BT) Impedancia de Secuencia Po	itos en el Gráfico po de Transformador de dos D Transformador Trifásico 1, MVA 50, Hz 6, kV 6, kV 5, kV	evanados:TypTr2 os Devanados Grupo Vectorial Lado de Alta (AT) YN Lado de Baja (BT) YN Devanado delta into	iditar		OK Cancelar
iabilidad de Generación ionamiento de Puntos ripción bo de Transformador de dos De Datos Básicos Flujo de Carga Cortocircuito VDE/IEC Cortocircuito Completo Cortocircuito ANSI IEC 61363 Cortocircuito DC Simulación RMS Simulación RMT Armónicos/Calidad de Energi	Elementos Suministrados Marcar elemen vanados - Biblioteca de Tipos/Tij Nombre Tecnología Potencia Nominal Frecuencia Nominal Lado de Alta (AT) Lado de Ajta (AT) Lado de Baja (BT) Impedancia de Secuencia Po Tensión de c.c. uk	tos en el Gráfico po de Transformador de dos D Transformador Trifásico 1, MVA 50, Hz 6, kV 6, kV 51, kV 53, %	evanados:TypTr2 os:Devanados Grupo Vectorial Lado de Alta (AT) VIN Lado de Baja (BT) VIN Devanado delta intu Ángulo de Desfasc 0,	iditar	deg	OK Cancelar
iabilidad de Generación ionamiento de Puntos ripción bo de Transformador de dos De Datos Rásicos Flujo de Carga Cortocircuito VDE/IEC Cortocircuito Completo Cortocircuito ANSI IEC 61363 Cortocircuito DC Simulación RMS Simulación EMT Armónicos/Calidad de Energi Protección	Elementos Suministrados Marcar elemen vanados - Biblioteca de Tipos/Tij Nombre Tecnologia Potencia Nominal Frecuencia Nominal Lado de Alta (AT) Lado de Baja (BT) Impedancia de Secuencia Po Tensión de .c. uk Pérdidas en el Cobre	ntos en el Gráfico po de Transformador de dos D Transformador Trifásico 1, MVA 50, Hz 6, kV 6, kV 50, kV	evanados:TypTr2 los Devanados Grupo Vectorial Lado de Alta (AT) VIN Lado de Baja (BT) VIN Devanado delta intu Ángulo de Desfasc 0. Nombre VIN	iditar	deg	OK Cancelar
fiabilidad de Generación ionamiento de Puntos tripción bo de Transformador de dos De Datos Básicos Plujo de Carga Cortocircuito VDE/IEC Cortocircuito ANSI IEC 61363 Cortocircuito ANSI IEC 61363 Cortocircuito DC Simulación RMS Simulación EMT Armónicos/Calidad de Energi Protección Flujo Óptimo de Potencia	Elementos Suministrados Marcar elemen vanados - Biblioteca de Tipos/Tij Nombre Tecnología Potencia Nominal Frecuencia Nominal Lado de Alta (AT) Lado de Baja (BT) Impedancia de Secuencia Po Tensión de c.c. uk Pérdidas en el Cobre	ntos en el Gráfico po de Transformador de dos D Transformador Trifásico 1, MVA 50, Hz 6, kV 6, kV 5, kV 6, kV 6, kV	evanados:TypTr2 los Devanados Grupo Vectorial Lado de Alta (AT) VN Lado de Baja (BT) VN Devanado delta inte Ángulo de Desfase 0, Nombre VNy	Editar	deg	OK
fiabilidad de Generación ionamiento de Puntos rripción Datos Básicos Flujo de Carga Cortocircuito VDE/IEC Cortocircuito Completo Cortocircuito ANSI IEC 61363 Cortocircuito DC Simulación RMS Simulación EMT Armónicos/Calidad de Energi Protección Flujo Óptimo de Potencia Confiabilidad	Elementos Suministrados Marcar elementos Nombre Tecnología Potencia Nominal Frecuencia Nominal Lado de Alta (AT) Lado de Baja (BT) Impedancia de Secuencia Po Tensión de c.c. uk Pérdidas en el Cobre Impedancia Sec 0	tos en el Gráfico po de Transformador de dos D Transformador Trifásico 1, MVA 50, Hz 6, kV 6, kV sitiva 3, % 0, kW	evanados:TypTr2 los Devanados Grupo Vectorial Lado de Alta (AT) VN Lado de Baja (BT) VN Devanado delta inte Ángulo de Desfass 0, Nombre VNy	iditar	deg	OK Cancelar
fiabilidad de Generación ionamiento de Puntos rripción Datos Básicos Flujo de Carga Cortocircuito VDE/IEC Cortocircuito VDE/IEC Cortocircuito Completo Cortocircuito ANSI IEC 61363 Cortocircuito DC Simulación RMS Simulación RMT Armónicos/Calidad de Energi Protección Flujo Óptimo de Potencia Confiabilidad	Elementos Suministrados Marcar elementos Nombre Tecnología Potencia Nominal Frecuencia Nominal Lado de Alta (AT) Lado de Baja (BT) Impedancia de Secuencia Po Tensión de c.c. uk Pérdidas en el Cobre Impedancia Sec 0 Tensión de c.c. uk0	tos en el Gráfico po de Transformador de dos C Transformador de dos C Transformador Trifásico 1, MVA 50, Hz 6, KV 6, KV 6, KV 3, % 0, KW 3, %	evanados:TypTr2 los Devanados Grupo Vectorial Lado de Alta (AT) VIN Lado de Baja (BT) VIN Devanado delta inte Ángulo de Desfase 0, Nombre VINy	iditar	deg	OK Cancelar

Figura 22. Datos del transformador

NOTA: es de aclarar que en el proyecto realizado no se hace uso de los transformadores, ya que estos son representados por cargas.

