
HAL Id: hal-02267737
https://hal.archives-ouvertes.fr/hal-02267737

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a validation process for model based safety
analysis

R. Adeline, J. Cardoso, P Darfeuil, S Humbert, C. Seguin

To cite this version:
R. Adeline, J. Cardoso, P Darfeuil, S Humbert, C. Seguin. Toward a validation process for model
based safety analysis. ERTS2 2010, Embedded Real Time Software & Systems, May 2010, Toulouse,
France. �hal-02267737�

https://hal.archives-ouvertes.fr/hal-02267737
https://hal.archives-ouvertes.fr

 Page 1/9

Toward a validation process for model based safety analysis

R. Adeline1, J. Cardoso2, P. Darfeuil1, S. Humbert1, C. Seguin3

1: TURBOMECA, BP N°6, 64511 BORDES (romain.adeline ; pierre.darfeuil ; sophie.humbert@turbomeca.fr)
2: ISAE, 10 Avenue Edouard Belin, 31055 TOULOUSE (janette.cardoso@isae.fr)

3: ONERA, 2 Avenue Edouard Belin, 31055 TOULOUSE (christel.seguin@onera.fr)

Abstract: Today, Model Based Safety Analysis
processes become more and more widespread to
achieve the safety analysis of a system. However
and at our knowledge, there is no formal testing
approach to ensure that the formal model is
compliant with the real system. In the paper, we
choose to study AltaRica model. We present a
general process to well construct and validate an
AltaRica formal model. The focus is made on this
validation phase, i.e. verifying the compliance
between the model and the real system. For it, the
proposed process recommends to build a
specification for the AltaRica model. Then, the
validation process is transformed to a classical
verification problem between an implementation and
a specification. We present the first phase of a
method to verify the compliance between the model
and the specification.

Keywords: Model Based Safety Analysis, validation,
formal model, AltaRica

1. Introduction

Model-Driven Engineering (MDE) is a methodology
which aims to base the development of a system on
the creation, the refinement and the integration of
models. MDE was created to increase productivity
by, for example, simplifying the design or promoting
communication between the different teams working
on a same project.

If at the beginning, MDE was focused on the
development of software systems, its applications
are nowadays more spread and deal for example
with the achievement of safety analyses. Thus,
where MDE is generally focused on the automatic
generation of code (e.g. C, C++), Model Based
Safety Analysis (MBSA) aims to provide a model to
automatically perform classical safety analyses such
as Fault Tree Analysis (FTA) or Failures Modes and
Effects Analysis (FMEA) ([8]).

Concerning this MBSA, several works ([9]) propose
to assess the safety of systems by allowing
simulation, the automatic generation of fault trees or
searching automatically failure scenarios leading to
undesired events. Amongst all the languages, we
have chosen to use AltaRica which was designed to
formally describe the functional and dysfunctional
behaviour of a system.

In a general way, the process to study the behaviour
of a model can be divided into three main parts:

• Modelling activity. System components and their
behaviours are described in an adapted formal
language. Methodologies and guidelines can be
written to give rules and best practices. These
guidelines aim at both helping the model design
and encouraging the reusability of models (by ,
for example, standardizing information
implemented in the model);

• Validation of the model. This step ensures that
the model is a valid abstraction of the real
system (correct hypotheses and same
behaviours). Without this step, the next one can
be useless;

• Verification of the specification. We check that
the model holds the system’s specifications.

In this paper, we deal with the second point. Indeed,
although the problem of validation of AltaRica
models is not well address in the literature, this
validation seems to be essential in order to check if
safety analyses are generated from erroneous or
incomplete models.

The paper introduces the first steps of a validation
process for AltaRica models. Section 2 presents an
overview of the classical safety analysis process.
With showing some limits of this kind of analyses, we
present the motivation for the use of MBSA. Then,
the AltaRica language is described in section 3.
Sections 4 to 7 are devoted to the presentation of
the validation process for AltaRica models. In the
sections 6 and 7, the work is focused on the unit
validation, i.e. the validation of the AltaRica
component library. Finally, last section presents a
conclusion of our work and futures works.

