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Radial solutions of scaling invariant nonlinear elliptic

equations with mixed reaction terms
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2
Abstract We study global properties of positive radial solutions of —Au = u? + M |Vu| 77 in RN where

p > 1 and M is a real number. We prove the existence or the non-existence of ground states and of

solutions with singularity at 0 according to the values of M and p.
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1 Introduction

The aim of this article is to study local and global properties of positive radial solutions of the
equation
2
—Au = |u]p*1u+M\Vu|Tf1 , (1.1)

in RY or RY \ {0} where p > 1 and M is a real parameter. This is a particular case of the

following class of equations
—Au = |uP~ u + M |Vul?, (1.2)

where ¢ > 1 which has been the subject or many works in the radial case when M < 0, where a
basic observation is that the two terms |u|P~!u and M |Vu|? are in competition. The first work
in that case is due to Chipot and Weissler [14] who, in particular, solved completely the case
N =1, then Serrin and Zou [19] performed a very detailed analysis. Much less is known in the
case M > 0. Under the scaling transformation 7}, defined for £ > 0 by

e = Ti[u)(z) = kr-Tu(kz), (1.3)
(1.2) becomes
1 2p— q(p+ ) q
—Auy, = \uk\p uy + k M \Vuk\ (1.4)
Therefore, if ¢ # -2 p+1’ (1.2) can be reduced to
. 2
—Au = |ulP" u + [Vu|rHT . (1.5)

Moreover, when ¢ < the limit equation of (1.4) when k& — 0 is the Lane-Emden equation

p+1’
—Au = |u[P~ u, (1.6)

and thus the exponent p is dominant. The other scaling transformation

vg = Sklul(x) = k‘%u(km), (1.7)
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transforms (1.2) into
a=p(2=q)

—Av, =k a1 |Uk|p_lvk + M |VUk|q, (1.8)

and if ¢ > 1%’ the limit equation of (1.8) when k& — 0 is the Riccati equation

—Av =M |Vu|?, (1.9)

therefore the exponent ¢ is dominant. In [14] and [19] most of the study deals with the case
q 1%. In the critical case i.e. when

2p

_ 1.10
p+1 (1.10)

q

then not only the sign of M but also its value plays a fundamental role, with a delicate interaction
with the exponent p. Notice that an equivalent form of (1.1) is

—Av =Xl o+ |Vol! (1.11)

with A > 0. In the critical case first studies in the case M < 0 are due to Chipot and Weissler
[14] for N = 1. The case N > 2 was left open by Serrin and Zou [19] and the first partial results
are due to Fila and Quittner [16] and Voirol [22, 23]. The case M > 0 was not considered.

The equation (1.1) is the stationary part of the associated parabolic equation
Opu — Au — |u[P"ru — M |Vul|? = 0. (1.12)

which is studied in [14] and [15], where one of the aims was to find conditions for the blow-up
of positive solutions. A general survey with several open problems can be found in [20].

In the non radial case an important contribution dealing with a priori estimates of local
positive solutions of (1.2) and existence or non-existence of entire positive solution in R is due
to the authors [7]. In this paper we complete the results of [7] in presenting a quite exhaustive
study of the radial solutions of (1.1) for any real number M.

The radial solutions of (1.1) are functions r — u(r) defined in (0, 0c0) where they satisfy

N -1

2
Up = [ufP M+ M |uy |71 (1.13)
.

—Upp —

Because of the invariance of (1.13) under the transformation T} there exists an autonomous
variant of (1.1) obtained by setting

2

u(r) =r r1zx(t) with t=1Inr. (1.14)

Then (1.13) becomes

Tt + LLL’t —

2K
Xr — Xt
1

K
x4+ |zt + M‘
1 D —

with N-2p—N N —2)p—(N+2 2
ko WN=2p-N . (N-2)p—(N+2)

p—1 p—1 p—1
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p+1

Putting y(t) = —rr=Tu,(r), then (z(t),y(t)) satisfies the system

2
Ty = ——T —
S (1.17)

2
yr = — Ky + |alP~ L + M [y|oi .

We are mainly interested in the trajectories of the system which remain in the first quarter
Q={(z,y) € R? : x > 0,y > 0}. Indeed, among these trajectories, we find the ones correspond-
ing to ground states, i.e. positive C? solutions u of (1.13) which are defined on [0,00). They
verify u,(0) = 0 and actually they are C*° on (0, c0). Using the invariance of the equation under
T}, all the ground states can be derived by scaling from a unique one which satisfies u(0) = 1.
Since it is easy to prove that such a solution u is decreasing, in the variables (z,y), a ground state
is a trajectory of (1.17) in Q, defined on R and satisfying tii{noo ig; = (0. The corresponding
trajectory is denoted by T,.4.

Contrarily to the case of the Lane-Emden equation (1.6), there exists no natural Lyapunov
function when M # 0. This makes the study much more delicate and it is based upon a phase
plane analysis. The solutions of (1.13) invariant under T} for any k& > 0 correspond to constant
solutions of (1.15) and have the form

Ur) = Xr 71 forallr >0, (1.18)
where X is a positive root of
92\t 2K
+1 —1
xr oy pm (2T xe - 22—, (1.19)
p—1 p—1

This equation plays a fundamental role in the description of the set of solutions of (1.13). The
following constant, defined for N =1,2andp>1lor N >3and 1 <p < % has an important
role in the description of the set roots of (1.19),

N(Nz);;);ﬁl'

o (1.20)

() =+ 1) (
When the is no ambiguity we write p* := p*(N). This set is described in the following proposi-
tion.

Proposition 1 1- If M > 0, equation (1.19) admits a positive root, necessarily unique, if and
only if N > 3 and p > %

2-If M <0 and p > %, equation (1.19) admits a unique positive root X .

8- If M <0 and either N=1,2 andp>1or N >3 and1 <p< %, there exists no positive
root of (1.19) if —u* < M < 0, a unique positive root if M = —u* < 0 and two positive roots
Xl,M < XQ’M ZfM < —,LL*.

We also set Yy = Z%XM and Py = (Xu,Yu) (resp. Yju = 2 Xim and Py =

p—1
2
(X, Yjm), for j=1,2) and define the corresponding singular solutions Ups(r) = Xpyr »—1
2
(resp. Ujm(r) = Xjmr »71).
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Recall briefly the description of the positive solutions of the Lane-Emden equation (1.6), i.e
M = 0: there exists radial ground states if and only if N > 3 and p > % Ifp= % these
ground states are explicit and they satisfy lim, oo 7"V 2u(r) = ¢ > 0. There exist infinitely
many singular solutions u ondulating around Upys;. Note that a ground state corresponds to
a homoclinic orbit at 0 for system (1.17) and these singular solutions are cycles surrounding
Pyr. We recall that an orbit of (1.17) which connects two different equilibria (resp. the same
equilibrium) when ¢ € R is called heteroclinic (resp. homoclinic).

Without the radiality assumptions, and using a delicate combination of refined Bernstein
techniques and Keller-Osserman estimate we have obtained in [7, Theorems C, D] a series of
general a priori estimates for any positive solution of (1.1), in an arbitrary domain of RY in the

case N > 1,p>1and q = 1% and M > 0. In particular we proved there that if p > 1 and

p—1 _p_
M > M; = (ﬁ%) P (%ﬁ)pﬂ, or if N > 2, p < &2 and M > 0 equation (1.1) admits

no ground state.

In the sequel we describe the ground states and the singular global solutions of (1.13) in
RN\ {0}. Concerning the ground states, we discuss according to the sign of M and the value of
p. The next value of M appears when we linearize the system (1.17) at the equilibrium Py,

(p+D((N-2p-N-2)
(4p) 74T (N = 2)(p — 1)% + 4) 571

M = M(N,p) = (1.21)

N+2 ( N+2

Then M is positive (resp. negative) if p > resp. p <

to see that if M = M then the characterlstlc Values of the hnearlzed operator at Py; are purely
imaginary. Notice that M is positive (resp. negative) according p > N +2 (resp. p < ¥ +2)
Theorem A Let N > 1,p>1 and M > 0.

1- Forany 1 <p < N+2 if N >3, and any p > 1 if N = 1,2, then equation (1.13) admits no
ground state.

2-If N >3 and p > +2 , there exist constants Mmm, Mmax verifying

and we set @ = ‘M|) It is easy

0< M < Mmzn S Mmara

such that .
- if 0 < M < My there exist ground states u satisfying u(r) ~ Up(r) when r — oo.
-if M = Muin or M = M. there exists a ground state u minimal at infinity, that is satisfying

lim rV~2u(r) = ¢ > 0.
r—00

- for M > me there exists no radial ground state.

The values of Mmm and me appear as transition values for which the ground state still

exists but it is smaller than the others at infinity; it is of order 72~ instead of r~ »—1. They are

not explicit but they can be estimated in function of N and p. It is a numerical evidence that
Myin = mag i0 the phase plane analysis of system (1.17) and we conjecture that this is true.
When M = Mmm or Mmax, the system (1.17) admits homoclinic trajectories. We prove that
the system (1.17) admits a Hopf bifurcation when M = M. When p > % we also prove the

existence of different types of positive singular solutions
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Theorem A’ Let N > 3.
1- If & v <p< N+2 5 for any M > 0 there exist a unique (always up to a scaling transformation)

2
positive singular solutzons u of (1.13) satisfying lin% rr=1u(r) = Xy and li>m N 2u(r) =¢>0
r— T—00

2-If p> 355, then

(i) If M > Mypay, there exists a unique singular solution u of (1.13) with the same behaviour as
mn 1.

(ii) If M < M < Mymin there exist positive singular solutions u ondulating around Uy on R.

In terms of the system (1.17) the 1) and 2-(i) correspond to the existence of a heteroclinic
orbit in Q connecting Py to (0,0) and (ii) to the existence of a cycle in Q surrounding Pjy.

When M is negative, the precise description of the trajectories of (1.17) depends also on the

value of p with respect to % It is proved in [7, Th. B, E] that for N >3 and 1 <p < N +2

there exists eg > 0 such that if |[M| < €y equation (1.1) admits no positive solution in R, The
same conclusion holds if N>31<p<5 (or N=2and p>1)and M > —p*. We first

consider the case p > 1= for which there exists a unique explicit singular solution Uy, and the
results present some 51m11ar1ty with the ones of Theorem A.

Theorem B Let N >3, p > &5 and M < 0. Then

1- Ifp > N+2 , then equation (1 13) admits ground states u. Moreover they satisfy u(r) ~ Ups(r)
asr — oo

2- If % <p< N+2 , there exist numbers fimin and fipmaz veTifying

0 <7t < fimin < flmaz < (1),

such that
(i) for M < —fimaq there exist ground states u such that u(r) ~ Up(r) when r — oo.
(ii) for M = —[ipin or for M = —[iyqs there exist ground states minimal at infinity in the sense

that u(r) ~ cr>N when r — o0, ¢ > 0.
(iii) for —fimin < M < 0 there exists no radial ground state.

Here also the value of fimin, flmaz are not explicit and we conjecture that they coincide. The
next result presents some similarity with Theorem A’.

Theorem B’ Let N > 3 and N s <p<7F N+2

(i) If M < M < 0 there exists a unique (up to scaling) positive singular solution u of (1.13),
such that u(r) ~ Upr(r) when v — 0 and u(r) ~ cr>~N when r — oo for some ¢ > 0.

(1) If —fimin < M < O there exist positive singular solutions u ondulating around Ups on [0, 00)
and singular solution ondulating around Uys in a neighbourhood of 0 and satisfying u(r) ~ cr?>=N

for some ¢ > 0 when r — o.

In terms of the system (1.17), (i) corresponds to a heteroclinic orbit connecting Pp; and
(0,0), while (ii) to the existence of a periodic solution in Q around P, and the existence of a
solution in Q converging to (0,0) at co and having a limit cycle at ¢t = —oo which is a periodic
orbit around Pyy.
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The situation is more complicated when 1 < p < % and M < —u* because there exist two

explicit singular solutions Uy p; and U pr which coincide when M = —p*.

Theorem C Let M <0, N>3 and1 <p< NL_Q, or N =2 and p > 1. Then there exist two
constants fimin aNd fmaz vErifying

P << fimin < fimaz < p7(1),

such that

1- If M < —[imqq then equation (1.13) admits ground states u either ondulating around Ua pr or
such that u(r) ~ Uz p (1) as r — oo.

2- If M = —[imin or M = —[imay there exists a ground state u such that u(r) ~ Uy p(r) as
r — 00.

- If —fimin < M < 0 there exists no radial ground state.

Here again fi,;, and fiyq, appear as transition values for which the ground state still exists
but it is smaller than the others at infinity: it behaves like U; instead of Us. The proof of this
theorem is very elaborate in particular in the case N = 2. In the case N = 1 the result is already
proved in [14]. The nonexistence of a ground state, not necessarily radial for M > —p* is proved
in [1] and independently in [7] with a different method. In the radial case it was obtained much
before in the case N = 1 in [14] and then by Fila and Quittner [16] who raised the question
whether the condition —fiym < M < 0 is optimal for the non-existence of radial ground state.
This question received a negative answer in the work of Voirol [22] who extended the domain of
non-existence to —p* —e < M < —p*. The next result is the counterpart of Theorem C when
dealing with singular solutions.

Theorem C’ Let M <0, N >3 and1 <p< % (1) If M < —p* there exist positive singular

2—N

solutions u such that u(r) ~ Uy p(r) as 7 — 0o and u(r) ~ cr with ¢ > 0 when r — 0.

(ii) If M < M < —u* there erists a unique up to scaling positive singular solution u, such that
w(r) = Usm(r) as v — 0 and u(r) = Uy pm(r) as r — oco. Furthermore u(r) > Uy p(r) for all
r > 0.

(111) If —fimin < M < —T there exist positive singular solutions u ondulating around Us ar at O
and such that u(r) ~ Uy p(r) as v — oo, and positive singular solutions u ondulating around
UQVM on R.

() If M = —f[ipmin or M = —[imaz there exists a positive singular solutions u different from
Ui,m such that u(r) ~ Uy p(r) when r — 0 and r — oo.

(v) If —fimin < M < —[imaqz there exists a positive singular solution u such that lir% N2 (r) =
r—

¢ > 0 and either ondulating around Us py or such that u(r) ~ Uz pr(r) when r — oo.
(vi) If N > 3 and M = —p*, there exist positive singular solutions u satisfying lir% rN"2u(r) =
r—>

c>0 and u(r) ~ U_,+(r) as r — oo.

In terms of the system (1.17) (i) corresponds to a heteroclinic orbit connecting P; »s to (0, 0);
(ii) to a heteroclinic orbit connecting P pr to Pi a; (iii) to a trajectory having a periodic orbit
around Ps js for limit cycle at —oo and converging to P ps at oo and to a periodic orbit around
P, pr; (iv) corresponds to homoclinic orbit at Py ar; (v) corresponds to a trajectory connecting
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(0,0) at —oo and either converging to P, s at oo or having a periodic orbit around Ps ps for
limit set at oco; (vi) corresponds to a heteroclinic orbit connecting from (0,0) to P_ .

Acknowledgements This article has been prepared with the support of the collaboration
programs ECOS C14E08 and FONDECYT grant 1160540 for the three authors.

The authors thank the anonymous referee for the careful reading of the manuscript which
allowed to eliminate some ambiguities in the presentation and the proof of some of our results.

