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ABSTRACT 

In order to get homogeneous nanostructured Aluminum Nitride deposits, thin films 

were grown at room temperature on [001] Si substrates by radio frequency magnetron 

reactive sputtering. The deposits were analysed by Transmission Electron Microscopy, 

energy dispersive X-ray spectroscopy and Auger electron spectroscopy. Their 

microstructure and chemical composition were studied versus the plasma working 

pressure and the radio frequency power. Systematic analysis of cross views of the 

films allowed the authors to draw a microstructure/process parameters map. Four 

microstructural types were distinguished according to the decrease of the deposition 

rate. One is the well-known columnar microstructure. The second one is made of 

interrupted columns or fibrous grains. The third one is made of nano-sized particles 

(size of the particles ranges from 1.7 to 8 nm). The fourth and last microstructure is 

amorphous. The “deposit morphology – process parameters” correlation is commented 

on.  

Keywords : A1. Crystal morphology, Nanostructures, A3. Chemical vapor deposition 

processes, B1. Aluminium Nitride, B2. Piezoelectric materials    
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1 Introduction 

Thanks to high electromechanical coupling, high thermal conductivity (similar to 

copper) and high sound velocity, AlN is a material usually integrated in devices, especially 

in SAW (Surface Acoustic Waves) devices. Optimization of this material for the SAW 

applications led the community to the synthesis of well crystallized and textured films [1]. 

Its large and direct energy band gap has also made it interesting for opto-electronic 

applications (photoluminescence when doped). It is also often used in semiconductor multi-

layers as an insulator. Additionally, this dielectric material completes its panel by other 

properties like : excellent corrosion resistance, a high mechanical strength and a weak 

thermal expansion coefficient that makes it a very attractive material in terms of further 

applications in micro/nano-systems or sensor technologies.  

The AlN films used so far in microelectronics are [002] oriented columnar crystallized 

films. The decrease of the size of the different elements constituting the electronic devices 

makes the study of the evolution of the above quoted physical and chemical properties 

versus the nanosizing necessary. The question of the role of nanosizing on the properties of 

AlN led us to find a way to directly obtain nanocrystalline films, exhibiting an homogeneous 

structure all along its thickness, whose physical properties could then be characterized.  

In recent years, the study of the nano-scaling of many different materials have shown 

these new materials exhibit peculiar and interesting physical properties [2]. More specifically, 

studies on AlN nanopowders have shown the photoluminescence or absorption spectra are 

modified by the decrease of the grain sizes [3, 4]. Other works mention that the 

electromechanical coefficient or piezoelectric property of some other materials (PbTiO3, PZT) 

have been found to be strongly and positively influenced by the nanosizing of their grains [5, 



6]. So, low dimensional structures of AlN in films can undoubtedly be expected to produce 

new materials exhibiting different and hopefully enhanced physical properties. Some 

literature works do mention the occurrence of amorphous or nanocrystallized AlN structures 

[7-12]. On the one hand, most of these works relate that they appear when growing films as 

adaptation layers reducing lattices mismatches between substrates and crystalline AlN layers 

and are generally unwanted structures [7-11]. On the other hand, Cibert et al. have deposited 

by pulsed laser deposition (PLD) accumulation of AlN nanocrystallites. However, the 

homogeneity of this kind of deposits would still be to be studied by further Transmission 

Electron Microscopy investigations [12]. Unfortunately, PLD is still not the most adequate 

technique to produce industrially complex micro- or nano- systems. Other works also mention 

homogeneous nanocrystalline or amorphous thin films designed for photo, cathodo, electro-

luminescence. The occurrence of the amorphous state, however, is linked to the presence of a 

third element, that is to say to the introduction of a third and big atom (transition metal, 

lanthanide) [13, 14]. 

So, as far as we know, no well-controlled homogeneous nanocrystallized AlN films 

have been made by a deposition technique of any interest to industry. 

The aim of this study was to examine whether it may be possible to obtain 2D and or 3D 

nanostructured Aluminium Nitride films by magnetron sputtering. The goal of this work 

project is to possess high quality nano-structured samples with excellent surface state, 

whose grain size can be controlled thanks to a well established synthesis process, in order to 

discover the influence of the nano-morphology on some of its physical properties. The 

expected modifications will then be subsequently tested to know how they could be 

exploited in terms of technological applications. To realize this study, the versatile reactive 

magnetron sputtering technique usually used in microelectronics manufactories was chosen.  



