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Abstract. The depletion of oil reservoirs and increased global oil demand have given impetus to employ var-
ious secondary and tertiary oil recovery methods. Gas injection is widely used in both secondary and tertiary
modes, though the major problem associated with this process is the precipitation and deposition of asphaltene,
particularly at near-wellbore conditions. In-depth knowledge of asphaltene phase behavior is therefore essential
for the prediction of asphaltene precipitation. Previous studies reported the impact of gas injection on asphal-
tene phase behavior, but the knowledge of precipitation of asphaltene as a function of different mole fractions of
injected gas is also imperative. In this study, the thermodynamic model of PC-SAFT EoS is used to discern the
phase equilibrium of asphaltene by analyzing the asphaltene drop-out curve during gas injection. Asphaltene
drop-out curves of two different live oil samples are analyzed by injecting CO,, CH,, and N, gases at different
mole percentages and temperatures. The results revealed that PC-SAFT EoS can serve as a reliable tool for
estimating bubble pressure and asphaltene onset pressure for a wide range of temperatures, pressures, and
compositions. The simulation results for the injection of CO,, CH,, and N5 also showed that CO, gas gives min-
imum asphaltene precipitation. It reduces the size of the drop-out curve or moves it toward higher pressures.
CH, and N, expand the drop-out curve by raising the upper onset point. CH, increases the maximum point of
the drop-out curve for two types of oil studied (A and B) at two different temperatures. N, raises the maximum
point of oil type “A” by approximately 57% at 395 K, while it has no effect on the maximum point of oil type “B”.
In addition, reducing the temperature resulted in either decrease or increase of asphaltene solubility, demon-
strating that the impact of temperature on asphaltene precipitation is closely related to the composition of
the crude.

Nomenclature
Z Compressibility factor, (-)
a Reduced Helmholtz free energy, (-) X Mole fraction, (-)
d; Temperature-dependent segment diameter of SA? . Association energy between site 4 and site B, J
component i, A KB Association volume parameter, (—)
g Hard-sphere radial distribution function, (-) &y Abbreviation (n =0, ..., 3) defined by equation
m Mean segment number, (—) (7), A3
m; Number of segments in a chain of component i @x Fugacity coefficient of component k, (-)
U* Residual internal energy, J Y Aromaticity value (
Urn Molar volume, cm®/mole 0 Hildebrand solubility parameter, (J/cm?)%?
A Helmholtz free energy, J € Depth of square well potential, J
N Total number of molecules, (—) 1 Packing fraction, ()
T Absolute temperature, K K Boltzmann’s constant, J/K
0 Total number density of molecules, 1/A
* Corresponding author: rparsaei@shirazu.ac.ir G Temperature independent segment diameter, A
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Superscripts

disp Contribution due to dispersive attraction

he Hard-chain system residual contribution

hs Hard-sphere system residual contribution

res Residual contribution

Abbreviations

APE Asphaltene Phase (or precipitation) Envelope

AARD  Absolute Average Relative Deviations
CED Cohesive Energy Density

Pb Bubble Point Pressure

PL Lower Onset Pressure

PU Upper Onset Pressure

RR Rachford-Rice

1 Introduction

Asphaltene is the heaviest and the most polar component of
crude oil. Currently, the most common definition of asphal-
tene is based on its solubility. Asphaltene is soluble in
aromatic solvents like benzene, toluene and insoluble in
light-paraffinic solvents such as m-pentane or n-heptane.
Asphaltene is also composed of complex poly-nuclear
aromatic components, which include alkyl groups. It con-
sists primarily of oxygen, nitrogen, sulfur and metals such
as vanadium, and nickel [1-6]. Asphaltene molecule is very
complex and its properties would profoundly vary from
one crude to another [7]. To recognize asphaltene properties
in molecular level several technologies such as field-ioniza-
tion mass spectrometry [8], electrospray ionization, Fourier
transform ion cyclotron resonance mass spectrometry [9],
atmospheric pressure photoionization mass spectrometry
[10], field-desorption/field ionization mass spectrometry
[11], laser desorption ionization [12], and time-resolved fluo-
rescence depolarization [7] are employed nowadays. Exploit-
ing these techniques in the last decade has provided us with
a clearer perspective of asphaltene. For instance, these meth-
ods give an average molecular weight of about 750 g/mol for
asphaltene within a range of 300-1400 g/mol [13]. However,
large molecular weights reported for asphaltenes in some
older reports by vapor pressure osmometry or size exclusion
chromatography are most likely due in part to the measure-
ment of aggregate weight, not molecular one.