2.2 Creación De Un Sistema Desbalanceado

Cuando se trata de un sistema desbalanceado, la creación del proyecto se realiza de la misma forma explicada en el numeral 4.2, teniendo en cuenta que algunos elementos se les modifica sus características. Los nodos son elementos que no varían sus características, es decir si es un sistema desbalanceado se realiza el mismo procedimiento explicado en el numeral 4.2.1 y se modifican las características igual que las mostradas en la figura 9. En las líneas se realiza de la misma forma el procedimiento de modificación de sus características como se explicó en el numeral 4.2.2, teniendo en cuenta que al crear el tipo de línea en sus fases se seleccionan las deseadas, para este caso 2, como se muestra en la figura 23, para seleccionar las fases correspondientes de la click en el icono de flecha de las características llamadas

terminal i y terminal j, como se indica en la figura 24, dando click en esta se abre una ventana en la cual se seleccionan las fases deseadas a conectar, ver figura 25.

Line Type - Equipment Type Library\Aluminio 1/0 AB.TypLne							
Basic Data	Name	Aluminio 1/0 AB	ОК				
Load Flow	Rated Voltage	13.2 kV	Cancel				
VDE/IEC Short-Circuit	Rated Current 0	0.24 kA					
Complete Short-Circuit	Nominal Frequency	60. Hz					
ANSI Short-Circuit	Cable / OHL	Overhead Line 💌					
IEC 61363	System Type	AC Phases 2 Number of Neutrals 0					
DC Short-Circuit	- Parameters per Leno	ath 1.2-Sequence					
RMS-Simulation	AC-Resistance R'((20°C) 0.0654 Ohm/km AC-Resistance R0' 0. Ohm/km					
EMT-Simulation							
Harmonics/Power Quality	Reactance X'	0.342 Ohm/km Reactance X0' 0. Ohm/km					
Protection							

Figura 23. Selección del nuero de fases de una línea

Basic Data	Name	L125126			ОК
Load Flow	Туре	Equipment Type Library\Aluminio	1/0 AB		Cance
VDE/IEC Short-Circuit	Teminal i	→ Grid\N125\Cub_1	N125		
Complete Short-Circuit	Teminal j		N126		Figure
ANSI Short-Circuit	Zone	Teminal i 🔹 🔹			Jump to
IEC 61363	Area	Teminal i 🔹 🔸			
DC Short-Circuit	Out of Service				
RMS-Simulation	Number of		Resulting Values		
EMT-Simulation	parallel Lines	1	Rated Current (act.)	0.24 kA 0.01740985 Obm	
Hamonics/Power Quality	- Parameters		Pos. Seq. Impedance, Angle	79.17414 deg	
Optimal Power Flow	Thermal Rating	▼	Pos. Seq. Resistance, R1 Pos. Seq. Reactance, X1	0.00327 Ohm 0.0171 Ohm	
Reliability	Length of Line	0.05 km	Zero Seq. Resistance, R0	0. Ohm	
Generation Adequacy	Derating Factor	1.	Zero Seq. Reactance, X0 Faith-Fault Current, Ice	0. Ohm 0. A	
Tie Open Point Opt.			Earth Factor, Magnitude	0.3333333	
Cable Sizing	Time of Line	Queteral line	Earth Factor, Angle	180. deg	
Description	Type of Line	Overnead Line			
	Line Model				
	Lumped Para	ameter (PI)			
	C Distributed P	arameter			
	Sections/	ine Loads			

Figura 24. Selección de fases para un sistema desbalanceado

Cubicle - Grid\N125\Cu	b_1.StaCubic		×
Basic Data	Name	Cub_1	ОК
Description	Terminal	→ Grid\N125	Cancel
	Connected with	✓ → Grid\L125126	
	Bus Index	Terminal i	
	No of Phases:	2 Phases: ab	
	Phase 1		
	Phase 2		
	Terminate fe	eder at this point	
	Internal Elemen	Remove Breaker	

Figura 25. Modificación de fases a seleccionar

DigSilent permite observar cual es la conexión de la línea, dando click en la opción de figura, tal como se muestra en la figura 26, aparecerá en la parte inferior cual es la conexión del elemento a sus nodos correspondientes.

Line - Grid\L125126.ElmLne					×
Basic Data	Name	L125126			ОК
Load Flow	Туре	▼ → Equipment Type Library\Aun	ninio 1/0 AB		Cancel
VDE/IEC Short-Circuit	Terminal i	➡ Grid\N125\Cub_1	N125		
Complete Short-Circuit	Terminal j	▼ → Grid\N126\Cub_1	N126	· · · · ·	Figure <<
ANSI Short-Circuit	Zone	Terminal i 🔹 🔹			Jump to
IEC 61363	Area	Terminal i 🔹 🔿			
DC Short-Circuit	Cut of Service	e			
RMS-Simulation	Number of		Resulting Values		
EMT-Simulation	parallel Lines	1	Rated Current (act.) Pos. Seg. Impedance. Z1	0.24 kA 0.01740985 Ohm	
Harmonics/Power Quality	Parameters		Pos. Seq. Impedance, Angle	79.17414 deg	
Optimal Power Flow	Thermal Rating	▼ →	Pos. Seq. Reactance, X1	0.00327 Ohm 0.0171 Ohm	
Reliability	Length of Line	0.05 km	Zero Seq. Resistance, R0	0. Ohm	
Generation Adequacy	Derating Factor	1.	Earth-Fault Current, Ice	0. A	
Tie Open Point Opt.			Earth Factor, Magnitude	0.3333333 190 dec	
Cable Sizing	Type of Line	Overhead Line	Luni i dotor, ringio	loo. deg	
Description	the Made				
	Line Model	rameter (PI)			
	C Distributed	Parameter			
	Sections	/Line Loads			
		Terminal i	Terminal j		
N125 \ Cub	<u>_1</u>	° ∓ ≢		N126 \ Cub_1	
I.		° –	■- 0		

