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Abstract

In tropical regions, populations continue to suffer morbidity and mortality
from malaria and arboviral diseases. In Kedougou (Senegal), these illnesses
are all endemic due to the climate and its geographical position. The co-
circulation of malaria parasites and arboviruses can explain the observation
of coinfected cases. Indeed there is strong resemblance in symptoms between
these diseases making problematic targeted medical care of coinfected cases.
This is due to the fact that the origin of illness is not obviously known.
Some cases could be immunized against one or the other of the pathogens,
immunity typically acquired with factors like age and exposure as usual for
endemic area. Thus, coinfection needs to be better diagnosed. Using data
collected from patients in Kedougou region, from 2009 to 2013, we adjusted
a multinomial logistic model and selected relevant variables in explaining
coinfection status. We observed specific sets of variables explaining each of
the diseases exclusively and the coinfection. We tested the independence
between arboviral and malaria infections and derived coinfection probabili-
ties from the model fitting. In case of a coinfection probability greater than
a threshold value to be calibrated on the data, long duration of illness and
age are mostly indicative of arboviral disease while high body temperature
and presence of nausea or vomiting symptoms during the rainy season are
mostly indicative of malaria disease.
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regression, random forest classification, variable selection.
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1. Introduction

Concurrent infections are often observed among vector borne diseases such
as malaria and arthropod-borne viral diseases (arbovirus) in tropical regions
([1], [2]). It is the case for malaria and dengue in American, African and
Asian tropical regions where their endemic areas overlap largely ([3, 4, 5,
6, 7, 8, 9]). Malaria can be easily ascribed to other febrile illnesses because
its clinical symptoms are often indistinguishable from those initially seen
in dengue or chikungunya for instance ([10]). Since the introduction of the
Rapid Diagnostic Test (RDT) in 2007 in Senegal, malaria has been better
diagnosed and an important decrease has been noticed in the prevalence of
malaria. Thus we may think that malaria has been overestimated for some
time at the expense of other febrile diseases such as arbovirus or bacteria
([11, 12]). Presumptive treatment of fever with antimalarial is widely prac-
ticed to reduce malaria attributable mortality. This practice means that ill
patients may be inappropriately treated, particularly where rapid diagnosis
test kits are not readily available, or if the opportunity to test for arboviral
infections is missed. Thus, misdiagnosis of arbovirus coinfections as malaria
infections may be a cause for underestimating emerging arbovirus infections.
In 2009, surveillance of acute febrile illness (AFI) was implemented in Ke-
dougou for early detection of arbovirus outbreaks and malaria and in order
to accurately measure disease morbidity and mortality in this geographical
region. Due to co-circulation of malaria parasites and arbovirus, that were
mainly dengue (DEN), chikungunya (CHIK), Zika (ZIK), yellow fever (YF)
and Rift Valley fever viruses (RVFV) in this region (neglecting the preva-
lence of other arboviral infections), concurrent infections were observed and
posed a challenge for medical diagnosis ([13]). Here we compare clinical
profiles of coinfected patients to clinical profiles of mono-infected patients
through the statistical analysis of a data set collected from febrile patients
in the Kedougou region, Senegal from 2009 to 2013. Our study aims to char-
acterize the risk factors of coinfection and to provide statistical indicators
that improve differential diagnosis of febrile cases for arbovirus.