Asphaltene can cause severe problems in various sectors
of the oil industry from reducing the reservoir permeability
to plugging the respective facilities such as wellheads, sepa-
rators, and pipelines [14, 15]. Different mechanical and
chemical methods have been proposed for mitigation of
asphaltene deposition, but these methods are costly. On
the other hand, some of the damages caused by asphaltene
are permanent, thus prevention of asphaltene precipitation
and deposition are more critical than repairing facilities
[16, 17]. In addition, the removal of asphaltene from the
reservoir rock surface is even more complex than the surface

facilities. Accordingly, the knowledge of asphaltene behav-
ior, as well as developing a tool to predict its precipitation
are essential [2, 18]. It is also known that asphaltene precip-
itation would precede the deposition but there are other
factors involved in this phenomenon such as flow regime,
rheology, two-phase flow patterns, and surface characteris-
tics [5, 19, 20]. When the condition changes and asphaltene
is no longer soluble in the oil phase, it starts to precipitate
from reservoir fluid which would, in turn, increase the oil
density. In later stages, the precipitated particles may
deposit on the rock surface, which causes pore plugging
and formation damage.

The most important step in developing a tool for predic-
tion of asphaltene deposition is an accurate estimation of
asphaltene precipitation onset. This is commonly evaluated
by thermodynamic models. Asphaltene thermodynamic
models are classified into two main categories namely, solu-
bility and colloidal models. In the colloidal approach, the
crude is divided into the polar and non-polar subsets.
Models based on the colloidal approach assume asphaltenes
as suspended solid particles, which are peptized by resins in
a colloidal system [21]. This approach assumes that
asphaltenes exist in the oil as solid particles; and, describes
the stability of asphaltenes in terms of micelle formation
where asphaltene self-associates into aggregates to make a
core. Then, resins adsorb onto the core (based on polar-
polar interactions) to form a steric shell. Asphaltene
colloidal stability was first introduced by Nellsteyn and
then was modified by Pfeiffer and Saal [22]. While colloidal
models of asphaltene were beneficial in the early stages of
understanding asphaltene behavior, but they cannot
describe reversibility of asphaltene precipitation. Although
numerous works have been done using this model and
several modifications have been implemented, the colloidal
models require many parameters to be tuned prior to pre-
diction [23-26].

Solubility theory assumes asphaltene molecules as part
of the oil mixture and asphaltene precipitation is modeled
as a liquid-liquid or solid-liquid equilibrium [27]. In this
approach, solution theories and Equations of State (EoS)
are the two main parts of solubility theory [28-31]. In par-
ticular, cubic EoS is used to describe asphaltene phase
behavior since it provides a reliable match with the experi-
mental results although its prediction of liquid-liquid
equilibrium is questionable [32]. Furthermore, the cubic
EoS contains many parameters, which make the calcula-
tions tedious and time-consuming [32].

Association EoS such as CPA and SAFT can be used
for modeling complex fluid phase behavior like mixtures
containing asphaltene. By extending Wertheim’s first order
perturbation theory to chain molecules, the statistical asso-
ciation fluid theory equation of state was developed by
Chapman et al. [33]. Among different modifications of
SAFT EoS, PC-SAFT EoS was developed by Gross and
Sadowski [34] to account for the chain length effects. This
EoS is reported to accurately model different mixtures (con-
taining hydrogen bond mixtures) and pure compounds [34].

Many researchers have modeled asphaltene phase
behavior using PC-SAFT EoS. They investigated the
effects of injection of different gases on asphaltene phase
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behavior, the results of these works are in line with the
experimental data [35-39]. Several works in the literature
also present group contribution methods to predict phase
envelope or solubility of gases in the heavy fraction of oils
[40, 41]. In this work, it is intended to study the amount
of precipitated asphaltene upon pressure drop and also
injection of different mole percentages of various gases
including CO,, Ny, and CHy, at different temperatures.
The latter is imperative since to the best of our knowledge
no research has been conducted to investigate the impact of
temperature on asphaltene precipitation. In oil reservoirs,
usually, the temperature remains constant but otherwise
is expected near the injection well.