Figura 26. Visualización de la conexión del elemento

Las cargas en un sistema desbalanceado se les realiza la misma configuración explicada en el numeral 4.2.3, a diferencia que al momento de crear el tipo de carga se selección la tecnología deseada, en este caso 2 fases, ver figura 27.

6	eneral Load Type - Equipm	nent Type Library\PotenciaCteAB.TypLod *	×
	Basic Data	Name PotenciaCteAB	ОК
	Load Flow		Cancel
	VDE/IEC Short-Circuit	System Type AC 💌	
	Complete Short-Circuit	Technology 2PH PH-E	
	ANSI Short-Circuit		

Figura 27. Conexión de carga desbalanceada

2.3 Flujo De Carga

Para hacer el cálculo de un flujo de carga después de tener el circuito con todos los valores se va a la parte superior izquierda como se muestra en la figura 28, luego se abre una ventana donde se puede escoger el método de cálculo como se muestra en la figura 29.

DigSILENT PowerFactory 2017 - [Gráfico : Diagramas/Red.IntGrfnet]	
🛛 ARCHIVO EDITAR VISTA AND TATOS CÁLCULO SALIDA HERRAMIENTAS VENTANA AYUDA	- 8
$\blacksquare \blacksquare \bigcirc \bot \square \textcircled{0} \blacksquare \blacksquare$	

Figura 28. Flujo de carga

Cálculo de Flujo de Carga - Casos de Estudi	o\Caso de Estudio\Cálculo de Flujo de Carga.ComLdf	X
Opciones Básicas	Método de Cálculo	Ejecutar
Control de Potencia Activa	Flujo de Carga AC, balanceado, Secuencia Positiva	Cerrar
Opciones Avanzadas	C Flujo de Carga AC, desbalanceado, Trifásica (ABC)	
Ajustes de Cálculo	O Flujo de Carga DC (lineal)	Cancelar
Salidas	Regulación de la Potencia Activa	
Escalamiento de la Carga/Generación	Ajuste automático de las tomas de desfasadores	
Análisis de Baja Tensión	Considerar los límites de potencia activa	
	Regulación de la Tensión y de la Potencia Reactiva	
	Ajuste automático de taps de transformadores	
	Ajuste automático de shunts	
	🔽 Considerar límites de potencia reactiva	
	Dependencia de la Temperatura: Resistencias Líneas/Cables	
	Ca la Máxima Temperatura de Operación	
	Opciones de Carga	
	Considerar las Cargas Dependientes de la Tensión	
	🔲 Escalamiento de Carga de Alimentadores	
	Figura 29. Opciones del flujo de carga	

Cuando se corre un sistema desbalanceado se selecciona la opción "Flujo de carga AC, desbalanceado, Trifásica (ABC).

2.4 Creación De Un DPL

Para la creación de un DPL, se ingresa al administrados de datos como se muestra en la figura 4, se busca el proyecto y se da click en el símbolo de más (+), estando en este se da click derecho en 1 > nuevo > otros como se muestra en la figura 30.

Figura 30. Creación de un DPL

Se abre una ventana en la cual se selecciona la opción DPL command and more y luego se selecciona el elemento DPL Command (ComDpl), ver figura 31, se click en OK y se abre una nueva ventana, en la cual se da click en la pestaña script para así comenzar a crear el código deseado, ver figura 32.

Figura 31. Selección de DPL

Figura 32. Código en DPL

El lenguaje de programación usado por DPL es parecido al lenguaje C, en el cual se puede hacer uso de ciclos for, while, asignación de variables como flotantes o enteras, imprimir comentarios usando fprintf, guardar archivos en documento de texto con el comando printf, entre otras acciones a realizar deseadas por el usuario. Para modificar valores de carga y factor de potencia, se crean dos matrices, una de potencia y una de factor de potencia como se muestra en las figura 33 y 34. Con estas dos matrices se utilizan los comandos de DPL como son Length: coslini para modificar el factor de potencia y el comando Length: plini para que así de modifiquen los valores de potencia activa en las cargas.

Figura 33. Creación de matriz

Figura 34. Selección de matriz para el script

2.5 Archivo final

El programa DigSilent guarda los datos automáticamente. Para abrir un proyecto ya creado se va a administrador de datos como se muestra en la figura 4 estando allí se busca el nombre del proyecto, se da click derecho > activar como se muestra en la figura 35.