2 General properties of the system

2.1 Reduction to autonomous equation and system
2.1.1 The standard reduction

We recall that if u is a C® function defined on some interval I C [0, 00) verifying (1.13) and if
2
u(r) =r rp1z(t) with t=Inr,
then z satisfies the autonomous equation

1

2K 2
Ty + L:Et - _xl = 0, (2'1)

p—1 o

$+|$|p1$—|—M‘

p

_pt1

on In(I) where K and L are defined in (1.16). Setting u, = —r »=1y(t), then (z(t),y(t)) satisfies

Tt = Hl(.iU,y) (2 2)
yt:HQ(xay)v
where 5
T
Hi(x,y) = —
1(z,y) o1 Y (2.3)

2
Hy(w,y) = =Ky + |af~ o+ M |y .
and we denote by H the vector field of R? with components H; and Ho.

2.1.2 The geometry of the vector field H

Let us denote by Q := {(z,y) : * > 0,y > 0} the first quadrant. The vector field is inward in
(resp. outward of) Q on the axis {(x,y) : x > 0,y = 0} (resp. {(x,y): x =0,y > 0}). We set

::{(:c,y)eQ:y:pr} and c::{(x,y)eq:x:(Ky_Myzﬁﬂ);} (2.4)

1

0y \ L
and ¢(y) = (Ky — Myﬁ)p Then 2; = 0 on £ and y; = 0 on C. The curves £ and C have
zero, one or two intersections in Q according the value of K and M. If M, K > 0, then C C

1 _ptl
0.(5) " 57 (552) ™7 | [0, (4957 e points 0.0, Par and (0,(£)5F) belong
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&i Li p+1
to C. The function % is increasing on (0, (qLM) P ) and decreasing on <(£M> L (%) p—1 )
1
If M <0and K > 0, ¢ is concave and increasing on (0,00) with ¢ (y) = (—=M)ryr+1 (1 4+ 0o(1))
pt+1

asy — oo. If M <0 and K < 0, v is still concave and increasing on ((H)pTl ,00 | with the

same asymptotic as above. We quote below the possible connected components of Q \ (L UC).

A:{(x,y):%—y<0}ﬁ{(w,y):—Ky+xp+Myp%<0}:{(x,y):$t<0,yt<0}.
B:{(m,y):%—y>0}ﬁ{(m,y):—Ky+xp+MyP%<O}:{(:U,y)::xt>0,yt<0}.
C:{(x,y):%—y>0}ﬂ{(w,y):—Ky—|—xp+MyP2%>0}:{(m,y):mt>0,yt>0}.
D:{(az,y):%—y<0}ﬂ{(x,y):—Ky+xp+My%>O}ﬂ{(x,y):x>X27M}
={(z,y) 1 x¢ <0,y >0} N a:,y):x>X27M}.
(x,y):I%—y<0}ﬂ{(x,y):—Ky+mp+My%>0}ﬂ{(m,y) x<X1M}

(x,y) s 2 <0,y >0} N {(x,y) rx < Xl,M}'

A B,CDifK>0,M<0or K, M >0.
A,C,Dif K<0Oand —pu* < M <0.

A C, D Eif K<0Oand M = —p*.

A B, C D Eif K<0and M < —pu*.

2.1.3 Graphic representation of the vector field H
We present below some graphics of the vector field H associated to system (1.17).

A
y
(D) ;<0 4
i c yr >0
= , L
-~ 0
) xrp <
@ <o
Ve 0
‘ o) >
Far >0
-~ A\
Ty >0
Yyt < > et
—7 =
o
T

Figure 1: M >0, K > 0.
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A
y C ;<0
D) Yyt >0 T
e 4 r
xp <0
(4) y <0 . 4
/
A
]
Py
/
o) x>0
Yy >0
Ty >0
“ Yt <
v
(B) /
“ v /, // ~
red »
P >

VNN e,

\

A

*

Figure 3: —p* < M <0, K <0.
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A
C
Y x <0
D) >0
A
r'd 0 |
2 <
@ <o
A
Vs |
‘/
A/
P«
“7] " (©) x>0
. Yy >0
] xy <0
- (E) yp > 0
4 7 /
x| ] el // //
el ~ ~ ~
o
Figure 4: M = —p*, K < 0.
’ A C x <0
Yy yr >0 |
(4) 4
- —/ )",
x <0
Yy <0 =
/
Py
v
1
T > (
re lil/t <
[ ()
“ ©) x>0
yr >0
- -
= <0 f(E Py
>0 o
AN _ 7 / /
e >
0
"

Figure 5: M < —p*, K < 0.
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2.1.4 Other reduction

The following change of unknowns, already used in [9] when M = 0,

oty = YO _ )y gy 2 ) el () (2.5)

Cat) () O ur(r)

and valid if u, # 0, transforms (1.17) into a Kolmogorov system with vector field V = (V1,V5)

1
Jt:0<0+2—N+Z—|—M"0”p_1UZ p+1> =Vi(0; 2)

(2.6)

1
=2z <N—pa—z—M’]a]p_laz p+1> = Va(0; 2).

Since o and z are in factor the two axis {¢ = 0} and {z = 0} are trajectories, actually not
admissible for (2.2) in view of (2.5). The system is singular on these two axis however it can be
desingularized by setting o = 62! and z = 2%+ for some integer k > p+ 1, which transforms

(2.6) into a new nonsingular Kolmogorov system,

_1
o = 2k1+ 1& <5.2k+1 +92 - N+ §2k+1 + M ‘(|5|p—1 5)2k+1§2k+1 p+1>
) N (2.7)
AT <N — pghtt — 22— M ((Iél”‘1 G)kH152k+1 ”“) .

Therefore no other trajectory can intersect them in finite time and the quadrant Q := {(o, 2) :
o >0,z > 0} is invariant. Furthermore oz = 2 ]u|p_1. It is noticeable that if M = 0 the initial
system is quadratic and regular.

The system (2.6) will be used in the most delicate cases. It corresponds to the differentiation
of the initial equation (2.1).

2.2 Regular solutions and ground states

Definition 2.1 A regular solution of (1.13) is a C? solution defined on some mazimal interval
[0,70) satisfying uw(0) = ug > 0 and u,.(0) = 0. A ground state is a nonnegative C? solution
defined on [0, 00).

The existence and uniqueness of a regular solution is standard by the Cauchy-Lipschitz integral
method. If u is a C? solution it satisfies v, < 0 on (0,79). Indeed rV~lu,(r) is decreasing
near 0, hence u, < 0 on some maximal interval (0,71) C (0,79) and u,(r1) = 0 if 1y < rg. If
u(r1) = 0 then uw = 0 by uniqueness. If u(r;) > 0 then u,, < 0 near r; which would imply that
u(r) < wu(r) for r1 —e < r < r; which contradict the negativity of u, on (0,r1). Hence u(r1) <0
which implies that u,(r) < 0 on the maximal interval (0, 72) where w > 0. Thus, if u is a ground
state u, < 0 on (0,00). Hence the trajectory of a ground state expressed in the system (1.17)
lies in Q and expressed in the system (2.6) it lies in the quadrant Q. It is easy to check that
the regular solution u := w,,, such that u(0) = ug satisfies

ab 7l M(p+ 1)) v

u(r) = uo <1 N Up+2)(N+2pt NN (1+ 0(1))) as r — 0. (2.8)
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Under the scaling transformation Tj, u can be transformed into the regular solution (1.13)
u = u; satisfying u(0) = 1. If one considers the system (1.17) the transformation 7} becomes
the time shift which transforms t — (z(t),y(t)) into ¢ — (z(t + Ink),y(t + Ink)), and the
trajectory (z(t),y(t)) of (1.17) corresponding to a ground state is therefore uniquely determined
and denoted by T, and satisfies

, B oy oy 1
Am (@ (), y() = (0,0), lim Ty =0 and lim “0as = - (2:9)
Hence in the system (2.5) there holds on the corresponding trajectory
lim o(t) =0, lim z(t) = N. (2.10)

t—o0 t—00

2.3 Explicit singular solutions

2
Explicit self-similar solutions of (1.13), necessarily under the form v = Ar »-T, play a funda-
mental role in the study, whenever they exist. The following result covers Proposition 1.

Proposition 2.2 1- Let M > 0. Then there exists a unique self-similar solution of (1.13) if and
2

only if N > 3 and p > % We denote it by Upr(r) = Xprr »=1, where Xpr > 0 depends also on

M, N and p. To this solution is associated the equilibrium (X, p%lXM) of the system (1.17).

p—1
Furthermore the mappings M — Xy is continuous and decreasing on [0,00), M MX]\’;[Jrl 18

increasing and there holds

1 (K\bo 1 1\? [ K \P\ 51 1/ K\
D = p— - p— =
L 1— — (=2} (£ <xy <P (& .
(i) = <M> < zw< 2> (M))+ =AM =Ty <M>

2- Let M < 0. If N > 3 and p > 5 there exists a unique self-similar solution of (1.13) Upy(r).
p=1

The mapping M + Xy is continuous and decreasing, M — MX}" is decreasing and there

holds

1 2
max 2K p_l, EEERE |M|p<ppt11) < Xm
p—1 p—1
1 2
1 —1 1
<o (57) 7+ () me ).
p—1 p—1

S-Let M <0. IfN=1,2andp>1,0or N >3 and1l <p< %, there exists no self-similar
solution of (1.13) if —u* < M < 0 where u* = p*(N) > 0 is defined in (1.20). If M = —u*
there exists a unique self-similar solution U_,«(r). If M < —p* < 0 there exist two-self-similar

(2.11)

-

3
[un

(2.12)



Quasilinear elliptic equations with source reaction 14

2 2
solutions Uy pr(r) = X1, P=1 and Ug p(r) = Xo - p=1 with Xy pr < Xoar. Furthermore the

mappings M — Xq p and M — Xo pp are continuous, respectively increasing and decreasing on
p—1

p—1
(—o0, —p*), while M — MX[5, and M — MXJ1, are respectively decreasing and increasing.
Furthermore there holds for |M| large enough;

p 1
2 =1 (— K\ pr-1
i X_ P PR ,
© e (p—1> ( p )
p+1

) PoL(E %<X _p-1(K = 2 (= DR\
1w — | = — ——= | —
2 \M LM 2 \M K oM ’

pt1

2 — 2
2 p—1 1 K p—1 2 501
(i) () (— M) (1 - 1> <Xom < <> (—M)7D.
M |M|» p—1
(2.13)

Proof. The function Uy = X Mr_% is a self-similar solution of (1.13) if and only if X, is a
positive root of
2p
= 2\ P+l p=1 2K
=P 4 [ MzrH — —— =0. 2.14
Pty =t (S20) 7 el - 2 (2.14)
Equivalently Py = (X, Yur) = (p%lYM, Yr) is a fixed point of system (1.17), where Y} is the
positive root of
p—1\" 1 e
fu(y) = (2 ) Yy + Myrt — K = 0. (2.15)
The use of the variable y is a little easer than x. Since Xy is explicit if M = 0, we shall study
the cases M # 0.
1- Case M > 0. If K > 0, equivalently p > %, and M > 0, fy is an increasing function
tending to oo at co and negative at y = 0. Hence Y/ is the unique positive root of (2.15). If
K < 0, far is positive on [0, 00), hence no such solution exists. Since
—1\P _ p—1
(%) VP 4 MY - K =0,
by the implicit function theorem, M s Yy is C1. For M > M’ > 0, far(y) > far(y) for all

y > 0. Hence M — Y}, is decreasing on [0,00). Actually the expression of fj; shows more,
p—1
namely that M +— MY, is increasing on [0, c0). Furthermore

p+1

p=1 K —1
MY}™ < K=Yy < <)p ,

and

-1 p K p+1 p—1
<p2 ) <M> + MY > K

e ()7 - () ()
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and we get (2.11).
2- Case M < 0. Clearly fas has a minimum at y = yo »s where

1
p+ p+1

Yo,m = (2 (_My> . and  far(yo,m) = _ <_M>p - K. (2.16)

p—1\p+1 p—1\p+1

We encounter two possibilities:

2-a. If N >3 and p > %, then fus(0) < 0, far is decreasing on (0,yo,as) and increasing on

(yo,a,00), hence far(y) = 0 has a unique positive root Yas > yo,ar. Since for M < M’ < 0 and
p—1

y >0, far(y) > fa(y), the mapping M + Yy is continuous and decreasing and M — MY

is increasing.

Then the left-hand side of (2.12) is clear. Next we put

2p
2 p+1 2K p=1
Ap:<>p ’M‘7Bp+1:77§:X5+}7a: and??:

p—1 p—1

|
]

Then ¢(n) = nP*1 —n — P! = 0. Since

(14+a)Ptt —1—a—aP* > (1 +a)Pt! —1—a—aP — aPt!

o(1+a) =
>(1+a)(1+a)P—(1+aP)) >0

we derive n < 1 + a, which implies the right-hand side of (2.12).

2b. f N =1,20r N > 3and 1 < p < 25, then K < 0. Hence, if fas(yo,;r) > 0, or equivalently
—p* < M <0, the equation fps(y) = 0 has no positive root, if M = —u*, it has a double root

Y_,« where
P 1
2 =1 (—K\p-1 o1 1
p—1 p p

and if M < —p* the equation (2.15) has two positive roots 0 < Y7 s < Y33 and since f},
does not vanish at Y} s, they are C! functions of M € (—o0o0, M*), respectively increasing and
decreasing. Since M, K < 0, we obtain from fy;(Yas) =0,

p+1

K\ r-1
}/].,M > <M> )

p— 1 P p—1 57:& 2 p—1
5 YQ’M < _MYZ,M = Yo u < F (=M)»r-D

For a sharper estimate, we have for M large enough,

() (R ()) e

and
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Hence p+1
K\t K\r 2 ((p— DK\
— <Yimu<|— 11— — P
M ’ M K 2M
Similarly
ptl et ptl
2\t _ptl K Pt 2\ 1 _pt1
<> (_M)p(pfl) 1— _ < Y2,M < () (—M)p(pflh
p—1 M|M]|» p—1
The estimates (2.13) follow. O

2.3.1 Upper estimate of the regular solutions

We first recall the following estimate in the case M > 0, consequence of the fact that the positive
solutions of (1.1) are superharmonic and proved in a more general setting in [7, Prop. 2.1 ].

Proposition 2.3 1- There exists no positive solution of (1.13) in (R,00), R >0 if M >0 and
either N =1,2 andp >1o0or N >3 and1l <p < % In particular there exists no ground
state.

2-If N >3, p> %, M > 0 and w is a positive solution of (1.13) in (R,00), R > 0. Then
there exists p > R such that

1 p+1
IN \7T p—1/p(N—2)—N\s1)| _ 2
U(T)Smin{< ) 2 (p( ) > }rfl, forall v>p,  (2.18)

p—1 2 (p—1)M
and
luy(r)] < min {(N —-2) <p2—Nl> ! : (W) ;7_1} . for all > p. (2.19)

Furthermore, if R = 0, inequalities (2.18), and (2.19) hold with p = 0.
The next estimate is verified by any ground state, independently of the sign of M.

