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Radial solutions of scaling invariant nonlinear elliptic

equations with mixed reaction terms

Marie-Françoise Bidaut-Véron∗,
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Abstract We study global properties of positive radial solutions of −∆u = up +M |∇u|
2p

p+1 in RN where

p > 1 and M is a real number. We prove the existence or the non-existence of ground states and of

solutions with singularity at 0 according to the values of M and p.
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1 Introduction

The aim of this article is to study local and global properties of positive radial solutions of the
equation

−∆u = |u|p−1u+M |∇u|
2p
p+1 , (1.1)

in RN or RN \ {0} where p > 1 and M is a real parameter. This is a particular case of the
following class of equations

−∆u = |u|p−1u+M |∇u|q , (1.2)

where q > 1 which has been the subject or many works in the radial case when M < 0, where a
basic observation is that the two terms |u|p−1u and M |∇u|q are in competition. The first work
in that case is due to Chipot and Weissler [14] who, in particular, solved completely the case
N = 1, then Serrin and Zou [19] performed a very detailed analysis. Much less is known in the
case M > 0. Under the scaling transformation Tk defined for k > 0 by

uk := Tk[u](x) = k
2
p−1u(kx), (1.3)

(1.2) becomes

−∆uk = |uk|p−1uk + k
2p−q(p+1)

p−1 M |∇uk|q , (1.4)

Therefore, if q 6= 2p
p+1 , (1.2) can be reduced to

−∆u = |u|p−1u± |∇u|
2p
p+1 . (1.5)

Moreover, when q < 2p
p+1 , the limit equation of (1.4) when k → 0 is the Lane-Emden equation

−∆u = |u|p−1u, (1.6)

and thus the exponent p is dominant. The other scaling transformation

vk := Sk[u](x) = k
2−q
q−1u(kx), (1.7)
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transforms (1.2) into

−∆vk = k
q−p(2−q)
q−1 |vk|p−1vk +M |∇vk|q , (1.8)

and if q > 2p
p+1 , the limit equation of (1.8) when k → 0 is the Riccati equation

−∆v = M |∇v|q , (1.9)

therefore the exponent q is dominant. In [14] and [19] most of the study deals with the case
q 6= 2p

p+1 . In the critical case i.e. when

q =
2p

p+ 1
, (1.10)

then not only the sign of M but also its value plays a fundamental role, with a delicate interaction
with the exponent p. Notice that an equivalent form of (1.1) is

−∆v = λ |v|p−1 v ± |∇v|q (1.11)

with λ > 0. In the critical case first studies in the case M < 0 are due to Chipot and Weissler
[14] for N = 1. The case N ≥ 2 was left open by Serrin and Zou [19] and the first partial results
are due to Fila and Quittner [16] and Voirol [22, 23]. The case M > 0 was not considered.

The equation (1.1) is the stationary part of the associated parabolic equation

∂tu−∆u− |u|p−1u−M |∇u|q = 0. (1.12)

which is studied in [14] and [15], where one of the aims was to find conditions for the blow-up
of positive solutions. A general survey with several open problems can be found in [20].

In the non radial case an important contribution dealing with a priori estimates of local
positive solutions of (1.2) and existence or non-existence of entire positive solution in RN is due
to the authors [7]. In this paper we complete the results of [7] in presenting a quite exhaustive
study of the radial solutions of (1.1) for any real number M .

The radial solutions of (1.1) are functions r 7→ u(r) defined in (0,∞) where they satisfy

−urr −
N − 1

r
ur = |u|p−1u+M |ur|

2p
p+1 . (1.13)

Because of the invariance of (1.13) under the transformation Tk there exists an autonomous
variant of (1.1) obtained by setting

u(r) = r
− 2
p−1x(t) with t = ln r. (1.14)

Then (1.13) becomes

xtt + Lxt −
2K

p− 1
x+ |x|p−1x+M

∣∣∣∣ 2K

p− 1
x− xt

∣∣∣∣ 2p
p+1

= 0 (1.15)

with

K =
(N − 2)p−N

p− 1
and L =

(N − 2)p− (N + 2)

p− 1
= K − 2

p− 1
. (1.16)
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Putting y(t) = −r
p+1
p−1ur(r), then (x(t), y(t)) satisfies the system

xt =
2

p− 1
x− y

yt = −Ky + |x|p−1x+M |y|
2p
p+1 .

(1.17)

We are mainly interested in the trajectories of the system which remain in the first quarter
Q={(x, y) ∈ R2 : x > 0, y > 0}. Indeed, among these trajectories, we find the ones correspond-
ing to ground states, i.e. positive C2 solutions u of (1.13) which are defined on [0,∞). They
verify ur(0) = 0 and actually they are C∞ on (0,∞). Using the invariance of the equation under
Tk all the ground states can be derived by scaling from a unique one which satisfies u(0) = 1.
Since it is easy to prove that such a solution u is decreasing, in the variables (x, y), a ground state

is a trajectory of (1.17) in Q, defined on R and satisfying lim
t→−∞

y(t)

x(t)
= 0. The corresponding

trajectory is denoted by Treg.

Contrarily to the case of the Lane-Emden equation (1.6), there exists no natural Lyapunov
function when M 6= 0. This makes the study much more delicate and it is based upon a phase
plane analysis. The solutions of (1.13) invariant under Tk for any k > 0 correspond to constant
solutions of (1.15) and have the form

U(r) = Xr
− 2
p−1 for all r > 0, (1.18)

where X is a positive root of

Xp−1 +M

(
2

p− 1

) 2p
p+1

X
p−1
p+1 − 2K

p− 1
= 0. (1.19)

This equation plays a fundamental role in the description of the set of solutions of (1.13). The
following constant, defined for N = 1, 2 and p > 1 or N ≥ 3 and 1 < p ≤ N

N−2 has an important
role in the description of the set roots of (1.19),

µ∗(N) = (p+ 1)

(
N − (N − 2)p

2p

) p
p+1

. (1.20)

When the is no ambiguity we write µ∗ := µ∗(N). This set is described in the following proposi-
tion.

Proposition 1 1- If M ≥ 0, equation (1.19) admits a positive root, necessarily unique, if and
only if N ≥ 3 and p > N

N−2 .

2- If M < 0 and p ≥ N
N−2 , equation (1.19) admits a unique positive root XM .

3- If M < 0 and either N = 1, 2 and p > 1 or N ≥ 3 and 1 < p ≤ N
N−2 , there exists no positive

root of (1.19) if −µ∗ < M < 0, a unique positive root if M = −µ∗ < 0 and two positive roots
X1,M < X2,M if M < −µ∗.

We also set YM = 2
p−1XM and PM = (XM , YM ) (resp. Yj,M = 2

p−1Xj,M and Pj,M =

(Xj,M , Yj,M ), for j=1,2) and define the corresponding singular solutions UM (r) = XMr
− 2
p−1

(resp. Uj,M (r) = Xj,Mr
− 2
p−1 ).
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Recall briefly the description of the positive solutions of the Lane-Emden equation (1.6), i.e.
M = 0: there exists radial ground states if and only if N ≥ 3 and p ≥ N+2

N−2 . If p = N+2
N−2 these

ground states are explicit and they satisfy limr→∞ rN−2u(r) = c > 0. There exist infinitely
many singular solutions u ondulating around UM . Note that a ground state corresponds to
a homoclinic orbit at 0 for system (1.17) and these singular solutions are cycles surrounding
PM . We recall that an orbit of (1.17) which connects two different equilibria (resp. the same
equilibrium) when t ∈ R is called heteroclinic (resp. homoclinic).

Without the radiality assumptions, and using a delicate combination of refined Bernstein
techniques and Keller-Osserman estimate we have obtained in [7, Theorems C, D] a series of
general a priori estimates for any positive solution of (1.1), in an arbitrary domain of RN in the
case N ≥ 1, p > 1 and q = 2p

p+1 and M > 0. In particular we proved there that if p > 1 and

M > M† :=
(
p−1
p+1

) p−1
p+1
(
N(p+1)2

4p

) p
p+1

, or if N ≥ 2, p < N+3
N−1 and M > 0 equation (1.1) admits

no ground state.

In the sequel we describe the ground states and the singular global solutions of (1.13) in
RN \ {0}. Concerning the ground states, we discuss according to the sign of M and the value of
p. The next value of M appears when we linearize the system (1.17) at the equilibrium PM ,

M = M(N, p) =
(p+ 1) ((N − 2)p−N − 2)

(4p)
p
p+1 ((N − 2)(p− 1)2 + 4)

1
p+1

. (1.21)

Then M is positive (resp. negative) if p > N+2
N−2 (resp. p < N+2

N−2 and we set µ =
∣∣M ∣∣). It is easy

to see that if M = M then the characteristic values of the linearized operator at PM are purely
imaginary. Notice that M is positive (resp. negative) according p > N+2

N−2 (resp. p < N+2
N−2).

Theorem A Let N ≥ 1, p > 1 and M > 0.

1- For any 1 < p ≤ N+2
N−2 if N ≥ 3, and any p > 1 if N = 1, 2, then equation (1.13) admits no

ground state.

2- If N ≥ 3 and p > N+2
N−2 , there exist constants M̃min, M̃max verifying

0 < M < M̃min ≤ M̃max,

such that
- if 0 < M < M̃min there exist ground states u satisfying u(r) ∼ UM (r) when r →∞.
- if M = M̃min or M = M̃max there exists a ground state u minimal at infinity, that is satisfying
lim
r→∞

rN−2u(r) = c > 0.

- for M > M̃max there exists no radial ground state.

The values of M̃min and M̃max appear as transition values for which the ground state still

exists but it is smaller than the others at infinity; it is of order r2−N instead of r
− 2
p−1 . They are

not explicit but they can be estimated in function of N and p. It is a numerical evidence that
M̃min = M̃max in the phase plane analysis of system (1.17) and we conjecture that this is true.
When M = M̃min or M̃max, the system (1.17) admits homoclinic trajectories. We prove that
the system (1.17) admits a Hopf bifurcation when M = M . When p > N+2

N−2 we also prove the
existence of different types of positive singular solutions
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Theorem A’ Let N ≥ 3.

1- If N
N−2 < p ≤ N+2

N−2 for any M > 0 there exist a unique (always up to a scaling transformation)

positive singular solutions u of (1.13) satisfying lim
r→0

r
2
p−1u(r) = XM and lim

r→∞
rN−2u(r) = c > 0

2- If p > N+2
N−2 , then

(i) If M > M̃max, there exists a unique singular solution u of (1.13) with the same behaviour as
in 1.
(ii) If M < M < M̃min there exist positive singular solutions u ondulating around UM on R.

In terms of the system (1.17) the 1) and 2-(i) correspond to the existence of a heteroclinic
orbit in Q connecting PM to (0, 0) and (ii) to the existence of a cycle in Q surrounding PM .

When M is negative, the precise description of the trajectories of (1.17) depends also on the
value of p with respect to N

N−2 . It is proved in [7, Th. B, E] that for N ≥ 3 and 1 < p < N+2
N−2

there exists ε0 > 0 such that if |M | ≤ ε0 equation (1.1) admits no positive solution in RN . The
same conclusion holds if N ≥ 3, 1 < p ≤ N

N−2 (or N = 2 and p > 1) and M > −µ∗. We first

consider the case p ≥ N
N−2 for which there exists a unique explicit singular solution UM , and the

results present some similarity with the ones of Theorem A.

Theorem B Let N ≥ 3, p ≥ N
N−2 and M < 0. Then

1- If p ≥ N+2
N−2 , then equation (1.13) admits ground states u. Moreover they satisfy u(r) ∼ UM (r)

as r →∞.

2- If N
N−2 ≤ p < N+2

N−2 , there exist numbers µ̃min and µ̃max verifying

0 < µ < µ̃min ≤ µ̃max < µ∗(1),

such that
(i) for M < −µ̃max there exist ground states u such that u(r) ∼ UM (r) when r →∞.
(ii) for M = −µ̃min or for M = −µ̃max there exist ground states minimal at infinity in the sense
that u(r) ∼ cr2−N when r →∞, c > 0.
(iii) for −µ̃min < M < 0 there exists no radial ground state.

Here also the value of µ̃min, µ̃max are not explicit and we conjecture that they coincide. The
next result presents some similarity with Theorem A’.

Theorem B’ Let N ≥ 3 and N
N−2 < p < N+2

N−2 .

(i) If M < M < 0 there exists a unique (up to scaling) positive singular solution u of (1.13),
such that u(r) ∼ UM (r) when r → 0 and u(r) ∼ cr2−N when r →∞ for some c > 0.

(ii) If −µ̃min < M < 0 there exist positive singular solutions u ondulating around UM on [0,∞)
and singular solution ondulating around UM in a neighbourhood of 0 and satisfying u(r) ∼ cr2−N

for some c > 0 when r →∞.

In terms of the system (1.17), (i) corresponds to a heteroclinic orbit connecting PM and
(0, 0), while (ii) to the existence of a periodic solution in Q around PM , and the existence of a
solution in Q converging to (0, 0) at ∞ and having a limit cycle at t = −∞ which is a periodic
orbit around PM .
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The situation is more complicated when 1 < p < N
N−2 and M < −µ∗ because there exist two

explicit singular solutions U1,M and U2,M which coincide when M = −µ∗.
Theorem C Let M < 0, N ≥ 3 and 1 < p < N

N−2 , or N = 2 and p > 1. Then there exist two
constants µ̃min and µ̃max verifying

µ∗ ≤ µ < µ̃min ≤ µ̃max < µ∗(1),

such that

1- If M < −µ̃max then equation (1.13) admits ground states u either ondulating around U2,M or
such that u(r) ∼ U2,M (r) as r →∞.

2- If M = −µ̃min or M = −µ̃max there exists a ground state u such that u(r) ∼ U1,M (r) as
r →∞.

3- If −µ̃min < M < 0 there exists no radial ground state.

Here again µ̃min and µ̃max appear as transition values for which the ground state still exists
but it is smaller than the others at infinity: it behaves like U1 instead of U2. The proof of this
theorem is very elaborate in particular in the case N = 2. In the case N = 1 the result is already
proved in [14]. The nonexistence of a ground state, not necessarily radial for M > −µ∗ is proved
in [1] and independently in [7] with a different method. In the radial case it was obtained much
before in the case N = 1 in [14] and then by Fila and Quittner [16] who raised the question
whether the condition −µ̃min < M < 0 is optimal for the non-existence of radial ground state.
This question received a negative answer in the work of Voirol [22] who extended the domain of
non-existence to −µ∗ − ε < M ≤ −µ∗. The next result is the counterpart of Theorem C when
dealing with singular solutions.

Theorem C’ Let M < 0, N ≥ 3 and 1 < p < N
N−2 . (i) If M < −µ∗ there exist positive singular

solutions u such that u(r) ∼ U1,M (r) as r →∞ and u(r) ∼ cr2−N with c > 0 when r → 0.

(ii) If M ≤M < −µ∗ there exists a unique up to scaling positive singular solution u, such that
u(r) = U2,M (r) as r → 0 and u(r) = U1,M (r) as r → ∞. Furthermore u(r) > U1,M (r) for all
r > 0.

(iii) If −µ̂min < M < −µ there exist positive singular solutions u ondulating around U2,M at 0
and such that u(r) ∼ U1,M (r) as r → ∞, and positive singular solutions u ondulating around
U2,M on R.

(iv) If M = −µ̃min or M = −µ̂max there exists a positive singular solutions u different from
U1,M such that u(r) ∼ U1,M (r) when r → 0 and r →∞.

(v) If −µ̃min < M < −µ̂max there exists a positive singular solution u such that lim
r→0

rN−2u(r) =

c > 0 and either ondulating around U2,M or such that u(r) ∼ U2,M (r) when r →∞.
(vi) If N ≥ 3 and M = −µ∗, there exist positive singular solutions u satisfying lim

r→0
rN−2u(r) =

c > 0 and u(r) ∼ U−µ∗(r) as r →∞.

In terms of the system (1.17) (i) corresponds to a heteroclinic orbit connecting P1,M to (0, 0);
(ii) to a heteroclinic orbit connecting P2,M to P1,M ; (iii) to a trajectory having a periodic orbit
around P2,M for limit cycle at −∞ and converging to P2,M at ∞ and to a periodic orbit around
P2,M ; (iv) corresponds to homoclinic orbit at P1,M ; (v) corresponds to a trajectory connecting
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(0, 0) at −∞ and either converging to P2,M at ∞ or having a periodic orbit around P2,M for
limit set at ∞; (vi) corresponds to a heteroclinic orbit connecting from (0, 0) to P−µ∗ .

Acknowledgements This article has been prepared with the support of the collaboration
programs ECOS C14E08 and FONDECYT grant 1160540 for the three authors.

The authors thank the anonymous referee for the careful reading of the manuscript which
allowed to eliminate some ambiguities in the presentation and the proof of some of our results.

2 General properties of the system

2.1 Reduction to autonomous equation and system

2.1.1 The standard reduction

We recall that if u is a C3 function defined on some interval I ⊂ [0,∞) verifying (1.13) and if

u(r) = r
− 2
p−1x(t) with t = ln r,

then x satisfies the autonomous equation

xtt + Lxt −
2K

p− 1
x+ |x|p−1 x+M

∣∣∣∣ 2x

p− 1
− xt

∣∣∣∣ 2p
p+1

= 0, (2.1)

on ln(I) where K and L are defined in (1.16). Setting ur = −r−
p+1
p−1 y(t), then (x(t), y(t)) satisfies

xt = H1(x, y)

yt = H2(x, y),
(2.2)

where

H1(x, y) =
2x

p− 1
− y

H2(x, y) = −Ky + |x|p−1 x+M |y|
2p
p+1 .

(2.3)

and we denote by H the vector field of R2 with components H1 and H2.

2.1.2 The geometry of the vector field H

Let us denote by Q := {(x, y) : x > 0, y > 0} the first quadrant. The vector field is inward in
(resp. outward of) Q on the axis {(x, y) : x > 0, y = 0} (resp. {(x, y) : x = 0, y > 0}). We set

L :=

{
(x, y) ∈ Q : y =

2x

p− 1

}
and C :=

{
(x, y) ∈ Q : x =

(
Ky −My

2p
p+1

) 1
p

}
(2.4)

and ψ(y) =
(
Ky −My

2p
p+1

) 1
p
. Then xt = 0 on L and yt = 0 on C. The curves L and C have

zero, one or two intersections in Q according the value of K and M . If M,K > 0, then C ⊂[
0,
(
p−1
2p

) 1
p
K

2
p+1

(
(p+1)
2pM

) p+1
p(p−1)

]
×
[
0,
(
K
M

) p+1
p−1

]
. The points (0, 0), PM and

(
0,
(
K
M

) p+1
p−1

)
belong
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to C. The function ψ is increasing on
(

0,
(
K
qM

) p+1
p−1
)

and decreasing on
((

K
qM

) p+1
p−1

,
(
K
M

) p+1
p−1

)
.