A simple and robust algorithm based on Rachford-Rice
equation using PC-SAFT EoS for fugacity coefficient calcu-
lations is used in this work to eliminate the complexity of
asphaltene phase behavior prediction by minimizing the
Gibbs free energy of the three-phase system. This algorithm
is validated using experimental data of Asphaltene Phase
Envelope (APE) upon the injection of different gases at
various pressures and temperatures. This simple Vapor—
Liquid-Liquid Equilibrium (VLLE) algorithm may also be
used in conjunction with other EOSs. To explain it briefly,
at first, a conventional two-phase flash calculation (VLE) is
performed. Then, the stationary point method by Michelsen
[42] is used to have initial guesses for the stability analysis
which is crucial for algorithms in multiphase equilibrium
calculations. Stability analysis is done to check the stability
of the liquid phase resulted from the VLE. If the presence of
a new liquid phase, such as asphaltene phase is verified, the
three-phase split calculation is performed next by solving
Rachford-Rice equations for the vapor phase and a second
liquid phase (asphaltene phase).

2 Theoretical calculations
2.1 PC-SAFT EoS

In phase equilibrium, the computation of fugacity coeffi-
cients of each component is of prime importance. Different
EoSs use various methods to calculate the fugacity coeffi-
cient. Using PC-SAFT EoS usually includes two stages
for thermodynamic equilibrium models: (i) Helmholtz free
energy, and (ii) fugacity coefficient calculation. The
PC-SAFT EoS is based on Helmholtz free energy. By
extending Helmholtz free energy for the fugacity coefficient,
the PC-SAFT EoS is then used for thermodynamic
equilibrium. The mixture Helmholtz free energy of the
non-associating fluid in PC-SAFT EoS is defined as

s = ahc + adisp’ (1)
A

= _ 4 2

“TNET @

“res p

where @, at°, @%P are the residual, hard chain and
dispersion contributions for the mixture Helmholtz free
energy, respectively. In equation (2), A is Helmholtz free

energy, N is the total number of molecules, k is the
Boltzmann constant and T is absolute temperature. The
PC-SAFT EoS describes the fugacity coefficient (¢j) of
component k as

i aal‘es
ln@k:ares+(z_1)+( )
Oy, T,z

“res

_ ﬁ: T <8a> —InZ (3)
=1 ! axj T,0,4; 7

where Z, x;, and v are the compressibility factor, the mole
fraction of component k£ and the molar volume,
respectively.

2.2 The hard chain contribution

Hard sphere and chain formation constitute the hard chain
contribution as follows:

Ezh“ = m&hs — Zmz(ml — 1) In g?:(d”), (4)

where m, m;, and gﬁf(d“) are the mean segment number,
the number of segments in a chain of species 7 in the mix-
ture and the hard-sphere radial distribution function,
respectively. The required equations are expressed as:

~hs __

E
&

ERRSI N (< A PN 6

= Ep) X (mid}) n=0,1,23 (1)

ey 1 did; 3%
gi (dy) = [1 — & + <d,,- + d]‘> (1-¢&)

did; \° &
- 2<di +'dj> (1- 53)3]’ ®)
d; = ai[l —0.12exp (—3 ]:T)} 9)

where p is the total number density of molecules, d; is
the temperature-dependent segment diameter of compo-
nent i, g, is the temperature independent segment diame-
ter and ¢; is the depth of square well potential of
component 3.

2.3 The dispersion contribution

There are attractive forces between molecular segments
that interact with each other. The attractive forces between



4 S. Mahmoudvand et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 74, 63 (2019)

chains with the same and different lengths are defined as
dispersion contribution using the following equations:

~disp __

a m)mea®

m)m2e’o?, (10)
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where the variables C}, m?e03, and m?e203 are described as

8n — 2
(1—n)'

01: 1+7_n

-1
20n — 270 + 1218 — 2p*
(1 ) 2= 2T il

(L —n)(2—n)]
(11)

mes’ = Zz:vzxjmm%( )Z], (12)

e’ = ZZmszm m1<8U) 5 (13)

where 7 is the packing fraction (reduced density), which is
equal to &; [18, 34]. Other equations for calculation of

Sres Anres
(=), and (%)
k 1o,k 7/ T,y

required derivatives such as
are given elsewhere [18, 43].