The data of our study were provided by the Institut Pasteur de Dakar (IPD)
at Kedougou (southern-east Senegal). In this region, malaria and arbovirus
are endemic due to the climate and the population movements. Data were
collected through seven healthcare centers in the region: Ninefesha rural
hospital, Kedougou and Saraya Health Centers, Bandafassi and Khossanto
health posts, the Kedougou military health post, and the Catholic Mission
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mobile team. Inclusion criteria were (i) being at least one year old at the
date of the visit, (ii) having fever (i.e., body temperature≥ 38oC) and (iii)
manifesting at least one clinical sign within a list of symptoms. Patients
satisfying inclusion criteria were enrolled once a written informed consent
was signed.
In the present paper, we propose a multinomial logistic model to analyse
coinfection between arbovirus and malaria. There were four outcomes de-
termining four groups of patients: arbovirus monoinfections (with respect
to the 5 tested arbovirus), malaria monoinfections, arbovirus-malaria coin-
fections and controls defined as patients negative for malaria and for the
5 tested arbovirus. Febrile episodes from this control group were probably
due to other circulating pathogens for which all groups were supposed to
be equally exposed. We first performed a covariable selection using random
forests based on the variable importance measure ([14]). Secondly we fitted
a parametric multinomial logistic model including the selected covariables
and quantified the influent factors on the different outcomes to investigate
the following questions: Which factors can explain coinfection? Which risk
factors enable to distinguish between malaria and arbovirus? Finaly, we pro-
posed a Wald-type test to test the correlation between malaria infection and
arboviral infection. If the independence hypothesis is rejected, we were able
to predict the probability that a patient be coinfected given that malaria is
observed. This predictive analysis was illustrated on simulated data.
The paper is organized as follows. In Section 2, we present the working
data set. Section 3 describes the statistical model and the variable selec-
tion. In Section 4, we present the independence test between arbovirus and
malaria infections and we propose a predictive analysis. A concluding dis-
cussion is given in Section 5. Additional analysis and results are provided
in Supplementary Material.

2. Data description

We based our analysis on the data from IPD at Kedougou. The initial data
set included 15 523 patients and collected various features: patients’ data
(like sex, age, occupation, location,. . .), clinical symptoms, climate indica-
tors and three binary infections status variables indicating (i) the presence
or absence of malaria parasites in blood, (ii) the detection of virus or IgM
antibodies against virus. Malaria diagnosis relied on the identification of
haematozoa using the thick blood smear (TBS) method. Arboviral infec-
tions were investigated by the detection of specific anti-arbovirus IgM using
ELISA (enzyme-linked immunosorbent assay). We considered an arboviral
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case as any individual tested positive to the infection with at least one of
the five arbovirus (DEN, CHIK, ZIK, YF and RVF).
Based on these data we created a new categorical response variable built
from four possible combinations of the three infection status variables as
follows:

Y =


0 “Other febrile illnesses (O)”
1 “Arboviral monoinfection (A)”
2 “Malaria monoinfection (M)”
3 “Coinfection (C)”

Category 0 corresponds to individuals that are negative for both malaria
and the tested arboviral infections; their symptoms could be due to other
unknown febrile illnesses. Category 1 corresponds to individuals positive
for at least one of the five tested arbovirus and negative for malaria. Cate-
gory 2 corresponds to individuals negative for tested arbovirus and positive
for malaria. Category 3 represents individuals simultaneously positive for
malaria and for at least one of the tested arbovirus. The subjects of category
3 are said “coinfected” with malaria and arbovirus.
Our aim is to differentiate febrile syndroms that could be due to arbovirus
from febrile syndroms that could be due to malaria. As coinfection in a
single patient may change the spectrum of clinical symptoms, we want to
identify those features that predict arboviral infection to improve medical
and treatment diagnosis in the primary care setting.
In this study, arboviral cases are diagnosed by the detection of IgM. We con-
sidered that an individual was positive for arboviral infection if he/she was
tested positive to IgM. Ignoring individuals with missing data, we obtained
a data set of size n = 12288 (IgM data) which is summarized in Table 1.
We can see that this data set is very unbalanced (3 arboviral or coinfected
cases per 1000 patients) and will require a specific statistical analysis.

Arbovirus
Malaria

+ − Total

+ 18 (0.15%) 21 (0.16%) 39 (0.31%)

− 7 069 (57.53%) 5 180 (42.16%) 12 305 (99.69%)

Total 7 087 (57.68%) 5 201 (42.32%) 12 288

Table 1: IgM data. A summary of the response variables.

In the data set, there are four quantitative covariables: the measured body
temperature (in Celsius degrees), the number of sick days defined as the
number of days between the date of symptoms onset and the date of consul-
tation, the patient’s age (in year) and the rainfall measure (in millimiters)
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which is a proxy for the season (rainy or dry). The individual rainfall mea-
sure corresponds to the rainfall measure of the patient’s month of consul-
tation. The eleven qualitative covariables are the patient’s gender and ten
other binary variable, which record presence or absence of ten symptoms:
headache, eye pain, muscle pain, join pain, cough, nausea or vomiting, chills,
diarrhea, nasal congestion and icterus and/or jaundice. All the variables of
the data sets are summarized in Figure 1.