Proposition 2.4 Let p > 1 and N > 1. Then the ground state w of (1.13) with u(0) = 1
satisfies

2 +1
u(r) < min {1, CNJ),MT’_ﬁ} and |u,(r)| < chp’Mr_% Vr > 0. (2.20)

Proof. The trajectory T, starts from (0,0) and enters the region C. If it stays in C, then x
is increasing on R. Since y < 1)2%31, if z(t) tends to some finite limit as ¢ — oo, it implies that
the limit set of the trajectory exists. It cannot be a cycle since x is monotone, thus it is one of
the equilibrium of the system. Hence x(t) < X for j =1 or 2if K <0 and M < —p* or

z(t) < Xpr if K > 0 and either M > 0 or —p* < M < 0. This implies that (2.20) holds. If

2p_
x(t) tends to oo, so does y because y(t) > xP(t) — %x(t) — | M| (21)%(?) " o0 as t — o0,
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Therefore 3, > CyP for some C' > 0 which would imply that ¢ > y!=P(¢)+C(p—1)t is increasing,
which is impossible.

Next we suppose that the trajectory leaves C by crossing the line £. Since it cannot enter

B through C (in the case K < 0, M < —p* ), it leaves C by intersecting £ and we de-

note by t; the first time where T,¢, intersects £. Then x¢(t1) = 0 and zy4(t1) = —y(t1) <

0. Therefore ¢; is a local maximum. Now the trajectory cannot cross again the half line
2(t1) 2z (1)

{(ZL‘, y):x=uz(t1),y > ﬁ} because on it there holds ¢ = =75% —y < 0. Hence z(t) < z(t1)

for any t > t;.

In the same way, either y is increasing on R and since x; = p%lx—y and z is bounded, y cannot
tend to infinity when ¢ — oo, thus y(t) = yo > 0, or y is not monotone and T, crosses C at a
first value t2, necessarily larger than t; and where z;(t3) < 0. Then yy (t2) =p |z(t2) [P~ a4 (t2) < 0
and t2 is a local maximum of y. Therefore Us>¢, (2 (), y(t)) remains in the subset of Q bordered
by the portion of trajectory of T,eq for t <ty and {(z,y) : 0 < « < z(t2),y = y(t2)}. This
implies that y(t) < y(t2) for all ¢ € R. Noticing that u(r) < 1 since u is decreasing, we get the
conclusion.

0

Remark. The above method does not give an explicit estimate of the upper bounds of z and y
and such a bound can be estimated in some cases. If M > 0 it follows from Proposition 2.3 that

for any p > 1 there holds
1
2N \r1 _ 2
u(r) < <> rop1,
p—1
thus this estimate is independent of M. Here a new critical value is involved in all dimension
N > 2, namely

p(2)=p+1) <;>TJL (2.21)

corresponding to the definition (1.20). If —p*(2) < M < 0, it is easy to check that the function

v = In u satisfies
—Av > qePD (2.22)

p+1
with a =1 — le\é')) > 0. We derive that the function w(r) = —(rN¥~1uv,(r)) is increasing,

with limit ¢ € (0, oo]. Hence

2
(=po(r) > (—pp(0) , 4P = D>
e >e + AN

This implies
2

u(r) < min {1,coafp%1rfpj} . (2.23)
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2.4 Linearization of the system (1.17) near equilibria
2.4.1 Linearization at (0,0)

The linearized system at (0,0) is

2z
e 1Y (2.24)
ye = —Ky,
which admits the eigenvalues
2
M =-K Ay = ——. 2.25
1 2= (225)

Note that \a — A\ = N — 2.

(a) Assume that N > 3 and p > 1, or equivalently K > 0. Then (0,0) is a saddle point.
There exists a unique unstable trajectory Tyns such that

lim (z(t),y(t)) =(0,0) and lim =—= =0, (2.26)

t——o00 t——o00 x(t)

and more precisely, from (2.8),

T M(p+1)2erit!
w(t) =e <1 N  2(N(p+1)+2p) 2p+1) (1+ 0(1))> (2.27)
Y1) = e G[ meWu + 0(1))> as t — —oo,

From Definition 2.1 and the lines which follow, the unstable trajectory T,,s coincides with the
regular trajectory T,.4. This is included in the region C for ¢t < T for some —oo < Ty < 0.
There exists also a unique stable trajectory Tg such that

lim (z(t),y(t)) = (0,0) and lim —F=——+K =N —2. (2.28)

t—00 t——o0 :C(t) p—1
Since N — 2 > Z%, T, belongs to the region A for ¢ > T for some 177 < co.
Remark. If T,y C Q satisfies tlim (x(t),y(t)) = (0,0), then T,y = Ty and the corresponding
—00
solution is a ground state. The same conclusion holds, if Ty C Q satisfies , lim (x(t),y(t)) =
——00

(0,0). Such a solution is called a homoclinic orbit at (0,0). Because of the uniqueness of the
stable and unstable trajectories of a saddle point, it is unique in the class of solutions satisfying
(2.28). Equivalently the class of ground states u of (1.13) satisfying u(r) ~ cr>~" for some ¢ > 0
is then a one parameter family characterized by u(0) = wy.

(b) Assume that N >3 and 1 < p < &5. Then K < 0 and 0 < A; < Xs. Hence (0,0) is a
source and all the trajectories of (1.17) in some neighbourhood of (0,0) converge to (0,0) when
t — —oo. Among those trajectories there exists one fast trajectory which satisfies
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It is actually the regular trajectory T,.4. There exist also infinitely many slow trajectories which
satisfy
lim @ =N —2.
t——o0 x(t)

(c) If p = %, then K = 0and A\ =0 < Ay = N — 2. We still find the regular trajectory
T4 associated to Ap and the corresponding eigenvector (1,0). By the central manifold theorem
corresponding to A; there exists an invariant curve passing through (0, 0) with slope N —2. Using
the matched asymptotic expansion method, one finds that if M < 0 there exists a solution x of
(2.1) such that z(t) ~ Cn |M|_ﬁ t1=N when t — oo, i.e. u(r) ~ Cy |M|_ﬁ r2~N(nr))=N
when r — oo, and if M > 0 there exists a solution x of (2.1) such that x(t) ~ C'N]\J_ﬁ (—t)=N
when ¢ — —o0, equivalently u(r) ~ Cy |M|7ﬁ r?=N(In(2))= when r — 0.

(d) If N =2, (0,0) is a source with \; = A\ = 1%’ with corresponding eigenspace (1,0). The
linearized problem is equivalent to equation
4 4
T — Ty + 5% = 0

q—1 (g—1)

with general solutions z(t) = aer1 + bteiT for some real parameters a,b. Hence there exists
infinitely trajectories of (2.1) tending to 0 when ¢ — —oo and they are tangent to (1,0) at
(0,0). The regular trajectory T;e4 corresponds to b = 0 and the other trajectories correspond
to singular solutions w of (1.1). They satisfy u(r) ~ blnr as » — 0 and there holds

“Au =P+ M|Vu|rT — 21bé,,

in the sense of distributions in B, for some ¢ > 0.

Next we give a general result in case the system admits only one equilibrium in Q.

Lemma 2.5 Let N > 3, p > % and M € R. If u is a regular solution the following tetra-
chotomy occurs:

(i) either lim, o0 rN"2u(r) = ¢ for some ¢ > 0,

(i) or u(r) ~ Up(r) as r — oo,

(7ii) or u(r) has an w-limit cycle surrounding Pyy,

(iv) or u(r) changes sign for some r > 0.

Proof. By assumption Py is the unique equilibrium. The trajectory T,.4 starts from (0,0) and
remains in the region C where x,y; > 0 for t < tg < oco. If tg = 00, u is a ground state, hence it
is bounded from Proposition 2.4. Its w-limit set is non-empty. Because x and y are monotone,
it converges when ¢ — oo to some point which is necessarily Py;. If tg < oo, then at t = tg
the trajectory leaves C through L since it cannot enter in B, and it enters the region D where
xy < 0, y > 0. Moreover z;(tg) = 0 and x(t9) > Xps. Then three possibilities occur:

() either z(t) — Xjs monotonically when ¢t — oo; thus the trajectory converges to Ppy.

(B) either x(t) — 0 monotonicaly when ¢ — oo. Since (0,0) is a saddle point, then T.,=Ts;.
This implies that T4 is a homoclinic trajectory at (0,0).



Quasilinear elliptic equations with source reaction 20

() or there exists t; > to such that z;(t1) = 0. Then z(¢;) < Xps. Hence T, enters the region
B and by continuity there exists t' < to such that x(t') = x(t1) and y(t') < y(t1). Therefore the
bounded region of R? bordered by the segment I = {(z,y) : = x(t1),y(t') <y < y(t1)} and
the portion of Tey defined by {(x(t),y(t)) € Treg : t' < t < t1} is positively invariant (notice
that z; > 0 on I) and it contains Pj; and no other equilibrium. Therefore either the trajectory
converges to Pys or it admits an w-limit cycle which is a closed orbit surrounding P,. O

2.4.2 Linearization at a fixed point Py := (X, Yar)

Suppose that Py (or Pj ) exists. Then setting (z,y) = (Xar, Y )+ (T, Y), the linearized system
at this point is

2x
p—1 7
) . - ) (2.29)
U, =pXy; T+ (pflMYAZ —K) 7,

Ty =

Using equation (2.15), the eigenvalues of its matrix are the roots of the trinomial

TN =N — (i ) g0k — 2 ypyen 2.30

p—l p—1

If M is such that MY = L, then 2K — ZEMY); = 2K — L =K + -2 = N — 2, and
we denote by M such a value of M which is characterized by

——MY "' = L. (2.31)

Since Y}y is a positive root of (2.15), we get

2 Ny g Pl (N=2)(p—1)7 44
p—1) M 1

hence M, well defined for N > 2, is given by

— (4L (1 (p—1\P\FT (p+1)((N—-2)p— N —2)
M=’ —_— = . .
2p ( ( 2 )) (4p) 75T (N = 2)(p — 1)2 + 4) 71 (2:32)

A

That is (1.21).

Remark. We see that M > 0 (resp. M < 0) if and only if N > 3 and p > {2 (resp.
1 <p< %ifNZSandanyp> 1if N =2). If M = M and N > 3, the eigenvalues
of the linearized system are purely imaginary. If p = %, then M = 0. It is known that in

N2 N
that case the point Py = ((1\72_2) 2 (%) 2 ) is a center for the system (1.17) associated to

Nt2
—Au = uN-2 and that there exist infinitely many cycles turning around P, with equation

19 N—-2 2ov N2
PP L = ~E. 2.
23/ + 5 x 5 Ty (2.33)
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It can be verified that E < 0, in particular using the function F' defined in (2.36). For N > 2
and 1 <p< %, there always holds M < —u* and more precisely

Lemma 2.6 If N >3 and1<p<%, then M < —p*. If N =2 and p > 1, then M = —p*

Proof. From Proposition 2.2 and identities (2.17) and (2.30), there holds,

p—1

p—1
pr<pe= ptYIL <pYt = 2|K| < |L].

But |L| —2|K| = £=2 and the conclusion follows. If N = 2 we just replace < by = in the above
series of equwalences ]

Lemma 2.7 Assume N > 3. Ifp > % and M = M > 0 then Py is a weak sink and a
Andronov-Hopf bifurcation point. If p < NJ_FQ and M = M < 0 then Py is a weak source.

Proof. We recall that a weak sink is an asymptotically stable equilibrium which attracts the
nearby points as t — oo at a rate slower than the usual exponential rate. A weak source is a
weak sink of the system obtained by changing ¢ into —¢ (see [17, Chap. 9]). We write & = z— X,
y =y — Yy and obtain the new nonlinear system

T I% ]
1 ___ p=1 (2.34)
e = pXPle + MY g — Ky + h(z,7),
where
Wz, ) = 17 + cay® + c37° + ey + ...,
with ( ) ( e
p p_ p—2 p p +1
=— X — 7MY p
C1 B R (6)) ( n 1)
plp—1)(p—2) ,p-3 2p(p— 1)— —2&2
=X = —7MYf” .
C3 6 M C4 3(p + 1) Wi

Setting a? = ﬁ + N — 2, we have poﬁ_l = a?, since X37 = pTY and M satisfies (2.31),
thus ) ( ) ( )
« p—1)L p—1)L
L= > =P TR 2.35
Yy 2Ty P T3prnZ (2:35)

In order to compute the Lyapunov coeflicients we transform the system by setting

2z
-1

=VvVN-2,s=~t, yw=
p

The new system is

ws:—i‘—ih@,%—yw).
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By integrating the first line and using the expansion of h, we obtain

_ 2 _ 3
9 2z _3 2z
c1x” + 2 ( — 7w> +c32° + ¢4 < — 7w> + ...

1
2 p—1 p—1

ws = —X

This can be written in the following way
_ = —2 - 2 -3 —2 = 2 3
Ws = —T + 20T" + V11TW + Yy ow”™ + V30T° + Vo 1T°W + V1 2w + 1y 3w’ + ...

By [17, Th. 9.2.3], the Lyapunov coefficient is given by A = v 9+ 3193+ 1,1 (12,0 + 10,2) which
yields by computation

4co (p — 1)(N + 1)

_ 2 . __ 2P UV T )

fy_/\ [0 <3C4 1 (CQO[ + Cl)) « ( 1)2 ]\24

If L >0 (resp. L <0) P*M is a weak sink (resp. a weak source). Ol

2.4.3 Energy and Lyapunov functionals for system (1.17)

If z(t) is a solution of (2.1) we set

Pl = Sy e K
2 p+1 p—1

(2.36)
Then, if (z(t),y(t)) € Q, we have

2z
p—1

(e () ) (20,

Hence, if LM > 0, F' is monotone in the region {(x,y) €Q: I%x —y > 0}, located under L.

F . 2 P — q
1(t) = —Laxy — M — 2 xy = — (Lay + My?) 2y

Remark. a) This function was introduced classically in the case M = 0, leading in particular to

N+2
(2.33) when p = 555,

b) Using this function we can deduce an upper estimate for regular solutions, completing, Propo-

sition 2.3 and Proposition 2.4, namely if M > 0 and p > % any ground state satisfies
1 1
u(r) < <7’+1K> "7 forallr > 0. (2.37)
p—

Next we construct a Lyapunov functional adapting the method initiated by [2] and already
used in [3] and [4].

Lemma 2.8 We define on R?

2 3p+1

Tley) = K a2 N Dlal T 1 20 N
T = — — — ,
T | -1 3p+1 2 4
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ZZS; if (z(t),y(t) is a solution of (2.39), V(t) = J(x(t),y(t)). If (z(t),y(t)) = (z,y) € Q we
= (pQ—xl y> (p2—ml y> - <<p2—xl>pfl yﬁl)]
~ () ()T ) )

+

Consequently, the function t — V(t) is decreasing if M >0 and 1 < p < %, and increasing if

M<Oandp2%.

h

(2.39)

Proof. We recall the ansatz introduced in [2] for finding a Lyapunov function for a system of
the form

Ty = f($7 y)
ye = g(x,y). (2.40)

If f(x,y) =0 <= y = h(zx), then consider the function
y x
L(z,y) = / fz, t)dt — / g(t, h(t))dt. (2.41)
h(x) 0

In the case of system (1.17), h(z) = [)2%”1, and we find L(x,y) = J(x,y). Then (2.39) and the

conclusion follow. O

Remark. If LM > 0 we set

(Qx)pl_y’% L 2 L\ a1

—1 q—1

H={(2,y) eQ: L -2 o =2 =y=<>
P il M p—1 Mq

Then

WD) =0 = (ol yte) € HU{ e € @i 2 =),

Moreover H is starshaped with respect to 0 and we set
( 2 QTP Zp
2z \pHL 0T 1
p—1> yr 2x L \a1
R = U OH =< (z,y) €Q: 5 < or ﬁ:yg

L
0<6<1 p—1 Y M P Mg

If M > 0 we have Vy(t) > 0 if (z(t),y(t)) € R and Vi(t) < 0if (z(¢),y(t)) e R*NQ. If M <0,
the signs of Vi (t) in the same regions are opposite.