If M < 0 and K > 0, ψ is concave and increasing on (0,∞) with ψ(y) = (−M)
1
p y

2
p+1 (1 + o(1))

as y → ∞. If M < 0 and K < 0, ψ is still concave and increasing on
((

K
M

) p+1
p−1 ,∞

)
with the

same asymptotic as above. We quote below the possible connected components of Q \ (L ∪ C).

A =
{

(x, y) : 2x
p−1 − y < 0

}
∩
{

(x, y) : −Ky + xp +My
2p
p+1 < 0

}
= {(x, y) : xt < 0, yt < 0}.

B =
{

(x, y) : 2x
p−1 − y > 0

}
∩
{

(x, y) : −Ky + xp +My
2p
p+1 < 0

}
= {(x, y) : xt > 0, yt < 0}.

C =
{

(x, y) : 2x
p−1 − y > 0

}
∩
{

(x, y) : −Ky + xp +My
2p
p+1 > 0

}
= {(x, y) : xt > 0, yt > 0}.

D =
{

(x, y) : 2x
p−1 − y < 0

}
∩
{

(x, y) : −Ky + xp +My
2p
p+1 > 0

}
∩
{

(x, y) : x > X2,M

}
= {(x, y) : xt < 0, yt > 0} ∩

{
(x, y) : x > X2,M

}
.

E =
{

(x, y) : 2x
p−1 − y < 0

}
∩
{

(x, y) : −Ky + xp +My
2p
p+1 > 0

}
∩
{

(x, y) : x < X1,M

}
= {(x, y) : xt < 0, yt > 0} ∩

{
(x, y) : x < X1,M

}
.

These connected components are
A, B, C, D if K ≥ 0, M < 0 or K,M > 0.
A, C, D if K < 0 and −µ∗ < M < 0.
A, C, D, E if K < 0 and M = −µ∗.
A, B, C, D, E if K < 0 and M < −µ∗.

2.1.3 Graphic representation of the vector field H

We present below some graphics of the vector field H associated to system (1.17).
3

o
x

y

(A)
xt < 0
yt < 0

(B)

xt > 0
yt < 0

(C) xt > 0
yt > 0

(D)
xt < 0
yt > 0

LC

PM

Figure 1: M > 0, K > 0.
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o
x

y

(A)
xt < 0
yt < 0

(C) xt > 0
yt > 0

(D)
xt < 0
yt > 0
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C

o
x

y

(A)
xt < 0
yt < 0

(B)

xt > 0
yt < 0

(C) xt > 0
yt > 0

(D)
xt < 0
yt > 0

L
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PM

Figure 2: M < 0, K ≥ 0.
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o
x

y

(A)
xt < 0
yt < 0

(C) xt > 0
yt > 0

(D)
xt < 0
yt > 0

L

C

o
x

y

(A)
xt < 0
yt < 0

(B)

xt > 0
yt < 0

(C) xt > 0
yt > 0

(D)
xt < 0
yt > 0

L

C

PM

Figure 3: −µ∗ < M < 0, K < 0.
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o
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xt < 0
yt < 0

(B)

xt > 0
yt < 0

(C) xt > 0
yt > 0

(D)

xt < 0
yt > 0

(E)xt < 0
yt > 0

L

C

P1,M

P2,M

o
x

y

(A)
xt < 0
yt < 0

(C) xt > 0
yt > 0

(D)
xt < 0
yt > 0

(E)
xt < 0
yt > 0
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C

P−µ∗

1

Figure 4: M = −µ∗, K < 0.
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xt > 0
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(C) xt > 0
yt > 0

(D)

xt < 0
yt > 0

(E)xt < 0
yt > 0

L

C

P1,M

P2,M

o
x

y

(A)
xt < 0
yt < 0

(C) xt > 0
yt > 0

(D)
xt < 0
yt > 0

(E)
xt < 0
yt > 0
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P−µ∗

1

Figure 5: M < −µ∗, K < 0.
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2.1.4 Other reduction

The following change of unknowns, already used in [9] when M = 0,

σ(t) =
y(t)

x(t)
= −rur(r)

u(r)
and z(t) =

|x|p−1 x(t)

y(t)
= −r |u|

p−1 u(r)

ur(r)
, (2.5)

and valid if ur 6= 0, transforms (1.17) into a Kolmogorov system with vector field V = (V1, V2)

σt = σ

(
σ + 2−N + z +M

∣∣∣|σ|p−1 σz
∣∣∣ 1
p+1

)
= V1(σ; z)

zt = z

(
N − pσ − z −M

∣∣∣|σ|p−1 σz
∣∣∣ 1
p+1

)
= V2(σ; z).

(2.6)

Since σ and z are in factor the two axis {σ = 0} and {z = 0} are trajectories, actually not
admissible for (2.2) in view of (2.5). The system is singular on these two axis however it can be
desingularized by setting σ = σ̃2k+1 and z = z̃2k+1 for some integer k > p+ 1, which transforms
(2.6) into a new nonsingular Kolmogorov system,

σ̃t =
1

2k + 1
σ̃

(
σ̃2k+1 + 2−N + z̃2k+1 +M

∣∣∣(|σ̃|p−1 σ̃)2k+1z̃2k+1
∣∣∣ 1
p+1

)
z̃t =

1

2k + 1
z̃

(
N − pσ̃2k+1 − z̃2k+1 −M

∣∣∣(|σ̃|p−1 σ̃)2k+1z̃2k+1
∣∣∣ 1
p+1

)
.

(2.7)

Therefore no other trajectory can intersect them in finite time and the quadrant Q := {(σ, z) :
σ > 0, z > 0} is invariant. Furthermore σz = r2 |u|p−1. It is noticeable that if M = 0 the initial
system is quadratic and regular.

The system (2.6) will be used in the most delicate cases. It corresponds to the differentiation
of the initial equation (2.1).

2.2 Regular solutions and ground states

Definition 2.1 A regular solution of (1.13) is a C2 solution defined on some maximal interval
[0, r0) satisfying u(0) = u0 > 0 and ur(0) = 0. A ground state is a nonnegative C2 solution
defined on [0,∞).

The existence and uniqueness of a regular solution is standard by the Cauchy-Lipschitz integral
method. If u is a C2 solution it satisfies ur < 0 on (0, r0). Indeed rN−1ur(r) is decreasing
near 0, hence ur < 0 on some maximal interval (0, r1) ⊂ (0, r0) and ur(r1) = 0 if r1 < r0. If
u(r1) = 0 then u ≡ 0 by uniqueness. If u(r1) > 0 then urr < 0 near r1 which would imply that
u(r) < u(r1) for r1−ε ≤ r < r1 which contradict the negativity of ur on (0, r1). Hence u(r1) < 0
which implies that ur(r) < 0 on the maximal interval (0, r2) where u > 0. Thus, if u is a ground
state ur < 0 on (0,∞). Hence the trajectory of a ground state expressed in the system (1.17)
lies in Q and expressed in the system (2.6) it lies in the quadrant Q. It is easy to check that
the regular solution u := uu0 , such that u(0) = u0 satisfies

u(r) = u0

(
1− up−1

0 r2

2N
− M(p+ 1)2(up−1

0 r2)
2p+1
p+1

(4p+ 2)((N + 2)p+N)N q
(1 + o(1))

)
as r → 0. (2.8)
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Under the scaling transformation Tk, u can be transformed into the regular solution (1.13)
u := u1 satisfying u(0) = 1. If one considers the system (1.17) the transformation Tk becomes
the time shift which transforms t 7→ (x(t), y(t)) into t 7→ (x(t + ln k), y(t + ln k)), and the
trajectory (x(t), y(t)) of (1.17) corresponding to a ground state is therefore uniquely determined
and denoted by Treg and satisfies

lim
t→∞

(x(t), y(t)) = (0, 0) , lim
t→∞

y(t)

x(t)
= 0 and lim

t→∞
y(t)

xp(t)
=

1

N
. (2.9)

Hence in the system (2.5) there holds on the corresponding trajectory

lim
t→∞

σ(t) = 0 , lim
t→∞

z(t) = N. (2.10)

2.3 Explicit singular solutions

Explicit self-similar solutions of (1.13), necessarily under the form u = Ar
− 2
p−1 , play a funda-

mental role in the study, whenever they exist. The following result covers Proposition 1.

Proposition 2.2 1- Let M ≥ 0. Then there exists a unique self-similar solution of (1.13) if and

only if N ≥ 3 and p > N
N−2 . We denote it by UM (r) = XMr

− 2
p−1 , where XM > 0 depends also on

M , N and p. To this solution is associated the equilibrium (XM ,
2
p−1XM ) of the system (1.17).

Furthermore the mappings M 7→ XM is continuous and decreasing on [0,∞), M 7→ MX
p−1
p+1

M is
increasing and there holds

(i) X0 =

(
2K

p− 1

) 1
p−1

,

(ii)
p− 1

2

(
K

M

) p+1
p−1
(

1− 1

M

(
p− 1

2

)p(K
M

)p) p+1
p−1

+

≤ XM ≤
p− 1

2

(
K

M

) p+1
p−1

.

(2.11)

2- Let M < 0. If N ≥ 3 and p ≥ N
N−2 there exists a unique self-similar solution of (1.13) UM (r).

The mapping M 7→ XM is continuous and decreasing, M 7→ MX
p−1
p+1

M is decreasing and there
holds

max

{(
2K

p− 1

) 1
p−1

,

(
2

p− 1

) 2
p−1

|M |
p+1
p(p−1)

}
≤ XM

≤ 2
2
p−1

((
2K

p− 1

) 1
p−1

+

(
2

p− 1

) 2
p−1

|M |
p+1
p(p−1)

)
.

(2.12)

3- Let M < 0. If N = 1, 2 and p > 1, or N ≥ 3 and 1 < p < N
N−2 , there exists no self-similar

solution of (1.13) if −µ∗ < M < 0 where µ∗ = µ∗(N) > 0 is defined in (1.20). If M = −µ∗
there exists a unique self-similar solution U−µ∗(r). If M < −µ∗ < 0 there exist two-self-similar
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solutions U1,M (r) = X1,Mr
− 2
p−1 and U2,M (r) = X2,Mr

− 2
p−1 with X1,M < X2,M . Furthermore the

mappings M 7→ X1,M and M 7→ X2,M are continuous, respectively increasing and decreasing on

(−∞,−µ∗), while M 7→ MX
p−1
p+1

1,M and M 7→ MX
p−1
p+1

2,M are respectively decreasing and increasing.
Furthermore there holds for |M | large enough;

(i) Xj,−µ∗ =

(
2

p− 1

) p
p−1
(−K

p

) 1
p−1

,

(ii)
p− 1

2

(
K

M

) p+1
p−1

< X1,M <
p− 1

2

(
K

M

) p+1
p−1

(
1− 2

K

(
(p− 1)K

2M

)p+1
) p+1

p−1

,

(iii)

(
2

p− 1

) 2
p−1

(−M)
p+1
p(p−1)

(
1− K

M |M |
1
p

) p+1
p−1

< X2,M <

(
2

p− 1

) 2
p−1

(−M)
p+1
p(p−1) .

(2.13)

Proof. The function UM = XMr
− 2
p−1 is a self-similar solution of (1.13) if and only if XM is a

positive root of

f̃M (x) := xp−1 +

(
2

p− 1

) 2p
p+1

Mx
p−1
p+1 − 2K

p− 1
= 0. (2.14)

Equivalently PM = (XM , YM ) = (p−1
2 YM , YM ) is a fixed point of system (1.17), where YM is the

positive root of

fM (y) =

(
p− 1

2

)p
yp−1 +My

p−1
p+1 −K = 0. (2.15)

The use of the variable y is a little easer than x. Since X0 is explicit if M = 0, we shall study
the cases M 6= 0.

1- Case M > 0. If K > 0, equivalently p > N
N−2 , and M ≥ 0, fM is an increasing function

tending to ∞ at ∞ and negative at y = 0. Hence YM is the unique positive root of (2.15). If
K < 0, fM is positive on [0,∞), hence no such solution exists. Since(

p− 1

2

)p
Y p−1
M +MY

p−1
p+1

M −K = 0,

by the implicit function theorem, M 7→ YM is C1. For M > M ′ > 0, fM (y) > fM ′(y) for all
y > 0. Hence M 7→ YM is decreasing on [0,∞). Actually the expression of fM shows more,

namely that M 7→MY
p−1
p+1

M is increasing on [0,∞). Furthermore

MY
p−1
p+1

M < K =⇒ YM <

(
K

M

) p+1
p−1

,

and(
p− 1

2

)p(K
M

)p+1

+MY
p−1
p+1

M > K

=⇒ YM >

(
K

M

) p+1
p−1
(

1−
(
p− 1

2

)p 1

M

(
K

M

)p) p+1
p−1

+

,
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and we get (2.11).

2- Case M < 0. Clearly fM has a minimum at y = y0,M where

y0,M =

(
2

p− 1

( −M
p+ 1

) 1
p

) p+1
p−1

and fM (y0,M ) = − 2p

p− 1

( −M
p+ 1

) p+1
p

−K. (2.16)

We encounter two possibilities:

2-a. If N ≥ 3 and p ≥ N
N−2 , then fM (0) < 0, fM is decreasing on (0, y0,M ) and increasing on

(y0,M ,∞), hence fM (y) = 0 has a unique positive root YM > y0,M . Since for M < M ′ < 0 and

y > 0, fM ′(y) > fM (y), the mapping M 7→ YM is continuous and decreasing and M 7→MY
p−1
p+1

M

is increasing.
Then the left-hand side of (2.12) is clear. Next we put

Ap =

(
2

p− 1

) 2p
p+1

|M | , Bp+1 =
2K

p− 1
, ξ = X

p−1
p+1 , a =

B

A
and η =

ξ

A
.

Then φ(η) = ηp+1 − η − ap+1 = 0. Since

φ(1 + a) = (1 + a)p+1 − 1− a− ap+1 ≥ (1 + a)p+1 − 1− a− ap − ap+1

≥ (1 + a) ((1 + a)p − (1 + ap)) ≥ 0

we derive η ≤ 1 + a, which implies the right-hand side of (2.12).

2-b. If N = 1, 2 or N ≥ 3 and 1 < p < N
N−2 , then K < 0. Hence, if fM (y0,M ) > 0, or equivalently

−µ∗ < M ≤ 0, the equation fM (y) = 0 has no positive root, if M = −µ∗, it has a double root
Y−µ∗ where

Y−µ∗ =

(
2

p− 1

) p
p−1
(−K

p

) 1
p−1

=⇒ µ∗Y
p−1
p+1

−µ∗ = −p+ 1

p
K, (2.17)

and if M < −µ∗ the equation (2.15) has two positive roots 0 < Y1,M < Y2,M and since f ′M
does not vanish at Yj,M , they are C1 functions of M ∈ (−∞,M∗), respectively increasing and
decreasing. Since M,K < 0, we obtain from fM (YM ) = 0,

Y1,M >

(
K

M

) p+1
p−1

,

and (
p− 1

2

)p
Y p−1

2,M < −MY
p−1
p+1

2,M =⇒ Y2,M <

(
2

p− 1

) p+1
p−1

(−M)
p+1
p(p−1)

For a sharper estimate, we have for M large enough,

Ỹ =

(
K

M

) p+1
p−1

(
1− 2

K

(
(p− 1)K

2M

)p+1
) p+1

p−1

=⇒ fM (Ỹ ) < 0.
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Hence (
K

M

) p+1
p−1

< Y1,M <

(
K

M

) p+1
p−1

(
1− 2

K

(
(p− 1)K

2M

)p+1
) p+1

p−1

.

Similarly

(
2

p− 1

) p+1
p−1

(−M)
p+1
p(p−1)

(
1− K

M |M |
1
p

) p+1
p−1

< Y2,M <

(
2

p− 1

) p+1
p−1

(−M)
p+1
p(p−1) .

The estimates (2.13) follow. �

2.3.1 Upper estimate of the regular solutions

We first recall the following estimate in the case M ≥ 0, consequence of the fact that the positive
solutions of (1.1) are superharmonic and proved in a more general setting in [7, Prop. 2.1 ].

Proposition 2.3 1- There exists no positive solution of (1.13) in (R,∞), R ≥ 0 if M ≥ 0 and
either N = 1, 2 and p > 1 or N ≥ 3 and 1 < p ≤ N

N−2 . In particular there exists no ground
state.

2- If N ≥ 3, p > N
N−2 , M ≥ 0 and u is a positive solution of (1.13) in (R,∞), R ≥ 0. Then

there exists ρ ≥ R such that

u(r) ≤ min

{(
2N

p− 1

) 1
p−1

,
p− 1

2

(
p(N − 2)−N

(p− 1)M

) p+1
p−1

}
r
− 2
p−1 , for all r > ρ, (2.18)

and

|ur(r)| ≤ min

{
(N − 2)

(
2N

p− 1

) 1
p−1

,

(
p(N − 2)−N

(p− 1)M

) p+1
p−1

}
r
− p+1
p−1 for all r > ρ. (2.19)

Furthermore, if R = 0, inequalities (2.18), and (2.19) hold with ρ = 0.

The next estimate is verified by any ground state, independently of the sign of M .

Proposition 2.4 Let p > 1 and N ≥ 1. Then the ground state u of (1.13) with u(0) = 1
satisfies

u(r) ≤ min
{

1, cN,p,Mr
− 2
p−1

}
and |ur(r)| ≤ cN,p,Mr−

p+1
p−1 ∀r > 0. (2.20)

Proof. The trajectory Treg starts from (0, 0) and enters the region C. If it stays in C, then x
is increasing on R. Since y < 2x

p−1 , if x(t) tends to some finite limit as t → ∞, it implies that
the limit set of the trajectory exists. It cannot be a cycle since x is monotone, thus it is one of
the equilibrium of the system. Hence x(t) ≤ Xj,M for j = 1 or 2 if K < 0 and M < −µ∗ or
x(t) ≤ XM if K ≥ 0 and either M > 0 or −µ∗ ≤ M ≤ 0. This implies that (2.20) holds. If

x(t) tends to ∞, so does y because y(t) ≥ xp(t) − 2|K|
p−1 x(t) − |M |

(
2x(t)
p−1

) 2p
p+1 → ∞ as t → ∞.
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Therefore yt ≥ Cyp for some C > 0 which would imply that t 7→ y1−p(t)+C(p−1)t is increasing,
which is impossible.