Figure 1: List of variables

3. Statistical analysis of the coinfection influential factors

The objective of this section is to propose a methodology that can identify
the important symptoms for the arbovirus diagnosis and can help making
decision for arbovirus treatment in absence of laboratory confirmation.
Variable selection is appreciable in medical data analysis as the diagnosis
of the disease could be done on a minimum number of clinical measures.
Reducing the number of relevant covariates may also produce more accu-
rate classification results. In a first step, we select relevant covariates that
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explain the disease status typically via a multinomial logistic model. The
statistical analysis is challenging because of the small number of instances
of the arboviral class (39) with respect to the total number of observations
(12 288). The cases that are more important for the study are rare and
few exist on the available training set. We face what is usually known as a
problem of imbalanced data sets. To handle this problem, we proposed to
randomly remove observations from the majority class to prevent its signal
from dominating the fitting procedure. We applied to our imbalanced IgM
data set a common undersampling technique to obtain a more balanced data
distribution. As the data distribution is changed, it is expected that the fit-
ted models are biased to the goals of the user and are more interpretable in
terms of these goals.
In a second step we investigate the robustness of the variable selection using
random forests. Introduced by [15], random forests (RF hereafter) are a
robust nonparametric method to deal with classification problems. They re-
quire only mild conditions on the data generating model. They are also less
sensitive to weaknesses in the data, because the randomized tree generation
procedure ensures that all covariates are more equally evaluated. Moreover,
RF decision trees often perform well on imbalanced data sets because en-
semble methods offer ways to rebalance the distributions in varied ways. In
this study, RF models have the advantage of providing a ranking of covari-
ates using the RF score of variable importance that is a useful and effective
tool to find important covariates for interpretation.
In a third step, we quantify the effects of the selected covariates using odds
ratios. We compute odds ratios for one disease category relative to another
one and we contrast the effects of the covariates on the disease category,
arboviral monoinfection, malaria monoinfection and coinfection.

3.1. Multinomial logit model

We recall that Y is the response variable indicating the class of the dis-
ease: “Other febrile illnesses” (Y = 0), “arboviral monoinfection” (Y = 1),
“malaria monoinfection” (Y = 2) and “coinfection” (Y = 3). Let X =
(1, X1, . . . , Xp) be the vector of the p covariates. For an individual with
covariates X = x, we want to predict the probability of belonging to the
class k given x,

πk(x) = P(Y = k|X = x), k = 0, 1, 2, 3.

The multinomial logit model assumes the existence of β1, β2, β3 ∈ Rp+1
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such that, for each k = 1, 2, 3 and each vector of covariates x,

log
P(Y = k|X = x)

P(Y = 0|X = x)
= 〈x, βk〉 (1)

where

〈x, βk〉 =

p∑
j=0

xjβkj

and x0 = 1 to include the intercept parameters βk0, k = 1, 2, 3. The reference
modality is class 0.
Consequently, for each k = 1, 2, 3 and each vector of covariates x,

P(Y = k|X = x) =
exp(〈x, βk〉)

1 +
∑3

l=1 exp(〈x, βl〉)

and

P(Y = 0|X = x) =
1

1 +
∑3

l=1 exp(〈x, βl〉)
·

From the computation of the maximum likelihood estimates β̂k, we derive
for k = 1, 2, 3,

π̂k(x) =
e〈x,β̂k〉

1 +
∑3

l=1 e
〈x,β̂l〉

· (2)

3.2. Fitting strategy for handling imbalanced IgM data

The IgM data set contains 18 arboviral monoinfection cases, 21 coinfection
cases, 5 180 other febrile illness cases and 7 069 malaria monoinfection
cases. Trained on the original IgM data set, the fitted logit model only
predicted classes 0 and 2, which means it ignores the two minority classes 1
and 3 in favour of the majority classes. Applying resampling strategies to
obtain a more balanced data sample is an effective solution to the imbalance
problem (see [16] for a survey of existing methods). Two of the most simple
resampling approaches are undersampling and oversampling. Since the IgM
is highly imbalanced with a large number of observations in the two majority
classes, we used a random undersampling strategy that removes observations
and reduces the sample size. We sampled without replacement 50 cases
from each of the two majority classes to create a balanced sub-sample of
size 18 + 21 + 50 + 50 = 139. Trained on a sub-sample, the model predicted
four classes.
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Undersampling results in loss of information and the risk of removing rel-
evant observations is present. To overcome this problem, we repeated the
sampling step a thousand times and worked with 1 000 balanced sub-samples
of the IgM data set. The multinomial model was fitted to each sub-sample
and a stepwise covariate selection was performed (see Figure 5 in the sup-
plementary material). The observed variability of the 1 000 covariate se-
lections raised robustness questions. To answer this point, we conducted
a nonparametric analysis based on the RF algorithm. In recent years, sev-
eral methods involving the combination of resampling and ensemble learning
have appeared in the imbalanced distributions literature ([16]). We found
that the importance score based on random forests yielded a convenient way
to summarize the information obtained from the 1 000 sub-samples.