In [7] we also used a function introduced in [19] for equation (1.2). When ¢ = % it reduces

to
1 2p
Z(r)=r" (p—; w2+ a4 a4 M |Ur|pf1> ; (2.42)
r



Quasilinear elliptic equations with source reaction 24

where a = %. Since r = ¢!, we find that in Q,

2(p+1)L 1 2p
Z(r)=e ZEa (p—; y? + 2Pt —azy + Mxyﬁf1> . (2.43)

The function satisfies the relation

9 pot B
z, - ]FleurPHZ = rolyy, (2.44)
where )
AN — 1)(p? — 1) u, 3 po1
U= ( )(p2 ) u <_L+p(p+ Q)M'ruri+1>
(p+3) r (p+1) (2.45)
2(N —1)(p* — 1) < p(p +3) Pl> b '
= zy | —L + Myr+1 |y »-1
p+3? 7 pr12?

Note that ¢/ has a constant sign in Q if LM < 0.

2.4.4 Comparison results

Lemma 2.9 Let N > 1, p > 1 and M, M’ € R such that M < M'. Then, as long as they lie
below the line L, i.e. x; > 0, the reqular trajectories T%g and T%g associated to M and M’
respectively do not intersect. Furthermore T%g is below T,{Vég.

Proof. We use the expansion (2.27) and deduce, for M; = M or M’, that

yoli) _ g (; " M@-MO + o<1>>> (2.46)

as t - —oo. Hence T,]fég is below T%/g for t < t* for some t* € R. Suppose that the trajectories
intersect for a first time at some point (xg,yo) below L. Since the system is autonomous, there
will exist two solutions of the systems relative to M and M’ satisfying at the same time tg,
M (tg) = M (tg) = xo and y™ (tg) = y™' (to) = yo. From (2.2), z,"(to) = z," (to) > 0 and
2p
yy' (to) = yéw(to) + (M — My < th/ (to). Hence the intersection of the two trajectories is
transverse and the slope of T%g at this intersection point is smaller that the one of T%lg which
is impossible. The second assertion follows immediately. O

3 Study of ground states of (1.17) when M > 0

When M > 0 and either N >3 and 1 <p < %, or N =1,2 and p > 1, there exists no ground
state by Proposition 2.3; in this section we assume N > 3 and p > %
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3.1 Behaviour near the equilibrium

Since M > 0 and p > % there exists a unique equilibrium Py; € Q. The sign of the real part
of the characteristic roots of the linearization of the system (2.2) at Py; depends on the position
of M with respect to M defined in (2.32).

Lemma 3.1 Assume M >0 and N > 3.
1) If &5 < p < 822, then P is a source.

2) If p> %+g’ then Py is a sink when M < M and it is a source when M > M.

3) If p > %J“Q then Py a weak sink. Furthermore, if 0 < M — M < €, for € small enough, there
exists a periodic trajectory in Q surrounding Py .

Proof. Step 1: Assume % <p< % The linearized system is given in (2.29). Because

M > 0, the product of the characteristic roots given by equation (2.30) is positive since it is

given by
2 p—l 2 2 —1\?___
ok — L Myt = = g4 -L (L vl
p+1 p+1 p+1 2

2 p—1
The sum (or the real part) of the characteristic roots is equal to flM Y7 — L which is
positive, as p < & ‘f2 1mphes L < 0. Hence P, is a source.
Step 2: Assume p > 5=, hence L > 0. As in Step 1, the product of the characteristic roots

p—1
is positive. By Proposition 2.2-(1), MY};/™ is an increasing function of M, then the sum (or

9 p=1
the real part of) of the characteristic roots, given by %M Y™ — L is also increasing and
p

vanishes if M = M. It is negative if 0 < M < M and positive if M > M. It implies assertion 2.
Step 3: If M = M, and p > N+2_ then P57 is a weak sink by Lemma 2.7. The appearance of the

N—2’
limit cycle, which is the called the Andronov-Hopf bifurcation, occurs for M > M when M — M
is small enough (see [17, Chap. 9]). This implies assertion 2. O

Remark. The product of the characteristic roots is also expressed by

2p el 2M

~1\2
pH1 _ b p—1
2K—mMYM o+l o —i—2< 5 > Yy

Hence it is positive for any M > 0, p > 1.
Next we give some sufficient conditions for nonexistence of a periodic solution or a homoclinic

orbit at (0,0).

Lemma 3.2 Assume N > 3. If M >0 and 1 <p < N+2 the system (1.17) admits no closed

orbit in Q. If0 < M < M and p > N+2 the system (1 17) admits no cycle in Q surrounding
Py
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Proof. If v is a non-trivial closed orbit it corresponds either to a T-periodic solution or a solution
such that

lim (2(t),y(t)) = lim (2(¢), y(2)).

t——o0 t—o00

The function V defined in (2.38) is monotone and it satisfies either V(0) = V(T') or . lim V(t) =
——00
tlim V(t). Hence it is constant and by (2.39) it implies y(t) = I%x(t) for all ¢, a contradiction.

Next we suppose p > %Jrg, 0 < M < M and that there exists a T-periodic solution (z(t),y(t)
with trajectory v C Q surrounding P)s, hence Pys belongs to the bounded connected component
I of R? \ {7} bordered by . Since Py is a sink or a weak sink by Lemma 3.1, there exists
a neighbourhood O of Pj; such that all the trajectories issued from O converge to Py as
t — oo. Hence any trajectory issued from O, necessarily contained in I', has an a-limit set
in ' which is either a stationary point different from Pp;, which is excluded, or a limit cycle
{(@(t), y(t) }repo,ry =7 C T (7 is its period). This limit cycle is not stable, hence, by Floquet’s
theory

[ (P SREOION) - [T(ER - L)az0 o)

We perform the change of unknowns & = « — Xy, ¥y = y — Yas used in Lemma 2.7 which
leads to the system (2.34). The explicit value of the remaining term is

1 _ 2p 2p 2=l
Wz, g) = (2 + Xa)P — X5 = pX57' 2+ M (g+ Ya) 7t — MY — ZBMY 5Ty (3.2)
= ®(z) + MY(y),
where ® and ¥ are defined accordingly. It is positive by convexity because M > 0. Since from
(2.34),
2 T T
2 M@t - / G(t)dt = 0,
0

p—1J

0=pXh,S / dt+MYA§“/ dt—K/ dt+/ h(z,y)dt
0

plp—1P 1 2p oy /T_
——2Y, — MY — K )

Using the equation (2.15) satisfied by Yj; it yields

(p— )(K—p]‘flyﬂz 1>/0Ty(t)dt<0.

M p—1 T T
By (2.11)-(ii), K — ?YJ\TI > 0, hence / g(t)dt < 0, therefore 7'_1/ y(t)dt < Yy and by
p 0 0

p—1
1 [T, et 1 [T b1l
T/O (y(£)) P dt < (T/O y(t)dt)p <Y (3.3)

and

we derive

concavity,
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Combining (3.1) and (3.3), we obtain

2pM
L< Z%Y;fl. (3.4)

s

p—2 -
Since M — MY/™" is decreasing by Proposition 2.2-(1-ii) we have for 0 < M < M

p—1
0= M yim g M
p+1 M p+1

which contradicts (3.4). O

YM ~ I,

Remark. Up to changing the sense of variation of V(t), the proof of the first assertion shows
that there exists no closed orbit in Q if M < 0 and p > % However the proof of the second
assertion is not valid when M < 0.

The nonexistence of any periodic solution can also be proved when the equilibrium is a node
(i.e. the two characteristic values are real with the same sign).

Lemma 3.3 1- Let N > 3 and p > N+2 There exists a unique and explicit Mo > M such that
for any M > My, Py is a repelling node, degenerate if M = My. If M < M < My, Py is a
repelling spiraling point. If 3 < N <10 and 0 < M < M, Py is an attracting spiraling point.

2-If N > 11 and % <p< NN42‘2/\/: there exists a unique and explicit 0 < M; < M
such that if Py is an attracting node if 0 < M < My and an attracting spiraling point if

M, <M< M.
S-If M > My or if 0 < M < My, there exist no periodic trajectory in Q around Pys, neither no
homoclinic trajectory in Q at (0,0) surrounding Pyy.

Proof. The characteristic values of the trinomial 7'(\) defined in (2.30) are real if and only if its
discriminant D is nonnegative. By computation we find

1 2
D:( 2p MY —L) —8<K—MY”“>
11 11
2]9 p;} ? 4p T;—i 2
- <p+1MY ) +(2—L)mMYM 412 8K (3.5)
2p Zﬁ% 2
- (pHMYM —L+2> 41— L +2K).

Observing that 1 — L + 2K = N — 1 by (1.16), we deduce

9
D:< flMW+1 L+24+2VN ><+MY”“ L+2—2\/N—1>.

Hence (3.5) is satisfied if one of the following conditions holds:

pt 1
(i) MYED g%(L—Q—sz—m,

-1 fl (3.6)
(i) Myt > (p 242y N ).

2p
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It is easy to check that for p > %, one has 0 < L — 2+ 2v/N —1 < gK. Since M > 0, by

p=l
Proposition 2.2-(1), the mapping M — MY} is continuous, increasing and from [0, co) into
[0,00). Therefore there exists a unique My such that

Br_ptl
MYyt = e (L-2+2VN-1). (3.7)
D
Using (2.15) we find
0= 55— |5~ o 3.8)
2p 2 p—1 ptl  (p+DVN—1\ptl (
(5K + 3t - AL
Concerning the upper bound in (i), there holds
N —2v/N —1
L-2-2VN-1>0<<=p> d N >11. 3.9
PN oyN—1-2 "7 7 (3.9)
Then we can define M; by
b _ptl
MY =—— (L—2—-2y/N —1). 3.10
14 2]7 ( ) ( )
which leads to
bl (poi\E K- B 2UNT
M= 2p 2 p=lyr | ptl (p+1)vV/N-1 T—lu (3.11)
(W = f)

Note that
p=1 _ p=l p=1
MYy = L—2-2/N-T<L=25MY»" <L-2+2/N—1= MYy
Hence L
My < M < M. (3.12)

Next we prove 3) by adapting an argument introduced in [12] for quadratic systems. We return

to system (2.34) that we write under the form
Ty =aZ —j

3.13

Gi = cT + dj + ©(z) + MU(p) (3:13)

which defines a, ¢, d with ® and ¥ given by (3.13), and the trinomial (2.30) for characteristic
values endows the form
T\ =X — (d+a)\+ad +c.

In the range of values of M, the discriminant D = (d+a)? —4(ad +c) = (d — a)? — 4c is positive.
We consider the intersection of a straight line ¢ passing through P with equation § = AZ with
a trajectory (Z(t),y(t)). Then

U=79 — Az, = (A2 +(d—a
= (A2 4 (d— a)A + o)z + ®(z) + MTU(Az).

N
+
&
8

+
A
o
+
=~
S
S
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We can choose A # 0 such that A% + (d — a)A + ¢ = 0 since D > 0. Since ® and ¥ achieve
positive values, we derive from the expression of h that U > 0 for  # 0. This proves that any

closed orbit around Pj; or passing by P, can intersect £ only one time which is a contradiction.
O

3.2 Existence or nonexistence of ground states

Proposition 3.4 Let N > 3, % < p < % and M > 0. Then theQre exists no radial
ground state, and there exists a singular solutions u(r) such that lir%rpju(r) = Xy and
T

lim 7V ~2u(r) = ¢ for some ¢ > 0.

r—00

Proof. Assume that T, remains in Q, by Lemma 2.5 we have three possibilities:

(a) either T,¢, converges to Py; when t — oo, which is impossible since P is a source,

(B) or Treq has a limit cycle at oo, and this is impossible by Lemma 3.2,

() or T,ey converges to (0,0) when ¢t — oo, hence it is a homoclinic orbit. The function V
defined in (2.38) is decreasing by Lemma 2.8. Since V(—o00) = V(o0) = 0, it is identically 0 and
so is V4. This implies that Q;f(tl) —
Hence T, does not remain in Q.

y(t) = 0 for all ¢ which is a contradiction.

We denote by = the connected region of Q bordered by the semi-axis {(z,y) : z = 0,y > 0}
and T, Since H is outward on the semi-axis, = is negatively invariant. By Section 3.4.1,

(0,0) is a saddle point, hence the stable trajectory Ts; = {(x(t), y(t)} satisfies tlim yg; =N-2
—00 I

which implies u(r) ~ cr?~ for some ¢ > 0. Its a-limit set a(Tg) cannot be a limit cycle as we
have seen it above. If it contains (0,0) it implies again that V, which is monotone, is equal to

0, hence V; = 0 and %(tl) —y(t) = 0, which is impossible. Hence a(T;) contains Pys. Since Py
is a source it implies that Tg; converges to Py; when t — —o0. O

Proposition 3.5 Let N > 3 and p > % Then for any 0 < M < M there exists a ground
state u which satisfies u ~ Uy at oo.

Proof. f 0 < M < M (resp. M = M), Py is a sink (resp. a weak sink). Suppose first that
the trajectory T,cy does not stay in Q, then it leaves Q at some point (0,ys) with y, > 0. As
a consequence, the stable trajectory Ty at (0,0) remains in the negatively invariant region =
defined in the proof of Proposition 3.4. Since it cannot converge to Py; when t — —oo it admits
a limit cycle surrounding Pj; which contradicts Lemma 3.2. Therefore T,., C Q and, again
using Lemma 3.2, either it converges to Py when ¢ — oo and the proof is complete, or to (0,0)
and T,.y = Ty is a homoclinic trajectory. The trace of the linearized system (2.24) at (0,0)
is equal to 1% — K = —L < 0. Therefore, from [17, Th. 9.3.3] the connection is attracting
and the trajectories inside the bounded region 7 bordered by the homoclinic trajectory T4
spiral towards it when ¢ — oo. Hence any such trajectory inside 7 either has a limit cycle
when ¢ — —oo which is impossible by Lemma 3.2 or converges to Pj; which is also impossible.
Consequently there exists no homoclinic trajectory at (0,0) which ends the proof. O
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Next we study the case where M is large enough. We have already proved in [7] that for any
p > 1, there exists My = M;(N,p) > 0 (see introduction) such that if M > M; there exists no
ground state, radial or non-radial. In the radial case we have a more precise result.

Proposition 3.6 Let N > 3 and p > %—f% Then for any M > My there exists no ground state,

2
but there exist singular solutions u which satisfy liH(l) re—1u(r) = Xy and lim 7V 2u(r) = ¢ > 0.
r—> 700

Proof. Since M > My > M, Py is a source by Lemma 3.1, and there exist no periodic orbit
neither a homoclinic trajectory at (0,0) by Lemma 3.3. Thus T, leaves Q through the semi-
axis {(0,y) : y > 0} by Lemma 2.5. As in the proof of Proposition 3.5 the stable trajectory
T at (0,0) remains in the negatively invariant region = already defined. Then it converges
necessarily to Py; when ¢t — —oc. O

Next we study the case M < M < M.

Theorem 3.7 Let N > 3, p > % There exist two positive real numbers Mmin and me

such that M < Mmin < Mmaz < My such that,

1- For M < M < Mmm there exist ground states ondulating around Up;r when r — oo and
positive singular solutions ondulating around Uys on [0, 00).

2- For M = Mmm and for M = Mmaz there exist ground states u such that lgn rN_Qu(r) =
s o0
c> 0.