Firstly, this paper will describe the experimental reactive magnetron sputtering set-up 

that was specially designed and built for the purpose of this study in particular to prepare the 

deposits under ultra low background pressures. The experimental characterization 

techniques will be detailed, and the results will consist of the combined influence of the 

following process parameters : plasma pressure (P) and radio frequency power (W) on the 

microstructure of the deposited thin films. The suggestions on values of experimental 

parameters to be chosen to get the adequate films will be given and commented on.  

 

2 Experimental procedure 

2.1 Synthesis 

The specially designed experimental apparatus consisted of a baking UHV (Ultra High 

Vacuum) chamber using a classical diffusion-pump. A liquid nitrogen cooling trap was used 

to absorb water vapour. The obtained background pressure was around 1.10
-6

 Pa of H2O 

controlled by mass spectroscopy. The chamber was equipped with a radio frequency (13.56 

MHz) pulsed magnetron sputtering system specifically designed to work under UHV 

conditions. In this study, bias voltage was set to 0 Volt. The target disk was made of pure 

aluminium (purity of 99.99 %), its diameter was 60 mm large, the thickness 3 mm in breadth 

and its distance from the sample was set to 80 mm. A gas mixture of high purity (99.999 %) 

Ar and N2 was used for sputtering. The percentage  of N2/Ar in the gas mixture was set to 50 

%. During the treatment, a controlled pumping valve and mass-flow controllers were used to 

keep the total sputtering pressure P constant. The flow rates of argon and nitrogen gas were 

controlled with MKS Mass-Flo Meters (2 sccm N2, 2 sccm Ar) and the total working pressure 

was measured using a MKS Baratron gauge. Films were deposited on [001] Si wafers. 

Substrates were cleaned with basic solvents. The last stage of cleaning was an ultrasonic bath 

in distilled water. The target was systematically sputter cleaned for 15 min using an Ar 



plasma to remove the native oxide contamination (cleaning conditions : sputtering pressure 

P = 5.10
-1

 Pa, RF power W = 300 W). Prior to deposition, the chamber set into operation with 

the chosen plasma conditions for 30 mn so that the reactor holding the plasma would reach its 

thermal equilibrium.  

The substrate was thermally insulated. Its temperature measured during deposition 

thanks to an adequately placed thermocouple only depends on plasma heating, and was found 

to stay below 50 °C. 

The reactor was equipped with an interferential optical reflectometer used in order to 

control the thickness of the deposit in real-time. The silicon substrates were fixed onto a 6-

fold rotating substrate holder. A diaphragm equipped with a shutter allows us to make six 

different deposits under different plasma conditions with no return to the atmosphere.  

Experimental conditions of samples preparation are displayed in a P, W diagram. This 

diagram is presented in Fig. 1 where each star stands for a deposited film. P lies in the 5.10
-1 

- 

20.10
-1

 Pa range and W is situated in the 50 - 300 W range. The synthesized films thicknesses 

were chosen around 200 nm to allow the TEM observations and were found to be all strongly 

adherent to their substrate. 

 

2.2 Techniques of characterization  

TEM observations were carried out on a Philips CM20 microscope operating at an 

accelerating voltage of 200 kV. They were all performed matter chips sampled on the films 

directly grown on the Si substrates by the technique of microclivage. A dark field image (DF), 

a bright field image (BF) and a selected area diffraction (SAD) pattern of both top views and 

cross views were systematically recorded for each sample.  

Elemental composition of the sputtered AlN films was systematically measured by 

energy dispersive X-ray spectroscopy (EDXS) or Auger electron spectroscopy (AES). EDSX 



spectra were recorded by means of an EDAX spectrometer mounted on a CM20 Philips 

microscope and equipped with an ultra thin window X-Ray detector. The analyses were 

carried out in nanoprobe mode with a diameter of the probe of 10 nm. Concentration profiles 

were performed by Auger electron spectroscopy on a Microlab VG MKII using an Ar etching 

gun VG microprobe EX05. The sensibility factors of the two techniques were determined 

using AlN and Al2O3 reference samples.  