3.3. Variable selection using random forests

A random forest is an ensemble of unpruned trees, induced from bootstrap
samples of the training data, that uses random covariate selection in the tree
construction process. Prediction is made by aggregating the predictions of
the ensemble, using the majority vote rule.
One of the most widely used RF score of importance of a given variable is
the Mean Decrease of Accuracy (MDA) in predictions. It is based on the
out-of-bag (OOB) error. For each tree t of the forest, consider the associated
OOBt sample (data not included in the bootstrap sample used to construct
t). Denote by errOOBt the misclassification rate of tree t computed on this
OOBt sample. Then, randomly permute the observed values of covariate
Xj in OOBt to get a perturbed sample and compute errOOBj

t , the error of
t on the perturbed sample. Variable importance of Xj is then given by

MDA(Xj) =
1

ntree

ntree∑
t=1

(
errOOBj

t − errOOBt
)
,

where ntree denotes the number of trees of the RF. The higher the MDA,
the more important the variable is. Several variable selection procedures
using RF are based on this quantification of variable importance.
Using R packages, we made the following implementation choices: randomForest
for RF fitting and MDA calculation, VSURF for selecting the important
variables. The main parameters of randomForest were calibrated and set
to their default values, ntree=500 and mtry=

√
p=3 (number of variables

tried at each split of a tree of the RF). The variable selection strategy of
VSURF is based on a two-stage procedure ([17]): 1. the covariates are ranked
by sorting their variable importance measures in descending order and the
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covariates whose importance is less than a threshold (the minimum value of
the standard deviations of the importance measures) are eliminated; 2. a
sequence of nested models starting from the one with only the most impor-
tant variable and ending with the one involving all important variables kept
previously is considered; the variables of the model leading to the small-
est OOB error are selected. An advantage of using VSURF is that this
procedure does not require the choice of tuning parameters.
Figure 2 ranks the variable importances (MDA) of the 15 covariates across
the 1 000 sub-samples. First, rainfall is the most important covariate; a
second group of less important covariates is formed by cough, age and joint
pain; then comes a group of five covariates: number of sick days, tem-
perature, nausea or vomiting, eye pain and nasal congestion; finally, six
unimportant covariates are displayed: muscle pain, chills, cephalalgia, jau-
dice, diarrhea and sex . The boundary between the two last groups is not
clear and we used the VSURF procedure to separate the important covari-
ates from the other ones. We can notice on the plot that both MDA level
and variability are larger for relevant variables; as explained by [14], this is
expected and the VSURF threshold value is based on MDA standard devi-
ation estimation. Figure 3 summarizes the results of the VSURF selection
procedure based on the 1 000 sub-samples. The covariate rainfall (95.2%)
is almost always selected. Next, the more often selected variables are cough
(29.1%), age (28.3%), joint pain (19.8%), nausea or vomiting (16.4%), num-
ber of sick days (16.1%), temperature (16.1%) and nasal congestion (11%),
in decreasing order. The other covariates are selected in less than 10% of
the samples.
We set different random seeds and we found that, for our purpose of selecting
significant covariates, aggregation of 1 000 RF classifiers learned from 1 000
randomly balanced sub-samples yielded stable selected variable sets.