2. From classical safety analysis to MBSA

2.1 Definitions

Before describing the classical safety analyses,
some definitions, strongly inspired from [1], are
introduced.

• Failure: the inability of an item to perform its
intended function.

• Failure condition: Condition with an effect on the
system and its users, caused by one or several

 Page 2/9

failures. It depends on both operational and
environmental conditions.

• Failure mode: the way in which the failure of an
item occurs.

2.2 Classical safety analyses

Safety engineering ensures that the safety
requirements (extracted from international
standards) are held by the system considering all
potential failure modes of each component. In this
purpose, safety studies aim to define the safety
requirements and then ensure that the system fulfils
its required properties. In industrial practice, we can
distinguish the following types of safety analyses.

• Assessment of qualitative requirements. The
objective is to demonstrate that no combination
of events with less than N individual failures
leads to the failure condition (N depends on the
severity of the failure condition).

• Assessment of quantitative requirements. The
objective is to compute the occurrence
probability of failure condition.

To perform the safety analyses, safety engineers
traditionally use the Failure Modes and Effects
Analysis (FMEA) and the Fault Tree Analysis (FTA)
([8]).

Building a FMEA consists in identifying all the
potential failure modes of each system component
and analysing their local and global effects on the
system.

A FTA is a top down approach which illustrates the
way in which low level component failures or events
contribute to the global system failure condition.
Thus, an FTA begins with a defined failure condition
and breaks it down into basic failure modes identified
in the FMEA. One strong advantage of the FTA is its
simple formalism. After doing the breaking down, the
FTA become a logic gate network. In this network,
the failure condition is described by a logic equation
from which we can extract failure scenarios. From
this logic equation, it is even possible to compute the
occurrence probability of the failure condition during
the considered mission.

2.3 Toward Model Based Safety Assessment

Although FMEA and FTA are classical methods,
several limits can be seen.

• The size and the complexity of current industrial
systems grow. They become highly
reconfigurable and performing the identification
of failure scenarios without model can be error
prone;

• Because a fault tree describes only one failure
condition, it can be heavy to build all fault trees
for all failure conditions;

• In case of modification of the system, several
fault trees would have to be updated;

• Even if the formalism of fault trees allows an
easy computation of qualitative and quantitative
results, this formalism is different from the
representation of the system. The fault trees can
be difficult to read for someone outside the
safety domain, especially when the number of
terminal events is important.

We think these limits can be overcome by
performing the safety analysis activities on formal
model of the system under development. Instead of
building one fault tree for each failure condition, we
provide a formal model describing both the nominal
system behaviour and the dysfunctional behaviour of
the system. On this model, several failure conditions
can be studied. The failure scenarios as well as the
FTA could be automatically generated.

Figure 1 : The two approaches

2.4 Toward a rigorous process for MBSA

So, MBSA can help to tackle several limits shown by
the classical approach. But, today, the modelling
process of these formal models is based, as for the
classical approach, on informal sources.

Indeed, FMEA and FTA are based on informal
sources such as regulations (for the identification of
failure conditions and requirements), design
documents and field experience. Thus, they are
highly dependant on the skill and also on the
interpretation of safety engineers in charge of the
analysis. Moreover, the validation process of FMEA
and FTA is mainly based on 1) the verification by
experts that no failure mode is forgotten in the
FMEA, 2) that the effect of the failure modes are well
described and 3) that all failure scenarios are
considered in the FTA. Thus, validation process
remains a mere proofreading and is all but formal.

Design

Documents

Safety

Interpretation

Fault

trees

Formal

Model

Failure

Scenarios

Assessment of

system safety

*

*

*: Automatic generation

Model Based approach

Classical approach

 Page 3/9

Today, the same report can be made about the
model based approach.

To solve this problem, the paper presents a global
process for the rigorous AltaRica modelling of a
system. The focus is made on the validation of these
AltaRica models.