Next we suppose that the trajectory leaves C by crossing the line L. Since it cannot enter
B through C (in the case K < 0, M ≤ −µ∗ ), it leaves C by intersecting L and we de-
note by t1 the first time where Treg intersects L. Then xt(t1) = 0 and xtt(t1) = −yt(t1) <
0. Therefore t1 is a local maximum. Now the trajectory cannot cross again the half line{

(x, y) : x = x(t1), y > 2x(t1)
p−1

}
because on it there holds xt = 2x(t1)

p−1 − y < 0. Hence x(t) ≤ x(t1)

for any t ≥ t1.

In the same way, either y is increasing on R and since xt = 2
p−1x−y and x is bounded, y cannot

tend to infinity when t→∞, thus y(t)→ y0 > 0, or y is not monotone and Treg crosses C at a
first value t2, necessarily larger than t1 and where xt(t2) < 0. Then ytt(t2)=p |x(t2)|p−1xt(t2) < 0
and t2 is a local maximum of y. Therefore ∪t≥t2(x(t), y(t)) remains in the subset of Q bordered
by the portion of trajectory of Treg for t ≤ t2 and {(x, y) : 0 < x ≤ x(t2), y = y(t2)}. This
implies that y(t) ≤ y(t2) for all t ∈ R. Noticing that u(r) ≤ 1 since u is decreasing, we get the
conclusion.

�

Remark. The above method does not give an explicit estimate of the upper bounds of x and y
and such a bound can be estimated in some cases. If M ≥ 0 it follows from Proposition 2.3 that
for any p > 1 there holds

u(r) ≤
(

2N

p− 1

) 1
p−1

r
− 2
p−1 ,

thus this estimate is independent of M . Here a new critical value is involved in all dimension
N ≥ 2, namely

µ∗(2) = (p+ 1)

(
1

p

) p
p+1

, (2.21)

corresponding to the definition (1.20). If −µ∗(2) < M < 0, it is easy to check that the function
v = lnu satisfies

−∆v ≥ ae(p−1)v (2.22)

with a = 1 −
(
|M |
µ∗(2)

)p+1
> 0. We derive that the function w(r) = −(rN−1vr(r)) is increasing,

with limit ` ∈ (0,∞]. Hence

e(1−p)v(r) ≥ e(1−p)v(0) +
a(p− 1)r2

4N

This implies

u(r) ≤ min
{

1, c0a
− 1
p−1 r

− 2
p−1

}
. (2.23)
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2.4 Linearization of the system (1.17) near equilibria

2.4.1 Linearization at (0, 0)

The linearized system at (0, 0) is

xt =
2x

p− 1
− y

yt = −Ky,
(2.24)

which admits the eigenvalues

λ1 = −K λ2 =
2

p− 1
. (2.25)

Note that λ2 − λ1 = N − 2.

(a) Assume that N ≥ 3 and p > N
N−2 , or equivalently K > 0. Then (0, 0) is a saddle point.

There exists a unique unstable trajectory Tunst such that

lim
t→−∞

(x(t), y(t)) = (0, 0) and lim
t→−∞

y(t)

x(t)
= 0, (2.26)

and more precisely, from (2.8),

x(t) = e
2t
p−1

(
1− e2t

2N
− M(p+ 1)2e

4p+2
p+1

t

2 (N(p+ 1) + 2p) (2p+ 1)
(1 + o(1))

)

y(t) = e
2pt
p−1

(
1

N
+

M(p+ 1)

N(p+ 1) + 2p
e

(p−1)t
p+1 (1 + o(1))

)
as t→ −∞.

(2.27)

From Definition 2.1 and the lines which follow, the unstable trajectory Tunst coincides with the
regular trajectory Treg. This is included in the region C for t < T0 for some −∞ < T0 ≤ ∞.
There exists also a unique stable trajectory Tst such that

lim
t→∞

(x(t), y(t)) = (0, 0) and lim
t→−∞

y(t)

x(t)
=

2

p− 1
+K = N − 2. (2.28)

Since N − 2 > 2
p−1 , Tst belongs to the region A for t > T1 for some T1 <∞.

Remark. If Treg ⊂ Q satisfies lim
t→∞

(x(t), y(t)) = (0, 0), then Treg = Tst and the corresponding

solution is a ground state. The same conclusion holds, if Tst ⊂ Q satisfies lim
t→−∞

(x(t), y(t)) =

(0, 0). Such a solution is called a homoclinic orbit at (0, 0). Because of the uniqueness of the
stable and unstable trajectories of a saddle point, it is unique in the class of solutions satisfying
(2.28). Equivalently the class of ground states u of (1.13) satisfying u(r) ∼ cr2−N for some c > 0
is then a one parameter family characterized by u(0) = u0.

(b) Assume that N ≥ 3 and 1 < p < N
N−2 . Then K < 0 and 0 < λ1 < λ2. Hence (0, 0) is a

source and all the trajectories of (1.17) in some neighbourhood of (0, 0) converge to (0, 0) when
t→ −∞. Among those trajectories there exists one fast trajectory which satisfies

lim
t→−∞

y(t)

x(t)
= 0.



Quasilinear elliptic equations with source reaction 19

It is actually the regular trajectory Treg. There exist also infinitely many slow trajectories which
satisfy

lim
t→−∞

y(t)

x(t)
= N − 2.

(c) If p = N
N−2 , then K = 0 and λ1 = 0 < λ2 = N − 2. We still find the regular trajectory

Treg associated to λ2 and the corresponding eigenvector (1, 0). By the central manifold theorem
corresponding to λ1 there exists an invariant curve passing through (0, 0) with slope N−2. Using
the matched asymptotic expansion method, one finds that if M < 0 there exists a solution x of

(2.1) such that x(t) ∼ CN |M |−
1

N−1 t1−N when t→∞, i.e. u(r) ∼ CN |M |−
1

N−1 r2−N (ln r))1−N

when r →∞, and if M > 0 there exists a solution x of (2.1) such that x(t) ∼ CNM−
1

N−1 (−t)1−N

when t→ −∞, equivalently u(r) ∼ CN |M |−
1

N−1 r2−N (ln(1
r ))1−N when r → 0.

(d) If N = 2, (0, 0) is a source with λ1 = λ2 = 2
p−1 , with corresponding eigenspace (1, 0). The

linearized problem is equivalent to equation

xtt −
4

q − 1
xt +

4

(q − 1)2
x = 0

with general solutions x(t) = ae
2t
q−1 + bte

2t
q−1 for some real parameters a, b. Hence there exists

infinitely trajectories of (2.1) tending to 0 when t → −∞ and they are tangent to (1, 0) at
(0, 0). The regular trajectory Treg corresponds to b = 0 and the other trajectories correspond
to singular solutions u of (1.1). They satisfy u(r) ∼ b ln r as r → 0 and there holds

−∆u = up +M |∇u|
2p
p+1 − 2πbδ0,

in the sense of distributions in Bε for some ε > 0.

Next we give a general result in case the system admits only one equilibrium in Q.

Lemma 2.5 Let N ≥ 3, p > N
N−2 and M ∈ R. If u is a regular solution the following tetra-

chotomy occurs:
(i) either limr→∞ rN−2u(r) = c for some c > 0,
(ii) or u(r) ∼ UM (r) as r →∞,
(iii) or u(r) has an ω-limit cycle surrounding PM ,
(iv) or u(r) changes sign for some r > 0.

Proof. By assumption PM is the unique equilibrium. The trajectory Treg starts from (0, 0) and
remains in the region C where xt, yt > 0 for t ≤ t0 ≤ ∞. If t0 =∞, u is a ground state, hence it
is bounded from Proposition 2.4. Its ω-limit set is non-empty. Because x and y are monotone,
it converges when t → ∞ to some point which is necessarily PM . If t0 < ∞, then at t = t0
the trajectory leaves C through L since it cannot enter in B, and it enters the region D where
xt < 0, yt > 0. Moreover xt(t0) = 0 and x(t0) > XM . Then three possibilities occur:
(α) either x(t)→ XM monotonically when t→∞; thus the trajectory converges to PM .
(β) either x(t) → 0 monotonicaly when t → ∞. Since (0, 0) is a saddle point, then Treg=Tst.
This implies that Treg is a homoclinic trajectory at (0, 0).
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(γ) or there exists t1 > t0 such that xt(t1) = 0. Then x(t1) < XM . Hence Treg enters the region
B and by continuity there exists t′ < t0 such that x(t′) = x(t1) and y(t′) < y(t1). Therefore the
bounded region of R2 bordered by the segment I = {(x, y) : x = x(t1), y(t′) < y < y(t1)} and
the portion of Treg defined by {(x(t), y(t)) ∈ Treg : t′ ≤ t ≤ t1} is positively invariant (notice
that xt > 0 on I) and it contains PM and no other equilibrium. Therefore either the trajectory
converges to PM or it admits an ω-limit cycle which is a closed orbit surrounding PM . �

2.4.2 Linearization at a fixed point PM := (XM , YM )

Suppose that PM (or Pj,M ) exists. Then setting (x, y) = (XM , YM )+(x, y), the linearized system
at this point is

xt =
2x

p− 1
− y

yt = pXp−1
M x+

(
2p
p+1MY

p−1
p+1

M −K
)
y,

(2.29)

Using equation (2.15), the eigenvalues of its matrix are the roots of the trinomial

T (λ) = λ2 −
(

2p

p+ 1
MY

p−1
p+1

M − L
)
λ+ 2K − 2p

p+ 1
MY

p−1
p+1

M . (2.30)

If M is such that 2p
p+1MY

p−1
p+1

M = L, then 2K − 2p
p+1MY

p−1
p+1

M = 2K − L = K + 2
p−1 = N − 2, and

we denote by M such a value of M which is characterized by

2p

p+ 1
MY

p−1
p+1

M = L. (2.31)

Since YM is a positive root of (2.15), we get(
2

p− 1

)p
Y p−1
M = A := K − p+ 1

2p
L =

(N − 2)(p− 1)2 + 4

2p(p− 1)
,

hence M , well defined for N ≥ 2, is given by

M =
(p+ 1)L

2p

(
1

A

(
p− 1

2

)p) 1
p+1

=
(p+ 1) ((N − 2)p−N − 2)

(4p)
p
p+1 ((N − 2)(p− 1)2 + 4)

1
p+1

. (2.32)

That is (1.21).

Remark. We see that M > 0 (resp. M < 0) if and only if N ≥ 3 and p > N+2
N−2 (resp.

1 < p < N+2
N−2 if N ≥ 3 and any p > 1 if N = 2). If M = M and N ≥ 3, the eigenvalues

of the linearized system are purely imaginary. If p = N+2
N−2 , then M = 0. It is known that in

that case the point P0 =

((
N−2

2

)N−2
2 ,

(
N−2

2

)N
2

)
is a center for the system (1.17) associated to

−∆u = u
N+2
N−2 and that there exist infinitely many cycles turning around P0 with equation

1

2
y2 +

N − 2

2N
x

2N
N−2 − N − 2

2
xy = E. (2.33)
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It can be verified that E < 0, in particular using the function F defined in (2.36). For N ≥ 2
and 1 < p < N

N−2 , there always holds M ≤ −µ∗ and more precisely

Lemma 2.6 If N ≥ 3 and 1 < p < N
N−2 , then M < −µ∗. If N = 2 and p > 1, then M = −µ∗.

Proof. From Proposition 2.2 and identities (2.17) and (2.30), there holds,

µ∗ < µ⇐⇒ µ∗Y
p−1
p+1

−µ∗ < µY
p−1
p+1

M
⇐⇒ 2 |K| < |L| .

But |L|− 2 |K| = N−2
p−1 and the conclusion follows. If N = 2 we just replace < by = in the above

series of equivalences. �

Lemma 2.7 Assume N ≥ 3. If p > N+2
N−2 and M = M > 0 then PM is a weak sink and a

Andronov-Hopf bifurcation point. If p < N+2
N−2 and M = M < 0 then PM is a weak source.

Proof. We recall that a weak sink is an asymptotically stable equilibrium which attracts the
nearby points as t → ∞ at a rate slower than the usual exponential rate. A weak source is a
weak sink of the system obtained by changing t into −t (see [17, Chap. 9]). We write x̄ = x−XM ,
ȳ = y − YM and obtain the new nonlinear system

x̄t = 2x̄
p−1 − ȳ

ȳt = pXp−1

M
x̄+ 2p

p+1MY
p−1
p+1

M
ȳ −Kȳ + h(x̄, ȳ),

(2.34)

where
h(x̄, ȳ) = c1x̄

2 + c2ȳ
2 + c3x̄

3 + c4ȳ
3 + ...,

with

c1 =
p(p− 1)

2
Xp−2

M
, c2 =

p(p− 1)

(p+ 1)2
MY

− 2
p+1

M

c3 =
p(p− 1)(p− 2)

6
Xp−3

M
, c4 = −2p(p− 1)

3(p+ 1)3
MY

− p+3
p+1

M
.

Setting α2 = 4
(p−1)2

+N − 2, we have pXp−1

M
= α2, since XM = p−1

2 YM and M satisfies (2.31),

thus

c1 =
α2

YM
, c2 =

(p− 1)L

2(p+ 1)YM
, c3 = − (p− 1)L

3(p+ 1)2Y 2
M

. (2.35)

In order to compute the Lyapunov coefficients we transform the system by setting

γ =
√
N − 2 , s = γt , γw =

2x̄

p− 1
− ȳ.

The new system is
x̄s = w

ws = −x̄− 1
γ2
h
(
x̄, 2x̄

p−1 − γw
)
.
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By integrating the first line and using the expansion of h, we obtain

ws = −x̄− 1

γ2

[
c1x̄

2 + c2

(
2x̄

p− 1
− γw

)2

+ c3x̄
3 + c4

(
2x̄

p− 1
− γw

)3

+ ...

This can be written in the following way

ws = −x̄+ ν2,0x̄
2 + ν1,1x̄w + ν0,2w

2 + ν3,0x̄
3 + ν2,1x̄

2w + ν1,2x̄w
2 + ν0,3w

3 + ...

By [17, Th. 9.2.3], the Lyapunov coefficient is given by Λ = ν2,0 + 3ν0,3 + ν1,1 (ν2,0 + ν0,2) which
yields by computation

γΛ = α2

(
3c4 −

4c2

p− 1
(c2α+ c1)

)
= −α2 (p− 1)(N + 1)

(p+ 1)2Y 2
M

L.

If L > 0 (resp. L < 0) PM is a weak sink (resp. a weak source). �

2.4.3 Energy and Lyapunov functionals for system (1.17)

If x(t) is a solution of (2.1) we set

F (t) :=
x2
t

2
+
|x|p+1

p+ 1
− Kx2

p− 1
, (2.36)

Then, if (x(t), y(t)) ∈ Q, we have

Ft(t) = −Lx2
t −M

(
2x

p− 1
− xt

) 2p
p+1

xt = − (Lxt +Myq)xt

= −
(
L

(
2x

p− 1
− y
)

+Myq
)(

2x

p− 1
− y
)
.

Hence, if LM > 0, F is monotone in the region
{

(x, y) ∈ Q : 2
p−1x− y > 0

}
, located under L.

Remark. a) This function was introduced classically in the case M = 0, leading in particular to
(2.33) when p = N+2

N−2 .
b) Using this function we can deduce an upper estimate for regular solutions, completing, Propo-
sition 2.3 and Proposition 2.4, namely if M > 0 and p ≥ N+2

N−2 any ground state satisfies

u(r) ≤
(
p+ 1

p− 1
K

) 1
p−1

r
− 2
p−1 for all r > 0. (2.37)

Next we construct a Lyapunov functional adapting the method initiated by [2] and already
used in [3] and [4].

Lemma 2.8 We define on R2

J (x, y) =
Kx2

p− 1
− |x|

p+1

p+ 1
−M

(
2

p− 1

) 2p
p+1 (p+ 1)|x|

3p+1
p+1

3p+ 1
− 1

2

(
2x

p− 1
− y
)2

, (2.38)
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and, if (x(t), y(t)) is a solution of (2.39), V(t) = J (x(t), y(t)). If (x(t), y(t)) = (x, y) ∈ Q we
have

Vt(t) =

(
2x

p− 1
− y
)[

L

(
2x

p− 1
− y
)
−M

((
2x

p− 1

) 2p
p+1

− y
2p
p+1

)]

= L

(
2x

p− 1
− y
)2

−M
((

2x

p− 1

) 2p
p+1

− y
2p
p+1

)(
2x

p− 1
− y
)
.

(2.39)

Consequently, the function t 7→ V(t) is decreasing if M > 0 and 1 < p ≤ N+2
N−2 , and increasing if

M < 0 and p ≥ N+2
N−2 .

Proof. We recall the ansatz introduced in [2] for finding a Lyapunov function for a system of
the form

xt = f(x, y)
yt = g(x, y).

(2.40)

If f(x, y) = 0⇐⇒ y = h(x), then consider the function

L(x, y) =

∫ y

h(x)
f(x, t)dt−

∫ x

0
g(t, h(t))dt. (2.41)

In the case of system (1.17), h(x) = 2x
p−1 , and we find L(x, y) = J (x, y). Then (2.39) and the

conclusion follow. �

Remark. If LM > 0 we set

H =

(x, y) ∈ Q :

(
2x
p−1

) 2p
p+1 − y

2p
p+1

2x
p−1 − y

=
L

M
, or

2x

p− 1
= y =

(
L

Mq

) 1
q−1

 .

Then

Vt(t) = 0⇐⇒ (x(t), y(t)) ∈ H ∪
{

(x, y) ∈ Q :
2x

p− 1
= y

}
.

Moreover H is starshaped with respect to 0 and we set

R :=
⋃

0≤θ≤1

θH =

(x, y) ∈ Q :

(
2x
p−1

) 2p
p+1 − y

2p
p+1

2x
p−1 − y

≤ L

M
, or

2x

p− 1
= y ≤

(
L

Mq

) 1
q−1

 .