3.4. Influence of selected covariates on disease status

In the previous sections, the RF variable importance results on the IgM sub-
samples produced a robust ranking of the covariates. From these results,
we decided to fit multinomial model with eight covariates (age, temperature,
number of sick days, rainfall, nausea or vomiting, cough, nasal congestion
and joint pain) to the data set of our analysis and to further quantify the
effects of the covariates in this model.
Within the multinomial logit model, we can quantify the effect of a variable
in terms of an odds ratio or its logarithm. The odds that Y = k occurs for
an individual with covariates X = x is the ratio of P(Y = k|X = x) divided
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Figure 2: A variable importance plot for the IgM data set. Each boxplot summarizes the
distribution of the variable importance among 1000 IgM sub-samples.

by P(Y = 0|X = x), k = 1, 2, 3. Then, the log odds of category k is given
by Equation (1) :

log odds(Y = k|X = x) = 〈x, βk〉.

Thus the multinomial logit model is a linear regression model in the log
odds. The parameter component βkj can be interpreted as the change in
the log odds per unit change in the continuous covariate Xj , if all other
covariates are held constant. The odds ratio (OR) of category k for a d
units increase of Xj , all other covariates remaining constant, is defined as

ORk(d) =
P(Y = k|Xj + d)/P(Y = 0|Xj + d)

P(Y = k|Xj)/P(Y = 0|Xj)
= exp(βkjd).

Once β is estimated, one can estimate any odds or odds ratios. An OR
equal to one means that a change in covariate Xj has no effect on the odds
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Figure 3: Ranking by VSURF: for each variable, the length of the bar corresponds to the
empirical probability to be selected by VSURF among 1000 IgM sub-samples

of category k; if ORk(d) > 1 (ORk(d) < 1), the effect of an increase of
Xj is to increase (decrease) the odds of category k. The risk ratio P(Y =
k|Xj + d)/P(Y = k|Xj), which could be more interpretable in terms of
predicted probabilities instead of odds, depends on the values of all other
covariates. ORs are similar to risk ratios if the risk is small, otherwise ORs
overestimate risk ratios.

For each covariate, we computed the odds ratios ORk, k = 1, 2, 3 and their
confidence intervals for each disease. Figure 4 display the OR by which the
odds increases for a certain change in a covariate, holding all other covari-
ates constant. The ORs associated with binary variables (nausea/vomiting,
cough, nasal congestion and joint pain) were computed by comparing the
two modalities: 0 for absence and 1 for presence of the symptom. We com-
puted the ORs resulting from increasing temperature from 38 to 40 degrees
Celsius (d = 2) and from increasing Number of sick days from 2 to 6 days
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(d = 4). The outer quartiles of Age are 8 and 28 years (d = 20), so we com-
puted the half-sample OR for age. Similarly, we computed the half-sample
OR for a rainfall of 14 mm compared to a rainfall of 370 mm (d = 356).
The ORs defined previously are relative to the reference category Y = 0. We
also computed the ORs between two diseases Y = k and Y = l in order to
differentiate the effect of each covariable between the three clinical groups,
arbovirus vs malaria, coinfection vs arbovirus and coinfection vs malaria
(Figure 5):

ORk|l(d) =
P(Y = k|Xj + d)/P(Y = l|Xj + d)

P(Y = k|Xj)/P(Y = l|Xj)
= exp((βkj − βlj)d).

The confidence intervals are derived from the fitted multinomial logit model
and their accuracy is based on the parametric assumption that the true data
generating distribution does fall in the model.
Figure 4 and Figure 5 display the sampling distribution of ORs based on
the fitting of the 1000 sub-samples of the IgM data set. According to Fig-
ure 4, we can say that rainfall and vomiting symptoms are hightly correlated
with malaria monoinfections whereas joint pain is correlated with arboviral
monoinfections. The odds of coinfection increases with high fever. It cor-
roborates the conclusion of the paper [13]. Figure 5(a), (b) and (c ) can be
interpreted in the same way. They show that a high temperature and the
presence of nausea or vomiting symptoms are mostly indicative of malaria
parasite infections whereas an increase of age and of number of sick days are
indicative of arboviral infections. The effects of nasal congestion and joint
pain symptoms on the disease status are not clear enough to be interpreted.
The main question of the study was to identify risk factors that can help
doctors to diagnose a concurrent malaria and arbovirus infection. From
these results, temperature is the only risk factor that differentiates between
coinfection and single infections.

4. Predictive analysis

In this section we propose a methodology to discriminate arbovirus positive
and arbovirus negative cases among coinfected patients.