3 Qil characterization for PC-SAFT EoS

The PC-SAFT EoS needs five parameters of fluid charac-
terization: (1) the number of segments in the molecule
(i.e., chain length), m, (2) a size parameter, o, (3) a segment
energy parameter, &, (4) the volume of association, KB
and (5) the energy of association, ¢!, The last two param-
eters are required only for the molecules that are self-
associating. Previous studies have shown that asphaltene
phase stability is controlled by van der Waals forces, hence
m, o and & are enough for modeling asphaltene phase
behavior [27, 32]. These parameters are in general obtained
based on regression to vapor pressure and saturated liquid
densities for pure components [34].

Two asphaltenic oil samples “A” and “B” were studied in
this work. They were taken from reservoirs that experienced
asphaltene precipitation problem during primary oil recov-
ery [44]. The composition and PC-SAFT parameters of
these oil samples are given in Tables 1 and 2, respectively.
Experimental studies were implemented by Jamaluddin
et al. [44] to evaluate asphaltene precipitation from crude
oil “A” under Ny injection [44], also, they characterized this
oil as a recombined oil to obtain PC-SAFT EoS parameters
[35, 45]. They considered the separator gas as a four-
component fluid (i.e., Ny, COo, Cy, and light n-alkanes)
and recombined it with the stock tank oil which was
characterized by three sub-fractions of saturates, aromatics
plus resins and asphaltenes. They used PC-SAFT EoS and
modeled this crude oil APE. Gonzalez et al. [45] showed
that the experimental data of asphaltene precipitation for
crude oil “A” [44] are well described by the PC-SAFT EoS
model. For o0il “B” the composition of mono-phasic reservoir

fluid is available. Hence, Tavakkoli et al. [46] flashed it to
atmospheric conditions by PC-SAFT EoS to obtain flashed
gas and liquid compositions. They recombined these
compositions and tuned the aromaticity value (y) for C;
and n-hexane to find the characterized composition of oil
“B” for the PC-SAFT equation. PC-SAFT parameters of
all of the components of oil “B” after characterization are
reported in Table 2. Binary interaction coefficients are
available in the main references [45, 46].

Tavakkoli et al. [46] divided the asphaltene fraction into
two sub-fractions of n-Cs_; and n-C;, asphaltenes, based
on the experimental amount of asphaltenes precipitated
by n-Cs and n-C; to investigate the effect of asphaltene
polydispersity. They fitted the aromaticity value for the
aromatics + resins component to reproduce both the exper-
imental stock tank oil density and bubble point pressure.
The aromaticity value and molecular weight of asphaltene
subfractions are fitted to the experimental upper onset pres-
sure at different temperatures. Aromaticity values are
reported in Table 2 for oil “B”. To highlight the diverse
impact of gas injected to the reservoir on the drop-out curve
of asphaltene, in this study, we predicted the amount of
asphaltene that precipitates upon the injection of different
gases under wellbore operating conditions. We also studied
the effect of change in the temperature near the wellbore.
The asphaltene drop out curves for oil with and without
different gases is regenerated in this research assuming that
the precipitation occurs in the Liquid—Liquid Equilibrium
(LLE) between the upper onset and bubble point region
and VLLE between the bubble point and lower onset
pressure. This study proves that careful scrutiny is essential
for EOR/IOR methods which involve additional gas.

4 Results and discussion

Figure 1 shows the APE for the crude oil “A”. To interpret
this figure, one needs to check the asphaltene solubility
parameter. The solubility parameter given by Hildebrand
is calculated by 6 = (—U"/v,,)"? [47]. This parameter is
the square root of Cohesive Energy Density (CED), the
term in parentheses, is the energy required for removing a
molar volume of the component from its neighbors to infi-
nite separation. This relation is often used for nonpolar
and slightly polar systems with no hydrogen bonding.
It is worth mentioning that asphaltene has the highest sol-
ubility parameter among the components of crude oil [48].
Decreasing the pressure increases the molar volume and
hence, lowers the asphaltene solubility. Asphaltene starts
to precipitate at an upper onset pressure and reaches its
maximum around the bubble pressure. For pressures below
the bubble point, lighter components are released by which
the molar volume of the liquid phase drops and conse-
quently asphaltene solubility increases. Then, precipitation
of asphaltene stops at a pressure called lower onset pressure.
Temperature changes may have two diverse effects on the
APE of crude oils. Higher temperature results in higher
molar volumes and higher oil entropy. The overall decrease
or increase in CED is determined by a competitive increase
in numerator and denominator of the fraction. At lower
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Table 1. Characterization of crude oil “A” from Gonzalez et al. [45].