If M > 0 we have Vt(t) ≥ 0 if (x(t), y(t)) ∈ R and Vt(t) ≤ 0 if (x(t), y(t)) ∈ Rc ∩Q. If M < 0,
the signs of Vt(t) in the same regions are opposite.

In [7] we also used a function introduced in [19] for equation (1.2). When q = 2p
p+1 it reduces

to

Z(r) = ra
(
p+ 1

2
u2
r + up+1 + a

uur
r

+Mu |ur|
2p
p+1

)
, (2.42)
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where a = 2(p+1)(N−1)
p+3 . Since r = et, we find that in Q,

Z(r) = e
2(p+1)L
p+3

t
(
p+ 1

2
y2 + xp+1 − axy +Mxy

2p
p+1

)
. (2.43)

The function satisfies the relation

Zr −
2p

p+ 1
Mur

p−1
p+1Z = ra−1U , (2.44)

where

U =
2(N − 1)(p2 − 1)

(p+ 3)2

uur
r

(
−L+

p(p+ 3)

(p+ 1)2
Mrur

p−1
p+1

)
=

2(N − 1)(p2 − 1)

(p+ 3)2
xy

(
−L+

p(p+ 3)

(p+ 1)2
My

p−1
p+1

)
r
− p+3
p−1

(2.45)

Note that U has a constant sign in Q if LM < 0.

2.4.4 Comparison results

Lemma 2.9 Let N ≥ 1, p > 1 and M,M ′ ∈ R such that M < M ′. Then, as long as they lie
below the line L, i.e. xt > 0, the regular trajectories T

M
reg and T

M′
reg associated to M and M ′

respectively do not intersect. Furthermore T
M
reg is below T

M′
reg.

Proof. We use the expansion (2.27) and deduce, for Mi = M or M ′, that

yMi (t)

xMi (t)
= e2t

(
1

N
+Mi

e
p−1
p+1

t

N(N + 2p
p+1)

(1 + o(1))

)
(2.46)

as t→ −∞. Hence T
M
reg is below T

M′
reg for t ≤ t∗ for some t∗ ∈ R. Suppose that the trajectories

intersect for a first time at some point (x0, y0) below L. Since the system is autonomous, there
will exist two solutions of the systems relative to M and M ′ satisfying at the same time t0,
xM (t0) = xM′ (t0) = x0 and yM (t0) = yM′ (t0) = y0. From (2.2), x

M

t (t0) = x
M′
t (t0) > 0 and

y
M

t (t0) = y
M′
t (t0) + (M −M ′)y

2p
p+1

0 < y
M′
t (t0). Hence the intersection of the two trajectories is

transverse and the slope of T
M
reg at this intersection point is smaller that the one of T

M′
reg which

is impossible. The second assertion follows immediately. �

3 Study of ground states of (1.17) when M > 0

When M ≥ 0 and either N ≥ 3 and 1 < p ≤ N
N−2 , or N = 1, 2 and p > 1, there exists no ground

state by Proposition 2.3; in this section we assume N ≥ 3 and p > N
N−2 .
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3.1 Behaviour near the equilibrium

Since M ≥ 0 and p > N
N−2 there exists a unique equilibrium PM ∈ Q. The sign of the real part

of the characteristic roots of the linearization of the system (2.2) at PM depends on the position
of M with respect to M defined in (2.32).

Lemma 3.1 Assume M > 0 and N ≥ 3.

1) If N
N−2 < p ≤ N+2

N−2 , then PM is a source.

2) If p > N+2
N−2 ; then PM is a sink when M < M and it is a source when M > M .

3) If p > N+2
N−2 , then PM a weak sink. Furthermore, if 0 < M −M < ε, for ε small enough, there

exists a periodic trajectory in Q surrounding PM .

Proof. Step 1: Assume N
N−2 < p ≤ N+2

N−2 . The linearized system is given in (2.29). Because
M > 0, the product of the characteristic roots given by equation (2.30) is positive since it is
given by

2K − 2p

p+ 1
MY

p−1
p+1

M =
2

p+ 1
K +

2p

p+ 1

(
p− 1

2

)p
Y p−1
M .

The sum (or the real part) of the characteristic roots is equal to
2p

p+ 1
MY

p−1
p+1

M − L which is

positive, as p ≤ N+2
N−2 implies L < 0. Hence PM is a source.

Step 2: Assume p > N+2
N−2 , hence L > 0. As in Step 1, the product of the characteristic roots

is positive. By Proposition 2.2-(1), MY
p−1
p+1

M is an increasing function of M , then the sum (or

the real part of) of the characteristic roots, given by
2p

p+ 1
MY

p−1
p+1

M − L is also increasing and

vanishes if M = M . It is negative if 0 < M < M and positive if M > M . It implies assertion 2.

Step 3: If M = M , and p > N+2
N−2 , then PM is a weak sink by Lemma 2.7. The appearance of the

limit cycle, which is the called the Andronov-Hopf bifurcation, occurs for M > M when M −M
is small enough (see [17, Chap. 9]). This implies assertion 2. �

Remark. The product of the characteristic roots is also expressed by

2K − 2p

p+ 1
MY

p−1
p+1

M =
2M

p+ 1
Y

p−1
p+1

M + 2

(
p− 1

2

)2

Y p−1
M .

Hence it is positive for any M ≥ 0, p > 1.

Next we give some sufficient conditions for nonexistence of a periodic solution or a homoclinic
orbit at (0, 0).

Lemma 3.2 Assume N ≥ 3. If M > 0 and 1 < p ≤ N+2
N−2 the system (1.17) admits no closed

orbit in Q. If 0 < M ≤ M and p > N+2
N−2 , the system (1.17) admits no cycle in Q surrounding

PM .
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Proof. If γ is a non-trivial closed orbit it corresponds either to a T -periodic solution or a solution
such that

lim
t→−∞

(x(t), y(t)) = lim
t→∞

(x(t), y(t)).

The function V defined in (2.38) is monotone and it satisfies either V(0) = V(T ) or lim
t→−∞

V(t) =

lim
t→∞
V(t). Hence it is constant and by (2.39) it implies y(t) = 2

p−1x(t) for all t, a contradiction.

Next we suppose p > N+2
N−2 , 0 < M ≤M and that there exists a T -periodic solution (x(t), y(t)

with trajectory γ ⊂ Q surrounding PM , hence PM belongs to the bounded connected component
Γ of R2 \ {γ} bordered by γ. Since PM is a sink or a weak sink by Lemma 3.1, there exists
a neighbourhood O of PM such that all the trajectories issued from O converge to PM as
t → ∞. Hence any trajectory issued from O, necessarily contained in Γ, has an α-limit set
in Γ which is either a stationary point different from PM , which is excluded, or a limit cycle
{(x(t), y(t)}t∈[0,τ) := γ′ ⊂ Γ (τ is its period). This limit cycle is not stable, hence, by Floquet’s
theory ∫ τ

0

(
∂H1(x(t), y(t))

∂x
+
∂H2(x(t), y(t))

∂y

)
dt =

∫ τ

0

(
2pM

p+ 1
y
p−1
p+1 (t)− L

)
dt ≥ 0 (3.1)

We perform the change of unknowns x̄ = x − XM , ȳ = y − YM used in Lemma 2.7 which
leads to the system (2.34). The explicit value of the remaining term is

h(x̄, ȳ) = (x̄+XM )p −Xp
M − pX

p−1
M x̄+M (ȳ + YM )

2p
p+1 −MY

2p
p+1

M − 2p
p+1MY

p−1
p+1

M ȳ

= Φ(x̄) +MΨ(ȳ),
(3.2)

where Φ and Ψ are defined accordingly. It is positive by convexity because M > 0. Since from
(2.34),

2

p− 1

∫ τ

0
x̄(t)dt−

∫ τ

0
ȳ(t)dt = 0,

and

0 = pXp−1
M

∫ τ

0
x̄(t)dt+

2p

p+ 1
MY

p−1
p+1

M

∫ τ

0
ȳ(t)dt−K

∫ τ

0
ȳ(t)dt+

∫ τ

0
h(x̄, ȳ)dt

we derive (
p(p− 1)p

2p
Y p−1
M +

2p

p+ 1
MY

p−1
p+1

M −K
)∫ τ

0
ȳ(t)dt < 0.

Using the equation (2.15) satisfied by YM it yields

(p− 1)

(
K − M

p+ 1
Y

p−1
p+1

M

)∫ τ

0
ȳ(t)dt < 0.

By (2.11)-(ii), K − M

p+ 1
Y

p−1
p+1

M > 0, hence

∫ τ

0
ȳ(t)dt < 0, therefore τ−1

∫ τ

0
y(t)dt < YM and by

concavity,

1

τ

∫ τ

0
(y(t))

p−1
p+1 dt ≤

(
1

τ

∫ τ

0
y(t)dt

) p−1
p+1

< Y
p−1
p+1

M . (3.3)
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Combining (3.1) and (3.3), we obtain

L <
2pM

p+ 1
Y

p−1
p+1

M . (3.4)

Since M 7→MY
p−1
p+1

M is decreasing by Proposition 2.2-(1-ii) we have for 0 ≤M ≤M

0 =
2pM

p+ 1
Y

p−1
p+1

M
− L ≥ 2pM

p+ 1
Y

p−1
p+1

M − L,

which contradicts (3.4). �

Remark. Up to changing the sense of variation of V(t), the proof of the first assertion shows
that there exists no closed orbit in Q if M < 0 and p ≥ N+2

N−2 . However the proof of the second
assertion is not valid when M < 0.

The nonexistence of any periodic solution can also be proved when the equilibrium is a node
(i.e. the two characteristic values are real with the same sign).

Lemma 3.3 1- Let N ≥ 3 and p > N+2
N−2 . There exists a unique and explicit M0 > M such that

for any M ≥ M0, PM is a repelling node, degenerate if M = M0. If M < M < M0, PM is a
repelling spiraling point. If 3 ≤ N ≤ 10 and 0 < M < M , PM is an attracting spiraling point.

2- If N ≥ 11 and N+2
N−2 < p < N−2

√
N−1

N−4−2
√
N−1

there exists a unique and explicit 0 < M1 < M

such that if PM is an attracting node if 0 < M < M1 and an attracting spiraling point if
M1 < M < M .
3- If M > M0 or if 0 < M < M1, there exist no periodic trajectory in Q around PM , neither no
homoclinic trajectory in Q at (0, 0) surrounding PM .

Proof. The characteristic values of the trinomial T (λ) defined in (2.30) are real if and only if its
discriminant D is nonnegative. By computation we find

D =

(
2p

p+ 1
MY

p−1
p+1

M − L
)2

− 8

(
K − p

p+ 1
MY

p−1
p+1

M

)
=

(
2p

p+ 1
MY

p−1
p+1

M

)2

+ (2− L)
4p

p+ 1
MY

p−1
p+1

M + L2 − 8K

=

(
2p

p+ 1
MY

p−1
p+1

M − L+ 2

)2

− 4(1− L+ 2K).

(3.5)

Observing that 1− L+ 2K = N − 1 by (1.16), we deduce

D =

(
2p

p+ 1
MY

p−1
p+1

M − L+ 2 + 2
√
N − 1

)(
2p

p+ 1
MY

p−1
p+1

M − L+ 2− 2
√
N − 1

)
.

Hence (3.5) is satisfied if one of the following conditions holds:

(i) MY
p−1
p+1

M ≤ p+ 1

2p

(
L− 2− 2

√
N − 1

)
,

(ii) MY
p−1
p+1

M ≥ p+ 1

2p

(
L− 2 + 2

√
N − 1

)
.

(3.6)
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It is easy to check that for p > N+2
N−2 , one has 0 < L − 2 + 2

√
N − 1 < qK. Since M > 0, by

Proposition 2.2-(1), the mapping M 7→ MY
p−1
p+1

M is continuous, increasing and from [0,∞) into
[0,∞). Therefore there exists a unique M0 such that

M0Y
p−1
p+1

M0
=
p+ 1

2p

(
L− 2 + 2

√
N − 1

)
. (3.7)

Using (2.15) we find

M0 =
p+ 1

2p

(
p− 1

2

) p
p+1 K − 2p

p−1 + 2
√
N − 1(

p−1
2p K + p+1

p−1 −
(p+1)

√
N−1

p

) 1
p+1

. (3.8)

Concerning the upper bound in (i), there holds

L− 2− 2
√
N − 1 > 0⇐⇒ p >

N − 2
√
N − 1

N − 2
√
N − 1− 4

and N ≥ 11. (3.9)

Then we can define M1 by

M1Y
p−1
p+1

M1
=
p+ 1

2p

(
L− 2− 2

√
N − 1

)
. (3.10)

which leads to

M1 =
p+ 1

2p

(
p− 1

2

) p
p−1 K − 2p

p−1 − 2
√
N − 1(

p−1
2p K + p+1

p−1 + (p+1)
√
N−1

p

) 1
p+1

. (3.11)

Note that

2p
p+1M1Y

p−1
p+1

M1
= L− 2− 2

√
N − 1 < L = 2p

p+1MY
p−1
p+1

M
≤ L− 2 + 2

√
N − 1 = 2p

p+1M0Y
p−1
p+1

M0
.

Hence
M1 < M < M0. (3.12)

Next we prove 3) by adapting an argument introduced in [12] for quadratic systems. We return
to system (2.34) that we write under the form

x̄t = ax̄− ȳ
ȳi = cx̄+ dȳ + Φ(x̄) +MΨ(ȳ)

(3.13)

which defines a, c, d with Φ and Ψ given by (3.13), and the trinomial (2.30) for characteristic
values endows the form

T (λ) = λ2 − (d+ a)λ+ ad+ c.

In the range of values of M , the discriminant D = (d+a)2−4(ad+ c) = (d−a)2−4c is positive.
We consider the intersection of a straight line ` passing through PM with equation ȳ = Ax̄ with
a trajectory (x̄(t), ȳ(t)). Then

U = ȳt −Ax̄t = (A2 + (d− a)A+ c)x̄+ Φ(x̄) +MΨ(ȳ)

= (A2 + (d− a)A+ c)x̄+ Φ(x̄) +MΨ(Ax̄).
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We can choose A 6= 0 such that A2 + (d − a)A + c = 0 since D > 0. Since Φ and Ψ achieve
positive values, we derive from the expression of h that U > 0 for x̄ 6= 0. This proves that any
closed orbit around PM or passing by PM can intersect ` only one time which is a contradiction.

�

3.2 Existence or nonexistence of ground states

Proposition 3.4 Let N ≥ 3, N
N−2 < p ≤ N+2

N−2 and M > 0. Then there exists no radial

ground state, and there exists a singular solutions u(r) such that lim
r→0

r
2
p−1u(r) = XM and

lim
r→∞

rN−2u(r) = c for some c > 0.

Proof. Assume that Treg remains in Q, by Lemma 2.5 we have three possibilities:
(α) either Treg converges to PM when t→∞, which is impossible since PM is a source,
(β) or Treg has a limit cycle at ∞, and this is impossible by Lemma 3.2,
(γ) or Treg converges to (0, 0) when t → ∞, hence it is a homoclinic orbit. The function V
defined in (2.38) is decreasing by Lemma 2.8. Since V(−∞) = V(∞) = 0, it is identically 0 and

so is Vt. This implies that 2x(t)
p−1 − y(t) = 0 for all t which is a contradiction.

Hence Treg does not remain in Q.

We denote by Ξ the connected region of Q bordered by the semi-axis {(x, y) : x = 0, y > 0}
and Treg. Since H is outward on the semi-axis, Ξ is negatively invariant. By Section 3.4.1,

(0, 0) is a saddle point, hence the stable trajectory Tst = {(x(t), y(t)} satisfies lim
t→∞

y(t)

x(t)
= N−2

which implies u(r) ∼ cr2−N for some c > 0. Its α-limit set α(Tst) cannot be a limit cycle as we
have seen it above. If it contains (0, 0) it implies again that V, which is monotone, is equal to

0, hence Vt ≡ 0 and 2x(t)
p−1 − y(t) ≡ 0, which is impossible. Hence α(Tst) contains PM . Since PM

is a source it implies that Tst converges to PM when t→ −∞. �

Proposition 3.5 Let N ≥ 3 and p > N+2
N−2 . Then for any 0 < M ≤ M there exists a ground

state u which satisfies u ∼ UM at ∞.

Proof. If 0 < M < M (resp. M = M), PM is a sink (resp. a weak sink). Suppose first that
the trajectory Treg does not stay in Q, then it leaves Q at some point (0, ys) with ys > 0. As
a consequence, the stable trajectory Tst at (0, 0) remains in the negatively invariant region Ξ
defined in the proof of Proposition 3.4. Since it cannot converge to PM when t→ −∞ it admits
a limit cycle surrounding PM which contradicts Lemma 3.2. Therefore Treg ⊂ Q and, again
using Lemma 3.2, either it converges to PM when t→∞ and the proof is complete, or to (0, 0)
and Treg = Tst is a homoclinic trajectory. The trace of the linearized system (2.24) at (0, 0)
is equal to 2

p−1 − K = −L < 0. Therefore, from [17, Th. 9.3.3] the connection is attracting
and the trajectories inside the bounded region T bordered by the homoclinic trajectory Treg

spiral towards it when t → ∞. Hence any such trajectory inside T either has a limit cycle
when t→ −∞ which is impossible by Lemma 3.2 or converges to PM which is also impossible.
Consequently there exists no homoclinic trajectory at (0, 0) which ends the proof. �



Quasilinear elliptic equations with source reaction 30

Next we study the case where M is large enough. We have already proved in [7] that for any
p > 1, there exists M† = M†(N, p) > 0 (see introduction) such that if M > M† there exists no
ground state, radial or non-radial. In the radial case we have a more precise result.

Proposition 3.6 Let N ≥ 3 and p > N+2
N−2 . Then for any M ≥M0 there exists no ground state,

but there exist singular solutions u which satisfy lim
r→0

r
2
p−1u(r) = XM and lim

r→∞
rN−2u(r) = c > 0.

Proof. Since M ≥ M0 > M , PM is a source by Lemma 3.1, and there exist no periodic orbit
neither a homoclinic trajectory at (0, 0) by Lemma 3.3. Thus Treg leaves Q through the semi-
axis {(0, y) : y > 0} by Lemma 2.5. As in the proof of Proposition 3.5 the stable trajectory
Tst at (0, 0) remains in the negatively invariant region Ξ already defined. Then it converges
necessarily to PM when t→ −∞. �

Next we study the case M < M < M0.