	1 1	∞ III 7 K K & E		2	
Base de Datos		Nombre Tipo	Objet	o modificado 👻	Objeto mo
Configuración	63	PalancoadotinoD	02/10/	2018 13:09:14	co1016048
Sistema	63	Editar		018 14:17:03	co1016048
▲ 🖸 a co1016048923	63	Calculat		018 07:31:17	co1016048
▷ 100 BalanceadotipoP	-03	Activar		018 17:21:50	co1016048
MV Distribution Network(2)	63			018 10:38:36	co1016048
Proyecto(1)	53	Empaquetar las Referencias Externas		018 16:30:20	co1016048
		Empaquetarias Referencias Externas		018 16:09:02	Administr
P G ejemplo trafo		Actualizar estadísticas de almacenamiento		018 16:09:02	Administr
Ajustes		Purgar las internas referencias al proyecto			
Papelera de Reciclaje		Mostrar	•		
100-120 - 15-50-15-9 - 5-9 - 5-5 - 5-6		Buscar	•		
		Ejecutar Escrito			
		Cortar			
		Copiar			
		Mover			
		Eliminar			
		Definir	×		
		Editar			
Ln 4 ß Objeto(s) de 8 1 Objeto(s) s	eleccid	Agregar a			
sis de Autovalores)		Nuevo	•		
		Eliminar Revisión			
		Seleccionar como Base para Comparación			

Figura 35. Abrir proyecto existente

Si se desea crear una copia del archivo para enviar por correo o simplemente para guardar en otro lugar lo que se hace es ir a Archivo > Exportar > Datos, ver figura 36, se abre una ventana

nueva donde selecciona el archivo a exportar, ver figura 37, se selecciona el lugar donde desea guardar y se da click en ejecutar, ver figura 38.

Figura 36. Exportar archivo

Guardar en:	Escritorio	- (a 🕼 😕 🛄 -					
Contar on	Bibliotecas Carpeta de sistema Carpeta de sistema W Distribution Net AV Distribution Net 1,76 MB	vork	Cortes Alonso, Robert Albey, Enel Colombia Carpeta de sistema Red Carpeta de sistema	Version	Prueba Prueba	r: Objetos 		Cancelar
Red	Nombre: Prueba		 ✓ Guardar ✓ Cancelar 	Exp Exp Exp	ortar archiv ortar el pro ortar a la ve	vos de datos externos (p.ej. Archivos de resul vyecto derivado como un proyecto regular ersión anterior de PowerFactory	tados)	

Figura 38. Guardar circuito exportado

Si la idea es importar un ejercicio elaborado en otro computador se sigue la misma ruta de exportar entonces se dirige a Archivo > Importar, aparece una ventana donde se selecciona el documento y se da click en guardar apareciendo una ventana nueva donde se da click en ejecutar, por último si se desea abrir se siguen los pasos de como activar un proyecto visto en la figura 35.

Para exportar los resultados obtenidos al correr un flujo de carga en un archivo PDF, se da click en salida > cálculo de análisis de salida, ver figura 39, se abre una ventana como la que se muestra en la figura 40 y se selecciona la opción completo reporte del sistema y dar en ejecutar, allí carga el informe completo en la parte inferior del programa. Para guardar el PDF, se da en la opción mostrada en la figura 41, aparece una nueva ventana se da click en OK, en esta nueva ventana que aparece se selecciona la opción "Michosoft Print to PDF" y se da click en ACEPTAR como se muestra en la figura 42 y se selecciona la carpeta donde se desea guardar el archivo.

Figura 40. Selección de reporte completo

•	>	↓	◀ ▶ ▶ ∖G	nd /		14/248886828	₩₽		1 19	<u> </u>	↓□23 ↓□ ↓□ ☆ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
1	[kW]/ [kvar]	[kW]/ [kvar]	[kW]/ [kvar]	[kW]/ [kvar]	[kW]/ [kvar]	[kW]/ [kvar]	[kW]/ [kvar]	[kW]/ [kvar]	[kW]/ [kvar]	I I	₩ 10
\1	enovo\Desbalance	eadotipoP\	Network Mod	el\Networ	k Data\Grid					1	
	0.00	0.00	2636.03 818.70	0.00	2684.27 842.40	0.00 0.00	48.26 23.71	48.26 23.71	0.00	1	
To	tal:									1	A A
	0.00	0.00	2636.03 818.70	0.00	2684.27 842.40		48.26 23.71	48.26 23.71	0.00	1	
•											<u> </u>
						6	irid Freeze O	rtho Snap	X=	-2.85 Y= 1587.80	DB 4155 7/02/2106 1:28:15 DesbalanceadotinoP

Figura 41. Guardar reporte final en pdf

Imprimir	×
Impresora	
Nombre: Microsoft Print to PDF	Propiedades
Estado: Listo	
Tipo: Microsoft Print To PDF	
Ubicación: PORTPROMPT:	
Comentario:	Imprimir a un archivo
Intervalo de impresión	Copias
Todo	Número de copias:
C Páginas de: 1 a: 113	
C Selección	
Colour Print Preview	Aceptar Cancelar

Figura 42. reporte final en pdf

3. SISTEMA DE PRUEBA Y RESULTADOS

3.1 Sistema de Prueba y Casos Analizados

El sistema de distribución implementado es un circuito radial de nivel 2 ubicado en el municipio Cartago, el cual consta de los siguientes elementos: 1 fuente de energía, 230 Nodos, 229 tramos de líneas de distribución y 70 cargas (para este caso, las cargas son representadas como la potencia entregada por los transformadores en el primario). El sistema cuenta con tramos de líneas de diferentes características definidas por su material y calibre.