Component MW (g/mole) Composition m () a (A) ¢/k (K)
(mole fraction)

N, 28.01 0.004950 1.2053 3.3130 90.96

COs 44.01 0.145830 2.0729 2.7852 169.21

CH,4 16.04 0.273340 1.0000 3.7039 150.03

Light gases 44.60 0.219170 2.0546 3.6130 204.96

Saturates 207.60 0.238530 5.9670 3.9320 254.05

Aromatics + resins 270.50 0.117500 6.4730 3.8700 332.52

Asphaltenes 1700.00 0.000676 29.5000 4.3000 392.56

Table 2. Characterization of crude oil “B” from Tavakkoli et al. [46].

Component MW (g/mole) Composition m (—) o (A) ¢/ k(K)

(mole fraction)

N, 28.01 0.005135 1.205 3.31 90.96
CO, 44.01 0.009468 2.073 2.78 169.21
CH,4 16.04 0.463341 1.000 3.70 150.03
Heavy gases 43.13 0.245650 2.017 3.60 203.90
Saturates 176.43 0.215063 5.378 3.91 250.36
Aromatics + Resins (y = 0.03) 277.00 0.060970 6.856 4.01 290.30
n-Cs_7 asphaltenes (y = 0.29) 1700.00 0.000261 32.930 4.24 353.20
n-Cy asphaltenes (y = 0.29) 2500.00 0.000111 47.940 4.25 356.11

P [MPa]

330 350 370 390 410 430 450

TIK]
—Pu  eeee Pb
— —PL ® Experiment PU Jamaluddin
®  Experiment Pb Jamaluddin A Reservoir

Fig. 1. Comparison of the PC-SAFT model and experimental
data [44] for predicting bubble point and asphaltene onset
pressures for oil “A” prior to gas injection.

temperatures, the effect of oil entropy is more than density
and causes lower solubility for asphaltene, which means
lower upper onset and higher lower onset pressures, but
at the higher temperature, the oil density effect is
prominent.

In Figure 1, Absolute Average Relative Deviations
(AARD) for prediction of the upper onset and bubble pres-
sures are 5.36% and 2.14%, respectively. These values for
Figure 2 are 3.63% and 2.01%, respectively that confirm
the applicability of the algorithm used in this work. Figure 3

——ru === Pb
— —PL ® Experiment PU Tavakkoli
B Experiment Pb Tavakkoli A Experiment PL Tavakkoli

Fig. 2. Comparison of the PC-SAFT model and experimental
data [44] for predicting bubble point and asphaltene onset
pressures for oil “B” prior to gas injection.

reveals that increasing injection of Ny enhances asphaltene
onset pressures, bubble pressures and the difference
between the asphaltene onset pressure and the bubble point
pressure. This is because of low polarizability and low
molecular weight of Ny which cause lower solubility
parameter and more asphaltene precipitation and finally
the higher difference between upper and lower pressures.
In fact, lighter oil has a lower solubility parameter for
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Oil 'A’

Pa]

N, injected (Mole %)

PU-PC-SAFT = = -Pb-PC-SAFT

® PU-Experiment B  Pb-Experiment

Fig. 3. Comparison of the PC-SAFT model and experimental
data [44] for predicting bubble point and asphaltene onset
pressure upon the injection of Ny at 420 K for oil “A”.

asphaltene and so produces more asphaltene precipitation.
In this figure, AARD values for estimation of upper onset
and bubble pressures are 6.75% and 7.73%, respectively.
As shown in Figures 1-3, a good agreement exists
between the model and experimental data for discerning
the impact of operational conditions such as temperature,
type of injection gas, and the amount of injection gas.
The main parameters that affect the oil APE are m, o,
and ¢/k of the pseudo-components and their respective
binary interaction coefficients with other components.
Panuganti et al. [32] and Gonzalez Rodriguez [35] proposed
several methods based on sensitivity analysis to fit the
experimental data with predictions of the PC-SAFT EoS.
The bubble point pressure curve is tuned initially, and then
the upper and lower onset curves are matched with the
laboratory data by tuning the asphaltene parameters
(i.e., m, o, and &/k) in their methods. Analyzing the sensitiv-
ity of the APE to all of these parameters is beyond the scope
of this study. Therefore, we only examined the sensitivity of
the APE curves to m, o, and ¢ /k of asphaltene and the result
for crude oil “A” is plotted in Figure 4a—4c, respectively.