3. The AltaRica language

Amongst all the languages available in the literature
to perform MBSA, we have chosen to use AltaRica
[2], a formal modelling language, developed at
LaBRI to describe both functional and dysfunctional
behaviour of a system. It allows representing the
failure propagations in an industrial system.

The language is carried out by the tool Cecilia™
OCAS (for example) which provides a graphical
interface to design models and allow analysing them
by different ways such as simulation, automatic
generation of minimal cuts (i.e. shortest scenarios
leading to the failure condition) or sequences (i.e.
ordered cuts).

AltaRica language is hierarchical and compositional.
Each component is described by a mode automaton
[3]. The basic unit to model a system component is
called a “node” and is composed with three different
parts: 1) the declaration of variables and events; 2)
the definition of transitions; 3) the definition of
assertions.

Each component has a finite number of flow
variables and state variables. Flow variables are the
inputs and the outputs of the node: they are the links
between the node and its environment. State
variables are internal variables which are able to
memorize current or previous functioning mode (for
example, failure mode). In our models, these
variables (flow and state) are either Boolean or
enumerated. Then, each node owns also events
which modify the value of state variables. These
events are phenomenon such as a failure, a human
action or a reaction to a change of one input value.

The transitions describe how the state variables are
modified. They are written such as “G(s,v) |- E ->s_”
where G(s,v) is a Boolean condition on state s and
input variables v, E is the event and s_ is the effect
of the transition on state variables. If the condition G
is true, then event E can be triggered and state
variables are modified as described in s_.

The assertions describe how output variables are
constrained by the input and state variables.

These concepts are illustrated by the following
example.

node component

 flow

input: {ok, low, null}: in;

output: {ok, low, null}: out;

 state

ST = {ok, degraded, lost};

 init

 ST:=ok;

 event

 Degradation, Fail;

 trans

ST=ok |- Degradation -> ST:= Degraded;

ST=ok or ST=degraded |- Fail -> ST =lost;

 assert

 output = case { ST=ok : input,

ST=degraded and input=ok: low,

 else null} ;

edon

This component has one input and one output
variables both ranging over the domain {ok, low,
null}, one state variable ST ranging over the domain
{ok, degraded, lost} and two events Degradation and
Fail. At the initial instant, the node is in state “ok”.
The event Degradation (respectively Fail) describes
a failure which leads the node into the state
“degraded” (respectively “lost”). “Degradation”
(respectively “Fail”) can be triggered only if the node
is in state “ok” (respectively in the state “ok” or
“degraded”). The assertion means that the output
value is equal to the input one if the node is in state
“ok”. The output value is equal to “low” if the state is
“degraded” and the input value is “ok”. In every other
case, the output value is “null”.

To build the model of the global model, several
nodes are interconnected.

Thus, failures are propagated via nodes by their
inputs and outputs. Failures can also be propagated
by synchronizations which simulate the failure of
several components at the same time. Hierarchy of
nodes can be used to model complex components
and build the model of the global system. Once the
global model is obtained, the AltaRica model allows
analysing failure condition. Different tools can
calculate, for example, minimal cut sets or the
occurrence rate of a failure condition.

4. Validation in literature

Validation of classical safety analyses is mainly
based on several proofreadings (by engineers and/or
experts). Based on formal models, we believe that
the new approach can benefit from a more
elaborated validation process.

A lot of works aim at ensuring that a formal model
meets a given specification ([4], [5]). Such a work is

 Page 4/9

used to verify that the real system (pictured by the
model) meets its specification and its requirements.

But one strong hypothesis under this kind of work is
that the model behaviour is in accordance with the
behaviour of the real system… which is, according to
us, far from obvious! Thus, we believe that it is
essential to verify that the two behaviours (model
and real system) are coherent before verifying that
some properties are hold by the model.

Testing compliance between a specification and the
model is dependant from both the specification form
and the model language. The following of this
section presents two techniques extracted from
literature to verify the compliance of the model with
the real system.

4.1 Step-by-step simulation

For the validation of the model, one of the most
overwhelmed methods is based on the step-by-step
simulation of the model. This method ensures, for
tested scenarios, that the model behaves as the real
system. Nevertheless, this method is not perfect.