The thickness and the nature of the films were confirmed ex situ by TEM diffraction and 

by spectrometric ellipsometry. The obtained values of the calculated optical index n of the 

deposited films are in the 1,8 - 2 range (for the wavelength  = 632 nm). As predicted in 

literature, this index depends on the crystalline morphology of the film.  

  

3 Results 

The TEM systematic crystallographic characterizations of the samples whose synthesis 

conditions are displayed in Fig. 1 showed that - all films are very dense and contain no 

porosity and - the film morphologies may be classified in four types following the deposition 

rate evolution. These zones are schematized on Fig. 1.  

 Samples exhibiting classical columnar morphology are in zone 1 (Fig. 2). This zone is a 

high deposition rate zone. Samples made of nanoparticles are in zone 3 (Fig. 4). Zone 2 

contains samples exhibiting an intermediate morphology in between the two previous ones 

(Fig. 3). In zone 4, growth rates are very low, and samples are amorphous (Fig. 4). On the (P, 

W) diagram of Fig. 1, iso-deposition rate lines and the rough evolution of the oxygen 

concentration measured in the samples were drawn. The mentioned iso-deposition rates lines 

(fig.1) were estimated from the exact deposition rates values calculated for every film. The 

thickness was measured ex situ by TEM. It should be noted the oxygen content increases from 



5 atomic % in zone 1 to values above 15 atomic % in zone 3 and 4 following the drop of the 

growth rate of the films. 

 Zone 1 is the zone where most of the studies encountered in literature and dealing with 

microcrystalline AlN film growth are performed [7-11,15-18]. As commonly observed the 

typical microstructure of this zone is made of dense and juxtaposed columns all along the 

thickness of the film (Fig. 2(a) and 2(b)). The columns go from the bottom to the top of the 

films and their width progressively increases with increasing thickness. This can actually be 

described with the well-known Van der Drift formalism [19]. Distribution of width of 

columns of one single sample is monomodal and the average width of the columns was found 

to be as high as P was high and as W was small. The maximum width reached by the columns 

can be measured on the recorded top view (Fig. 2(c)) and can be compared from one sample 

to another since the films all have the same thickness. The average size ranges from 6 to 18 

nm. It is around 6 nm for the sample located at the very bottom right of the diagram Fig. 1. At 

the very top on the left of the diagram in the zone 1 nanocolumns widths average is around 18 

nm. Fig. 2(d) is the typical electron diffraction pattern recorded in this zone. It can be entirely 

indexed with the würztite structure thereby proving the film is pure and made of the würztite 

AlN phase. The absence of some of the diffracted rings on this top view SAD pattern 

indicates the films are textured. Unlike what is commonly mentioned by many authors who 

have worked on AlN film growth by the same technique on the same substrate, no initial 

amorphous adaptation layer between the substrate and the crystalline layer could be detected 

here [7-11]. The resolution of our images however does not enable to deny the presence of 

such a layer (High Resolution Transmission Electron Microscopy would have been 

necessary), but our experiment allows to conclude that if such a layer had grown before the 

crystallization, its thickness would have had to be inferior to 1.3 nm. Nevertheless, a classical 



intermediate equiaxed crystallites layer before the columnar crystallisation could be observed. 

Its thickness could be roughly estimated around 20 nm. 

Zone 2 is composed of films whose TEM images show a dense juxtaposition of badly 

defined fibrous grains or shortened columns (Fig. 3). None of the columns could indeed be 

going from top to bottom of the films (variation in the angle of illumination of the sample was 

performed). Grain boundaries, however, are well defined and contain no porosity. This 

microstructure is the same microstructure as the one described as the transition zone, noted 

“zone T” by Thornton in the well-known reference diagram displaying the microstructures 

found in films obtained by evaporation under different conditions [20]. This kind of 

morphology has also been observed by Hwang et al. [9] during the growth of an AlN film 

obtained by reactive sputtering in a transition layer. This layer was observed between a 

supposed “Al2O3 + amorphous” layer on the substrate and a final AlN columnar layer. The 

typical zone 2 SAD pattern in Fig. 3(d) demonstrates that zone 2 samples are pure and made 

of AlN crystallites only.  

Films of zone 3 are made of AlN nano-particles dispersed in an amorphous matrix. 