3- For Mmam < M < My there exists no ground state and there exist singular solutions such
that lim Tp%u(r) = Xy or turning around Py when v — 0, and lim ¥ “2u(r) = ¢ > 0.

r—0 r—00
Proof. Since M is subject to vary, we put it in exponent in the different specific trajectories of
the system. For M < M < My, Py is a source and the trajectories converging toward this point
when t — —o0 are spiralling. We have three possibilities:
(i) either T,]ig leaves Q at some point (0,ys), ys > 0,

(ii) or Tﬁig has a w-limit set which is a periodic orbit surrounding Py,

(iii) or Tﬁig converges to (0,0) when ¢ — oo.
If (i) holds, then Tﬁ remains in the region = := =M of Q bordered by Tfig and the semi-axis

{(0,y) : y > 0}. Then, either it converges to Py; when t — —o0, or it admits an unstable (from

outside) a-limit cycle. We denote by (22, y2) the first backward intersection of Tg with the
M

reg

Because of the relative position of Ti/t[ and T

straight line £. Furthermore T,/ intersects £ at some point (necessarily unique) (z}%,, Y, ).

M there holds

reg’

g(M) =z, —x3 > 0.
If (i) holds, then we claim that T,, leaves Q at some point (zs,0) with z; > 0. Indeed, if
TZ C Q, it is bounded by Proposition 2.3. Hence the a-limit set is non-empty. It cannot be
(0,0) since Tﬁ # Ti\ig and Tg cannot converge to Py or have a limit cycle around P since

it would imply that Ts N'T,., # {0}. Hence T,, intersects £ at some point (M, yM) and Tﬁig

reg
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intersect the first time £ and (z}L,,yM,). Because Tiig lies in the region of Q bordered by TZ
and the semi-axis {(z,0) : > 0}, there holds

g(M) = 2, — alf < 0.
If (iii) holds then g(M) = 0.
The function g defined for any M € (M, My) is continuous. We know that there exists ¢ > 0
such that for any M € (M, M + ¢), Tﬁig has a w-limit cycle surrounding Py, hence g(M) < 0.

If M = My, Tfig leaves Q at some point (0,ys) with ys > 0 from Proposition 3.6 and the
intersection of T,]ig with the semi-axis {(0,y) : y > 0} is transverse at (0,ys). By continuity

with respect to the parameter M, for any M € (My — €, M|, for € > 0 small enough, Tﬁig
leaves Q at some point of the semi-axis. So we are in situation (i) and g(M) > 0.

Then, by continuity of g there exist Mmm and Mm(m such that M < Mmm < ]\meax < My such
that g(Mmm) = g(Mmax) =0. If M = My or M = Moo, T;\;[ = T and the trajectory

reg

T is homoclinic at (0,0). For M < M < M, we are in situation (ii), which proves 1.

reg
For M > M4, we are in situation (i) and either Tg converges to Py or has a a-limit cycle
surrounding Pp; when ¢t — —o0. O

Theorems A and A’ follow from the previous results.

Remark. It is a challenging question to prove that there is a unique M such that there is a
homoclinic trajectory at (0,0). Up to now all we can prove is that if there exist two parameters
0 < M; < M, such that for each of them there exists a homoclinic trajectory of (0,0) in Q
T =T, =T,', (i=1, 2), then T"? is a subset of the domain of Q limited by T""*.

unst

4  Study of ground states of (1.17) when M < 0

We will distinguish the cases p > % where system (1.17) admits a unique non-trivial equilib-

rium and 1 < p < % where the existence of zero, one or two equilibria depends on the value

of M with respect to —p* defined in (1.20). In order to avoid confusion we set
B (p+1)|p(N—-2)—(N+2
= |M|= L) ( ( )L. (4.1)
(4p) 77 (N = 2)(p — 1)? + 4) 7T

N+2

Thenﬁzﬁifp>%andﬁ: ifp< §5

-M
Proposition 4.1 let N > 3, p > % and M < 0.
1-Ifp > %, P ois a sink.
2- If% <p< %, then Pyr is a sink if M < M, it is a source if M < M < 0, and
Py is a weak source. Moreover there exists My < M such that Pyr is a node if M < M. If
% <p< NA2VN_1 there exists My € (M, 0) such that Py is a node for M > My and a

N—4+2/N—-1’
spiraling equilibrium if My < M < M.
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Proof. The equation (2.30) satisfied by the characteristic roots can be written under the form
TO) = X2+ (22 M)y L) A+ 2K + 2 M|y =0 (4.2)
a p+1 M p+1 M '

Since K >0 the product of the roots is positive; the real part of the roots is positive if and only

if pzfl |M!Y”+1 +L<0.Ifp>% N+2 , then L > 0 and Py is a sink. If 7 <p < ¥ N+2 , then M
is characterized by
2p =
—M Yf+ =L <0. 4.3
LY~ L < (43)
p—1
By Proposition 2.2 the function M +— MY;7™" is increasing and onto on (—oo,0). Therefore,

Py is a sink if M < M and a source if M < M < 0. Finally, if M = M, the two roots are
imaginary and by Lemma 2.7 Py is a weak source. Finally, from (3.6), the characteristic roots
are real if and only

2p | M M

plrl’w“ <|L|+2-2VN | |Y"+1 > |L|+2+2VN (4.4)
p

Notice that there always hold |L| +2 — 2¢/N —1 < |L| since N > 3. The first condition

in (4.4) requires |L| + 2 — 2¢/N —1 > 0, equivalently p < NE2VN_1_ Gince there holds

N—4+2\/N-1
Nj\i < N]:rié \]/V];il < %fg, the conclusion follows and My and M; are given by (3.8) and
(3.11). O

The most intricate case corresponds to 1 < p < % or N = 1,2 where there may exist 0, 1
or 2 equilibria.

Proposition 4.2 Assume N =1,2 andp>1or N >3 and1 <p < %, M < —p* and let
Pj vr, j=1 or 2, be the two equilibria of (1.17).
1- Then Py is a saddle point.
2- Let N > 3. IfM < M < —p*, then Py is a source; if M < M, then P \r is a sink; P.
is a weak source. Moreover there exist My < M such that P> vr is a node for M < My; there
exists also My € (M, —p*) such that Pay is a node for M < My or for My < M < —p*, and
it 15 a spiraling equilibrium if My < M < My.
3- Let N = 2. Then Py is a sink. There exists My < —u* such that Py is a node if and
only if M < M.
4- If N =1, then P>z is a sink and a node.

p—1 p—1
Proof. Recall that, from Proposition 2.2, M — MY/"}; is decreasing and M +— M YI"Jrl is
increasing. We first consider the linearized operator atﬁPl, m- The product of the roots of (4 2)

is equal to 2K — M}/l”j\’/[1 Since M < —u*,

P-i-l

2 bt 2 b=
2K — TPMY{;; < 2K + YT =0,
p ’ p

Hence P js is a saddle point.
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_ p—1
Next we consider Po . If M < M < —p*, since M — MY}/ is increasing,

p—1
= b+l
MY > MY)5) = 55 L (4.5)
and 5
2K — TpMYﬁj > 2K + T *thl —0. (4.6)
p

Hence P, p is a source. If M < M, then the sign in (4.5) is reversed and

2p 2p
MY”“ 2K — 7*1”’“ 2K + —— *thl = 4.
M p+1" ot 0 (4.7)

2
oK — L
Thus P s is a sink. By Lemma 2.7 P, 3; is a weak source, and assertion 2 is proved. Finally,
if N =2and M < —pu* = M from Lemma 2.6, therefore P>y is a sink.

Next we look for conditions which insure that P ps is a node. The characteristic roots are real
if and only if one of the two conditions (3.6) where Yj; is replaced by Y5 ar holds:

(i) p%flMY”“ >L—2+2YN
4.8
) % - (4.8)
(i) +1MY” <L—-2-2yN-—-1.
p

Forl<p< %, M— ®(M) = pipl MYP+1 is an increasing diffeomorphism from (—oo, —u*]
to (—o0,2K]. Since L—2y/N —1-2 < 2K there exists a unique M; < —p* such that ®(M;) =
L—2—2yN —1 and (4.8)-(ii) holds when M < M;.Since L —2+ 2y/N — 1 > 2K is equivalent
o (N —2)% <0, there exists no M < —u* such that (4.8)-(i) holds. When N =2 only M = —u*
satisfies (4.8)-(i) with equality. If N > 3 there exists a unique My < —p* such that (4.8)-(i)
holds. Hence for any My < M < —p*, inequality (4.8)-(i) holds with My and M; defined by
(3.8) and (3.11).

pt1
1 2
At end assume N = 1. For any M < —p*(1) = —(p+1) (p;-) ’ , there holds
p

2p +1 2p +1
— MYy - L< ——— Yy . =2K - L=-1 (4.9)

p+1 p+ " #
p—1 2
Therefore P py is always a sink and the discriminant of (2.30) is equal to <p2fl MYy ML+ 2> ,
hence the characteristic roots are negative. O

Notations. Under the assumptions of Proposition 4.2 there exist two stable trajectories Tl,’t],
j=1,2, converging to P; ) when ¢t — oo, associated to a negative characteristic value A; the
common slope at P js is z% + |A|. We assume that T;’; is locally below L and T;;z locally
above L, thus these trajectories are coming from the regions C and A defined in the proof of

Proposition 2.4. There exist also two unstable trajectories Tunst? j=3,4, converging to P
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when ¢ — —o0, associated to a positive characteristic value A’ and the common slope at P p is
p%l—)\’. We assume that T;f is locally below £ and T;f locally above L, thus, in a neighbourhood
of Pi ar, these trajectories belong also to the regions C and A. In particular the trajectory T;l
cannot cross L, neither the segment {(x,y) : © = Xi/,0 <y < Yypr}. Hence either it converges
to (0,0) when ¢ — —o0, or it crosses the axis {y = 0} at some point with positive z-coordinate

less than X7 .

p—1
Remark. In the critical case M = —u* there holds —I%M*Y_’”MTJ =2K =2 — N — L, hence the
characteristic polynomial is T'(A) = A(A+2 — N). If N > 3 the characteristic values are 0 and
N — 2, with respective corresponding eigenvectors (1, 1%) and (1, 1% + 2 — N). There exists
an invariant curve I' passing through Py py = P» s, tangent to (1, p%l) by the center manifold
theorem. If N = 2 the two characteristic values are 0 with the eigenspace generated by (1, 1%)
which is tangent to the central manifold (a curve) at (0,0).

Next we look for the existence of limit cycles. Since M < 0, we cannot argue using the
convexity argument used in Lemma 3.2. We use system (2.6) which also has a convexity property,
as we will see it in the proof below.

Lemma 4.3 1 If N>3andp > N+2 and M < 0, there is no cycle surrounding Py .
2-If N > 3, N 53 <p< N+2 and M < M < 0, there is no cycle surrounding Pyy.
3—IfN23and1<p< N
P .

5 or N =2 and M < M < —u*, there is no cycle surrounding

Proof. For 1, assume that there exists a periodic trajectory (z(t),y(t) surrounding Py;. By
Green’s formula,

0= ﬁ(—Hg(x,y)dx + Hi(z,y)dy) = // <0H1(x’y) + 8H23(x’y)> dedy

ox

Yy
[ (1)

Since L > 0 and M < 0 we obtain a contradiction. This proves the first assertion.
For 2 and 3 we assume that vy CQ is a cycle surrounding Py or P ps and we denote by I'g
the bounded domain bordered by vy. By Proposition 4.1 and Proposition 4.2, Py; and P» js are

(4.10)

1
sources. We use the system (2.6). Setting J (o, z) = (oPz)?+1, it becomes

op=0(c+2—-N+z+MJ(o,z)):= F(o,z)

z=2(N—po—z—MJ(o,z2):=G(0o2). (4.11)

In the phase plane (o, z) the equilibrium Py; becomes
— _(ym Xu\_ (2 (p -1
PM—(UMazM)_<X711\JI7Y7£;I)_(m7<T> Y )

X7 _
Similarly P ps becomes Py = (02,0, 22,Mm) = (YQ’M Q’M) = <p I, <p > YQPMI) and Py

Xom? YoM
and 7 ps are sources. Hence, any trajectory converging to this point Py (or P ) admits an




Quasilinear elliptic equations with source reaction 35

omega-limit cycle ¥ C T'y. Consequently this cycle is not unstable which implies that the Floquet
integral relative to this T-periodic solution is nonpositive:

7= /OT <8F(U’ 2) | 9Glo, z)> (t)dt < 0. (4.12)

do 0z
The computation gives

oF 0G 2p+1, p+2, , L
20 T 5, =(2—-p)o+2 z+Mp+1(az) Mp+1(oz)z’

p—1
= (2 — 2 — M——-J .
(2—p)o+ z+ P (0,z)

We set 0 = o)y +7 and z = z); +Z (the computation would be the same with (o, zp7) replaced
by (UZM,ZQ,M)), then

Tz 1 (T/oF 8G

Z= = T2 ) (o(t), 2(t))dt

t=1f (Ge+ %) w0

1 (7 1 [T
=(2— — o(t)dt 2 — - = zZ(t)dt. + ——— t t))dt.
@) (w1 [ 70at) 42— 20— g [0+ P [ o050

By addition
ﬂ—i—ﬁ:U—(N—2)—|—z—i—N—pa—z:2—(p—l)a
oz

=2—(p—You—(p—1o=—(p—1)7.

Integrating on a period, we get fo t)dt = 0. We also derive from (4.11)
1 [T
O:UM+T/ g(t)dt+2— N+ zp + / dt+/ (0,z)
0

p—1

=—-K+zy+ / dt+/ (0,2)d

Furthermore, opy +2 — N + 20y + MJ (o, 20) = 0. Indeed

2
= ——+2-N+zy+ / dt—l—/ (0,2)

T T
;,/O Z(t)dt = —% ; (J(o,2) — J(onm, 2z0r)) dt. (4.13)

Next we show that the function J is concave on Q := {(0,2) : ¢ > 0,z > 0}: indeed

1
gi(o—M, 20)T + gi(aM’ 20)Z + 3 (a5? + 2bo% + cz°)

where a, b and ¢ depend on o, o, z and zp; and:

1 1 1
gi(a,z):pila 712747 and gi(a,z):p_{_l

J(o,2) — J(on, zm) =

P __D_
oprt+tlz pt+l,
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— p 075% lerl b= p 71?7%12,1%1;1 and ¢ = p ﬁ 725;?
(p+1)29 o (p+1)29 0 (+1)20 0 ’
where (0g,29) = (0o + (1 — 0)op, 0z + (1 — 6)zp) for some 6 € (0,1). Since
: i S T R S
+ +
then ag? 4 2boz + ¢z° = a (7 + 22)2 = —2R?(t) < 0 and from (4.13),
e M oJ T MoJ T M [T
— | zt)dt = —— = F(t)dt — ——= Z(t)dt + — [ R(t)dt
7 #et = =5 o) [ a0t — S ) [ 20+ [ RO
M ik —piﬁ/T M/T 2
= ——" t)dt + — t)dt
T(p+1)UMZM OZ() +TOR()’
thus
P TEe\ T T
M p p
1+—%ﬁ%ﬁf Az@ﬁ:MA}ﬂmw (4.14)
ptl

1

", defined in (2.16)

1
When M < 0 we have already seen that Yy > yo v = (pzl <ﬂ>p

N—
1]

(resp. Y2 p > yo,m), which yields

b _ D
MoPHt, ptl p(p—1) p(p—1) _p(p=1) T
14+ MOMm Av <YMP+1 — Y, ?\}1 ) Yy, TS ) — / Z(t)dt < 0. (4.15)
p+1 ’ 0
Therefore
T 1 [T M(p-1) [T
—=(2- +2—zp — = tdt+/J ,z)dt
7 = (2=p)ou ZM T/o zZ(t) To+1) Jo (0,2)
e M(p—1)
=(2— 2 — —— | zZ@t)dt+ —=
@=pow+2= 2= 5 [ 20+ Lo )
Mp-1) [T
‘*zmp+1yA (J(0,2) — J(our 2ap) dt.
Hence from (4.13)
I 2p /T M(p—1)
—=(2- +2—zy— —— t)dt + —————=J (o,
T ( pP)om ZM T+ 1)/, z(t) p+1 (om, 2m)
2 p—1\P 1 2p  [T_ M(p—1) 2
— — ) R — t)dt + ——2Y > 4.16
p—1 < 2 > M wa+wl;d) T M (410)

2p el 2p T
:MYPH—L—/tht.
p+1 M T(p+1)/ (*)
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But from Proposition 2.2,

o 2p p—1 2p p—1 _p=1
M<M<0= ?MY]@“ —L=—" (MY]@“ - MY&“) > 0. (4.17)
p p

Combining (4.15) and (4.17) we obtain Z > 0 which contradicts the nonpositivity of the Floquet
integral in the case M > M. Finally, if M = M, then fOT Z(t)dt = 0, which implies by (4.14)
that R = 0 on the omega-limit cycle . Using the expression of R(t) we infer
1
Z =0 where % = — and (0g,29) = (0o + (1 — O)opr, 02 + (1 — 0)zpr),
290

o+

SIS

for # = 0(t) € (0,1). This is clearly impossible if one considers points at the intersection of -y

and the straight line £. The same argument holds when N = 2 where M = —pu*. O

Remark. The above proof can easily be adapted to recover the second statement of Lemma 3.2.