4.1. Testing independence between arbovirus and malaria

In the multinomial model given by (1) in Section 3.1, we can test the inde-
pendence between arboviral and malaria infections.
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Figure 4: IgM data: boxplots of 1000 odds ratios with respect to the reference category
(grey full line boxplot); boxplots of the associated confidence intervals are shown in dotted
line (green for upper and blue for lower bound); (a) Arbovirus (b) Coinfection (c) Malaria.

The joint statistical distribution of arboviral infection (Y ∈ {1, 3}) and
malaria infection (Y ∈ {2, 3}), is given in Table 2. Independence between
arboviral and malaria infections means that for all (a, m) ∈ {0, 1},

P (A = a, M = m) = P (A = a)× P (M = m)

which is equivalent to

P (Y = 2m+ a|X = x) = P (Y ∈ {a, 2 + a}|X = x)×P (Y ∈ {2m, 2m+ 1}|X = x)

for all (a, m) ∈ {0, 1}, where P (Y ∈ {1, 3}|X = x) corresponds to the prob-
ability to belonging of categories 1 or 3, P (Y ∈ {2, 3}|X = x) corresponds
to the probability of categories 2 or 3. The independence hypothesis can be
written in terms of parameters as:

H0 : “β3 = β1 + β2”.

The Wald statistic to test H0 against its two-sided alternative is computed
as

W = h(β̂)TΣ−1h(β̂),
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Figure 5: IgM data: boxplots of 1000 odds ratios between two categories (grey full line
boxplot); boxplots of the associated confidence intervals are shown in dotted line (green for
upper and blue for lower bound); (a) Arbovirus vs Malaria (b) Coinfection vs Arbovirus
(c) Coinfection vs Malaria.

with h(β̂) = β̂3−β̂1−β̂2 and Σ = DVDT whereD = (−Idp+1,−Idp+1, Idp+1);
Idp is the p × p identity matrix and V is an estimator of the variance of

β̂ = (β̂1, β̂2, β̂3)
T . Under H0, W is asymptotically distributed as a chi-

square variable with (p+ 1) degrees of freedom. Under H1, W converges to
infinity as the sample size goes to infinity.

A = 0 A = 1 Law of M

M = 0 π0 π1 P (M = 0) = π0 + π1
M = 1 π2 π3 P (M = 1) = π2 + π3

Law of A P (A = 0) = π0 + π2 P (A = 1) = π1 + π3 1

Table 2: Joint distribution of arboviral infection and malaria infection

4.2. Diagnosis of arboviral disease

In absence of rapid arbovirus detection tests, the aim is to provide a decision
support tool to determine if an arbovirus could be responsible for the clinical
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symptoms of the patient coinfection. We propose to base the diagnosis on the
conditional probability to be coinfected q(x) = P (Y = 3|Y ∈ {2, 3}, X = x)
given that malaria infection is observed. This probability is the quantity of
interest because arboviral infections are considered by healthcare workers
only if malaria tests are negative.

In the previous section, it is shown that we can test the independence hy-
pothesis between malaria and arboviral infections. If this test is rejected,
then we can derive the probability q to be coinfected given that malaria
infection is observed. This probability can be computed in function of the
πk probabilities estimated from the multinomial logit model. For X = x,

q̂(x) =
π̂3(x)

π̂3(x) + π̂2(x)
=

e〈x,β̂3〉

e〈x,β̂3〉 + e〈x,β̂2〉
·

This probability can be used to differentiate whether the illness to be treated
should be arbovirus or malaria. We propose a binary classification rule and
we predict an arbovirus illness if the estimated coinfection probability is
greater than a threshold value γ:{

If q(x) ≥ γ : arbovirus positive case,
If q(x) < γ : arbovirus negative case.