Indeed, these films exhibit electron diffraction patterns showing a discrete diffuse halo (cf. 

arrow in Fig. 4(a)) and rings indexed with the AlN würztite structure. Dark field micrographs 

cross view (Fig. 4(b)) and top view (Fig. 4(c)) made with the first AlN ring, show this 

morphology is homogeneous on the whole thickness of the films (200 nm). As in zone 1 and 

2, no amorphous adaptation initial stage could be detected. Average size of the AlN 

crystallites is 1.7 nm with a maximal size of 8 nm.  

The samples prepared in zone 4 located in the very top left part of the P-W diagram (cf. 

Fig. 1) are amorphous on the whole thickness of the films (200 nm). These samples exhibit 

SAD patterns essentially made of halos (cf. Fig. 4(d)) typical of amorphous phases. The 

corresponding bright field image (Fig. 4(e)) also presents the typical orange skin appearance 



of amorphous matter. These two micrographs were exposed for short periods. The 

subsequently recorded dark field image (Fig. 4(f)) required much longer exposure times due 

to weaker densities of light. This image exhibits few local nanocrystallizations that were not 

visible on the screen (or on the CCD -Charged Coupled Device- camera) before recording the 

picture. This implies that nano-crystallization was brought about by electron bombardment 

during exposure. This phenomenon could be observed even in the event of weak electronic 

currents.  

Usually, as mentioned above, the structures found in zones 3 and 4 (Fig. 4) are 

encountered in AlN films prepared by PVD magnetron as local adaptation layers. In this 

study, it has been shown that with adapted process conditions, it is possible to obtain these 

microstructures on the whole thickness of the films in homogeneous manner for thicknesses 

up to 200 nm.  

 

4. Discussion 

This work on AlN deposition by magnetron sputtering confirms that the behaviour law 

linking the deposition rate  and 
P
W  is still valid on all the domain explored.  roughly 

decreases as
P
W  decreases. The work shows that the structures of the AlN films strongly 

depend on the process parameters and qualitatively describes this dependence. The size and 

the morphology of the grains are actually both modified by the process parameters. When 
P
W  

decreases the crystallites sizes decrease.  

The morphology of the AlN films passes from long columns to shorter ones, to nanograins 

dispersed in an amorphous matrix, and finally the deposits become totally amorphous. One 

can define a morphological parameter : the shape grain factor 
d
L , ratio of its length L over 



its width d ( > 1 is a rod shape,  = 1 is an equiaxe grain,  = 0 stands for the amorphous 

structure by convention). A combined decrease of and d thus correspond well to the nano-

crystallization trend. The map can be summarised as followed : when 
P
W  decreases and d 

decrease.  

The evolution towards amorphization is consistent with what is usually put forward in 

available physical interpretations of sputtered deposits. For instance, different authors aiming 

at growing the columnar structure have well described the broadening of X-ray peaks 

attesting to poorly crystallized films when the pressure P increases [17,23,24]. Indeed, the 

decrease of 
P
W  leads to a stronger thermalization of the species arriving on the sample [25]. 

This implies the kinetic energy and the flux of species involved in the growth of the films are 

minimum. The organisation ability or the mobility of the ad-atoms during the growth 

decrease. This explains poorer crystallizations when 
P
W   is diminished.  

Although nanocrystallized deposits have been obtained, one can not conclude however 

that nanocrystallization is the only consequence of the drop of energy of species. Indeed, as 

previously noted, when 
P
W  decreases the deposition rate decreases. These nanocrystallized 

films are obtained for very low growth rates, and are consequently highly contaminated by 

oxygen. Fig. 1 shows that the combined decrease of the shape grain factor  and d follow the 

increase of the oxygen content. So, the oxygen presence may influence the crystallization of 

the films.  

This hypothesis is actually put forward by different observations in literature. Indeed, 

von Richthofen et al.’s thorough work presenting the phase diagram Al-O-N shows that high 

oxygen content (>30 %) samples are amorphous [26]. Other authors using magnetron 

sputtering technique mention the presence of amorphous layers of different thicknesses 



(thicknesses of few nm to ones of more than 100 nm) when growing AlN on Si in a 

background vacuum of 10
-4

 Pa [11]. Subsequent to the growth of these amorphous layers, 

adaptation layers are observed and finally AlN columnar phase develops. It has been 

suggested that this final crystallization is governed by the absence of oxygen in the reaction 

chamber due to its consumption during the amorphous layer growth. In their study, it then 

seems the presence of the amorphous phase could also here be partially due to the excessive 

presence of oxygen in the first stages of the deposition. More specifically, the controlled 

addition of small amounts of oxygen in the feed gas during deposition of AlN/AlNO films by 

reactive sputtering causes the disappearance of the X-ray peaks recorded on the films [27]. 