Indeed, if p > % and 0 < M < M, Py is a sink. Hence if there is a cycle surrounding Py, we

can assume that it is an a-limit cycle, say 7, and the integral Z given by (4.12) is nonnegative
P P

PrT T pT
Moy, zy,

p+1

_ p-1 p1
M < M there holds }%M Y/ < L from the monotonicity of M — MY"", which contradicts
the sign of Z.

by Floquet’s theory. The inequality (4.14) yields fOT Z(t)dt > 0 since 1+ > 1. For

In the next statement we extend [14, Prop. 5.6], which was proved in the case 1 < p < %,
but valid actually for any p > 1, and give precision on the behavior of the solutions. The

constant L
: (p+ 1) it
pi(1) = <p
(2p)
plays an important role. Recall also that p*(1) > p* := p*(N) for N > 2.

Lemma 4.4 Letp > 1. If N > 2 and M < —p*(1) or N =1 and M < —u*(1), then there
exists a ground state u. Furthermore there holds

2
ul(r) < ITplupH(r) for all r > 0. (4.18)

As a consequence, the corresponding trajectory Treg = {(@reg(t), Yreg(t)) hter does not converge
to (0,0) whent — oo. If1 <p < % and N >3 orp>1and N = 1,2, T,.4 does not converge
to Py v when t — oo.

Proof. Let u be a regular solution of (1.13) with «(0) =1 and u,(0) = 0. As in [14] we set

6 =3 (20) = o1 0)).
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Then G(0) < 0 and v > 0 on some maximal interval [0,71) with 7 < oco. If there exists a
minimal 9 < 7y such that G(r¢) = 0, then G, (ro) > 0. From (1.13) we have

Gr(ro) = ur(ro) (urr(ro) — puP(ro))
N-1,

= — uz(ro) — ur(ro) ((p + DuP(rg) + M |ur(ro)|%> .
70

_b
Since G(ro) = 0, u”(ro) = (51) 7" Jup(ro)| 77, hence

N -1

. w2 (r0) — s (ro) s (ro) P47 (" (1) + M)

Gr(rg) = —

Since u,(rg) < 0 we obtain a contradiction. Therefore G(r) < 0 for any r € (0, rg). By continuity
this implies (4.18) and in particular u(r) > 0, hence u is a ground state. Inequality (4.18) implies

1
u(r) > 5 for all >0, (4.19)
-1 /2 =1
(o)
from which follows
L. 2 2(p+1) \ 1
liminfre—Tu(r) > | —5 , (4.20)
T—00 p(p - 1)2

This implies that the trajectory T,., does not converge to (0,0) at infinity (a result which was
clear when 1 < p < NL—z in which case (0,0) is a source). For the last statement we have with
the equation (2.14) satisfied by the equilibrium X, and the fact that M < —p*(1),

2(N —1)
p—1
Since fM has two roots 0 < X1 3 < X2 p by Proposition 2.2 and M < —p*(1) < —p*(N), and
1
we have <;(§fj11))2> s X 1,M, the result follows. O

Next we give an alternative proof of a result of [16].

Lemma 4.5 Let N=1,2 andp>1o0orN>3 and1l <p< % If —pu* < M <0 there exists
no ground state.

Proof. If —p* < M < 0, the only equilibrium of (1.17) is (0,0) and it is a source by Section
3.4.1. If there exists a ground state then the trajectory T,., remains in Q. It is bounded by
Proposition 2.4 hence it admits an w-limit set which either contains an equilibrium or is a
periodic orbit. The two possibilities are excluded. O

Next we study the case M < —p*. In particular we cover the case M = —p* studied in [22]
with a different proof, using the energy function Z defined in (2.42).
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Lemma 4.6 Let N >3 and 1 <p < %, or N=2andp>1. If M < —u* then,
(1) Treg cannot converge to Py pr ast — oo with t — x(t) increasing,

(it) Treg cannot intersect L at a point between (0,0) and P pr.
Proof. The function Z defined by (2.42) satisfies (2.44) and (2.45). Then U > 0 as soon as

(p+1)*

p—1
M|yrtt < |L
it < B2
For M < —p*, there holds from Proposition 2.2 and (2.17),

(p+1)
plp+3)

p—1 p—1
p=1 . +1
MY < ey = E s K < L

Indeed we check that
(p+1DIL|—(p+3)|K[=2(N—-1).

Hence U > 0 for any y € [0, Y7 as].
(i) Suppose that Treg converges to Py with x(t) increasing, hence (z(t),y(t)) is below £ and
1

2p|M| rry BT
y(t) is also increasing. Then from (2.44) r +— e pit Jo |"T‘p+1d52(r) is increasing. But Z(0) =0
and le Z(r) =0 from (2.43) since L < 0 and x and y are bounded. This is a contradiction.
T—00

(ii) Suppose that Tyeg intersects £ at a point (Zar, gar) between (0,0) and Py ar, i.e. g < Y7 .

(a) If M < —p*, then consider the stable trajectory Tigl at Py s which is below L: Tigl cannot

converge to (0,0) when ¢ — —oo; indeed it would be a unstable trajectory at the source point

(0,0) and since T4 is the unique fast unstable trajectory at this point (see Section 2.4.1), it is

below T;l near zero and the two curve would intersect. Therefore Tigl leaves Q through the

semi-axis {(z,0) : > 0} at some at some x = z(7) and (z(t),y(t)) € Q for ¢ > 7. Setting
1

. 2p|M| ooy BT
7 = €7, there holds Z(7) = #uP*1(¥) > 0 and again r +— e »1 S lur P ds

with limit 0 as r — oo, a contradiction.
(b) If M = —p* and Treg := Trdg intersects £ at some point between (0,0) and P_,«, then
by continuity and transversality, Tp, intersects £ at some point between (0,0) and Py if

—p* —e < M < —p* provided € > 0 is small enough. This contradicts (a). O

Z(r) is increasing

Proposition 4.7 Let N >3 and 1 <p < % or N =2 andp > 1.

(i) If M < —p* and T,eq does not converge to P 1, then it intersects the line L at some point
(x,y) with x > Xo .

(it) If M = —p* then Tyeq intersects L at some point (x,y) with x > X_,» and leaves Q; there
s no ground state.

Proof. (i) Suppose M < —p*. If T,¢q remains below £, then x; > 0, y; > 0 and T, converges
to Py ar or Po pr The first limit is excluded by Lemma 4.6 and the second by assumption. Hence
T,y intersects £. This intersection cannot occur between (0,0) and P; ps and between Py oy
and P» pr since the vector field H is inward in the region B on this segment, so it occurs at some
point (z,y) with z > Xy /.
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(ii) Suppose M = —p*. By Lemma 4.6, T,, intersects £ at some point (x,y) with z > X_
and it enters in the region D (note that the region B is empty) Consider the slope o = y of the

trajectory Tyey. As long as T,eq stays under £, o > -=7. Now we introduce the system (2.5),
(2.6) and set k = Z = xl: Hence

ﬂ:U—F,z:—u*aﬁzﬁl+2—N:aqﬁ(ﬁ)—i—Q—N,
o

with )
d(k) =14k — p KrHL.
RN ==t

The function ¢ achieves its minimum at x* = (ﬁ) P and ¢(k*) = %. Thus

Tt > (N —2) P—1) sy

— — c—— .

o~ 2 -
Thus o is nondecreasing. Therefore, after crossing £, o > ]% and T, cannot converge to
P O

4.1 Ground states and large solutions when M < 0

The following result extends [7, Theorem B’] to a larger class of parameters M in the radial
case. We recall that ;*(1) and p*(2) are defined in (1.20).

Proposition 4.8 Assume N > 2, p > 1 and M > —u*(1). Then there exists no positive
solution of (1.13) in (a,b) for a < b tending to infinity at r = a.

Proof. Without loss of generality we can assume a = 1. If M > —p*(2) the result follows from
[7, Theorem B’], hence we can assume —p*(1) < M < —p*(2). We put m = |M| > 0 and

a=a(m) = <pp (IJTJM - 1) > 0.

If u satisfies (1.13) and blows-up at r = 1, then v = Inu satisfies
N -1

—Vpyp — vy + ael?~ v > in (1,b
(1,6) (4.21)
lim v(r) = oo.
r—1

Up to changing b, we can assume that u(b) > 1, it follows that v is bounded from below on (1, b)
by the solution of

N-—-1
Wy — ———wy 4+ eV > in (1,0)
(4.22)
lim w(r) = oo v(b) = 0.
r—1
It is classical, (see e.g. [21]) that |w(r) — <7~ ‘ remains bounded on (1,b). Returning

T
to the variable (x(t),y(t)) solutions of (1. 17) then z(t) > ¢t - 71 on (0,1nb).
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(i) We first observe that tz%la:(t) and t%y(t) remain bounded on (0,Inb). Indeed, by the
equation satisfied by y we get

2p 2p

(e"y(t)), = —me™t |y(t)|7+1 > —c|e™y(t)| 7+,

and there exists a sequence {t,} converging to 0 such that y(¢,) — oco. Furthermore z(t) =
ety (t) satisfies

p+1

p+1 _p-1 ! _p=1 _
- 1 |z| PFisgn(z) | > c1 = |2(t)| PFisgn(z(t)) < cot = 2(t) > cat” 1.
p—

+1
Therefore y(t) > 03157%. Using the equation (2.1) we first observe that z; remains negative in
a right neighbourhood of 0 otherwise there would exists a sequence {t,,} decreasing to 0 where
x¢(ty) = 0 and x4 (t,) > 0 yielding

(@lta)? = —=alt) = m <pf1> P )7 <0,

which is impossible since x(t,) — oo. Similarly y; remains negative on some interval (0,77)
otherwise there would exists a sequence {t/, }decreasing to 0 such that y;(¢/,) = 0 and yu(¢),) > 0.
Since

2mp %
p
p+ ly Yt

and z; < 0 we derive a contradiction. Therefore y(t) — oo as t — 0, y; < 0 and

yir = —Ky; + paP Loy —

pt1

2
—Ky = aP —my1 < 0= y(t) > ca(t) 7,

which implies
2x p+l p+1 2

T < —cyr 2 <csr 2 = z(t) < cget P,

<o
near ¢t = 0. Using again (1.17) and the monotonicity of x(t) and y(t),

ot 2t
t (p—1) (e =1 —e P*1>
1
- 2

y(t) > caty(t),

+1
which yields 0 < y(¢t) < C7t_%t near t = 0.

(ii) Next we set k(1) = (r — 1)%u(’r) with 7 = In(r — 1). Then & satisfies on (—oo, f] for
some 3 € R

p+3 2(p+1) (N —1)e” 2
—HTT—i—p_lmT—(p_l)Qﬁ;—i- 1+ e p_lli—HT
2 (4.23)
2 p—
/{p+m‘ 1/{*/@ =0.
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and £ and k; remain bounded from above and from below on (—oc, a]. Therefore the limit set
> of the corresponding trajectory at —oo is not empty and it is included in the limit set 3 at
—00, of some trajectory of a nonnegative function satisfying the autonomous system

2p

p+3 2(p+1) o, (4.24)

17 oy

Which is precisely equation (2.1) in dimension 1. By the Poincaré-Bendixon theorem, Y either
contains an equilibrium or it is a limit cycle. If the limit set contains an equilibrium, say W, it
is positive and satisfies

s + 6-0+m| oo,
p—1

2p
2 1 2 p—1
20 Dy e <W>" — 0.
(p—1) p—1
Since M > —p*(1) the only nonnegative root is zero, which yields a contradiction. If the limit
set is a cycle 7, it is a subset of Q. This imply that there would exist an equilibrium in the

region bordered by «y, contradiction. This ends the proof. O

Corollary 4.9 Assume N > 2, p> 1 and —p*(1) < M < —u*. Then any solution (x(t),y(t))
of system (1.17) issued from a point (z9,y0) €Q and staying in Q for t € Iy, o) N R_ where
I(2o0) 18 the mazimal interval of existence of this solution is defined on R and is bounded
therein.

Proof. Consider any solution such that (x(0),y(0) = (zo,y0) € Q and suppose its negative
trajectory T_ is defined on some maximal interval (6, 0] with § € (—o0,0) and thus unbounded.
We first suppose that ¢ — z(t) is not monotone when ¢ — 6. Then there exists a sequence {t,}
decreasing to 6 such that x:(t,) = 0 and thus a,, = (z(t,),y(tn)) € L, x4(tn) = y+(tn) < 0 and
limy, 9 z(t,) = 0.

Consider now the regular trajectory T,e,. If p > % then, from Lemma 2.5, either T,
converges to Py when t — oo, or it crosses £ at a point (z*, }%x*) with z* > Xj. If n is such
that z* < z(t,) we get a contradiction: indeed for ¢ < ¢,_1, T_ stays in the region bordered
from above by £ and T4, so it cannot intersect £ at a,,.

Ifl<p< %, we infer the same contradiction using Proposition 4.7. Therefore z(t) decreases
monotonically to co when ¢t — 6. Since M > —pu(1) we derive a contradiction.

Hence inf I(,, ) = —00. By the same reasons as above, t = x(t) is monotone decreasing and
x(t) — oo when t — —oo, and y(t) > I%lx(t) — 00. Moreover there exists ¢ < 0 such that
y¢(t) < 0: indeed , if for some tg < ¢, y:(tg) > 0, then (z(to), y(to)) € D and necessarily (z(t), y(¢)
remains in D for ¢t < ¢y because x;(t) < 0 implies that (z(t),y(t) € D U A and the backward
trajectory cannot cross the curve C where y; = 0; now this implies that y,(¢t) > 0 for t < g, a
contradiction. Therefore y;(t) < 0 for ¢ < ¢. Then

| M]

2p_ 2p_
| M| yr+t zxp—|K]y2xp—7yP+1 — e

Since xz(t) — oo, we deduce for large [¢],
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Returning to the system (1.17), we get for large |¢|

_ 2 p+1l p+1
1:6—\M| g2 < —cxz .