• Due to its nature, this method is not exhaustive.
Indeed, an exhaustive simulation is often not
feasible (at human scale) due to the large
number of scenarios playable by the model.

• We don’t have, to our knowledge and for
AltaRica model, a way to measure the quantity
of model covered by the test set. In the same
way, we don’t know which part of the model is
tested by the test set (and which part is not).

In literature, works introduce different methods to
generate relevant test cases from a given
specification. For example, [4] presents a formal
testing method developed for Statechart. The paper
identifies, from a Statechart specification, a set of
test cases to verify the compliance of an
implementation and its specification.

4.2 Model Checking

To validate the model, another method advocated by
literature is the model checking. The goal is to test if
a property is held by the system. For it, the property
is stated as a temporal logic formula. Then the
model checker (i.e. the tool for applying model
checking) tests if this property is valid in any state of
the model. When a formula is not valid, the tool
produces a counter example giving a scenario which
violates the property. The counter-example can be
useful to correct and update the model.

So, if model checking allows verifying properties on
a model, it allows, in particular, verifying the
conformity of the model in comparison with the real

system. But some difficulties; described above, can
be highlighted.

• Properties can be difficult to find and to formalize
by engineers and experts;

• For a property, the model-checker provides only
one counter-example.

Typically, the kind of property verified on the formal
model is properties that the real system has to hold.
For example, we can verify that no single failure
leads to the loss of the system. But for our
application, we will have to verify properties that the
real system holds. So identifying properties needs a
great experience and an excellent knowledge of the
system and its behaviour.

For AltaRica language, previous works have
developed a platform between AltaRica and the
model checker SMV [10].

5. A validation process

5.1 High level view of the process

MBSA is clearly a promising approach to overcome
limits shown by classical safety analyses. But, to use
MBSA in industrial domain, we believe that it’s very
important to have a method of validation of the
model. For this purpose, we envisage two major
phases: 1) guiding the modelling phase to prevent
some errors and 2) validating the models to detect
and eliminate remaining errors. The first subject is
not the point here. Details can be found in [6]. Here,
the focus is done on the validation phase of an
AltaRica model. According to us, a high level view of
the general validation process can be pictured as
below.

Figure 2 : High level validation process

5.2 Validation process proposal

We introduce in this part a general method for the
three levels of validation described above (unit,
integrated and global). The general strategy of this
method is to:

Modeling Methodology

(Not the focus here)

Validation of the AltaRica

unit nodes library

Validation of a unit node

integrated in the model

Validation of the global

model

 Page 5/9

• Build a schematic representation of the system
under study (this representation will play the role
of a specification);

• Verify that the AltaRica model is compliant with
this representation.

Thus, we transform the validation problem of an
AltaRica model into a “classical” verification problem
between a specification and an implementation. In
the following, we call SFPM (Specification of Failure
Propagation Model) the specification of the AltaRica
model and AIFP (AltaRica Implementation of the
Failure Propagation model) the implementation of
the AltaRica model.

At this moment, the careful and cautious reader
won't do any assumptions on the form of the SFPM.
Indeed, according to us, the form of the SFPM will
be different depending on the level of validation
(unit, integrated and global).

The proposed process can be divided into two steps:

Concerning the SFPM:

• Define the SFPM from informal documents;

• Define the coverage criteria of the SFPM. What
do we want to test on the SFPM? (the criteria
will differ depending on the form of the SFPM
and the goal of the validation);

• From both the SFPM and its coverage criteria,
we generate test cases which cover these
criteria.

Concerning the AIFP:

• Define coverage criteria on the AIFP. What do
we want to test on the AIFP? (i.e. defining
coverage criteria on AltaRica models);

• Play the test cases extracted from the SFPM on
the AIFP. Checking of outputs and behaviours
(state transfer);

• Check on the AIFP which part of the AIFP is
covered by the SFPM test cases according to
the AIFP coverage criteria;

• Identify AIFP parts uncovered by SFPM test
cases;

• Generate test cases to cover these uncovered
AIFP parts;

• Play these test cases and check for outputs and
behaviours.