En este sistema se encuentran 198 líneas de aluminio las cuales se clasifican por su calibre, por lo tanto, hay 14 tramos de línea calibre 2 con reactancia y resistencia de valor $0.359 \Omega/km$ y 1.02 Ω/km respectivamente, 114 tramos de línea calibre 1/0 con resistencia 0.654 Ω/km y reactancia 0.342 Ω/km y 70 tramos de línea calibre 2/0 con resistencia 0.530 Ω/km y reactancia 0.333 Ω/km . Además, se tienen 31 tramos de línea de cobre clasificadas según su calibre, se cuenta con 29 tramos de línea calibre 1/0 con resistencia 0.4195 Ω/km y reactancia 0.162 Ω/km y 2 tramos de línea calibre 2/0 con resistencia 0.331 Ω/km y reactancia 0.156 Ω/km , los valores de resistencia y reactancia de los conductores se obtuvieron mediante tablas del catálogo de centelsa.

Del sistema se cuenta con la información de la potencia activa de cada uno de los transformadores con su respectivo factor de potencia, además de la conexión de los transformadores siendo algunos trifásicos y otros monofásicos. Los transformadores monofásicos presentan diferentes faseos, es decir, algunos se encuentran conectados entre las fases AB, las fases BC o las fases CA, lo cual hace que el sistema sea desbalanceado. Otra información disponible del sistema era la longitud de los tramos de línea y cuáles eran sus respectivos nodos de conexión, lo que permite realizar el diagrama unifilar del sistema de distribución. Otro tipo de información con la que se contaba era la tensión nominal del sistema, la cual es 13.2 kV, la potencia de la cabecera, el consumo al año de cada uno de los transformadores y curva horaria de los transformadores, toda esta información para un periodo de 24 horas.

Los casos analizados para este sistema de distribución de nivel 2 son los siguientes:

1. Sistema con carga balanceada modelada en potencia constante, flujo de carga en la hora de máxima demanda (Caso 1):

En este caso todas las cargas del sistema y los tramos de línea presentan una conexión balanceada, es decir, se realiza un equivalente monofásico. Las cargas son representadas por medio de un modelo de potencia constante en el tiempo y solo se toma el valor de potencia en la hora de máxima demanda la cual se presenta en la hora 20 (8 p.m.).

2. Sistema con carga balanceada modelada en impedancia constante, flujo de carga en la hora de máxima demanda (Caso 2):

En este caso todas las cargas del sistema y los tramos de línea presentan una conexión balanceada, es decir, se realiza un equivalente monofásico. Las cargas son representadas por

medio de un modelo de impedancia constante en el tiempo y solo se toma el valor de potencia en la hora de máxima demanda la cual se presenta en la hora 20 (8 p.m.).

3. Sistema con carga desbalanceada modelada en potencia constante, flujo de carga en la hora de máxima demanda (Caso 3):

En este caso se tiene en cuenta las características reales de las cargas y los tramos de línea, esto quiere decir que se tiene en cuenta a que fases están conectadas las cargas y qué tipo de faseo presentan los tramos. La carga es representa por un modelo de potencia constante en el tiempo y se toma el valor de potencia en la hora de máxima demanda la cual se presenta en la hora 20 (8 p.m.).

4. Sistema con carga desbalanceada modelada en impedancia constante, flujo de carga en la hora de máxima demanda (Caso 4):

En este caso se tiene en cuenta las características reales de las cargas y los tramos de línea, esto quiere decir que se tiene en cuenta a que fases están conectadas las cargas y qué tipo de faseo presentan los tramos. La carga es representada por un modelo de impedancia constante en el tiempo y se toma el valor de potencia en la hora de máxima demanda la cual se presenta en la hora 20 (8 p.m.).

5. Sistema con carga balanceada y desbalanceada modelada en potencia constante e impedancia constante implementando la curva de carga horaria (Caso 5):

El sistema es simulado en cuatro casos, el primero consiste en correr el flujo de carga tomando las cargas y los tramos de línea del sistema de forma balanceada, y haciendo uso de un modelo de potencia constante. El segundo caso consiste en tomar las cargas y los tramos de línea de forma balanceada pero esta vez haciendo uso de un modelo de impedancia constante, el tercer caso las cargas y los tramos de líneas son conectados teniendo en cuenta el faseo que estas presenten y se realiza el flujo de carga teniendo en cuenta un modelo de carga de potencia constate, el cuarto caso las cargas y tramos de línea son representadas con su faseo original y se hace uso de un modelo de carga de impedancia constante. En estos casos se tiene en cuenta la potencia y factor de potencia en cada transformador durante las 24 horas del día, haciendo uso del script desarrollado para correr este flujo de carga.

6. Sistema con carga balanceada y desbalanceada modelada en potencia constate e impedancia constante, repartiendo la máxima demanda vista en la subestación proporcionalmente a la capacidad de cada transformador (Caso 6):

Conociendo las características de potencia nominal de cada transformador se realiza el cálculo del porcentaje de potencia asignado a cada uno de estos, con respecto a la potencia demandada en la cabecera (fuente de energía). El cálculo del porcentaje de potencia asignado a cada transformador se realizó tomando la potencia nominal de cada transformador dividiéndola entre la potencia nominal de todo el sistema, este valor se multiplico por la potencia de la cabecera en la hora de la máxima demanda (hora 20) obteniendo como resultado una repartición proporcional a la capacidad de cada transformador. Contando con esta información se realizaron cuatro casos, dos casos se tomaron con conexión balanceada de las cargas y los tramos de líneas pero teniendo en cuenta que una simulación se realizó

con modelo de potencia constate y la otra con un modelo de impedancia constante, en los otros dos casos se tomaron las características de faseo de las cargas y los tramos de línea y se realizaron simulaciones para modelo de carga de potencia constate y para modelo de carga de impedancia constante.