Ty = rT—y <
p_

p—1
Since % > 1, it is straightforward to check by integration that a positive function x satisfying

the above differential inequality cannot be defined on a interval unbounded from below, which
ends the proof. O

Proposition 4.10 Assume p > 1 and —p*(1) < M < —p*(1) + € for € > 0 small enough. Then
there exists a ground state and (4.18) still holds.

Proof. Assume —p*(1) < M < —p*(1) 4+ € and the regular solution u is not a ground state.
Then using the notation of Lemma 4.4 there exists rg > 0 such that G(ro) = 0 and G'(rg) > 0.
Hence u2(rg) = Z%uf“(ro) # 0, thus
N-—-1
7o

< Jun (r0) | P77 (" (1) + M),

-1
Put to = Inrg, then y2(tg) = 22271 (tg) and N —1 < |y(t0)|5ﬁ (u*(1) + M). Equivalently

p+1
N-1\r1 op \FT (N —1\#T
— p— P — p—
y(to) > <> hence xz(tg) > <p> ( > . (4.25)
€ p+1 €
The curve {(z,y) : y> = %x”“} cuts £ at a unique Sy = (z0,50) € Q and y2 ' =
pit (2 )" If M = —p*(1) and p > &5 (¢ 1 < p< +5), then X >
op \p-1 . = TH p = §y—3 \Iesp. p N2/, then A_,x) Zo

(resp. Xy _,+(1) > Zo). Indeed this follows from (2.16). In the same way, if 1 < p < %, then
X1,—u+(1) < zo- These configurations still hold if € is small enough, i.e. X_ (1)1 > zoifp > %
and X _ = (1)4e < 20 < Xo ()4 f 1 <p < % However, the regular trajectory associated
to M, T, has a unique intersection with £, at a point (,eg(1), Yreg(t1) where zyeq(t1) is max-
imal, and either p > % and Tpeq(t1) > X_ ()4 or 1 <p< % and1 Treg(to) > X1 (1) e
L 2
In both cases t1 < to, Yreg(t1) = p%lxreg(tl) and Tyeg(t1) > <1%)1> pr1 (%VA' Now, for
M > —p*(1) the trajectory T, remains above T,

reg ~ @s long as they remain below L by

Lemma 2.9. Then we encounter two possibilities: either T;:g* @ converges to P_,«) (or

Py ey if 1 <p< %) with z(¢) and y(t) increasing, or T;:;(l) crosses L at some point
(Z,7) depending only on N and p. Both possibilities are ruled out if € is small enough. Hence
T, is a ground state if M € (—p*(1), —p*(1) + €] for € > 0 small enough and G remains

negative. U

4.2 ThecaseM<O,N23andp2%

Theorem 4.11 Assume M < 0, N > 3 and p > % Then there exist ground states u.
Moreover they satisfy u(r) ~ Upr(r) as r — 0.
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Proof. Let (Zyeq(t), yreg(t)) be the regular solution issued from (0, 0). By Lemma 2.8 the function
V defined in (2.38) is increasing. Since it vanishes at t = —oo it is positive. If there exists some
to such that ,c4(to) = 0 then V(ty) < 0, which is impossible, hence x,¢4(t) > 0 for all t. Thus
T,ey is a ground state; it is bounded by Proposition 2.4, and it cannot converge to (0,0) since
V(t) > V(—o0) = 0. From Lemma 4.3 there is no cycle , hence T4 converges to Py; which is a
sink. O

Remark. The existence of a ground state was already obtained in [19] with the use of the function
Z defined in (2.42).

4.3 The case M <0, N >3 and {5 <p < {2

In what follows we give an improvement of [22, Theorem A] in which it is shown that in this
range of exponent there exists some w > 0 such that —w < —M < 0 there exists no ground
state. The expression of w is explicit (and not simple).

Theorem 4.12 Assume N > 3 and % <p< % If M < M < 0 there exists no ground
state. Moreover there exists a unique, up to similarity transformation, positive solution u satis-
fying u(r) ~ Up(r) as r — 0 such that u(r) ~ cr> N (¢ >0) as r — oo.

Proof. Suppose that there exists such a ground state, then T,., remains in Q. By Proposi-
tion 4.1, Py is either a source if M < M or a weak source if M = M, and by Lemma 4.3
there exists no cycle surrounding Pys. By Lemma 2.5, (2reg(t), Yreg(t)) converges to (0,0) when
t — o0, hence T4 is a homoclinic orbit equivalently T,cy = Tst = Typsr. Now

Trace DH(0,0) = 1?21 —K=-L>0.
Hence, by [17, Th 9.3.3] the homoclinic orbit is repelling. Since Py is also repelling, we derive a
contradiction because any trajectory issue from B must converge to T,.,. Hence T,., intersects
the axis {x = 0} for some positive y; > 0, and there exists no ground state. We denote
by O the region of Q delimited by the regular trajectory T,., and the segment (0,y) : 0 <
y < y1. It is negatively invariant. The stable trajectory Ts = {(xs,yst)} of (0,0) satisfies
zs(t) = ce K11 + 0(1)) and yg(t) = (N —2)e ®¥(1 4+ o(1)) when t — —oo0, thus it remains
in O. Because there are no cycle in O, it must converge to Pys, hence the corresponding ug; is
equivalent to Ups near r = 0, which ends to proof. O

Remark. In the previous theorem the positive solution u satisfying u(r) ~ Ups(r) as r — 0 such
that u(r) ~ er>™N (¢ > 0) as r — oo is the stable trajectory Tg. It is a heteroclinic orbit
connecting (0,0) to Py;. We conjecture that in the case p = % the non existence of a ground
state still holds and that there exists a unique solution u such that satisfying u(r) ~ Ups(r) as
=N u(c>0)asr—>oo.

r — 0 such that u(r) ~ cr Inr) 2

The expression of the result presents some similarity with Theorem 3.7 in the case M > 0.
However a new type of difficulty appears: in order to define properly an intersection function
expressing the distance between some trajectories as in [4], we need to find some values of the
parameter M for which there exists a ground state, and all the trajectories in Q are bounded.
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It is not the case when M < —p*(1) even if there exists a ground state by Lemma 4.4 but we
can easily prove that there exist large solutions. So we need to prove that for M = —p*(1) + ¢
there exist a ground state and all the trajectories in Q are bounded. This is the object of
Proposition 4.10 and Proposition 4.8.

Theorem 4.13 Let N > 3 and % <p< % There exist positive constants fimin < hmaz;
verifying I < fimin < fimaz < @*(1) such that

(i) If M < —fimag there exist ground states u such that u(r) ~ Up(r) or ondulating around
Upi(r) when r — oo.

(ii) If M = —fimae or If M = —[ipin there exist ground states u such that u(r) ~ cr?>=N, ¢ >0,
when r — 0.

(141) If —fimin < M < O there exists no ground state. Furthermore there exist singular solutions
u ondulating around Ups(r) when r > 0 and singular solutions u ondulating around Ups(r) when
r — 0 and such that u(r) ~ er?>=N, ¢ >0, when r — co.

Proof. Recall that M = —p. First we show that if —u*(1) < M < M, the stable trajectory
T, := T2} either has a limit cycle around Pjs or does not stay in Q. If we assume that it stays
in Q, then it is bounded by Corollary 4.9. Since at —oo it cannot converge to Pj; which is a
sink by Proposition 4.1, it admits a alpha-limit cycle which is a closed orbit around Pj;.

For —u*(1) < M < M we denote by P = (2] £2]) the farthest point of the closure T of
the trajectory T belonging to the line £, i.e. the points with the largest x (and y)-coordinate.

We also denote by P,f\fg = (:c%g, x%g) the farthest point of the intersection of £ with the closure

Tyeg of Threy 1= T%g. More precisely since either T; leaves Q or has an alpha-limit cycle around

Py, in that case st‘t‘[ corresponds to the last intersection of Ty and L. If T,y converges to Py

monotonically, then P,f\e/lg = Py € They, while if this convergence is not monotone, or if T,qq4

admits a omega-limit cycle around Py, or if T, leaves Q, P% is the first intersection of Tqq
with £. Both the functions M + ¥ and M a:%g are continuous, either by transversality

M M

argument or by the continuity of M — Xjp/. Hence the function M — g(M) = z;., — x5 is

continuous. For M < M we encounter three possibilities:

(i) x%g = X or Ty converges to X s non-monotonicaly, or T4 has a omega-limit cycle around
Pyy. In such a case T does not stay in Q, thus g(M) < 0.

(ii) Tyeq does not stay in Q, then Ty belongs to the region of Q bordered by T, and the axis
{z = 0}. Then thus g(M) > 0.

(iii) g(M) = 0, then Ty, = T,y is a homoclinic orbit.

If M = M there exists no ground state by Theorem 4.12 hence, by continuity, this still holds
for M —e < M < M for ¢ > 0 small enough and then g(M) > 0. By Proposition 4.10, if
—u*(1) < M < —p*(1) + €, there exists a ground state, hence g(M) < 0. Since g is continuous

there exists M € (—u*(1), M) such that g(M) = 0.

If we define R _
Hmin = mln{|M| € (ﬁa .U*(l)) : g(M) > O} (426)
Hmax = maX{|M’ € (ﬁy :U’*(l)) : g(M) < 0}
then the trajectories T4 corresponding to M = —fipi, and M = —[ipq, are homoclinic and

they satisfy the statements (ii) of Theorem 4.13 and the conclusion follows. O
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The proof of Theorem B, B’ follows from Theorem 4.12 and Theorem 4.13.

4.4 The case M < 0 and 1<p<%

We present first a general existence result of singular solutions.

Proposition 4.14 I[f N >3, 1 <p < % and M < —u* there exists positive singular solutions
u such that rN"2u(r) — c for some ¢ > 0 when r — 0 and r%u(r) — X1.m when r — oo.

Proof. By Proposition 4.2 Pj js is a saddle point of system (1.17). By the remark after this
proposition there exist two stable trajectories Tilgj , 7 = 1,2 converging to P; jr as t — oo; the
trajectory Tigl is locally below the line £ (see Proposition 4.7), hence it belongs to the region C
for t > to. By Proposition 4.7 either the regular trajectory T, converges to P js or it crosses
the line £ beyond P 5. Hence T;;l cannot intersect T4, and is trapped when ¢ decreases in the

region C and the curve T,¢4. Thus it converges to (0,0) when ¢ — —oco. Because (0,0) is a source
2
(see Section 3.4.1) with one fast trajectory T4, which satisfies . lim e_ﬁtxreg(t) = u(0), the
——00

. 1,1 . . . . (N—2—-2.)t
trajectory T, is a slow one and it satisfies . lim e p-1

——00

Treg(t) = c. O
Remark. Under the assumptions of Proposition 4.14 the trajectory Tiﬁst leaves Q since in this
region it stays in the sector {(z,y) : Hj(z,y) < 0} for j = 1,2, and this sector contains no stable
equilibrium. The result holds also if M = —p*.

Theorem 4.15 Let N >3 and 1 <p < % Then

(i) if M < M < 0 there exists no ground state.
(ii) if M < M < —p* there exists a positive singular solution u, unique up to scaling, such that
u(r) ~ Ug (1) as v — 0, u(r) ~ U pm(r) as r — oo and u(r) > Ui m(r) for any r > 0.

Proof. (i) Let M < M < 0. Suppose that there exists a ground state T'q4, then M<M< —u*
by Lemma 4.5, and by Proposition 4.7. Furthermore this trajectory is bounded by Proposi-
tion 2.4. Moreover P ) is a source or a weak source and there exists no cycle surrounding it by
Proposition 4.2 and Lemma 4.3. Hence T, converges to an equilibrium which cannot be (0, 0)
neither P js. So, from Proposition 4.7, it converges to P; 3 from above £ as ¢ — oo. Since
Py is a saddle point T, must coincide with the stable trajectory Tif of this point. Therefore
the region bordered by T, T;l and (0,0) is invariant and it contains only one source equilib-
rium and no cycle around P, s by Lemma 4.3. Any trajectory starting from this region must
converge to Pj p which is impossible. Hence T4 is not a ground state. Since the trajectory

T,cy intersects the axis {z = 0}, the trajectory T;f which converges to Pj js at infinity from
above L is trapped in the region bordered by T;., and the semi-axis {(0,y) : y > 0} which is
negatively invariant. As there is no cycle in this region, it converges to P py when t — oo. To
this trajectory corresponds a solution u of (1.13) which satisfies u(r) ~ Uz ps(r) when r — oo
and u(r) ~ Uy p(r) when r — 0. Furthermore u(r) > Uy p(r) for all » > 0. O

The next result extends Proposition 4.14 to the case M = —u*.

Proposition 4.16 Let N >3 and 1 < p < % If M = —u* there exists positive solutions u

2—N

satisfying u(r) ~ cr when r — 0 for some ¢ > 0 and u(r) ~ U_,(r) when r — oco.
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Proof. Since N > 3, there still exist two unstable trajectories qujnjst (j=3,4) starting from Pj s

with slope N — 2; Tiﬁst, which is above £, leaves Q through the semi-axis {(0,y) : y > 0}
(see the remark above). From Proposition 4.7 the trajectory T,e, crosses £ at a unique point

Areg = (Treg, p%lxreg) with 2,y > X_,» and leaves Q through the semi-axis {(0,y) : y > 0} and

1,4

its exit point is above the exit point of T, ,.

Hence the other unstable trajectory Ti’s’st which
is trapped in the region of Q bordered by Tiﬁst, T,eg and the semi-axis {(0,y) : y > 0}, either
converges to P_,« or leaves Q crossing the semi-axis {(0,y) : y > 0}. Necessarily it intersects the
line £ at some point A = (T, %f) with Z > X_,« and enters the region D. As long as it stays
above L, as in the Proposition 4.7, there holds o; > 0 (with the notations from this proposition).
Thus it cannot converges to P_,«. Therefore Ti’g’st crosses the semi-axis {(0,y) : y > 0} between
the exit points of Ti’:st and T.g.

Let R be the open connected region of Q below the line £ and bordered by T;¢, and TS, If
(Z,9) € R and T is the trajectory through this point, we have three possibilities:

(i) Either T leaves R crossing £ between (0,0) and P_ -,

(ii) Or ’i: leaves R crossing £ between P_,- and A,
(iii) Or T converges to P_ .

The set of points satisfying (i) or (ii) are non-empty, disjoint and open. Therefore the set of
points satisfying (iii) is non-empty and the corresponding trajectory T converges to P_,« when
t — 0o. The backward trajectory remains in R which is negatively invariant. Since there is no
fixed point in this region, it converges to (0,0) when ¢t — —oo and it is a slow trajectory of this
point, which ends the proof. O

Next we describe the behaviour of the positive solutions for M < —f. However, in order to
use the method introduced in the proof of Theorem 4.13 we are confronted to another difficulty
namely that there can exist homoclinic trajectories at Py /.

Theorem 4.17 Let N >3, M <0 and 1 <p < % Then there exist positive real numbers
< fimin < fimaz < fmin < fimaz < p*(1) with the following properties

1- for m < |M| < fimin there is no radial ground state;

2- for |M| = [imin or |M| = [imaez there exist ground states u satisfying u(r) ~ Uy a(r) when
r — 00;

3- for |M| > [imas there exist ground states either such that u(r) ~ U a(r) when r — oo or
ondulating around Us pr(r) when r — oo.