To well understand this process let us explicit two
particular points of uncertainty in the process. First
the SFPM might not be complete (i.e. it might not
contain all of the real system’s behaviour). Indeed,
this SFPM arises from human work and might not
contain all possible execution path of the AIFP. So,
giving coverage criteria on the SFPM, generating
test cases and playing them on the AIFP give

confidence in the methodology but are not sufficient.
AIFP can embed more information and more
behaviours than the SFPM; some of them are true,
some other are wrong behaviour and have to be
detected and annihilated. Giving coverage criteria on
AIFP prove that the model has been “sufficiently”
tested. One other advantage of testing AIFP is that
we can possibly complete the SFPM afterwards.

We believe that this general process can be applied
and adapted to each kind of validation (unit,
integrated and global). Depending on the validation
level, parts of the process will change; in particular,
the form of the SFPM will be different, different
coverage criteria will be defined. In the following, our
work has been focused on the unit validation (i.e. the
validation of an AltaRica node).

Figure 3 : A proposal for the validation process

6. Construction of the SFPM

In this section, we deal with the definition and the
building of the Specification of Failure Propagation

Design

Documents

Failure

Analysis

SFPM

Expert

Validation

AIFP

Test Set

Generation

Simulation

AIFP Output

=

SFPM outputs

100% coverage

of the AIFP

Identification of

uncovered parts

For each uncovered part

of the AIFP, generation

of test scenario

AIFP Output

=

Expert judgment

Identification

of faulty

parts in AIFP

Update the

AIFP or the

SFPM

END

Yes

Yes

No

No

Yes

No

 Page 6/9

Model (SFPM) for an AltaRica node (for the unit
validation).

In a general way and to justify the existence of
SFPM, we consider that building a first
representation of the component’s behaviour (even if
it is incomplete but was validated by the experts) is
a prerequisite to build the AltaRica node and help at
its validation.

6.1: SFPM Requirements

Before dealing with the form and the chosen
formalism for this SFPM, we present three major
requirements for this SFPM.

• The SFPM should depict correctly the real
component behaviour;

• The SFPM has to be understandable by experts;

• The SFPM should be as formal as possible.

Concerning the first point and according to previous
section, the SFPM is a critical point for the validation
of AltaRica models. Indeed, as a specification, the
SFPM is the reference of the AltaRica model, i.e. if
the SFPM contains errors, the AltaRica model will
contain errors too. Thus, the SFPM should be a
correct depiction of the real system behaviour.

About the second point and because the SFPM have
to be validated by experts, the SFPM needs to be
written down in an easily understandable form.
About this point, we agree that validating the SFPM
by a mere expert proofreading is rather strange.
However, we believe that having a schematic
representation of the system is a prerequisite to build
and validate the AltaRica model. Moreover, the focus
is made here on the unit validation, i.e. the validation
of a component of the AltaRica model. So, the size
of the SFPM will be limited and, for the expert, easier
to validate than the global AltaRica model.

The last requirement is that the SFPM has to be as
formal as possible. Indeed, SFPM is the starting
point for the generation of test cases. To allow a
systematic generation of these test cases, having a
formal (at least a semi-formal) description of the
SFPM will be useful.

Taking into account these three requirements, the
following subsection proposed a form for this SFPM.

6.2: SFPM building

To build this SFPM, a variety of methods /
formalisms can be found in literature to picture and
formalize the behaviour of a system. This includes,
for example, decision tables (which output for which
inputs?), Petri networks, Markov chains, Finite State

Machines, UML diagrams, mode automata. The
general purpose of this SFPM is to be a kind of
bridge between informal documents (design
documents, safety analysis or / and failure analysis
documents) and the AltaRica model. For practical
reasons and because of the AltaRica language, we
choose, a Mode Automata like form. We are
conscious that it is irrelevant to ask an analyst for a
complete mode automaton. We suppose here that
the analyst can write little parts of mode automata
and existing tools can compute these parts into a
complete mode automaton.