The evaluation of the classification is based on the confusion matrix and
the overall classification accuracy. The confusion matrix is used to compute
true arbovirus positives (TP), false arbovirus positives (FP), true negatives
(TN) and false negatives (FN). A global performance measure is the miss-
classification rate (MCR) defined as:

MCR =
FP + FN

N
,

with N = TP + FP + TN + FN.
Our analysis is based on a real-life medical data set. In the original IgM
data set, arbovirus positive individuals are identified as individuals likely
to be in the early stages of arbovirus illness. It is the relevant data set
for the classification problem. However, the positive cases constitute only
a very small minority class of the data (39 positive cases over 12288 indi-
viduals). Based on these data, the computation of the independence test
is very sensitive to the fluctuations of the sub-sampling procedure and the
classification procedure could not be implemented. Instead, we propose a
simulation study based on a balanced data set to illustrate our classification
procedure.
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4.3. Simulation study

Simulated data. Taking advantage of the previous influencing factors
analysis (Section 3.4), we simulated data using a multinomial model similar
to the one previously estimated. The eigth covariates were generated from
distributions similar to those observed in the real data set. The beta pa-
rameters values are given by Table 7 in supplementary material. They were
chosen according to the conclusions of the statistical analysis of the influ-
ential factors. The larger values emphasize the influence of the associated
covariates that are positively correlated to each disease category. For exam-
ple, the parameter value associated with the number of sick days covariate
is larger for the arbovirus category than for the malaria category. Based on
this generative model, we computed the probabilities of belonging to each
category and generated the Y response to be the modality with the greatest
probability. We used this procedure to simulate a data set of size n = 5000
which is summarized in Table 6 and Table 8 in the supplementary material.

Independence between abovirus and malaria. We fitted the multi-
nomial model to the simulated data and tested the independence between
malaria and arbovirus. We obtained that the independence hypothesis was
rejected with a p-value equal to 1.13×10−4. Then we derived the probability
to be coinfected given that malaria infection is observed and performed the
classification procedure.

Diagnosis of arboviral disease. We randomly divided the simulated
data set into two part, a training data set of size 3333 and a test data
set of size 1667. The classification was applied only to individuals infected
with malaria parasites, namely 1925 individuals in the training data set and
626 individuals in the test set. We computed the five-fold cross-validation
estimator of the MCR and we chose the classification threshold value γ as
the minimizer of the MCR. We can see on Figure 6 that the optimal value
of this threshold is γ = 0.45. Five-fold cross-validation was run several times
and the optimal value of γ was found to be quite stable. Based on this γ
value, we performed the classification to predict the type of illness that has
affected the patient. Predicted and actual arbovirus cases were compared
using the test set, as presented in Table 3. The rows of the matrix are
actual classes and the columns are the predicted classes. We observe that
the corresponding test MCR is 7.83%. The ROC curve of the classification is
presented in Figure 7 of the supplementary material. Based on the simulated
data set, the accuracy of the classification is quite good (92.17%). This
suggests that this predictive analysis can be medically valuable to identify
arboviral cases among coinfection cases.
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Actual
Predicted

0 1

0 421 29

1 20 156

Table 3: Confusion table with γ = 0.45. Each row represents the instances in the actual
class and each colum represents the instances in the predicted class. Class 0 for malaria
monoinfection and class 1 for coinfection.

Figure 6: Cross-validation miss-classification rate. The MCR is shown in black as full line.
Increasing γ increases the number of FN (green line) and decreases the FP (red line).

5. Discussion

Misdiagnosis of arbovirus coinfections as malaria infections may increase
the spread of arbovirus diseases in areas where fast diagnostic assays are
not available. This study proposes an appropriate statistical methodology
that can assist doctors in the elaboration of the differential diagnosis of
febrile cases for arboviruses.
To analyze coinfection data we propose a methodology with three steps: 1. a
variable selection with random forests; 2. an analysis of the influent factors
through multinomial model fitting and odd ratios computation; 3. a pre-
dictive analysis based on coinfection probabilities. From our experiments,
we can say that the random forests algorithm is a robust method to select
the important variables for the different diseases. The analysis of the odd
ratios allows to identify the risk factors that characterize each disease. We
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observed that higher values of number of sick days and of age are mostly in-
dicative of arboviral disease while higher values of temperature and presence
of nausea or vomiting symptoms during the rainy season are mostly indica-
tive of malaria disease. The results also pointed out that a high-grade fever
could be considered as a differential diagnostic for malaria and arbovirus
coinfection, which is in agreement with the study of [13]. The proposed pre-
dictive analysis was illustrated on a simulated data set. We show that using
data with enough signal, we can identify coinfected patients to be treated
for arbovirus with great accuracy. A future study will apply this method-
ology to coinfection data between viral and bacterial infections collected in
Senegal by Institut Pasteur de Dakar from 2015 to 2017.
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