This suggests that oxygen damages their crystallographic order.  

In our study, the species building the film are Al, N and O due to residual vacuum. 

Indeed, in spite of the high quality of the background pressure inside the reactor used for the 

deposits, one can assess that the residual presence of oxygen of 10
-6

 Pa (coming from the 

residual pressure of H2O) corresponds to a collision rate of oxygen molecules/atoms with the 

substrate of around 10
13

 cm
-2

.s
-1

. It can be calculated that the subsequent oxidation rate could 

then reach one third of the deposition rates of AlN in zones 3 and 4 (in these zones d < 0.01 

nm.s
-1

). Even in the samples prepared under ultra high vacuum, this calculus offers a plausible 

explanation for the high oxygen levels measured. 

 Considering the following thermodynamical data Hf
°
 (-Al2O3 ) = - 1672 kJ.mol

-1
, 

Hf
°
 (-Al2O3 ) = - 1655 kJ.mol

-1
,Hf

°
 (würztite-AlN) = - 317.68 kJ.mol

-1
) one can see that 

the arrival of an oxygen atom leads automatically to the formation of an Al-O bond [28].  

This oxygen atom can be then trapped inside the films. For very small concentrations, 

solubility of oxygen in AlN is known to cause point defects or stacking faults known as 

planar inversion domain boundaries [29-31]. The insertion of oxygen atoms can then prevent 

the perfect epitaxial growth of AlN. The growth of AlN can thus be perturbed by the presence 



of oxygen owing to as regular interruptions of epitaxy leading to nanocrystallization or 

amorphization of the films.  

 Specific studies need to be carried out to specify the influence of oxygen on the 

microstructure of the AlN films when they are made with very low growth rates.  

 

4 Conclusion  

This study shows that it is possible to obtain homogeneously 200 nm thick amorphous or 

nanocrystallized (either 2D or 3D) AlN thin films by RF magnetron reactive sputtering. To do 

so, it is necessary to decrease the RF power W, and to increase the sputtering pressure P. 

Unfortunately, these conditions correspond to very low deposition rates. For these values of 

deposition rate, the study has shown that even if the films are synthesized under UHV they 

still contain oxygen.  

 Today, SAW microdevices using these nanocrystalline AlN thin films are being made for 

technology assessment. These demonstrators will allow the study of the electromechanical 

properties of these new crystalline morphologies.  
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List of figures and tables captions :  

 

Fig. 1 : Map schematising microstructures morphologies observed by TEM versus the 

sputtering pressure P and the RF power W. Indicative curves of iso-deposition rate (nm.s
-1

) 

have been placed. Global evolution of oxygen concentration measured by A.E.S. has been 

noted (atomic %).  

 



 

Fig. 2 : Typical TEM micrographs taken on samples in zone 1 of the P-W diagram. Cross 

views : a/ Bright field image and b/ Dark field image showing the columnar structure of the 

films. Top views : c/ Bright field micrograph showing the average maximal width of 

columns, d/ Top view SAD pattern micrograph showing the film is made of the AlN 

würztite structure. 



 

Fig. 3 : Typical TEM micrographs taken on samples in zone 2 of the P-W diagram. Cross 

views : a/ Bright field image, b/ detail of image a. Top views : c/ Bright field image, d/ SAD 

pattern (AlN würztite indexation). 

 



 

 

Fig. 4 : TEM micrographs taken on samples of zone 3 and zone 4 of the P-W diagram. Zone 

3 : a/ SAD pattern showing the nano-crystallites inside the films are pure and made of AlN 

würztite, b/ Dark field image of the cross view showing the equiaxed grains structure, c/ 

Dark field image of the top view. Zone 4 : d/ SAD pattern showing the film is amorphous, e/ 

Bright field image exhibiting the typical amorphous contrast, f/ Dark field image built with 

the first amorphous ring.  

 