Theorem 3.7 Let N ≥ 3, p > N+2
N−2 . There exist two positive real numbers M̃min and M̃max

such that M < M̃min ≤ M̃max < M0 such that,

1- For M < M < M̃min there exist ground states ondulating around UM when r → ∞ and
positive singular solutions ondulating around UM on [0,∞).

2- For M = M̃min and for M = M̃max there exist ground states u such that lim
r→∞

rN−2u(r) =

c > 0.

3- For M̃max < M < M0 there exists no ground state and there exist singular solutions such

that lim
r→0

r
2
p−1u(r) = XM or turning around PM when r → 0, and lim

r→∞
rN−2u(r) = c > 0.

Proof. Since M is subject to vary, we put it in exponent in the different specific trajectories of
the system. For M < M < M0, PM is a source and the trajectories converging toward this point
when t→ −∞ are spiralling. We have three possibilities:
(i) either T

M

reg leaves Q at some point (0, ys), ys > 0,

(ii) or T
M

reg has a ω-limit set which is a periodic orbit surrounding PM ,

(iii) or T
M

reg converges to (0, 0) when t→∞.

If (i) holds, then T
M

st remains in the region Ξ := ΞM of Q bordered by T
M

reg and the semi-axis
{(0, y) : y > 0}. Then, either it converges to PM when t→ −∞, or it admits an unstable (from

outside) α-limit cycle. We denote by (xMst , y
M
st ) the first backward intersection of T

M

st with the

straight line L. Furthermore T
M

reg intersects L at some point (necessarily unique) (xMreg, yMreg).

Because of the relative position of T
M

st and T
M

reg, there holds

g(M) = xMreg − xMst > 0.

If (ii) holds, then we claim that T
M

st leaves Q at some point (xs, 0) with xs > 0. Indeed, if

T
M

st ⊂ Q, it is bounded by Proposition 2.3. Hence the α-limit set is non-empty. It cannot be

(0, 0) since T
M

st 6= T
M

reg and T
M

st cannot converge to PM or have a limit cycle around PM since

it would imply that T
M

st ∩T
M

reg 6= {∅}. Hence T
M

st intersects L at some point (xMst , y
M
st ) and T

M

reg
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intersect the first time L and (xMreg, yMreg). Because T
M

reg lies in the region of Q bordered by T
M

st

and the semi-axis {(x, 0) : x > 0}, there holds

g(M) = xMreg − xMst < 0.

If (iii) holds then g(M) = 0.

The function g defined for any M ∈ (M,M0) is continuous. We know that there exists ε > 0

such that for any M ∈ (M,M + ε), T
M

reg has a ω-limit cycle surrounding PM , hence g(M) < 0.

If M = M0, T
M

reg leaves Q at some point (0, ys) with ys > 0 from Proposition 3.6 and the

intersection of T
M

reg with the semi-axis {(0, y) : y > 0} is transverse at (0, ys). By continuity

with respect to the parameter M , for any M ∈ (M0 − ε′,M0], for ε′ > 0 small enough, T
M

reg

leaves Q at some point of the semi-axis. So we are in situation (i) and g(M) > 0.
Then, by continuity of g there exist M̃min and M̃max such that M < M̃min ≤ M̃max < M0 such
that g(M̃min) = g(M̃max) = 0. If M = M̃min or M = M̃max, T

M

st = T
M

reg and the trajectory

T
M

reg is homoclinic at (0, 0). For M < M < Mmin we are in situation (ii), which proves 1.

For M > M̃max we are in situation (i) and either T
M

st converges to PM or has a α-limit cycle
surrounding PM when t→ −∞. �

Theorems A and A’ follow from the previous results.

Remark. It is a challenging question to prove that there is a unique M such that there is a
homoclinic trajectory at (0, 0). Up to now all we can prove is that if there exist two parameters
0 < M1 < M2 such that for each of them there exists a homoclinic trajectory of (0, 0) in Q

T
Mi := T

Mi

st = T
Mi

unst (i=1, 2), then T
M2 is a subset of the domain of Q limited by T

M1 .

4 Study of ground states of (1.17) when M < 0

We will distinguish the cases p ≥ N
N−2 where system (1.17) admits a unique non-trivial equilib-

rium and 1 < p < N
N−2 where the existence of zero, one or two equilibria depends on the value

of M with respect to −µ∗ defined in (1.20). In order to avoid confusion we set

µ =
∣∣M ∣∣ =

(p+ 1) |p(N − 2)− (N + 2)|
(4p)

p
p+1 ((N − 2)(p− 1)2 + 4)

1
p+1

. (4.1)

Then µ = M if p > N+2
N−2 and µ = −M if p < N+2

N−2 .

Proposition 4.1 let N ≥ 3, p ≥ N
N−2 and M < 0.

1- If p ≥ N+2
N−2 , PM is a sink.

2- If N
N−2 ≤ p < N+2

N−2 , then PM is a sink if M < M , it is a source if M < M < 0, and

PM̄ is a weak source. Moreover there exists M1 < M such that PM is a node if M ≤ M1. If
N
N−2 ≤ p < N+2

√
N−1

N−4+2
√
N−1

, there exists M0 ∈ (M, 0) such that PM is a node for M ≥ M0 and a

spiraling equilibrium if M1 < M < M0.
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Proof. The equation (2.30) satisfied by the characteristic roots can be written under the form

T (λ) = λ2 +

(
2p

p+ 1
|M |Y

p−1
p+1

M + L

)
λ+ 2K +

2p

p+ 1
|M |Y

p−1
p+1

M = 0. (4.2)

Since K ≥ 0 the product of the roots is positive; the real part of the roots is positive if and only

if 2p
p+1 |M |Y

p−1
p+1

M +L < 0. If p ≥ N+2
N−2 , then L ≥ 0 and PM is a sink. If N

N−2 ≤ p < N+2
N−2 , then M

is characterized by
2p

p+ 1
MY

p−1
p+1

M
= L < 0. (4.3)

By Proposition 2.2 the function M 7→ MY
p−1
p+1

M is increasing and onto on (−∞, 0). Therefore,
PM is a sink if M < M and a source if M < M < 0. Finally, if M = M , the two roots are
imaginary and by Lemma 2.7 PM is a weak source. Finally, from (3.6), the characteristic roots
are real if and only

2p |M |
p+ 1

Y
p−1
p+1

M ≤ |L|+ 2− 2
√
N − 1 or

2p |M |
p+ 1

Y
p−1
p+1

M ≥ |L|+ 2 + 2
√
N − 1. (4.4)

Notice that there always hold |L| + 2 − 2
√
N − 1 < |L| since N ≥ 3. The first condition

in (4.4) requires |L| + 2 − 2
√
N − 1 > 0, equivalently p < N+2

√
N−1

N−4+2
√
N−1

. Since there holds

N
N−2 < N+2

√
N−1

N−4+2
√
N−1

< N+2
N−2 , the conclusion follows and M0 and M1 are given by (3.8) and

(3.11). �

The most intricate case corresponds to 1 < p < N
N−2 or N = 1, 2 where there may exist 0, 1

or 2 equilibria.

Proposition 4.2 Assume N = 1, 2 and p > 1 or N ≥ 3 and 1 < p < N
N−2 , M < −µ∗ and let

Pj,M , j=1 or 2, be the two equilibria of (1.17).
1- Then P1,M is a saddle point.
2- Let N ≥ 3. If M < M < −µ∗, then P2,M is a source; if M < M , then P2,M is a sink; P2,M

is a weak source. Moreover there exist M1 < M such that P2,M is a node for M ≤ M1; there
exists also M0 ∈ (M,−µ∗) such that P2,M is a node for M ≤ M1 or for M0 ≤ M < −µ∗, and
it is a spiraling equilibrium if M1 < M < M0.
3- Let N = 2. Then P2,M is a sink. There exists M1 < −µ∗ such that P2,M is a node if and
only if M ≤M1.
4- If N = 1, then P2,M is a sink and a node.

Proof. Recall that, from Proposition 2.2, M 7→ MY
p−1
p+1

1,M is decreasing and M 7→ MY
p−1
p+1

2,M is
increasing. We first consider the linearized operator at P1,M . The product of the roots of (4.2)

is equal to 2K − 2p
p+1MY

p−1
p+1

1,M . Since M < −µ∗,

2K − 2p

p+ 1
MY

p−1
p+1

1,M < 2K +
2p

p+ 1
µ∗Y

p−1
p+1

−µ∗ = 0.

Hence P1,M is a saddle point.
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Next we consider P2,M . If M < M < −µ∗, since M 7→MY
p−1
p+1

2,M is increasing,

MY
p−1
p+1

2,M > MY
p−1
p+1

2,M
=
p+ 1

2p
L, (4.5)

and

2K − 2p

p+ 1
MY

p−1
p+1

2,M > 2K +
2p

p+ 1
µ∗Y

p−1
p+1

−µ∗ = 0. (4.6)

Hence P2,M is a source. If M < M , then the sign in (4.5) is reversed and

2K − 2p

p+ 1
MY

p−1
p+1

2,M > 2K − 2p

p+ 1
µY

p−1
p+1

µ > 2K +
2p

p+ 1
µ∗Y

p−1
p+1

−µ∗ = 0. (4.7)

Thus P2,M is a sink. By Lemma 2.7 P2,M is a weak source, and assertion 2 is proved. Finally,

if N = 2 and M < −µ∗ = M from Lemma 2.6, therefore P2,M is a sink.

Next we look for conditions which insure that P2,M is a node. The characteristic roots are real
if and only if one of the two conditions (3.6) where YM is replaced by Y2,M holds:

(i)
2p

p+ 1
MY

p−1
p+1

2,M ≥ L− 2 + 2
√
N − 1,

(ii)
2p

p+ 1
MY

p−1
p+1

2,M ≤ L− 2− 2
√
N − 1.

(4.8)

For 1 < p < N
N−2 , M 7→ Φ(M) := 2p

p+1MY
p−1
p+1

2,M is an increasing diffeomorphism from (−∞,−µ∗]
to (−∞, 2K]. Since L− 2

√
N − 1− 2 < 2K there exists a unique M1 < −µ∗ such that Φ(M1) =

L− 2− 2
√
N − 1 and (4.8)-(ii) holds when M ≤M1.Since L− 2 + 2

√
N − 1 > 2K is equivalent

to (N−2)2 < 0, there exists no M ≤ −µ∗ such that (4.8)-(i) holds. When N = 2 only M = −µ∗
satisfies (4.8)-(i) with equality. If N ≥ 3 there exists a unique M0 < −µ∗ such that (4.8)-(i)
holds. Hence for any M0 ≤ M < −µ∗, inequality (4.8)-(i) holds with M0 and M1 defined by
(3.8) and (3.11).

At end assume N = 1. For any M ≤ −µ∗(1) = −(p+ 1)

(
p+ 1

2p

) p+1
p

, there holds

2p

p+ 1
MY

p−1
p+1

2,M − L ≤ −
2p

p+ 1
µ∗Y

p−1
p+1

2,−µ∗ = 2K − L = −1. (4.9)

Therefore P2,M is always a sink and the discriminant of (2.30) is equal to

(
2p
p+1MY

p−1
p+1

2,M − L+ 2

)2

,

hence the characteristic roots are negative. �

Notations. Under the assumptions of Proposition 4.2 there exist two stable trajectories T
1,j

st ,
j=1,2, converging to P1,M when t → ∞, associated to a negative characteristic value λ; the

common slope at P1,M is 2
p−1 + |λ|. We assume that T

1,1

st is locally below L and T
1,2

st locally
above L, thus these trajectories are coming from the regions C and A defined in the proof of
Proposition 2.4. There exist also two unstable trajectories T

1,j

unst, j=3,4, converging to P1,M
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when t→ −∞, associated to a positive characteristic value λ′ and the common slope at P1,M is
2
p−1−λ′. We assume that T

1,3

st is locally below L and T
1,4

st locally above L, thus, in a neighbourhood

of P1,M , these trajectories belong also to the regions C and A. In particular the trajectory T
1,1

st

cannot cross L, neither the segment {(x, y) : x = X1M , 0 ≤ y ≤ Y1M}. Hence either it converges
to (0, 0) when t→ −∞, or it crosses the axis {y = 0} at some point with positive x-coordinate
less than X1,M .

Remark. In the critical case M = −µ∗ there holds − 2p
p+1µ

∗Y
p−1
p+1

−µ∗ = 2K = 2−N − L, hence the
characteristic polynomial is T (λ) = λ(λ+ 2−N). If N ≥ 3 the characteristic values are 0 and
N − 2, with respective corresponding eigenvectors (1, 2

p−1) and (1, 2
p−1 + 2 − N). There exists

an invariant curve Γ passing through P1,M = P2,M , tangent to (1, 2
p−1) by the center manifold

theorem. If N = 2 the two characteristic values are 0 with the eigenspace generated by (1, 2
p−1)

which is tangent to the central manifold (a curve) at (0, 0).

Next we look for the existence of limit cycles. Since M < 0, we cannot argue using the
convexity argument used in Lemma 3.2. We use system (2.6) which also has a convexity property,
as we will see it in the proof below.

Lemma 4.3 1- If N ≥ 3 and p ≥ N+2
N−2 and M < 0, there is no cycle surrounding PM .

2- If N ≥ 3, N
N−2 < p < N+2

N−2 and M ≤M < 0, there is no cycle surrounding PM .

3- If N ≥ 3 and 1 < p < N
N−2 or N = 2 and M ≤ M ≤ −µ∗, there is no cycle surrounding

P2,M .

Proof. For 1, assume that there exists a periodic trajectory (x(t), y(t) surrounding PM . By
Green’s formula,

0 =

∫
γ

O (−H2(x, y)dx+H1(x, y)dy) =

∫ ∫
Γ

(
∂H1(x, y)

∂x
+
∂H2(x, y)

∂y

)
dxdy

=

∫ ∫
Γ

(
2pM

p+ 1
|y|

p−1
p+1 − L

)
dxdy.

(4.10)

Since L ≥ 0 and M < 0 we obtain a contradiction. This proves the first assertion.
For 2 and 3 we assume that γ0 ⊂Q is a cycle surrounding PM or P2,M and we denote by Γ0

the bounded domain bordered by γ0. By Proposition 4.1 and Proposition 4.2, PM and P2,M are

sources. We use the system (2.6). Setting J(σ, z) = (σpz)
1
p+1 , it becomes

σt = σ (σ + 2−N + z +MJ(σ, z)) := F (σ, z)

zt = z (N − pσ − z −MJ(σ, z)) := G(σ, z).
(4.11)

In the phase plane (σ, z) the equilibrium PM becomes

PM = (σM , zM ) =
(
YM
XM

,
Xp
M

YM

)
=
(

2
p−1 ,

(
p−1

2

)p
Y p−1
M

)
.

Similarly P2,M becomes P2,M = (σ2,M , z2,M ) =
(
Y2,M
X2,M

,
Xp

2,M

Y2,M

)
=
(

2
p−1 ,

(
p−1

2

)p
Y p−1

2,M

)
and PM

and P2,M are sources. Hence, any trajectory converging to this point PM (or P2,M ) admits an
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omega-limit cycle γ ⊂ Γ0. Consequently this cycle is not unstable which implies that the Floquet
integral relative to this T-periodic solution is nonpositive:

I :=

∫ T

0

(
∂F (σ, z)

∂σ
+
∂G(σ, z)

∂z

)
(t)dt ≤ 0. (4.12)

The computation gives

∂F

∂σ
+
∂G

∂z
= (2− p)σ + 2− z +M

2p+ 1

p+ 1
(σpz)

1
p+1 −Mp+ 2

p+ 1
(σpz)

1
p+1

= (2− p)σ + 2− z +M
p− 1

p+ 1
J(σ, z).

We set σ = σM +σ and z = zM +z (the computation would be the same with (σM , zM ) replaced
by (σ2,M , z2,M )), then

I
T

=
1

T

∫ T

0

(
∂F

∂σ
+
∂G

∂z

)
(σ(t), z(t))dt

= (2− p)
(
σM +

1

T

∫ T

0
σ(t)dt

)
+ 2− zM −

1

T

∫ T

0
z(t)dt.+

p− 1

p+ 1

M

T

∫ T

0
J(σ(t), z(t))dt.

By addition
σt
σ

+
zt
z

= σ − (N − 2) + z +N − pσ − z = 2− (p− 1)σ

= 2− (p− 1)σM − (p− 1)σ = −(p− 1)σ.