To achieve that, we propose to:

• Model the inputs / outputs of the component with
a block diagram;

• Model the states and transitions with a classical
state – transition UML diagram;

• Add to this state-transition diagram the
assertions, i.e. the value of the outputs
depending on the state and the input. The
assertions will be written as ITE (If Then Else).

On the Figure 4, (a) is the block diagram describing
the inputs, the outputs and their types. On the
example, the inputs and the outputs are enumerated.
The figure (b) describes the three states “Ok”,
“Degraded” and “Lost” of the automaton, the
transitions “Fail” and “Degradation”, and the value of
the output in each state. Two remarks can be made:

• If a guard of a transition depends on the value of
one or several inputs, the state – transition
diagram will picture input change as transition,

• A state of the automaton won’t be automatically
pictured by one AltaRica state variable. Here, we
will use one AltaRica state variable with three
values {Ok, Degraded, Lost}.

Figure 4 : Proposal for the SFPM

(a)

(b)

Component

Ok

…………

Out = In

Lost

…………

Out=null

Degraded

…………

If (In=ok) then Out=low,

Else Out=null

Fail
Fail

Degradation

Out: {ok, low, null} In: {ok, low, null}

 Page 7/9

We believe that these kinds of diagrams are
sufficiently clear, explicit and comprehensible to be
validated by experts. Taking the hypothesis that we
can transform these diagrams into a mode
automaton, these diagrams will be considered as a
reference (i.e. a specification) for both the
implementation of the component model (modelling
activities) and the validation of the implemented
model. Thus, our problem can be considered as a
classical problem of verification that an
implementation is correct with respect to its
specification.

6.3: AIFP building

From the SFPM, the AIFP is manually built.
Concerning our example, the SFPM represented on
Figure 4 corresponds to the AltaRica model
presented in section 3.

7. Verification of the AIFP

At this stage, we have at our disposal the SFPM and
the AIFP. We want now to validate the AIFP
according to the process described in section 5.

7.1: SFPM and AIFP coverage criteria

First, we have to define the objectives of the
verification. So, we must define what we want to test
on both SFPM and AIFP, i.e. the coverage criteria on
SFPM and AIFP.

SFPM coverage: On the SFPM, the coverage criteria
are:

• the coverage of all states;

• the coverage of all transitions;

• the coverage of the assertions. For the
assertions and because they are written under
“If Then Else” form, we can choose classical
coverage criteria of the DO178B [7]. Here, we
choose the Condition / Decision coverage.

AIFP coverage: Defining coverage criteria for the
AIFP consists in defining criteria for an AltaRica
model.

Our coverage criterion is to cover the transitions and
the assertions of the AltaRica model.

About the transitions, let us remind that AltaRica
transitions are written under the form “G(s,v) |- E -
>s_”. We transform this form into “If (G(s,v) and E)
then s_”. The meaning is identical. But, written under
“If Then Else” form, we can apply classical coverage
criteria defined in DO178B. We choose the condition
/ decision coverage:

• Condition coverage: a condition is a simple
Boolean expression, i.e. it can not be broken
down into a simpler Boolean expression; the
condition coverage means that each condition
has to be evaluated to both true and false.

• Decision coverage (or branch coverage): the
entire Boolean expression has to be evaluated
to both true and false.

The AltaRica assertions are written under “If Then
Else” form. So again, we can apply coverage criteria
of the DO178B. We choose also the condition /
decision coverage.

7.2: Preliminary for AIFP verification

Here, we want to directly measure the effectiveness
of the test strategy on the AltaRica model. We
present thus a way to measure the coverage of the
model by introducing flags into the model.

Measure of the coverage of the AltaRica transitions:

To measure the coverage of the AltaRica transitions,
we follow the following step.