4.1 Effect of injection of various mole fractions of CO,,
CH,, and N, on precipitation of asphaltene

Figure 5 shows the impact of different mole fractions of CO,
on asphaltene drop-out curve of oil “A” at a typical temper-
ature of the wellbore, 355 K and 395 K. Comparing
Figures 5a and 5b reveals the effect of temperature on the
asphaltene drop-out curve due to CO, injection. In fact,
there is a crossover temperature under which COs increases
crude oil solubility parameters and stabilizes asphaltene
that results in a narrower asphaltene drop-out curve as
CO, concentration increases and over which carbon dioxide
reduces solubility parameters and makes asphaltene to be
unstable at higher pressures. This is shown by calculating
the upper onset pressure of asphaltene for oil “A” in Figure 6.
This figure depicts that CO, injection enlarges the APE by
elevating the upper onset curve in temperatures a little
higher than 370 K. While this curve is dropped at lower
temperatures. An expanded APE means when a live oil gets

35
(a)

30 5 /
=25 _\_/{
& __--
= -~ -—=———_ _ _

a 20 = -

10 1 1 1 1 1

400 420 440 460 480 500
T [K]
APE-m=30.5 APE-m=29.5 = = = APE-m=27.5
35
(b)
30
— 2 \_/—<
n‘ - - - =
E ——==—__ _
o 20 p—" -
10 1 1 1 1 1
400 420 440 460 480 500
T [K]
APE-6=4.25 (A) APE-6=4.3 (A) — — — APE-6=4.35 (A)
35
(C) ___———

30
=25 x/(__
a - -
> L e -

20 == T

10 1 1 1 1 1

400 420 440 460 480 500
T [K]

APE-£/k=397.56(K)
= = = APE-¢/k=387.56(K)

APE-£/k=392.56(K)

Fig. 4. Sensitivity analysis for asphaltene parameters on APE
of crude oil “A”. (a): m, (b): g, and (¢): ¢/k.

depressurized, asphaltene destabilizes at higher pressures.
As shown in Figure 7a, CO, injection into oil “B” extenuates
asphaltene precipitation by making the drop-out curve
smaller. The same behavior can be seen in Figure 5a,
although adding COs to this oil at 395 K shows a different
influence. Increasing the mole percent of COs injected to Oil
“B” does not give a monotonic increase of upper onset pres-
sure in contrary to the addition of COy into oil “A” at 395 K
that grows the upper onset pressure continuously. Thus, the
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1.0
09 | 2) Oil 'A'- 355 K
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Precipitated asphaltene
[wt%]

P [MPa]
10 Mole % CO,
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1.0
09 b) Oil 'A'- 395 K
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Fig. 5. The amount of asphaltene precipitation for oil “A” upon
injection of various mole fractions of CO, at (a) T'= 355 K and
(b) T = 395 K.
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P [MPa]
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Fig. 6. Effect of CO3 on the APE for crude oil “A”.

COs injection effect on asphaltene is a function of oil type
and reservoir temperature.

Figure 8 clearly shows that CO, injection decreases and
then increases the upper onset curve of asphaltene for oil
“B” at 395 K. Although a monotonic decrease in the upper
onset pressure is seen at 355 K.

CH, injection displaces the bubble point and upper
onset pressures more sharply in comparison with COs,.
Results of this injection for both oils at 355 K are drawn
in Figure 9. This effect is more severe in the case of Ny injec-
tion that is depicted in Figure 10. As more CH, and N, are
injected, higher upper onset pressures and bubble pressures
are observed. Nonetheless, for the COs injection scenario at
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Fig. 7. The amount of asphaltene precipitation for oil “B” upon
injection of various mole fractions of CO, at (a) T = 355 K and
(b) T=395 K.
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Fig. 8. Effect of CO, on the upper onset curve of oil “B” at
395 K and 355 K.

355 K, its behavior was different. Moreover, the quantities
of increased bubble point and upper onset pressures upon
N; injection are more than the cases of CH, injection. This
can be attributed to the density and polarizability of the
injected gases.