Integrating on a period, we get
∫ T

0 σ(t)dt = 0. We also derive from (4.11)

0 = σM +
1

T

∫ T

0
σ(t)dt+ 2−N + zM +

1

T

∫ T

0
z(t)dt+

M

T

∫ T

0
J(σ, z)dt

=
2

p− 1
+ 2−N + zM +

1

T

∫ T

0
z(t)dt+

M

T

∫ T

0
J(σ, z)dt

= −K + zM +
1

T

∫ T

0
z(t)dt+

M

T

∫ T

0
J(σ, z)dt.

Furthermore, σM + 2−N + zM +MJ(σM , zM ) = 0. Indeed

1

T

∫ T

0
z(t)dt = −M

T

∫ T

0
(J(σ, z)− J(σM , zM )) dt. (4.13)

Next we show that the function J is concave on Q := {(σ, z) : σ > 0, z > 0}: indeed

J(σ, z)− J(σM , zM ) =
∂J

∂σ
(σM , zM )σ +

∂J

∂z
(σM , zM )z +

1

2

(
aσ2 + 2bσz + cz2

)
,

where a, b and c depend on σ, σM , z and zM and:

∂J

∂σ
(σ, z) =

p

p+ 1
σ
− 1
p+1 z

1
p+1 and

∂J

∂z
(σ, z) =

1

p+ 1
σ

p
p+1 z

− p
p+1 .
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a = − p

(p+ 1)2
σ
− p+2
p+1

θ z
1
p+1

θ , b =
p

(p+ 1)2
σ
− 1
p+1

θ z
p
p+1

θ and c = − p

(p+ 1)2
σ

p
p+1

θ z
− 2p+1
p+1

θ ,

where (σθ, zθ) = (θσ + (1− θ)σM , θz + (1− θ)zM ) for some θ ∈ (0, 1). Since

b2 − ac =
p2

(p+ 1)4

(
σ
− 2
p+1

θ z
− 2
p+1

θ − σ−
2
p+1

θ z
− 2p
p+1

θ

)
= 0,

then aσ2 + 2bσz + cz2 = a
(
σ + b

az
)2

= −2R2(t) ≤ 0 and from (4.13),

1

T

∫ T

0
z(t)dt = −M

T

∂J

∂σ
(σM , zM )

∫ T

0
σ(t)dt− M

T

∂J

∂z
(σM , zM )

∫ T

0
z(t)dt+

M

T

∫ T

0
R2(t)dt

= − M

T (p+ 1)
σ

p
p+1

M z
− p
p+1

M

∫ T

0
z(t)dt+

M

T

∫ T

0
R2(t)dt,

thus 1 +
Mσ

p
p+1

M z
− p
p+1

M

p+ 1

∫ T

0
z(t)dt = M

∫ T

0
R2(t)dt. (4.14)

When M < 0 we have already seen that YM > y0,M :=

(
2
p−1

(
−M
p+1

) 1
p

) p+1
p−1

, defined in (2.16)

(resp. Y2,M > y0,M ), which yields

1 +
Mσ

p
p+1

M z
− p
p+1

M

p+ 1
=

(
Y

p(p−1)
p+1

M − y
p(p−1)
p+1

0,M

)
Y
− p(p−1)

p+1

M > 0 =⇒
∫ T

0
z(t)dt < 0. (4.15)

Therefore

I
T

= (2− p)σM + 2− zM −
1

T

∫ T

0
z(t)dt+

M(p− 1)

T (p+ 1)

∫ T

0
J(σ, z)dt

= (2− p)σM + 2− zM −
1

T

∫ T

0
z(t)dt+

M(p− 1)

p+ 1
J(σM , zM )

+
M(p− 1)

T (p+ 1)

∫ T

0
(J(σ, z)− J(σM , zM )) dt.

Hence from (4.13)

I
T

= (2− p)σM + 2− zM −
2p

T (p+ 1)

∫ T

0
z(t)dt+

M(p− 1)

p+ 1
J(σM , zM )

=
2

p− 1
−
(
p− 1

2

)p
Y p−1
M − 2p

T (p+ 1)

∫ T

0
z(t)dt+

M(p− 1)

p+ 1
Y

p−1
p+1

M

=
2p

p+ 1
MY

p−1
p+1

M − L− 2p

T (p+ 1)

∫ T

0
z(t)dt.

(4.16)
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But from Proposition 2.2,

M < M < 0 =⇒ 2p

p+ 1
MY

p−1
p+1

M − L =
2p

p+ 1

(
MY

p−1
p+1

M −MY
p−1
p+1

M

)
> 0. (4.17)

Combining (4.15) and (4.17) we obtain I > 0 which contradicts the nonpositivity of the Floquet

integral in the case M > M . Finally, if M = M , then
∫ T

0 z(t)dt = 0, which implies by (4.14)
that R ≡ 0 on the omega-limit cycle γ. Using the expression of R(t) we infer

σ +
b

a
z ≡ 0 where

a

b
=

1

zθσ
p−1
p+1

θ

and (σθ, zθ) = (θσ + (1− θ)σM , θz + (1− θ)zM ),

for θ = θ(t) ∈ (0, 1). This is clearly impossible if one considers points at the intersection of γ
and the straight line L. The same argument holds when N = 2 where M = −µ∗. �

Remark. The above proof can easily be adapted to recover the second statement of Lemma 3.2.
Indeed, if p > N+2

N−2 and 0 < M < M , PM is a sink. Hence if there is a cycle surrounding PM , we
can assume that it is an α-limit cycle, say γ, and the integral I given by (4.12) is nonnegative

by Floquet’s theory. The inequality (4.14) yields
∫ T

0 z(t)dt > 0 since 1 +
Mσ

p
p+1

M z
− p
p+1

M

p+ 1
> 1. For

M < M there holds 2p
p+1MY

p−1
p+1

M < L from the monotonicity of M 7→MY
p−1
p+1

M , which contradicts
the sign of I.

In the next statement we extend [14, Prop. 5.6], which was proved in the case 1 < p < N
N−2 ,

but valid actually for any p > 1, and give precision on the behavior of the solutions. The
constant

µ∗(1) =

(
(p+ 1)2p+1

(2p)p

) 1
p+1

plays an important role. Recall also that µ∗(1) > µ∗ := µ∗(N) for N ≥ 2.

Lemma 4.4 Let p > 1. If N ≥ 2 and M ≤ −µ∗(1) or N = 1 and M < −µ∗(1), then there
exists a ground state u. Furthermore there holds

u2
r(r) <

2p

p+ 1
up+1(r) for all r > 0. (4.18)

As a consequence, the corresponding trajectory Treg = {(xreg(t), yreg(t))}t∈R does not converge
to (0, 0) when t→∞. If 1 < p < N

N−2 and N ≥ 3 or p > 1 and N = 1, 2, Treg does not converge
to P1,M when t→∞.

Proof. Let u be a regular solution of (1.13) with u(0) = 1 and ur(0) = 0. As in [14] we set

G(r) =
1

2

(
u2
r(r)−

2p

p+ 1
|u|p+1(r)

)
.
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Then G(0) < 0 and u > 0 on some maximal interval [0, r1) with r1 ≤ ∞. If there exists a
minimal r0 ≤ r1 such that G(r0) = 0, then Gr(r0) ≥ 0. From (1.13) we have

Gr(r0) = ur(r0) (urr(r0)− pup(r0))

= −N − 1

r0
u2
r(r0)− ur(r0)

(
(p+ 1)up(r0) +M |ur(r0)|

2p
p+1

)
.

Since G(r0) = 0, up(r0) =
(
p+1
2p

) p
p+1 |ur(r0)|

2p
p+1 , hence

Gr(r0) = −N − 1

r0
u2
r(r0)− ur(r0) |ur(r0)|

2p
p+1 (µ∗(1) +M) .

Since ur(r0) < 0 we obtain a contradiction. Therefore G(r) < 0 for any r ∈ (0, r0). By continuity
this implies (4.18) and in particular u(r) > 0, hence u is a ground state. Inequality (4.18) implies

u(r) >
1(

1 + p−1
2

√
2p
p+1 r

) 2
p−1

for all r > 0, (4.19)

from which follows

lim inf
r→∞

r
2
p−1u(r) ≥

(
2(p+ 1)

p(p− 1)2

) 1
p−1

, (4.20)

This implies that the trajectory Treg does not converge to (0, 0) at infinity (a result which was
clear when 1 < p < N

N−2 in which case (0, 0) is a source). For the last statement we have with
the equation (2.14) satisfied by the equilibrium XM and the fact that M ≤ −µ∗(1),

f̃M

((
2(p+ 1)

p(p− 1)2

) 1
p−1

)
≤ 2(p+ 1)

p(p− 1)2
− µ∗(1)

(
2

p− 1

) 2p
p+1
(

2(p+ 1)

p(p− 1)2

) 1
p+1

− 2K

p− 1

≤ −2(N − 1)

p− 1
.

Since f̃M has two roots 0 < X1,M < X2,M by Proposition 2.2 and M ≤ −µ∗(1) < −µ∗(N), and

we have
(

2(p+1)
p(p−1)2

) 1
p−1

> X1,M , the result follows. �

Next we give an alternative proof of a result of [16].

Lemma 4.5 Let N = 1, 2 and p > 1 or N ≥ 3 and 1 < p < N
N−2 . If −µ∗ < M ≤ 0 there exists

no ground state.

Proof. If −µ∗ < M < 0, the only equilibrium of (1.17) is (0, 0) and it is a source by Section
3.4.1. If there exists a ground state then the trajectory Treg remains in Q. It is bounded by
Proposition 2.4 hence it admits an ω-limit set which either contains an equilibrium or is a
periodic orbit. The two possibilities are excluded. �

Next we study the case M ≤ −µ∗. In particular we cover the case M = −µ∗ studied in [22]
with a different proof, using the energy function Z defined in (2.42).
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Lemma 4.6 Let N ≥ 3 and 1 < p < N
N−2 , or N = 2 and p > 1. If M ≤ −µ∗ then,

(i) Treg cannot converge to P1,M as t→∞ with t 7→ x(t) increasing,

(ii) Treg cannot intersect L at a point between (0, 0) and P1,M .

Proof. The function Z defined by (2.42) satisfies (2.44) and (2.45). Then U > 0 as soon as

|M | y
p−1
p+1 ≤ |L| (p+ 1)2

p+ 3
.

For M ≤ −µ∗, there holds from Proposition 2.2 and (2.17),

|M |Y
p−1
p+1

1,M ≤ µ∗Y
p−1
p+1

−µ∗ =
p+ 1

p
|K| < |L| (p+ 1)2

p(p+ 3)
.

Indeed we check that
(p+ 1) |L| − (p+ 3) |K| = 2(N − 1).

Hence U > 0 for any y ∈ [0, Y1,M ].

(i) Suppose that Treg converges to P1,M with x(t) increasing, hence (x(t), y(t)) is below L and

y(t) is also increasing. Then from (2.44) r 7→ e
2p|M|
p+1

∫ r
0 |ur|

p−1
p+1 dsZ(r) is increasing. But Z(0) = 0

and lim
r→∞

Z(r) = 0 from (2.43) since L < 0 and x and y are bounded. This is a contradiction.

(ii) Suppose that Treg intersects L at a point (x̃M , ỹM ) between (0, 0) and P1,M , i.e. ỹM < Y1,M .

(a) If M < −µ∗, then consider the stable trajectory T1,1
st at P1,M which is below L: T1,1

st cannot
converge to (0, 0) when t → −∞; indeed it would be a unstable trajectory at the source point
(0, 0) and since Treg is the unique fast unstable trajectory at this point (see Section 2.4.1), it is

below T1,1
st near zero and the two curve would intersect. Therefore T1,1

st leaves Q through the
semi-axis {(x, 0) : x > 0} at some at some x = x(τ) and (x(t), y(t)) ∈ Q for t > τ . Setting

r̄ = eτ , there holds Z(r̄) = r̄aup+1(r̄) > 0 and again r 7→ e
2p|M|
p+1

∫∞
r |ur|

p−1
p+1 dsZ(r) is increasing

with limit 0 as r →∞, a contradiction.
(b) If M = −µ∗ and Treg := T−µ

∗
reg intersects L at some point between (0, 0) and P−µ∗ , then

by continuity and transversality, TM
reg intersects L at some point between (0, 0) and P1,M if

−µ∗ − ε ≤M < −µ∗ provided ε > 0 is small enough. This contradicts (a). �

Proposition 4.7 Let N ≥ 3 and 1 < p < N
N−2 or N = 2 and p > 1.

(i) If M < −µ∗ and Treg does not converge to P2,M , then it intersects the line L at some point
(x, y) with x > X2,M .

(ii) If M = −µ∗ then Treg intersects L at some point (x, y) with x > X−µ∗ and leaves Q; there
is no ground state.

Proof. (i) Suppose M < −µ∗. If Treg remains below L, then xt > 0, yt > 0 and Treg converges
to P1,M or P2,M The first limit is excluded by Lemma 4.6 and the second by assumption. Hence
Treg intersects L. This intersection cannot occur between (0, 0) and P1,M and between P1,M

and P2,M since the vector field H is inward in the region B on this segment, so it occurs at some
point (x, y) with x > X2,M .
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(ii) Suppose M = −µ∗. By Lemma 4.6, Treg intersects L at some point (x, y) with x > X−µ∗
and it enters in the region D (note that the region B is empty). Consider the slope σ = y

x of the
trajectory Treg. As long as Treg stays under L, σ > 2

p−1 . Now we introduce the system (2.5),

(2.6) and set κ = z
σ = xp+1

y2
. Hence

σt
σ

= σ + z − µ∗σ
p
p+1 z

1
p+1 + 2−N = σφ(κ) + 2−N,

with
φ(κ) = 1 + κ− µ∗κ

1
p+1 .

The function φ achieves its minimum at κ∗ =
(
µ∗
p+1

) p+1
p

and φ(κ∗) = (N−2)(p−1)
2 . Thus

σt
σ
≥ (N − 2)

(
σ − p− 1

2

)
≥ 0.

Thus σ is nondecreasing. Therefore, after crossing L, σ > 2
p−1 and Treg cannot converge to

P−µ∗ . �

4.1 Ground states and large solutions when M < 0

The following result extends [7, Theorem B’] to a larger class of parameters M in the radial
case. We recall that µ∗(1) and µ∗(2) are defined in (1.20).

Proposition 4.8 Assume N ≥ 2, p > 1 and M > −µ∗(1). Then there exists no positive
solution of (1.13) in (a, b) for a < b tending to infinity at r = a.

Proof. Without loss of generality we can assume a = 1. If M ≥ −µ∗(2) the result follows from
[7, Theorem B’], hence we can assume −µ∗(1) < M < −µ∗(2). We put m = |M | > 0 and

α = α(m) =

(
pp
(

m

p+ 1

)p+1

− 1

)
> 0.

If u satisfies (1.13) and blows-up at r = 1, then v = lnu satisfies

−vrr −
N − 1

r
vr + αe(p−1)v ≥ 0 in (1, b)

lim
r→1

v(r) =∞.
(4.21)

Up to changing b, we can assume that u(b) ≥ 1, it follows that v is bounded from below on (1, b)
by the solution of

−wrr −
N − 1

r
wr + αe(p−1)w ≥ 0 in (1, b)

lim
r→1

w(r) =∞ v(b) = 0.
(4.22)

It is classical, (see e.g. [21]) that
∣∣∣w(r)− 2

p−1 ln
(

1
r−1

)∣∣∣ remains bounded on (1, b). Returning

to the variable (x(t), y(t)) solutions of (1.17), then x(t) ≥ ct−
2
p−1 on (0, ln b).
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(i) We first observe that t
2
p−1x(t) and t

p+1
p−1 y(t) remain bounded on (0, ln b). Indeed, by the

equation satisfied by y we get(
eKty(t)

)
t
≥ −meKt |y(t)|

2p
p+1 ≥ −c

∣∣eKty(t)
∣∣ 2p
p+1 ,

and there exists a sequence {tn} converging to 0 such that y(tn) → ∞. Furthermore z(t) =
eKty(t) satisfies

−
(
p+ 1

p− 1
|z|−

p−1
p+1 sgn(z)

)′
≥ c1 =⇒ |z(t)|−

p−1
p+1 sgn(z(t)) ≤ c2t =⇒ z(t) ≥ c3t

− p+1
p−1 .

Therefore y(t) ≥ c3t
− p+1
p−1 . Using the equation (2.1) we first observe that xt remains negative in

a right neighbourhood of 0 otherwise there would exists a sequence {tn} decreasing to 0 where
xt(tn) = 0 and xtt(tn) ≥ 0 yielding

(x(tn))p − K

p− 1
x(tn)−m

(
2

p− 1

) 2p
p+1

(x(tn))
2
p−1 ≤ 0,

which is impossible since x(tn) → ∞. Similarly yt remains negative on some interval (0, τ1)
otherwise there would exists a sequence {t′n}decreasing to 0 such that yt(t

′
n) = 0 and ytt(t

′
n) ≥ 0.

Since

ytt = −Kyt + pxp−1xt −
2mp

p+ 1
y
p−1
p+1 yt,

and xt ≤ 0 we derive a contradiction. Therefore y(t)→∞ as t→ 0, yt ≤ 0 and

−Ky = xp −my
2p
p+1 ≤ 0 =⇒ y(t) ≥ c4x(t)

p+1
2 ,

which implies

xt ≤
2x

p− 1
− c4x

p+1
2 ≤ c5x

p+1
2 =⇒ x(t) ≤ c6ct

− 2
p−1 ,

near t = 0. Using again (1.17) and the monotonicity of x(t) and y(t),

e
− t
p−1x( t2) ≥

(p− 1)
(
e
− t
p−1 − e−

2t
p−1

)
2

y(t) ≥ c6ty(t),

which yields 0 ≤ y(t) ≤ c7t
− p+1
p−1

t
near t = 0.

(ii) Next we set κ(τ) = (r − 1)
2
p−1u(r) with τ = ln(r − 1). Then κ satisfies on (−∞, β] for

some β ∈ R

−κττ +
p+ 3

p− 1
κτ −

2(p+ 1)

(p− 1)2
κ+

(N − 1)eτ

1 + eτ

(
2

p− 1
κ− κτ

)

− κp +m

∣∣∣∣ 2

p− 1
κ− κτ

∣∣∣∣ 2p
p−1

= 0.

(4.23)
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and κ and κτ remain bounded from above and from below on (−∞, a]. Therefore the limit set
Σ of the corresponding trajectory at −∞ is not empty and it is included in the limit set Σ̃ at
−∞, of some trajectory of a nonnegative function satisfying the autonomous system

−φττ +
p+ 3

p− 1
φτ −

2(p+ 1)

(p− 1)2
φ− φp +m

∣∣∣∣ 2

p− 1
φ− φτ

∣∣∣∣ 2p
p−1

= 0, (4.24)

Which is precisely equation (2.1) in dimension 1. By the Poincaré-Bendixon theorem, Σ̃ either
contains an equilibrium or it is a limit cycle. If the limit set contains an equilibrium, say W , it
is positive and satisfies

−2(p+ 1)

(p− 1)2
W −W p +m

(
2

p− 1
W

) 2p
p−1

= 0.

Since M > −µ∗(1) the only nonnegative root is zero, which yields a contradiction. If the limit
set is a cycle γ, it is a subset of Q. This imply that there would exist an equilibrium in the
region bordered by γ, contradiction. This ends the proof. �

Corollary 4.9 Assume N ≥ 2, p > 1 and −µ∗(1) < M ≤ −µ∗. Then any solution (x(t), y(t))
of system (1.17) issued from a point (x0, y0) ∈Q and staying in Q for t ∈ I(x0,y0) ∩ R− where
I(x0,y0) is the maximal interval of existence of this solution is defined on R− and is bounded
therein.