7. Sistema con carga balanceada y desbalanceada modelada en potencia constante e impedancia constante, repartiendo la máxima demanda vista en la subestación proporcionalmente al consumo anual de cada transformador (Caso 7):

Conociendo el consumo anual de cada transformador se realiza el cálculo del porcentaje de potencia asignado a cada uno de estos, con respecto a la potencia demandada en la cabecera (fuente de energía). El cálculo del porcentaje asignado de potencia a cada transformador se realizó tomando la potencia anual consumida de cada transformador dividiéndola entre la potencia consumida anualmente de todo el sistema, este valor se multiplico por la potencia de la cabecera en la hora de la máxima demanda (hora 20) obteniendo como resultado una repartición proporcional al consumo anual de cada transformador. Contando con esta información se realizaron cuatro casos, dos casos con conexión balanceada de las cargas y los tramos de líneas pero teniendo en cuenta que una simulación se realizó con modelo de potencia constate y la otra con un modelo de impedancia constante, en los otros dos casos se tomaron las características de faseo de las cargas y los tramos de línea y se realizaron simulaciones para modelo de carga de potencia constate y para modelo de carga de impedancia constante.

3.2 Resultados

Se realizó el flujo de carga para cada caso mencionado anteriormente, teniendo en cuenta las características de conexión de los elementos en cada uno de estos. En la tabla 1 se muestran los resultados de pérdidas de potencia activa en el sistema para la hora de máxima carga (hora 20).

Perdidas de potencia Activa en kW								
	Demanda e	n la hora 20	Reparto segú transfo	n Capacidad rmador	Reparto según Consumo anual			
Modelo	Balanc. (Caso 1 y Caso 2)	Desbalanc. (Caso 3 y Caso 4)	Balanc. (Caso 6)	Desbalanc. (Caso 6)	Balanc. (Caso 7)	Desbalanc. (Caso 7)		
Tipo Z	34.39	43.8	30.05	33.8	33.25	42.36		
Tipo P	36.85	48.26	31.93	36.36	35.58	46.59		

Tabla 1. Perdidas de potencia activa en el sistema de distribución nivel 2 en la hora 20

Contando con la información de la tabla 1, se puede obtener las pérdidas del sistema durante un periodo de 24 horas, para ello se hizo necesario realizar el cálculo del factor de pérdidas (Fper) para los casos de demanda en la hora 20 (Caso 1 al Caso 4), de reparto según capacidad transformador (Caso 6) y el reparto según consumo anual de los transformadores (Caso 7), para ser así comparados con las perdidas obtenidas al correr el sistema con la curva horaria programada en el script. El cálculo del factor de pérdidas se obtuvo mediante la fórmula 1.9, teniendo en cuenta que la potencia usada para este cálculo era la energía aparente, obtenida a partir de la potencia activa y el factor de potencia, valores conocidos del sistema. Con este factor de pérdidas se realiza una multiplicación entre este, los valores de perdidas obtenidos en el sistema en la hora 20 (Tabla 1) y una constante de 24, que representa las 24 horas, para obtener los datos mostrados en la Tabla 2, los cuales son las perdidas en potencia activa del sistema durante 24 horas.

Perdidas diarias de potencia activa en kW									
	Demanda en la hora 20 Fper 0.6139		Reparto según Capacidad transformador Fper 0.6173		Reparto según Consumo anual Fper 0.6173		Curva horaria Simulado con el script		
Modelo									
	Balanc. (Caso 1 y	Desbalanc. (Caso 3 y	Balanc. (Caso 6)	Desbalanc. (Caso 6)	Balanc. (Caso 7)	Desbalanc. (Caso 7)	Balanc. (Caso 5)	Desbalanc. (Caso 5)	
	Caso 2)	Caso 4)							
Tipo Z	506.682	645.324	445.174	500.728	492.580	627.539	509.711	650.609	
Tipo P	542.927	711.035	473.025	538.653	527.097	690.204	539.513	704.859	

Tabla 2. Perdidas de potencia activa en el sistema de distribución 2 en un periodo de 24 horas

Realizando una comparación del comportamiento de la demanda de potencia activa en cada una de las cargas dependiendo del tipo de caso analizado (demanda en la hora 20 (Caso 1 al Caso 4), reparto según capacidad del transformador (Caso 6) y reparto según consumo anual del transformador (Caso 7)) durante la hora 20, se obtiene la gráfica 1. En esta grafica se logra observar que el comportamiento de la demanda de potencia activa en cada transformador no presenta una variación significativa entre el caso de demanda en la hora 20 (Caso 1 al Caso 4) y el reparto según el consumo anual del transformador (Caso 7), esto se debe a que la repartición realizada se basa en datos reales del sistema, teniendo en cuenta que el consumo anual del transformador con lo que consume cada carga.

En cuanto a la potencia activa en las cargas en el caso 6 de reparto según la capacidad del transformador, se logra notar un cambio, esto debido a que un transformador de gran capacidad no garantiza que el consumo sea mayor que el consumo de un transformador de mediana capacidad. Es decir, un transformador de pequeña capacidad podría consumir más energía en el año que un transformador de mayor capacidad.