• We transform AIFP transitions according to the
condition coverage of the DO178B, i.e.
transforming “A or B |- E → s_” into two
transitions “A |- E → s_” and “B |- E → s_”. Thus,
each transition has a unique condition, i.e. the
guard of each transition can not be broken into a
simpler Boolean expression;

• We add to the AltaRica model one Boolean state
variable ST_T_i per modified transition;

• We initialize them to “false”;

• We transform transition such as:

“A |- E → s_ & ST_T_1:=true”

“B |- E → s_ & ST_T_2:=true”;

• We add an observer to the AltaRica model. The
observer is true if all ST_T_i are true. That
means that all transitions have been covered.

Measure of the coverage of the AltaRica assertions:

To measure the effective coverage of the AltaRica
assertions, we follow the following step.

• We transform AIFP assertions according to the
condition coverage of the DO178B, i.e.
transforming:

“case { A or B: V1,

 else V2}”

Into

“case { A: V1,

 B: V1,

 else V2}”.

 Page 8/9

• We add an integer local variable named LOC
with the same form of the output variable:

“LOC = case { A: 1,

 B: 2,

 else 3}”

• We add to the AltaRica model one boolean state
variable ST_A_i per assertion

• We initialize them to “false”

• We add one transition for each assertion:
“LOC=i and ST_A_i=false |- Dirac(0) →
ST_A_i=true” where Dirac(0) is an instantaneous
event

• We add an observer to the AltaRica model. The
observer is true if all ST_A_i are true: that
means that all assertions have been covered.

7.3: Verification of the AIFP

The first objective is to verify that the AIFP satisfies
the properties of the SFPM. According to the SFPM
coverage criteria (cf. 7.1); it consists in detecting, in
the AIFP, missing states, transitions or assertions
presents in the SFPM.

The second objective is to verify that there is no
unwanted information in the AIFP. According to the
AIFP coverage criteria, it consists in detecting extra
states, transitions or assertions in the AIFP.

Verification of the AIFP: SFPM criteria

For verifying the properties of the SFPM on the
AIFP, the first step is to generate a set of test cases
that satisfies the SFPM coverage criteria. Then,
those test cases are simulated on the AIFP.

Generation of the test cases: From the SFPM, we
generate automatically test cases. Written as mode
automata, our approach uses different works of the
literature ([4], [5]).

The general principle of our approach is:

• Use the state-transition diagram of the SFPM (of
the mode automata) to generate a first set of test
cases which cover all states and transitions.

• Use the assertion part of the SFPM to complete
the first set of test cases in order to cover the
assertions. For it, we can use works about the
coverage of imperative code ([7]).

Simulation of the test cases on the AIFP: Once these
test cases obtained, we simulate them on the AIFP.
It consists in checking if the actual output is the
expected one (defined in the SFPM) and if after each

transition, the state transfer is correct. To achieve
this task, a great help is given by the step-by-step
simulation tool of Cecilia™ OCAS. Indeed, thanks to
this tool, every state and every output are
observable. So checking for correct output and
correct state transfer is a very easy task. If an error
occurred (wrong output / wrong value of a variable
state), the model is updated and tested again. When
no error is claimed by the verification, we can go
further on the process.

Moreover, during the simulation, we check, on the
AIFP, for the potential activation of the flag ST_T_i
and ST_A_i.

Verification of the AIFP: AIFP coverage

Previous subsection has tested the AIFP according
to SFPM coverage criteria. The objectives were to
discover missing states, transitions or assertions in
the AIFP (with respect to the SFPM). Here, our
objective is to detect extra states, transitions or
assertions in the AIFP. Potentially, these extra
information can be wrong (i.e. errors in the AIFP), or
true (i.e. errors in the SFPM).

So, in this section, we want to generate test cases to
test the AIFP according to AIFP coverage criteria.

For it and in the previous subsection (during the
simulation of test cases extracted from the SFPM),
the analyst has checked for the activation of the
flags ST_T_i and ST_A_i. Here, we suppose that the
analyst in charge of the verification knows the list of
all defined flags, i.e. he knows all defined ST_T_i
and ST_A_i.

So, our objectives here are the followings:

• Analysing which parts of the AIFP are not tested
by the test cases extracted from the SFPM;

• Generating test cases to cover these parts.