Proof. Consider any solution such that (x(0), y(0) = (x0, y0) ∈ Q and suppose its negative
trajectory T− is defined on some maximal interval (θ, 0] with θ ∈ (−∞, 0) and thus unbounded.
We first suppose that t 7→ x(t) is not monotone when t→ θ. Then there exists a sequence {tn}
decreasing to θ such that xt(tn) = 0 and thus an = (x(tn), y(tn)) ∈ L, xtt(tn) = yt(tn) < 0 and
limtn→θ x(tn) =∞.
Consider now the regular trajectory Treg. If p ≥ N

N−2 then, from Lemma 2.5, either Treg

converges to PM when t→∞, or it crosses L at a point (x∗, 2
p−1x

∗) with x∗ > XM . If n is such
that x∗ < x(tn) we get a contradiction: indeed for t < tn−1, T− stays in the region bordered
from above by L and Treg, so it cannot intersect L at an.
If 1 < p < N

N−2 , we infer the same contradiction using Proposition 4.7. Therefore x(t) decreases
monotonically to ∞ when t→ θ. Since M > −µ(1) we derive a contradiction.
Hence inf I(x0,y0) = −∞. By the same reasons as above, t 7→ x(t) is monotone decreasing and

x(t) → ∞ when t → −∞, and y(t) > 2
p−1x(t) → ∞. Moreover there exists t̄ < 0 such that

yt(t) ≤ 0: indeed , if for some t0 < t̄, yt(t0) > 0, then (x(t0), y(t0)) ∈ D and necessarily (x(t), y(t)
remains in D for t ≤ t0 because xt(t) < 0 implies that (x(t), y(t) ∈ D ∪A and the backward
trajectory cannot cross the curve C where yt = 0; now this implies that yt(t) > 0 for t ≤ t0, a
contradiction. Therefore yt(t) ≤ 0 for t ≤ t̄. Then

|M | y
2p
p+1 ≥ xp − |K| y ≥ xp − |M |

2
y

2p
p+1 − cM .

Since x(t)→∞, we deduce for large |t|,
|M |

2
y

2p
p+1 ≥ 1

2
xp.
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Returning to the system (1.17), we get for large |t|

xt =
2

p− 1
x− y ≤ 2

p− 1
x− |M |−

2p
p+1 x

p+1
2 ≤ −c2x

p+1
2 .

Since p+1
2 > 1, it is straightforward to check by integration that a positive function x satisfying

the above differential inequality cannot be defined on a interval unbounded from below, which
ends the proof. �

Proposition 4.10 Assume p > 1 and −µ∗(1) < M < −µ∗(1) + ε for ε > 0 small enough. Then
there exists a ground state and (4.18) still holds.

Proof. Assume −µ∗(1) < M < −µ∗(1) + ε and the regular solution u is not a ground state.
Then using the notation of Lemma 4.4 there exists r0 > 0 such that G(r0) = 0 and G′(r0) ≥ 0.
Hence u2

r(r0) = 2p
p+1u

p+1
r (r0) 6= 0, thus

N − 1

r0
≤ |ur(r0)|

p−1
p+1 (µ∗(1) +M) .

Put t0 = ln r0, then y2(t0) = 2p
p+1x

p+1(t0) and N − 1 ≤ |y(t0)|
p−1
p+1 (µ∗(1) +M). Equivalently

y(t0) ≥
(
N − 1

ε

) p+1
p−1

hence x(t0) ≥
(

2p

p+ 1

) 1
p+1
(
N − 1

ε

) 2
p−1

. (4.25)

The curve {(x, y) : y2 = 2p
p+1x

p+1} cuts L at a unique S0 = (x0, y0) ∈ Q and yp−1
0 =

p+1
2p

(
2
p−1

)p+1
. If M = −µ∗(1) and p ≥ N

N−2 (resp. 1 < p < N
N−2), then X−µ∗(1) > x0

(resp. X2,−µ∗(1) > x0). Indeed this follows from (2.16). In the same way, if 1 < p < N
N−2 , then

X1,−µ∗(1) < x0. These configurations still hold if ε is small enough, i.e. X−µ∗(1)+ε > x0 if p ≥ N
N−2

and X1,−µ∗(1)+ε < x0 < X2,−µ∗(1)+ε if 1 < p < N
N−2 . However, the regular trajectory associated

to M , TM

reg has a unique intersection with L, at a point (xreg(t1), yreg(t1) where xreg(t1) is max-

imal, and either p ≥ N
N−2 and xreg(t1) > X−µ∗(1)+ε, or 1 < p < N

N−2 and xreg(t0) > X1,−µ∗(1)+ε.

In both cases t1 < t0, yreg(t1) = 2
p−1xreg(t1) and xreg(t1) >

(
p+1
2p

) 1
p+1 (N−1

ε

) 2
p−1 . Now, for

M > −µ∗(1) the trajectory TM

reg remains above T
−µ∗(1)
reg as long as they remain below L by

Lemma 2.9. Then we encounter two possibilities: either T
−µ∗(1)
reg converges to P−µ∗(1) (or

P2,−µ∗(1) if 1 < p < N
N−2) with x(t) and y(t) increasing, or T

−µ∗(1)
reg crosses L at some point

(x̃, ỹ) depending only on N and p. Both possibilities are ruled out if ε is small enough. Hence
TM

reg is a ground state if M ∈ (−µ∗(1),−µ∗(1) + ε] for ε > 0 small enough and G remains
negative. �

4.2 The case M < 0, N ≥ 3 and p ≥ N+2
N−2

Theorem 4.11 Assume M < 0, N ≥ 3 and p ≥ N+2
N−2 . Then there exist ground states u.

Moreover they satisfy u(r) ∼ UM (r) as r →∞.
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Proof. Let (xreg(t), yreg(t)) be the regular solution issued from (0, 0). By Lemma 2.8 the function
V defined in (2.38) is increasing. Since it vanishes at t = −∞ it is positive. If there exists some
t0 such that xreg(t0) = 0 then V(t0) < 0, which is impossible, hence xreg(t) > 0 for all t. Thus
Treg is a ground state; it is bounded by Proposition 2.4, and it cannot converge to (0, 0) since
V(t) > V(−∞) = 0. From Lemma 4.3 there is no cycle , hence Treg converges to PM which is a
sink. �

Remark. The existence of a ground state was already obtained in [19] with the use of the function
Z defined in (2.42).

4.3 The case M < 0, N ≥ 3 and N
N−2

< p < N+2
N−2

In what follows we give an improvement of [22, Theorem A] in which it is shown that in this
range of exponent there exists some ω > 0 such that −ω ≤ −M < 0 there exists no ground
state. The expression of ω is explicit (and not simple).

Theorem 4.12 Assume N ≥ 3 and N
N−2 < p < N+2

N−2 . If M ≤ M < 0 there exists no ground
state. Moreover there exists a unique, up to similarity transformation, positive solution u satis-
fying u(r) ∼ UM (r) as r → 0 such that u(r) ∼ cr2−N (c > 0) as r →∞.

Proof. Suppose that there exists such a ground state, then Treg remains in Q. By Proposi-
tion 4.1, PM is either a source if M < M or a weak source if M = M , and by Lemma 4.3
there exists no cycle surrounding PM . By Lemma 2.5, (xreg(t), yreg(t)) converges to (0, 0) when
t→∞, hence Treg is a homoclinic orbit equivalently Treg = Tst = Tunst. Now

TraceDH(0, 0) =
2

p− 1
−K = −L > 0.

Hence, by [17, Th 9.3.3] the homoclinic orbit is repelling. Since PM is also repelling, we derive a
contradiction because any trajectory issue from B must converge to Treg. Hence Treg intersects
the axis {x = 0} for some positive y1 > 0, and there exists no ground state. We denote
by O the region of Q delimited by the regular trajectory Treg and the segment (0, y) : 0 <
y < y1. It is negatively invariant. The stable trajectory Tst = {(xst, yst)} of (0, 0) satisfies
xst(t) = ce−Kt(1 + o(1)) and yst(t) = c(N − 2)e−Kt(1 + o(1)) when t → −∞, thus it remains
in O. Because there are no cycle in O, it must converge to PM , hence the corresponding ust is
equivalent to UM near r = 0, which ends to proof. �

Remark. In the previous theorem the positive solution u satisfying u(r) ∼ UM (r) as r → 0 such
that u(r) ∼ cr2−N (c > 0) as r → ∞ is the stable trajectory Tst. It is a heteroclinic orbit
connecting (0, 0) to PM . We conjecture that in the case p = N

N−2 the non existence of a ground
state still holds and that there exists a unique solution u such that satisfying u(r) ∼ UM (r) as

r → 0 such that u(r) ∼ cr2−N (ln r)
2−N

2 (c > 0) as r →∞.

The expression of the result presents some similarity with Theorem 3.7 in the case M > 0.
However a new type of difficulty appears: in order to define properly an intersection function
expressing the distance between some trajectories as in [4], we need to find some values of the
parameter M for which there exists a ground state, and all the trajectories in Q are bounded.
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It is not the case when M < −µ∗(1) even if there exists a ground state by Lemma 4.4 but we
can easily prove that there exist large solutions. So we need to prove that for M = −µ∗(1) + ε
there exist a ground state and all the trajectories in Q are bounded. This is the object of
Proposition 4.10 and Proposition 4.8.

Theorem 4.13 Let N ≥ 3 and N
N−2 < p < N+2

N−2 . There exist positive constants µ̃min ≤ µ̃max,
verifying µ < µ̃min ≤ µ̃max < µ∗(1) such that

(i) If M < −µ̃max there exist ground states u such that u(r) ∼ UM (r) or ondulating around
UM (r) when r →∞.

(ii) If M = −µ̃max or If M = −µ̃min there exist ground states u such that u(r) ∼ cr2−N , c > 0,
when r →∞.

(iii) If −µ̃min < M < 0 there exists no ground state. Furthermore there exist singular solutions
u ondulating around UM (r) when r > 0 and singular solutions u ondulating around UM (r) when
r → 0 and such that u(r) ∼ cr2−N , c > 0, when r →∞.

Proof. Recall that M = −µ. First we show that if −µ∗(1) < M < M , the stable trajectory
Tst := TM

st either has a limit cycle around PM or does not stay in Q. If we assume that it stays
in Q, then it is bounded by Corollary 4.9. Since at −∞ it cannot converge to PM which is a
sink by Proposition 4.1, it admits a alpha-limit cycle which is a closed orbit around PM .

For −µ∗(1) < M < M we denote by PMst = (xMst , x
M
st ) the farthest point of the closure Tst of

the trajectory Tst belonging to the line L, i.e. the points with the largest x (and y)-coordinate.
We also denote by PMreg = (xMreg, x

M
reg) the farthest point of the intersection of L with the closure

Treg of Treg := TM
reg. More precisely since either Tst leaves Q or has an alpha-limit cycle around

PM , in that case PMst corresponds to the last intersection of Tst and L. If Treg converges to PM
monotonically, then PMreg = PM ∈ Treg, while if this convergence is not monotone, or if Treg

admits a omega-limit cycle around PM , or if Treg leaves Q, PMreg is the first intersection of Treg

with L. Both the functions M 7→ xMst and M 7→ xMreg are continuous, either by transversality

argument or by the continuity of M 7→ XM . Hence the function M 7→ g(M) = xMreg − xMst is

continuous. For M < M we encounter three possibilities:

(i) xMreg = XM or Tst converges to XM non-monotonicaly, or Treg has a omega-limit cycle around
PM . In such a case Tst does not stay in Q, thus g(M) < 0.

(ii) Treg does not stay in Q, then Tst belongs to the region of Q bordered by Treg and the axis
{x = 0}. Then thus g(M) > 0.

(iii) g(M) = 0, then Tst = Treg is a homoclinic orbit.

If M = M there exists no ground state by Theorem 4.12 hence, by continuity, this still holds
for M − ε < M < M for ε > 0 small enough and then g(M) > 0. By Proposition 4.10, if
−µ∗(1) < M < −µ∗(1) + ε, there exists a ground state, hence g(M) < 0. Since g is continuous
there exists M ∈ (−µ∗(1),M) such that g(M) = 0.

If we define
µ̃min = min{|M | ∈ (µ, µ∗(1)) : g(M) > 0}
µ̃max = max{|M | ∈ (µ, µ∗(1)) : g(M) < 0} (4.26)

then the trajectories Treg corresponding to M = −µ̃min and M = −µ̃max are homoclinic and
they satisfy the statements (ii) of Theorem 4.13 and the conclusion follows. �
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The proof of Theorem B, B’ follows from Theorem 4.12 and Theorem 4.13.

4.4 The case M < 0 and 1 < p < N
N−2

We present first a general existence result of singular solutions.

Proposition 4.14 If N ≥ 3, 1 < p < N
N−2 and M < −µ∗ there exists positive singular solutions

u such that rN−2u(r)→ c for some c > 0 when r → 0 and r
2
p−1u(r)→ X1,M when r →∞.

Proof. By Proposition 4.2 P1,M is a saddle point of system (1.17). By the remark after this

proposition there exist two stable trajectories T1,j
st , j = 1, 2 converging to P1,M as t → ∞; the

trajectory T1,1
st is locally below the line L (see Proposition 4.7), hence it belongs to the region C

for t > t0. By Proposition 4.7 either the regular trajectory Treg converges to P2,M or it crosses

the line L beyond P2,M . Hence T1,1
st cannot intersect Treg, and is trapped when t decreases in the

region C and the curve Treg. Thus it converges to (0, 0) when t→ −∞. Because (0, 0) is a source

(see Section 3.4.1) with one fast trajectory Treg, which satisfies lim
t→−∞

e
− 2
p−1

t
xreg(t) = u(0), the

trajectory T1,1
st is a slow one and it satisfies lim

t→−∞
e

(N−2− 2
p−1

)t
xreg(t) = c. �

Remark. Under the assumptions of Proposition 4.14 the trajectory T1,4
unst leaves Q since in this

region it stays in the sector {(x, y) : Hj(x, y) < 0} for j = 1, 2, and this sector contains no stable
equilibrium. The result holds also if M = −µ∗.
Theorem 4.15 Let N ≥ 3 and 1 < p < N

N−2 . Then

(i) if M ≤M ≤ 0 there exists no ground state.
(ii) if M ≤M < −µ∗ there exists a positive singular solution u, unique up to scaling, such that
u(r) ∼ U2,M (r) as r → 0, u(r) ∼ U1,M (r) as r →∞ and u(r) > U1,M (r) for any r > 0.

Proof. (i) Let M ≤M ≤ 0. Suppose that there exists a ground state Treg, then M ≤M < −µ∗
by Lemma 4.5, and by Proposition 4.7. Furthermore this trajectory is bounded by Proposi-
tion 2.4. Moreover P2,M is a source or a weak source and there exists no cycle surrounding it by
Proposition 4.2 and Lemma 4.3. Hence Treg converges to an equilibrium which cannot be (0, 0)
neither P2,M . So, from Proposition 4.7, it converges to P1,M from above L as t → ∞. Since

P1,M is a saddle point Treg must coincide with the stable trajectory T1,2
st of this point. Therefore

the region bordered by Treg, T1,1
st and (0, 0) is invariant and it contains only one source equilib-

rium and no cycle around P2,M by Lemma 4.3. Any trajectory starting from this region must
converge to P1,M which is impossible. Hence Treg is not a ground state. Since the trajectory

Treg intersects the axis {x = 0}, the trajectory T1,2
st which converges to P1,M at infinity from

above L is trapped in the region bordered by Treg and the semi-axis {(0, y) : y > 0} which is
negatively invariant. As there is no cycle in this region, it converges to P2,M when t → ∞. To
this trajectory corresponds a solution u of (1.13) which satisfies u(r) ∼ U2,M (r) when r → ∞
and u(r) ∼ U1,M (r) when r → 0. Furthermore u(r) > U1,M (r) for all r > 0. �

The next result extends Proposition 4.14 to the case M = −µ∗.

Proposition 4.16 Let N ≥ 3 and 1 < p < N
N−2 . If M = −µ∗ there exists positive solutions u

satisfying u(r) ∼ cr2−N when r → 0 for some c > 0 and u(r) ∼ U−µ∗(r) when r →∞.
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Proof. Since N ≥ 3, there still exist two unstable trajectories T1,j
unst (j=3,4) starting from P1,M

with slope N − 2; T1,4
unst, which is above L, leaves Q through the semi-axis {(0, y) : y > 0}

(see the remark above). From Proposition 4.7 the trajectory Treg crosses L at a unique point
Areg = (xreg,

2
p−1xreg) with xreg > X−µ∗ and leaves Q through the semi-axis {(0, y) : y > 0} and

its exit point is above the exit point of T1,4
unst. Hence the other unstable trajectory T1,3

unst which
is trapped in the region of Q bordered by T1,4

unst, Treg and the semi-axis {(0, y) : y > 0}, either
converges to P−µ∗ or leaves Q crossing the semi-axis {(0, y) : y > 0}. Necessarily it intersects the
line L at some point A = (x, 2

p−1x) with x > X−µ∗ and enters the region D. As long as it stays
above L, as in the Proposition 4.7, there holds σt > 0 (with the notations from this proposition).
Thus it cannot converges to P−µ∗ . Therefore T1,3

unst crosses the semi-axis {(0, y) : y > 0} between

the exit points of T1,4
unst and Treg.

Let R be the open connected region of Q below the line L and bordered by Treg and T1,3
unst. If

(x̃, ỹ) ∈ R and T̃ is the trajectory through this point, we have three possibilities:

(i) Either T̃ leaves R crossing L between (0, 0) and P−µ∗ ,

(ii) Or T̃ leaves R crossing L between P−µ∗ and A,
(iii) Or T̃ converges to P−µ∗ .

The set of points satisfying (i) or (ii) are non-empty, disjoint and open. Therefore the set of
points satisfying (iii) is non-empty and the corresponding trajectory T̃ converges to P−µ∗ when
t→∞. The backward trajectory remains in R which is negatively invariant. Since there is no
fixed point in this region, it converges to (0, 0) when t→ −∞ and it is a slow trajectory of this
point, which ends the proof. �

Next we describe the behaviour of the positive solutions for M < −µ. However, in order to
use the method introduced in the proof of Theorem 4.13 we are confronted to another difficulty
namely that there can exist homoclinic trajectories at P1,M .

Theorem 4.17 Let N ≥ 3, M < 0 and 1 < p < N
N−2 . Then there exist positive real numbers

µ < µ̂min ≤ µ̂max < µ̃min ≤ µ̃max < µ∗(1) with the following properties

1- for µ < |M | < µ̃min there is no radial ground state;

2- for |M | = µ̃min or |M | = µ̃max there exist ground states u satisfying u(r) ∼ U1,M (r) when
r →∞;

3- for |M | > µ̃max there exist ground states either such that u(r) ∼ U2,M (r) when r → ∞ or
ondulating around U2,M (r) when r →∞.