Grafica 1. Comportamiento de la demanda en las cargas

Nota: para mayor claridad de la gráfica, esta puede ser vista en los anexos.

Cuando se realiza el flujo de carga del sistema en condición desbalanceada, en la máxima hora de demanda y se analiza con un modelo de carga de impedancia constante tal como lo exige la norma, el valor de perdidas obtenidas es de 43.8kW, en comparación con el valor de perdidas repartiendo la potencia en cabecera según consumo anual de los transformadores que es de 42.36kW. Como se observa, no se nota un cambio significativo en estos resultados, es decir se tiene una diferencia de pérdidas de 1.44kW (un error del 3.2%), a diferencia de cuando se compara con el sistema cuanto se cuenta con una demanda proporcional a la capacidad del transformador, en la cual las pérdidas son de 33.8kW, notando una diferencia de 10kW (un error del 22.8%).

Tomando como referencia la demanda conocida en el sistema en condición desbalanceada. es decir los valores de los casos 3 y caso 4, se realiza la tabla 3, en la cual se presentan las diferencias porcentuales de las perdidas técnicas.

a.	3. Diferencias porcentuales de perdidas técnicas a partir de la demanda con-							
	Reparto según capacidadModelodel transformador,Desbalanceado (Caso 6)		Reparto según Consumo anual, Desbalanceado (Caso 7)					
	Tipo Z	22.83%	3.28%					
	Tipo P	24.65%	3.46%					

Tabla 3. Dif ocida

Si se comparan las perdidas en el sistema en cualquiera de los casos haciendo uso de un modelo de carga de potencia constate, con el sistema analizado con un modelo de impedancia constante, el modelo en potencia constante presenta mayores pérdidas, esto debido a que para mantener la potencia constante en la carga, se ven afectados los valores de corrientes, aumentando la corriente que pasa por los conductores y en consecuencia aumentando así las perdidas en el sistema.

Un sistema balanceado es mucho mejor que un sistema desbalanceado, esto se puede observar a partir de los resultados de perdidas obtenidos, en el cual en cualquiera de los casos las perdidas resultan ser menores que en el sistema desbalanceado, la relación existente entre las pérdidas de una sistema balanceado y un desbalanceado no son lineales sino exponenciales, ya que las pérdidas son obtenidas a partir de fórmulas cuadráticas; además se puede tener en cuenta que las pérdidas son menores siempre cuando se realiza un análisis con modelo de impedancia constante.

En la tabla 4 se presentan las diferencias porcentuales de perdidas técnicas entre un sistema balanceado y uno desbalanceado, tomando como referencia el sistema desbalanceado.

Modelo	Demanda en la hora 20 Balanceado	Reparto según capacidad del transformador Balanceado	Reparto según Consumo anual Balanceado
Tipo Z	21.48%	11.09%	21.5%
Tipo P	23.64%	12.18%	23.63%

Tabla 4. Diferencias porcentuales de perdidas técnicas en sistema balanceado	y desbalanceado
--	-----------------

Los valores de perdidas mostrados en la tabla 2 presentan un comportamiento similar al sistema analizado en la hora de máxima demanda, es decir las pérdidas son menores cuando se tiene un sistema balanceado y analizado en modelo de carga tipo Z. Si se compara el valor de pérdidas en el caso de demanda en la hora 20 con los obtenidos en la curva horaria se puede observar que estos resultados son iguales (ver tabla 1), a diferencia de lo que ocurre con el valor obtenido de las perdidas en estos dos casos en un periodo de 24 horas (ver tabla 2), esto debido a que el factor de perdidas es un valor medio de pérdidas del sistema que luego es multiplicado por 24, obteniendo así las perdidas en un día, mientras que en el caso de la curva horaria se obtiene un resultado de pérdidas para cada hora del día, siendo este un dato más aproximado a las perdidas reales del sistema.

Al momento de analizar las corrientes que circulan en la cabecera del sistema en los casos desbalanceados se logra observar que las corrientes en las fases A y B son muy parecidas y que en la fase C se presenta una diferencia sustancial, esto es debido a que la mayoría de las cargas de los transformadores se encuentran conectados a estas dos fases (ver tabla 5). En los sistemas balanceados la corriente por cada una de las fases se reparte de manera equitativa.

Tabla 5. Corriente cabecera del circuito sistema desbalanceado modelo Z						
	Desbalar	nceado Tipo Z				
Fase	Demanda en la hora 20	Reparto según Capacidad del transformador	Reparto según Consumo anual			
А	154.68 A	140.56 A	152.09 A			
В	154.35 A	140.55 A	151.77 A			
С	46.67 A	69.73 A	45.88 A			

Las corrientes en el sistema desbalanceado en el modelo de potencia constante, aumenta un 4% esto a lo ya mencionado con anterioridad, donde la corriente debe aumentar su valor para mantener la potencia constante (ver Tabla 6). Lo mismo ocurre en el sistema balanceado, a pesar de que las corrientes son menores comparadas con el desbalanceado, la corriente en el modelo de potencia constante aumenta en comparación con el modelo de impedancia constante. (Tabla 7)

Desbalanceado tipo P						
Fase	Demanda en la hora 20	Reparto según Capacidad del transformador	Reparto según Consumo anual			
А	161.12 A	145.04 A	158.32 A			
В	160.85 A	145.1 A	158.05 A			
С	47.19 A	70.92 A	46.38 A			