About the first point, the analyst knows the list of all
existing flags and the list of already activated flags
(by the tests extracted from the SFPM). So,
identifying the list of non-activated flag (the list of
untested parts of the AIFP) is trivial.

Then, for each non-activated flag, we use the
sequence generator tool of Cecilia™ OCAS to
identify scenarios which activate these flags (for
each flag, we obtain a list of scenario which activates
this flag). Then, we choose the minimal list of
scenarios which activates all non-activated flags.
This minimal list corresponds to the test cases set.

Then, for each of these test cases, we play it on the
AIFP (i.e. on the AltaRica model) and we observe
the output and the state transfer. Here, to know if
they are correct, our reference is an expert
judgement.

 Page 9/9

In a general way and all along the process, if an
error is detected, we have to check if the error is due
to the SFPM or the AIFP. If it is due to the AIFP, we
update the AIFP and have to play again the test
cases extracted form the SFPM (and following step).
If the error is due to the SFPM, the SFPM has to be
updated and the total process has to be re-started.
According to us, when we have no errors at the end
of the process, the validation of our AltaRica node is
finished.

9. Conclusion

In this paper, we outlined several important aspects
of the design process of an AltaRica model (and
more generally of a formal model). Amongst these
aspects, the most important are 1) having a
specification model and 2) transform the validation
problem into a verification problem between the
implementation and the specification.

The first point, not presented in details in the paper,
consists in transforming a design from an informal
description into a detailed and formal (at least semi-
formal) specification usable for both the modelling
and validation activities.

The second point, which is the subject of the paper,
is to check that the implementation (i.e. the AltaRica
model) is consistent with this specification. Coverage
criteria are given and a process is described to
generate automatically test cases which cover (with
respect to the defined coverage criteria) the AltaRica
model.

However, we argued that validation of AltaRica
model is needed but we base this validation on a
specification model validated by experts. Works will
be described in [6] to present a process for the
modelling activities which can be an input for a
rigorous building of this specification. Also and for
future study, a rigorous way to transform the
specification into the implementation could be
considered.

10. References

[1] Society of Automotive Engineers: "ARP4754:
Certification considerations for highly integrated or
complex aircraft systems", SAE international, 1996.

[2] G. Point: "Contribution à l’unification des méthodes
formelles et de la sûreté de fonctionnement", PhD
Thesis, LaBRI, University of Bordeaux, France,
2000.

[3] A. Rauzy: "Mode Automata and their compilation
into fault trees", Reliability Engineering and System
Safety, 78:1-12, 2002.

[4] K. Bogdanov and M. Holcombe: "Statechart testing
method for aircraft control systems", Software
testing, verification and reliability, 11:39-54, 2001.

[5] H. Ural: "Formal methods for test sequence
generation", Computer communications, v.15 n.5,
p.311-325, 1992.

[6] R. Adeline, J. Cardoso, P. Darfeuil, S. Humbert,
and C. Seguin: "Toward a methodology for the
AltaRica modelling of multi-physical systems", in
preparation, ESREL 2010, Rhodes, Greece, 2010.

[7] RTCA - EUROCAE: "DO-178B / ED-12: Software
considerations in airborne systems and equipment
certification", 1992.

[8] A. Villemeur: "Reliability Availability Maintainability
and Safety Assessment", John Wiley & Sons Ltd,
1992.

 [9] A. Joshi, M. Whalen, M. Heimdahl: “Model-based
safety analysis final report”, NASA contractor
report, NASA/CR-2006-213953, 2006.

[10] C. Kehren, C. Seguin, P. Bieber, C. Castel, C.
Bougnol, J-P. Heckmann, S. Metge: “Advanced
Multi-System Simulation Capabilities with AltaRica”,
Proceedings of the International System Safety
Conference, 2004.

11. Glossary

MDE: Model-Driven Engineering

MBSA: Model Based Safety Analysis

FTA: Fault tree Analysis

FMEA: Failure Modes and Effects Analysis

SFPM: Specification of Failure Propagation Model

AIFP: AltaRica Implementation of Failure Propagation
model