Moreover,

4- For i < |M| < fumin there exist solutions u, necessarily singular, ondulating around Us pr as
r— 0 and u(r) ~ Uy p(r) when r — 0o and solutions u ondulating around Us pr on (0,00);

5- for |M| = fimin or |[M| = [imas there exists a solution u # Uiy such that u(r) ~ Ui a(r)
both when r — 0 and r — oo;

6- for fimaz < |M| < fimin there exists a solution u such that u(r) ~ cr?>=N

u(r) ~ Uz () or ondulating around Us pr when r — oo.

as r — 0 and either

Proof. Step 1. For M = M we know the behaviour of the solutions from Theorem 4.15. The

trajectories Ty, qujjst and Tiﬁst leave Q on {(0,y) : y > 0} with transverse intersections, and
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T}Lﬁst connects P5 pr to Py . This transversality property is also true for the corresponding
trajectories with parameter M — ¢y < M < M for ¢y > 0 small enough. Let M, = M — e where
0 < € < €. Then P,3; is a sink by Proposition 4.2. By Proposition 4.7, the points P, 37
and P, 57 belong to the region R. bordered by Teg, and the semi-axis {(0,y) : y > 0}. The

trajectory T;f which converges to P, M at co, cannot converge to P, 37 at —oo. Hence it has a
. and T)

For a > 0 small enough set M* = —p*(1)+«. By Proposition 4.10 the corresponding regular
trajectory T,eq is a ground state. Since (0,0) is a source and (4.18) holds, it cannot converge
neither to (0,0) nor to P ps« as in Lemma 4.4. Hence either it converges to P pre at oo or it

limit cycle around P, 37 . Note that Th t is included in the region bordered by T3

uns unst

adrmts a limit cycle around. Next, Tunst is trapped in the positively invariant region bordered
by Tst which connects (0,0) to P; ar, the portion of the curve C below £ (hence between Py s
and P, 3r) and T, between (0,0) and its second intersection with C; therefore, it converges to
P, pja at 0o or it admits a limit cycle too. Finally consider the traJectory Tst which tends to
Py pre at oo. It stays in the negatively invariant region {(x,y) : y > Szora > Xy e It
stays in Q, then the solution is defined on R and the trajectory is bounded from Corollary 4.9.
So, either it converges to a fixed point or it has a limit cycle around P, pse« when ¢t — —oo. This
is impossible since it would intersect T,.4. Hence for M = M<, T;f leaves Q in finite time at
x(t),0) for some z(¢) > 0. Then there exist ty > t; > t such that y.(to) = 0 and y(to) is the
maximum of y on (¢,00) and (z(t1),y(t1)) € L. Hence z(t) < x(t1) for t <t < ty.

Step 2. Next consider any M € (—p*(1),M). In any case the trajectories Tif and T,., are
bounded as long as the stay in Q from Corollary 4.9. Then we define (a:%g, y%g) as the farthest
point on £ belonging to the closure Tye, of Tyeg, and (2 yM) as the farthest point on £
belonging to Ts;.

Let A be the set of M € (—u*(1), M) such that there is no ground state, let B; be the set of
M € (—p*(1), M) such that there exists a ground state converging to Py 5s at oo and let By be
the set of M € (—u*(1), M) such that there exists a ground state converging to P, s or having a
limit cycle at co. Then (—pu*(1), M) = AU By U Bs. Clearly M € A and M® € By, furthermore
if M € AU B; U By we have three possibilities.

e Any M € Bj has the same properties as M, hence T,, is a ground state which converges
to P2M or has a hm1t cycle around P%M; Tunst either converges to P> or has a limit cycle
around P>M; and Tst intersects £ at a last value 1.

° If M e A, Treg is not a ground state and it leaves Q through the semi-axis {z = 0,y > 0};
st % and Tmst are included in the region of Q bordered by T,., and three configurations are
possible:

A-(i) either TL? has a limit cycle around Py pr and T.?  leaves Q

unst
A-(ii) or Tmst converges to P, pr or has a limit cycle around.

A-(iii) or T}* = T2, which means this trajectory is homoclinic with respect to Py y/.

Note that M. satisfies A-(i).

As in the proof of Theorem 4.13 the mappings M — a:mg and M — x% are continuous. We

set g(M) = :chIg :c12 If M € A, then g(M) < 0 and if M € By, then g(M) > 0. Since g is

continuous there exists M € (—u*(1), —f) such that g(M) = 0. Hence T,cq = T2 and By # 0.
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More precisely we can define i < fipmin < fimae < p*(1) such that fmin € Bi, fimer € B1. If

|M| < fimin, g(M) > 0 and there is no ground state. If |[M| > fimaz, g(M) < 0 and there exists
2

a ground state u such that r»=Tu(r) — Xg s or such that r»=Tu(r) is turning around X ps as

T — 00.

Finally we consider the relative position of T;tZ and Tunst When M € [—fumin, —@). In
any of the three situations A-(i), A-(ii) and A-(iii), £ 1ntersects T3, at a first point of x-

uns
coordinate z}4 and Tl’2 at a last point of x-coordinate z{%. We define the continuous function

M — h(M) = x% oM 5. Then h(Mc) > 0 and h(—fimin) = x% — x%g < 0. Hence there exists
at least one M € (—[imin, —fz) where h(M) = 0 and for such a M, A-(iii) holds. Then we define
fimin and iy 0 ([, fmin) such that A-(iii) holds if |M| = —fimin, or if |M| = —fiynqs. Hence, if
—fimin < M < =1, h(M) > 0 and the trajectory Tk , starts from P; ps and converges to P> s
or has a limit cycle around P pr. If —fiyae < M < —fimin, h(M) < 0 and the trajectory Tif
starts from (0,0) with the slope N — 2 and converges to P; py when ¢t — oo. O

uns

Proofs of Theorem C and C’. They are a consequence of Proposition 4.14, Theorem 4.15, Propo-
sition 4.16 and Theorem 4.17.

Remark. It is an open problem whether the cycles which may exist for some M are unique or
not. It is a numerical evidence that it holds if M > 0, but unclear if M < 0.

4.5 The case M <0, N=2and p>1

A first difficulty in this case comes from the fact that there exist singular solutions u with a
logarithmic blow-up. The main difficulty comes from the equality of x*(2) and . Hence —Ji is
no longer a weak source as in the case N > 2.

Theorem 4.18 Assume N = 2, p > 1. There exist positive numbers fimin and fimae Such that
—1*(2) < fimin < fimaz < p*(1) with the following properties:

1- For —[imin < M < —p*(2) there exists a ground state.

2- for M < —[imay there exists a ground state u either such that u(r) ~ Uz p(r) or ondulating
around Us p (1) when r — o0.

3- M = —[iyin there exists a ground state w such that u(r) ~ Uy p(r) when r — oo.

Proof. If M = M = —u*(2) there exists no ground state from Proposition 4.7. By continuity this
property is still valid for M = M — ¢ for € > 0 small enough. As in the proof of Theorem 4.17
with N > 3 we still denote by A the set of M € (—p*(1), —p*(2)) such that there is no ground
state. We define in a similar way the set B; and Bg. The previous situation is still valid with
the only difference that M. does not satisfies A-(i) but A-(ii): indeed from [18, Th. 8.2, Lemma
8.7], see Appendix, for € < €y small enough there is no cycle around P, 5 which is a sink by
Proposition 4.2. Thus Tunst converges to P, M when ¢t — oo and Tif converges to 0 when

2t
t — —o0, and since there is no ground state it satisfies z(t) ~ cer—1 |t| when ¢t — —oo for some
¢ > 0. Hence the function g : M s g(M) = 2™ — aj% defined as in the proof of Theorem 4.17

reg
shares the same properties and the conclusion follows. O

Remark. We conjecture that there is no cycle when N = 2. If it is true, then for any —ji <
M < —p*, Tsf converges to (0,0) as t — —oo. Equivalently there exists a positive solution u of
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(1.13) with a logarithmic blow-up at r = 0 and such that u(r) ~ Uy a(r) as 7 — co. Hence there
exist also a positive solution u of (1.13) such that u(r) ~ Uy ar(r) as 7 — 0 and u(r) ~ Uz ar(r)
as r — oo.

4.6 The case M <0, N=1and p>1

In the case N = 1, the equation is invariant under the translation group 7, [u](.) = u(. + «) for
a = 0 and any ground state is symmetric with respect to its vertex.

Theorem 4.19 Let N = 1. Then there exists a ground state u if and only if M < —u*(1). It
satisfies u(r) ~ Uz p(r) as v — oo. Furthermore, if M < —p*(1) there exists a positive singular
solution u which satisfies u(r) ~ Uy ap(r) as v — 0 and u(r) ~ Uz p(r) as r — oo.

Proof. The existence when M < —p*(1) is proved in Lemma 4.4 but the proof therein is not valid
when M = —p*(1) in which case a second beautiful construction due to Chipot and Weissler [14]
applies: if M < —p*(1) there exist singular solutions Uj as and Us ps. If Tpeq is not a ground
state, the corresponding solution u vanishes at r = rg > 0. Hence there exists a translation of
u, say r — u(r — c¢) which is tangent to U »s which is impossible. If M < —p*(1) estimate

(4.18) implies (4.20) which in turn implies that r%u(r) cannot converge to X js. Notice that
there exists no cycle in the phase plane (z,y) otherwise the corresponding solution u would be
singular and ondulating hence a translation of it say = — u(z 4+ ¢) which is now singular at
x = —c and defined for > —c could be made tangent somewhere to U; as (or Us ps) which is

2
impossible. Therefore r»=Tu(r) converge to Xo ps as r — oc.

In order to prove that there exists a heteroclinic connecting Py to P s and since Ty con-
verges to Pp s, there exists a smallest 7 such that ,.4(7) = X1 v and the vector field H is
directed to the right on the segment J = {(z,y) : £ = X1 11, Yreg(7) <y < Y1}, we have three
possibilities:

(i) either ,¢q(t) — X1 a7 monotonically. In that case the region bordered by the segment J, the
portion of £ between P; ) and P> ) and the portion of trajectory T, for t > 7 is positively
invariant. Since T.>., belongs to this region, it converges to P, py when t — oo.

(i) either T,¢4 has a first intersection with £ at a point (z(t1),y(t1)) with z(¢1) > Xo 7. Then
it enters successively the region D where z; < 0 and 3 > 0 and the region the region A where
x; < 0 and y; < 0 and finally intersects £ between Py ps and P js at some point (z(t2), y(t2)), or
converges to P py monotonically, in which case we set t3 = 0o. In that case the region bordered
by the segment J, the portion of £ between P ps and (z(t2),y(t2)) and the portion of trajectory
T,y for 7 <t < tg is positively invariant. Since T3 belongs to this region we conclude as in

unst

case (i). O

4.7 Appendix: Non-existence of cycle in the case N = 2

The difficulty comes from the fact that when M = M = —p = —u*(2), the linearized system
at P,y; has zero as a double eigenvalue. Following Kuznetsov’s notations [18, Lemma 8.7] we
consider the system associated to (2.1), with two extra parameters @ = (ay,az) called the
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bifurcation parameters,

Ty =0
2p

pHI (4.27)
r—v ::g($7v7a17a2)'

T 1 P+ (o + )(
Ve = Q9 v — r—x o+ o
t p—1 (p-1)?

2
p—1

We recall that 7 = (p + 1)p_ﬁ and set 7 = (x,v), g(z,v,01,0) = g(?, 3) and

b
1 2 p—1 p—1
pr=

linearize (4.27) at Py = (x0,0), with @ fixed, we obtain the new system

Ty =

a1p p—1 9 p—1 _2p
+1 +1 — [e51 +1 +1
v = oo + a1y +p2_1yé’ T — p+fyé’ v—oyl" + a2

(4.28)
1
+ 5 (gxm(PO)Tz + 291’0(P0)jv + gvv(PO)Uz) + R(?7 a))
In order to agree with Kuznetsov’s notations, we write (4.28) under the form

Y1t = Y2

1 ) ) N (4.29)
Y2t = goo + groy1 + gory2 (gzoyl + 291191Y2 + gozyz) + R(77 a)

where R(Y/, @) = O(|7/?) and

2 dpay B4 2pa1 4p p+1 -
=« o p+1 , p+1 p+1 a
goo = a2 + a1y gi1,0 = p 190 y 901 = y 911 = _(p 1)2 P 1] Y

4p p+1l 2 \ & 2p(p—1) (p+1 -3
[ — s = — + o P .
- <p+1>2<ppil p—1)P T i )

Note that, if a; = 0, the three coefficients g11, goo and ggo are negative.

Following Kuznetsov proof, we perform several changes of variables:

1- Setting y1 = v1 + 0§, vo = Yo where § = 5(3), we can get rid of the coefficient of vy in the
second equation and obtain

V1t = U2
. (4.30)
vat = hoo + hioy1 + 3 (haov? + 2h11v1v2 + ho2vd) + Q(V, )

where Q(7, @) = O(|7|?) and

go1 -
o= — 1 1 0
g11(0)( +o0(1)) as @ — 0,
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with go1 (resp. goo and gio) stands for goy (@) (resp. goo(@) and g10()) and

hoo = goo — JoLguo. o(1), hio = g0 — JoL920. o(1) and hoo = g20, k11 = g11, ho2 = go2-
g11(0) g11(0)

2- Time scaling, j—i = 1+ 6vy(t) where 6 = 9(3), and & = vy, & = (14 Ov1))ve in order to get
rid of the coefficients of v2 in the equations for &, then

§1r =&

| (4.31)
&2+ = foo + f10§1§hf20§% + f11&1€&2 + ho2vs + P(

7,3

where P(?, 3) = O(|Z>|3)7

hooho2

foo = hoo(1 +0(1)), fio= (hlo - > (1+0(1)), fao = (h20 = hiohoz) (1 + o(1)),

and fi11 = h11(1 + o(1)). We rewrite the equation of {4 under the form

€20 = (@) + p2(@)61 + A(@)E + B(@)ale + O(| € P, (4.32)

where, for |@| small enough,

= o = (a0 = 290} 1+ o(1))) = g 1+ (1),
2 _ p—1
2 = (hlo = h°22h°°) (1 +o(1))) = 22 pipl D55 (11 o1)),
A@) = =2 (3)7 4P+ o)
and b
8@ =35 () w o)

At end we change again time and put

B2 B\ B?
t= ' T, m= Zfl and 72 = sgn (A) ﬁ&?

in order to see that 77 = (11, 72) verifies
me=T12

ot = B1(d) + Bo(d )1 +nf + sgn <i£;> mnz + O(|77 ).

(4.33)

In our situation
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After further computations and simplifications we obtain, with as = 0 and eliminating the terms

which contain of,

64 B 8p+2p—1 I
B —ogond (L+o(l) and B = =5 =m—ad™ (L+o(). (434

—1
Therefore, the discriminant 33 — 431 of the polynomial P(n1) = 81 + B2 + n? is positive for
ap > 0.

By [18, Lemma 8.7] there is no cycle in the region of the plane (51, 82) located in the second
quadrant, which is our case since a; > 0. Furthermore, the equilibrium (31, 82) = (0,0), which
has a double zero eigenvalue has one stable trajectory converging when t — oo and one unstable
trajectory converging when ¢ — —oo. Hence it is a saddle point.
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