Tabla 6. Corriente cabecera del circuito sistema desbalanceado modelo P

Modelo de carga	Demanda en la hora 20	Reparto según Capacidad del transformador	Reparto según Consumo anual
Balanceado Tipo Z	119.05	117.14	117.05
Balanceado tipo P	122.5	120.14	120.38

Tabla 7. Corriente cabecera del circuito sistema balanceado

4. CONCLUSIONES

- El uso de un modelo de carga de impedancia constante presenta menores perdidas técnicas que al uso un modelo de potencia constante, esto se puede notar en los resultados obtenidos en las tabla 1 y tabla 2.
- En un sistema balanceado las perdidas técnicas serán menores que las presentes en un sistema desbalanceado.
- Cuando se realiza un análisis de perdidas técnica haciendo una repartición en las cargas según el consumo anual del transformador se logran tener resultados similares a cuando se realiza con valores conocidos de demanda en las carga, a diferencia de cuando se realiza un análisis realizando una repartición según la capacidad del transformadores que presenta una diferencia porcentual más alta en las perdidas técnicas, esto se puede observar en la tabla 3.
- El uso del factor de perdidas facilita el cálculo de perdidas técnicas en un sistema para un periodo de tiempo, pero con ello no se tiene un valor de perdidas preciso de todo el sistema, a diferencia del obtenido haciendo un cálculo horario con el cual se obtiene el valor exacto de las perdidas técnicas presentes en el sistema. El porcentaje de error de perdidas técnicas para el sistema en su comportamiento habitual a partir de la curva horaria comparado con el obtenido por medio del factor de perdidas presenta un valor de 0.81%.
- Al tener un sistema desbalanceado con modelo de carga en potencia constate e impedancia constante, se observa que las pérdidas en el sistema modelado en potencia constante son más grandes que en el sistema modelado en impedancia constante, esto se puede observar en las tabla 1 y tabla 2, ya que para mantener la potencia contante se debe aumentar la corriente que pasa por los conductores haciendo que las perdidas aumenten.
- Por los conductores circula la corriente necesaria para cubrir la demanda, a mayor demanda mayor será la corriente que circula por estos, por lo tanto se tendrán mayores pérdidas en la hora de máxima demanda.
- Las pérdidas totales de un sistema se obtienen a partir de la suma de las pérdidas de cada elemento que lo compone, y teniendo en cuenta aquellas perdidas que son independientes de la demanda tales como las generadas por elementos que se encuentran en vacío o como las generadas por el efecto corona.
- Si se llevara un mejor control y un estudio adecuado en cuanto a la conexión de nuevas cargas al sistema, no se tendría desbalance de corrientes, y manejaría una red más balanceada con menores perdidas
- Al momento de la conexión de un transformador se debe tener en cuenta que su cargabilidad sea lo más cercana al 100%, para así poder disminuir las pérdidas del equipo.

• Un sistema de distribución de nivel 2 presenta menores perdidas cuando se encuentra balanceado y es analizado con un modelo de caga de impedancia constante. Esto se puede concluir a partir de los resultados obtenidos en la tabla 1 y tabla 2.

5. BIBLIOGRAFÍA

[1] Universidad Politécnica Salesiana Ecuador. "Perdidas en distribución de energía eléctrica". [En Línea]. https://dspace.ups.edu.ec/bitstream/123456789/1898/2/01%20Perdidas%20en%20distribuci on.pdf

[2] Ghia, Andrés. Del Rosso, Alberto. Cámara Argentina de la Construcción. "Reducción de perdidas en sistemas de transmisión y distribución". Año 2013. [En Línea]. file:///C:/Users/Lenovo/Downloads/Reducc%20de%20P%C3%A9rdidas%20aprob%20web .pdf

[3] Universidad de Vigo. "Perdidas magnéticas". Año 2011. [En Línea]. http://quintans.webs.uvigo.es/recursos/Web_electromagnetismo/magnetismo_perdidasmag neticas.htm

[4] Comisión de regulación de energía y gas CREG. Resolución CREG 015 de 2018.

[5] Morales Osorio, Nelson. Rubio Gutiérrez, Rodrigo. Universidad de Chile. "Modelos de carga y sus efectos en estudios sistémicos: aplicaciones al Sing". Año 2013. [En Línea]. http://repositorio.uchile.cl/bitstream/handle/2250/114820/cf-quezada_ml.pdf?sequence=1

[6] Caicedo, Gladys. Lozano, Carlos. Bahamón, Angelica. Ochoa, Liefry. Universidad del Valle. "Modelos para estimar la demanda en un sistema de distribución". Años 2002. [En Línea]. http://bibliotecadigital.univalle.edu.co/bitstream/10893/1402/1/Modelos%20para %20estimar%20la%20demanda%20en%20sistemas%20de%20distribucion.pdf

[7] Calvo Jacome, Luis Gonzalo. Escuela Politécnica Nacional. "Comparación de demandas de diseño en sistemas eléctricos de distribución, aplicación al área urbana de Quito". Año 1980. [En Línea]. http://bibdigital.epn.edu.ec/bitstream/15000/7004/1/T844.pdf

[8] De la Fe Dotres, Sergio. EcuRed. "Características de las cargas típicas de las redes eléctricas de distribución". Año 2004. [En Línea]. https://www.ecured.cu/Caracter%C3%ADsticas_de_las_cargas_t%C3%ADpicas_de_las_re des_el%C3%A9ctricas_de_distribuci%C3%B3n

ANEXOS

Anexo A. Grafica 1. Comportamiento de las cargas en la hora de máxima demanda.