Moreover,

4- For µ < |M | < µ̂min there exist solutions u, necessarily singular, ondulating around U2,M as
r → 0 and u(r) ∼ U1,M (r) when r →∞ and solutions u ondulating around U2,M on (0,∞);

5- for |M | = µ̂min or |M | = µ̂max there exists a solution u 6= U1,M such that u(r) ∼ U1,M (r)
both when r → 0 and r →∞;

6- for µ̂max < |M | < µ̃min there exists a solution u such that u(r) ∼ cr2−N as r → 0 and either
u(r) ∼ U2,M (r) or ondulating around U2,M when r →∞.

Proof. Step 1. For M = M we know the behaviour of the solutions from Theorem 4.15. The
trajectories Treg, T1,3

unst and T1,4
unst leave Q on {(0, y) : y > 0} with transverse intersections, and
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T1,2
unst connects P2,M to P1,M . This transversality property is also true for the corresponding

trajectories with parameter M − ε0 ≤M ≤M for ε0 > 0 small enough. Let M ε = M − ε where
0 < ε ≤ ε0. Then P2,Mε

is a sink by Proposition 4.2. By Proposition 4.7, the points P1,Mε

and P2,Mε
belong to the region Rε bordered by Treg, and the semi-axis {(0, y) : y > 0}. The

trajectory T1,2
st which converges to P1,Mε

at∞, cannot converge to P2,Mε
at −∞. Hence it has a

limit cycle around P2,Mε
. Note that T1,2

st is included in the region bordered by T1,3
unst and T1,4

unst.

For α > 0 small enough set Mα = −µ∗(1)+α. By Proposition 4.10 the corresponding regular
trajectory Treg is a ground state. Since (0, 0) is a source and (4.18) holds, it cannot converge
neither to (0, 0) nor to P1,Mα as in Lemma 4.4. Hence either it converges to P2,Mα at ∞ or it

admits a limit cycle around. Next, T1,3
unst is trapped in the positively invariant region bordered

by T1,1
st which connects (0, 0) to P1,M , the portion of the curve C below L (hence between P1,M

and P2,M ) and Treg between (0, 0) and its second intersection with C; therefore, it converges to

P2,Mα at ∞ or it admits a limit cycle too. Finally consider the trajectory T1,2
st which tends to

P1,Mα at ∞. It stays in the negatively invariant region {(x, y) : y > 2
p−1x or x > X1,M}. If it

stays in Q, then the solution is defined on R and the trajectory is bounded from Corollary 4.9.
So, either it converges to a fixed point or it has a limit cycle around P2,Mα when t→ −∞. This

is impossible since it would intersect Treg. Hence for M = Mα, T1,2
st leaves Q in finite time at

(x(t̄), 0) for some x(t̄) > 0. Then there exist t0 > t1 > t̄ such that yt(t0) = 0 and y(t0) is the
maximum of y on (t̄,∞) and (x(t1), y(t1)) ∈ L. Hence x(t) ≤ x(t1) for t̄ ≤ t ≤ t1.

Step 2. Next consider any M ∈ (−µ∗(1),M). In any case the trajectories T1,2
st and Treg are

bounded as long as the stay in Q from Corollary 4.9. Then we define (xMreg, y
M
reg) as the farthest

point on L belonging to the closure Treg of Treg, and (xMst , y
M
st ) as the farthest point on L

belonging to Tst.

Let A be the set of M ∈ (−µ∗(1),M) such that there is no ground state, let B1 be the set of
M ∈ (−µ∗(1),M) such that there exists a ground state converging to P1,M at ∞ and let B2 be
the set of M ∈ (−µ∗(1),M) such that there exists a ground state converging to P2,M or having a
limit cycle at ∞. Then (−µ∗(1),M) = A∪B1 ∪B2. Clearly M ∈ A and Mα ∈ B2, furthermore
if M ∈ A ∪B1 ∪B2 we have three possibilities.

• Any M ∈ B2 has the same properties as Mα, hence Treg is a ground state which converges

to P 2,M or has a limit cycle around P 2,M ; T1,3
unst either converges to P 2,M or has a limit cycle

around P 2,M ; and T1,2
st intersects L at a last value t1.

• If M ∈ A, Treg is not a ground state and it leaves Q through the semi-axis {x = 0, y > 0};
T1,2
st and T1,3

unst are included in the region of Q bordered by Treg and three configurations are
possible:
A-(i) either T1,2

st has a limit cycle around P2,M and T1,3
unst leaves Q

A-(ii) or T1,3
unst converges to P2,M or has a limit cycle around.

A-(iii) or T1,2
st = T1,3

unst which means this trajectory is homoclinic with respect to P1,M .
Note that M ε satisfies A-(i).

As in the proof of Theorem 4.13 the mappings M 7→ xMreg and M 7→ xM1,2 are continuous. We

set g(M) = xMreg − xM1,2. If M ∈ A, then g(M) < 0 and if M ∈ B2, then g(M) > 0. Since g is

continuous there exists M ∈ (−µ∗(1),−µ) such that g(M) = 0. Hence Treg = T1,2
st and B1 6= ∅.
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More precisely we can define µ < µ̃min < µ̃max < µ∗(1) such that µ̃min ∈ B1, µ̃max ∈ B1. If
|M | < µ̃min, g(M) > 0 and there is no ground state. If |M | > µ̃max, g(M) < 0 and there exists

a ground state u such that r
2
p−1u(r) → X2,M or such that r

2
p−1u(r) is turning around X2,M as

r →∞.

Finally we consider the relative position of T1,2
st and T1,3

unst when M ∈ [−µ̃min,−µ). In
any of the three situations A-(i), A-(ii) and A-(iii), L intersects T1,3

unst at a first point of x-
coordinate xM1,3 and T1,2

st at a last point of x-coordinate xM1,2. We define the continuous function

M 7→ h(M) = xM1,3 − xM1,2. Then h(M ε) > 0 and h(−µ̃min) = xM1,3 − xMreg < 0. Hence there exists
at least one M ∈ (−µ̃min,−µ) where h(M) = 0 and for such a M , A-(iii) holds. Then we define
µ̂min and µ̂max in (µ, µ̃min) such that A-(iii) holds if |M | = −µ̂min or if |M | = −µ̂max. Hence, if
−µ̂min < M < −µ, h(M) > 0 and the trajectory T1,3

unst starts from P1,M and converges to P2,M

or has a limit cycle around P2,M . If −µ̂max < M < −µ̃min, h(M) < 0 and the trajectory T1,2
st

starts from (0, 0) with the slope N − 2 and converges to P1,M when t→∞. �

Proofs of Theorem C and C’. They are a consequence of Proposition 4.14, Theorem 4.15, Propo-
sition 4.16 and Theorem 4.17.

Remark. It is an open problem whether the cycles which may exist for some M are unique or
not. It is a numerical evidence that it holds if M > 0, but unclear if M < 0.

4.5 The case M < 0, N = 2 and p > 1

A first difficulty in this case comes from the fact that there exist singular solutions u with a
logarithmic blow-up. The main difficulty comes from the equality of µ∗(2) and µ. Hence −µ is
no longer a weak source as in the case N > 2.

Theorem 4.18 Assume N = 2, p > 1. There exist positive numbers µ̃min and µ̃max such that
−µ∗(2) < µ̃min ≤ µ̃max < µ∗(1) with the following properties:
1- For −µ̃min < M < −µ∗(2) there exists a ground state.
2- for M < −µ̃max there exists a ground state u either such that u(r) ∼ U2,M (r) or ondulating
around U2,M (r) when r →∞.
3- M = −µ̃min there exists a ground state u such that u(r) ∼ U1,M (r) when r →∞.

Proof. If M = M = −µ∗(2) there exists no ground state from Proposition 4.7. By continuity this
property is still valid for M

ε
= M − ε for ε > 0 small enough. As in the proof of Theorem 4.17

with N ≥ 3 we still denote by A the set of M ∈ (−µ∗(1),−µ∗(2)) such that there is no ground
state. We define in a similar way the set B1 and B2. The previous situation is still valid with
the only difference that M ε does not satisfies A-(i) but A-(ii): indeed from [18, Th. 8.2, Lemma
8.7], see Appendix, for ε < ε0 small enough there is no cycle around P2,M which is a sink by

Proposition 4.2. Thus T1,3
unst converges to P2,M when t → ∞ and T1,2

st converges to 0 when

t→ −∞, and since there is no ground state it satisfies x(t) ∼ ce
2t
p−1 |t| when t→ −∞ for some

c > 0. Hence the function g : M 7→ g(M) = xMreg − xM1,2 defined as in the proof of Theorem 4.17
shares the same properties and the conclusion follows. �

Remark. We conjecture that there is no cycle when N = 2. If it is true, then for any −µ̃ <
M < −µ∗, T1,2

st converges to (0, 0) as t→ −∞. Equivalently there exists a positive solution u of
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(1.13) with a logarithmic blow-up at r = 0 and such that u(r) ∼ U1,M (r) as r →∞. Hence there
exist also a positive solution u of (1.13) such that u(r) ∼ U1,M (r) as r → 0 and u(r) ∼ U2,M (r)
as r →∞.

4.6 The case M < 0, N = 1 and p > 1

In the case N = 1, the equation is invariant under the translation group Tα[u](.) = u(.+ α) for
α = 0 and any ground state is symmetric with respect to its vertex.

Theorem 4.19 Let N = 1. Then there exists a ground state u if and only if M ≤ −µ∗(1). It
satisfies u(r) ∼ U2,M (r) as r →∞. Furthermore, if M < −µ∗(1) there exists a positive singular
solution u which satisfies u(r) ∼ U1,M (r) as r → 0 and u(r) ∼ U2,M (r) as r →∞.

Proof. The existence when M < −µ∗(1) is proved in Lemma 4.4 but the proof therein is not valid
when M = −µ∗(1) in which case a second beautiful construction due to Chipot and Weissler [14]
applies: if M ≤ −µ∗(1) there exist singular solutions U1,M and U2,M . If Treg is not a ground
state, the corresponding solution u vanishes at r = r0 > 0. Hence there exists a translation of
u, say r 7→ u(r − c) which is tangent to U1,M which is impossible. If M < −µ∗(1) estimate

(4.18) implies (4.20) which in turn implies that r
2
p−1u(r) cannot converge to X1,M . Notice that

there exists no cycle in the phase plane (x, y) otherwise the corresponding solution u would be
singular and ondulating hence a translation of it say x 7→ u(x + c) which is now singular at
x = −c and defined for x > −c could be made tangent somewhere to U1,M (or U2,M ) which is

impossible. Therefore r
2
p−1u(r) converge to X2,M as r →∞.

In order to prove that there exists a heteroclinic connecting P1,M to P2,M and since Treg con-
verges to P1,M , there exists a smallest τ such that xreg(τ) = X1,M and the vector field H is
directed to the right on the segment J = {(x, y) : x = X1,M , yreg(τ) ≤ y ≤ Y1,M}, we have three
possibilities:
(i) either xreg(t)→ X1,M monotonically. In that case the region bordered by the segment J , the
portion of L between P1,M and P2,M and the portion of trajectory Treg for t > τ is positively

invariant. Since T1,3
unst belongs to this region, it converges to P2,M when t→∞.

(ii) either Treg has a first intersection with L at a point (x(t1), y(t1)) with x(t1) > X2,M . Then
it enters successively the region D where xt < 0 and yt > 0 and the region the region A where
xt < 0 and yt < 0 and finally intersects L between P1,M and P2,M at some point (x(t2), y(t2)), or
converges to P2,M monotonically, in which case we set t2 =∞. In that case the region bordered
by the segment J , the portion of L between P1,M and (x(t2), y(t2)) and the portion of trajectory

Treg for τ < t < t2 is positively invariant. Since T1,3
unst belongs to this region we conclude as in

case (i). �

4.7 Appendix: Non-existence of cycle in the case N = 2

The difficulty comes from the fact that when M = M = −µ = −µ∗(2), the linearized system
at P2,M has zero as a double eigenvalue. Following Kuznetsov’s notations [18, Lemma 8.7] we

consider the system associated to (2.1), with two extra parameters −→α = (α1, α2) called the
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bifurcation parameters,

xt = v

vt = α2 +
4

p− 1
v − 4

(p− 1)2
x− xp + (µ+ α1)

(
2

p− 1
x− v

) 2p
p+1

:= g(x, v, α1, α2).
(4.27)

We recall that µ = (p+ 1)p
− p
p+1 and set −→x = (x, v), g(x, v, α1, α2) = g(−→x ,−→α ) and

y0 = YM,2 =
1

p
1
p−1

(
2

p− 1

) p+1
p−1

= , x0 = XM,2 =
p− 1

2
y0

linearize (4.27) at P̃0 = (x0, 0), with −→α fixed, we obtain the new system

xt = v

vt = α2 + α1y
2p
p+1

0 +
2α1p

p2 − 1
y
p−1
p+1

0 x− 2α1p
p+1 y

p−1
p+1

0 v − α1y
2p
p+1

0 + α2

+
1

2

(
gxx(P0)x2 + 2gxv(P0)xv + gvv(P0)v2

)
+R(−→x ,−→α ).

(4.28)

In order to agree with Kuznetsov’s notations, we write (4.28) under the form

y1 t = y2

y2 t = g00 + g10y1 + g01y2
1

2

(
g20y

2
1 + 2g11y1y2 + g02y

2
2

)
+R(−→y ,−→α )

(4.29)

where R(−→y ,−→α ) = O(|−→y |3) and

g00 = α2 + α1y
2p
p+1

0 , g1,0 =
4pα1

p2 − 1
y
p−1
p+1

0 , g01 = − 2pα1

p+ 1
y
p−1
p+1

0 , g11 = − 4p

(p+ 1)2

(
p+ 1

p
p
p+1

+ α1

)
y
− 2
p+1

0

g20 = − 4p

(p+ 1)2

(
p+ 1

p
p
p+1

− 2α1

p− 1

)
y
− 2
p+1

0 , g02 = −2p(p− 1)

(p+ 1)2

(
p+ 1

p
p
p+1

+ α1

)
y
− 2
p+1

0 .

Note that, if α1 = 0, the three coefficients g11, g20 and g02 are negative.
Following Kuznetsov proof, we perform several changes of variables:
1- Setting y1 = v1 + δ, v2 = y2 where δ = δ(−→α ), we can get rid of the coefficient of v2 in the
second equation and obtain

v1 t = v2

v2 t = h00 + h10y1 +
1

2

(
h20v

2
1 + 2h11v1v2 + h02v

2
2

)
+Q(−→v ,−→α )

(4.30)

where Q(−→v ,−→α ) = O(|−→v |3) and

δ = − g01

g11(0)
(1 + o(1)) as −→α → 0,
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with g01 (resp. g00 and g10) stands for g01(−→α ) (resp. g00(−→α ) and g10(−→α )) and

h00 = g00 −
g01g10

g11(0)
+ o(1) , h10 = g10 −

g01g20

g11(0)
+ o(1) and h20 = g20 , h11 = g11 , h02 = g02.

2- Time scaling, dt
dτ = 1 + θv1(t) where θ = θ(−→α ), and ξ1 = v1, ξ2 = (1 + θv1))v2 in order to get

rid of the coefficients of v2
2 in the equations for ξ2, then

ξ1 τ = ξ2

ξ2 τ = f00 + f10ξ1
1

2
hf20ξ

2
1 + f11ξ1ξ2 + h02v

2
2 + P (

−→
ξ ,−→α )

(4.31)

where P (
−→
ξ ,−→α ) = O(|−→ξ |3),

f00 = h00(1 + o(1)) , f10 =

(
h10 −

h00h02

2

)
(1 + o(1)) , f20 = (h20 − h10h02) (1 + o(1)),

and f11 = h11(1 + o(1)). We rewrite the equation of ξ2 t under the form

ξ2 t = µ1(−→α ) + µ2(−→α )ξ1 +A(−→α )ξ2
1 +B(−→α )ξ1ξ2 +O(|−→ξ |3), (4.32)

where, for |−→α | small enough,

µ1 = h00 =

(
g00 −

g10g01

g11(0)

)
(1 + o(1))) = α1y

2p
p+1

0 (1 + o(1)),

µ2 =

(
h10 −

h02h00

2

)
(1 + o(1))) =

2(p2 + 2p− 1)

p2 − 1
y
p−1
p+1

0 (1 + o(1)),

A(−→α ) = − 2p

p+ 1

(
1

p

) p
p+1

y
− 2
p+1

0 (1 + o(1)),

and

B(−→α ) = − 4

p+ 1

(
1

p

) p
p+1

y
− 2
p+1

0 (1 + o(1)).

At end we change again time and put

t =

∣∣∣∣BA
∣∣∣∣ τ , η1 =

B2

A
ξ1 and η2 = sgn

(
B

A

)
B3

A2
ξ2,

in order to see that −→η = (η1, η2) verifies

η1 t = η2

η2 t = β1(−→α ) + β2(−→α )η1 + η2
1 + sgn

(
B(0)

A(0)

)
η1η2 +O(|−→η |3).

(4.33)

In our situation

sgn

(
B(0)

A(0)

)
= 1.
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After further computations and simplifications we obtain, with α2 = 0 and eliminating the terms
which contain α2

1,

β1 = − 64

p2 − 1
α1y

p−1
p+1

0 (1 + o(1)) and β2 =
8p2 + 2p− 1

p2 − 1
α1y

p−1
p+1

0 (1 + o(1)). (4.34)

Therefore, the discriminant β2
2 − 4β1 of the polynomial P(η1) = β1 + β2η1 + η2

1 is positive for
α1 > 0.

By [18, Lemma 8.7] there is no cycle in the region of the plane (β1, β2) located in the second
quadrant, which is our case since α1 > 0. Furthermore, the equilibrium (β1, β2) = (0, 0), which
has a double zero eigenvalue has one stable trajectory converging when t→∞ and one unstable
trajectory converging when t→ −∞. Hence it is a saddle point.
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[10] Bidaut-Véron M. F., Pohozaev S. Local and global behavior of solutions of quasilinear equa-
tions of Emden-Fowler type. Journal d’Analyse Mathématique 84 (2001), 1-49.
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