Adding N, to the oil lowers the internal energy of the
whole system based on Hildebrand solubility parameter
and so decreases the asphaltene solubility parameter. This
would, in turn, lead to more asphaltene precipitation. The
knowledge of bubble point and asphaltene onset pressures
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Fig. 12. Precipitation of asphaltene upon injection of 10 mole % of different gases at 355 K and 395 K into oils “A” and “B”.

is important to prevent two and three phase flows near the
wellbore when the asphaltene would drop out of the liquid
phase.

4.2 Effect of temperature on precipitation of asphaltene
due to the injection of various gases

The temperature change near the wellbore would affect
asphaltene precipitation, particularly, during the gas lifting
process. Temperature change would have two effects on
crude oil. The elevated temperature would result in lower
oil density and higher oil entropy. These two effects
counteract each other in terms of promoting asphaltene pre-
cipitation. Lower oil density causes more asphaltene precip-
itation, while higher oil entropy causes less asphaltene
precipitation. Temperature effect on destabilization of
asphaltene during COs injection is a matter of debate and
needs a precise evaluation of the oil. This was explained
earlier in Figures 5-8. As shown in Figure 11, it is obvious
that, for Ny and CHy injection, higher temperature causes a
lower amount of asphaltene precipitation. This is because
the effect of oil entropy for the temperature range of
355 K-395 K is more pronounced than density, but for
various types of injected gas, the effect of temperature
on asphaltene precipitation is different. The effect of tem-
perature for Ny injection is more noticeable than for CHy
and CO,.

4.3 Effect of injected gas type on precipitation
of asphaltene at a constant temperature

To discern the impact of the type of injecting gas on asphal-
tene precipitation, the calculations were performed using
10 mole % of different gases at two temperatures. The
results are presented in Figure 12. As shown in these figures,
CO, lowers the maximum precipitation of asphaltene in oil
“A” at 355 K by 10.2% but the effect is very little at 395 K.
However, CH, and Nj intensify the asphaltene precipitation
in this type of oil by elevating the maximum drop-out of
asphaltene. CH; and N, raise the maximum point of the
drop out curve by 6.1% and 12.3% at 355 K and by
36.7% and 57.1% at 395 K, respectively. The effects are
totally different in oil “B”. CO, decreases the maximum
point at 355 K and 395 K by 17.1% and 11.3%, respectively.
CH, and N, increase the maximum point by 4.8% and 4.9%
at 355 K, respectively. Ny does not change the maximum
value but displaces it toward higher pressures and CHy
increases it about 5.8% at 395 K.

5 Conclusion

The knowledge of circumstances under which asphaltene
starts to precipitate is important to prevent numerous
problems associated with this phenomenon. The onset
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and bubble point pressures for the crude oil under study
were modeled using PC-SAFT EoS. The results of
PC-SAFT EoS correlate accurately with the measured
onset pressure and bubble pressures taken from the litera-
ture. Furthermore, the fractions of precipitated asphaltene
from the oil phase due to the injection of different types
of gas at various temperatures were modeled. The following
conclusions can be drawn from the results presented in this
study:

¢ No general rule for the effect of the injection of differ-
ent types of gases into oil was seen in this work. Thus,
a detailed evaluation of the oil characteristics is
crucial prior to gas injection.

e CO, injection shows a crossover temperature under
which COs increases crude oil solubility parameters
and over which CO, reduces the solubility of asphal-
tene. For temperatures below the crossover tempera-
ture, by increasing the mole percent of CO,
asphaltene precipitation decreases.

¢ CO, may reduce the size of the drop-out curve or
move it toward the higher pressures.

e Injection of COs into oil “B” has a different influence
on the variation of upper onset pressure at different
temperatures. It decreased and then increased the
upper onset pressure at 395 K. However, a monotonic
decrease was seen for the upper onset pressure by CO,
injection at 355 K.

e CH, and N, expand the drop-out curve by raising the
upper onset point. CH, increases the maximum point
of the drop-out curve for both oils at two different
temperatures. N, raises the maximum point of oil
“A” by approximately 57% at 395 K, while it had no
effect on the maximum point of oil “B”.

e CH, has widened the drop-out curve by increasing the
upper onset pressure and raised up the maximum
point of the curve in all cases.

e The higher the temperature, the lower asphaltene
precipitation would be expected.

o The effect of nitrogen injection on asphaltene precipi-
tation is higher than other gases examined.
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