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Abstract
Inferring the quality of streaming video applications is important
for Internet service providers, but the fact that most video streams
are encrypted makes it difficult to do so. We develop models that in-
fer quality metrics (i.e., startup delay and resolution) for encrypted
streaming video services. Our paper builds on previous work, but
extends it in several ways. First, the model works in deployment
settings where the video sessions and segments must be identi-
fied from a mix of traffic and the time precision of the collected
traffic statistics is more coarse (e.g., due to aggregation). Second,
we develop a single composite model that works for a range of
different services (i.e., Netflix, YouTube, Amazon, and Twitch), as
opposed to just a single service. Third, unlike many previous mod-
els, the model performs predictions at finer granularity (e.g., the
precise startup delay instead of just detecting short versus long de-
lays) allowing to draw better conclusions on the ongoing streaming
quality. Fourth, we demonstrate the model is practical through a
16-month deployment in 66 homes and provide new insights about
the relationships between Internet “speed” and the quality of the
corresponding video streams, for a variety of services; we find that
higher speeds provide only minimal improvements to startup delay
and resolution.

1 Introduction
Video streaming traffic is by far the dominant application traffic
on today’s Internet, with some projections forecasting that video
streaming will comprise 82% of all Internet traffic in just three
years [13]. Optimizing video delivery depends on the ability to
determine the quality of the video stream that a user receives. In
contrast to video content providers, who have direct access to video
quality from client software, Internet Service Providers (ISPs) must
infer video quality from traffic as it passes through the network.
Unfortunately, because end-to-end encryption is becoming more
common, as a result of increased video streaming content over
HTTPS and QUIC [28, 30], ISPs cannot directly observe video qual-
ity metrics such as startup delay, and video resolution from the
video streaming protocol [5, 17]. The end-to-end encryption of the
video streams thus presents ISPs with the challenge of inferring
video quality metrics solely from properties of the network traffic
that are directly observable.

Previous approaches infer the quality of a specific video service,
typically using offline modeling and prediction that is based on an
offline trace in a controlled laboratory setting [14, 22, 26]. Unfor-
tunately, these models are often not directly applicable in practice
because practical deployments (1) have other traffic besides the
video streams themselves, creating the need to identify video ser-
vices and sessions; (2) have multiple video services, as opposed

to just a single video service. Transferring the existing models to
practice turns out to introduce new challenges due to these factors.

First, inference models must take into account the fact that real
network traffic traces have a mix of traffic, often gathered at coarse
temporal granularities due to monitoring constraints in production
networks and video session traffic is intermixed with non-video
cross-traffic. In a real deployment, the models must identify the
video sessions accurately, especially given that errors in identifying
applications can propagate to the quality of the prediction models.
Second, the prediction models should apply to a range of services,
which existing models tend not to do. A model that can predict qual-
ity across multiple services is hard because both video streaming
algorithms and content characteristics can vary significantly across
video services (e.g., buffer-based [20] versus throughput-based [33]
rate adaption algorithm, fixed-size [20] versus variable-size video
segments [27]).

This work takes a step towards making video inference models
practical, tackling the challenges that arise when the models must
operate on real network traffic traces and across a broad range of
services. As a proof of concept that a general model that applies
across a range of services in a real deployment can be designed and
implemented, we studied four major streaming services—Netflix,
YouTube, Amazon, and Twitch—across a 16-month period, in 66
home networks in the United States and France, comprising a total
of 216,173 video sessions. To our knowledge, this deployment study
is the largest public study of its kind for video quality inference.

We find that models that are trained across all four services (com-
positemodels) perform almost as well as the service-specific models
that were designed in previous work, provided that the training
data contains traffic from each of the services for which quality is
being predicted. On the other hand, we fall short of developing a
truly general model that can predict video quality for services that
are not in the training set. An important challenge for future work
will be to devise such a model. Towards the goal of developing such
a model, we will release our training data to the community, which
contains over 13,000 video sessions labeled with ground truth video
quality, as a benchmark for video quality inference, so that others
can compare against our work and build on it.

Beyond the practical models themselves, the deployment study
that we performed as part of this work has important broader im-
plications for both ISPs and consumers at large. For example, our
deployment study reveals that the speeds that consumers purchase
from their ISPs have considerably diminishing returns with respect
to video quality. Specifically, Internet speeds higher than about
100 Mbps of downstream throughput offer only negligible improve-
ments to video quality metrics such as startup delay and resolution.
This new result raises important questions for operators and con-
sumers. Operators may focus on other aspects of their networks to
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optimize video delivery; at the same time, consumers can be more
informed about what downstream throughput they actually need
from their ISPs to achieve acceptable application quality.

The rest of the paper proceeds as follows. Section 2 provides
background on streaming video quality inference and details the
state of the art in this area; in this section, we also demonstrate
that previous models do not generalize across a range of services.
Section 3 details the video quality metrics we aim to predict, and
the different classes of features that we use as input to the predic-
tion models. Section 4 explains how we selected the appropriate
prediction model for each video quality metric and how we trained
the models. Section 5 discusses the model validation and Section 6
describes the results from the 16-month, 66-home deployment. Sec-
tion 7 concludes with a summary and discussion of open problems
and possible future directions.

2 Background and Related Work:
Streaming Video Quality Inference

In this section, we first provide background on DASH video stream-
ing. Then, we discuss the problem of streaming video quality infer-
ence that ISPs face, and the current state of the art in video quality
inference.

Internet video streaming services typically use Dynamic Adap-
tive Streaming over HTTP (DASH) [32] to deliver a video stream.
DASH divides each video into time intervals known as segments
or chunks (of possibly equal duration), which are then encoded
at multiple bitrates and resolutions. These segments are typically
stored on multiple servers (e.g., a content delivery network) to allow
a video client to download segments from a nearby server. At the
beginning of a video session, a client downloads a DASH Media
Presentation Description (MPD) file from the server. The MPD file
contains all of the information the client needs to retrieve the video
(i.e., the audio and video segment file information). The client se-
quentially issues HTTP requests to retrieve segments at a particular
bitrate. An application-layer Adaptive Bitrate (ABR) algorithm deter-
mines the quality of the next segment that the client should request.
ABR algorithms are proprietary, but most video services rely on
recently experienced bandwidth [33], current buffer size [20], or
a hybrid of the two [37] to guide the selection. The downloaded
video segments are stored in a client-side application buffer. The
video buffer is meant to ensure continuous playback during a video
session. Once the size of the buffer exceeds a predefined threshold,
the video starts playing.

ISPs must infer video quality based on the observation of the
packets traversing the network. The following video quality metrics
affect a user’s quality of experience [2, 6, 7, 15, 16, 21, 23]:

• Startup delay is the time elapsed from the moment the player
initiates a connection to a video server to the time it starts
rendering video frames.

• The resolution of a video is the number of pixels in each
dimension of video frame.

• The bitrate of a segment measures the number of bits trans-
mitted over time.

• Resolution switching has a negative effect on quality of expe-
rience [6, 19]; both the amplitude and frequency of switches
affect quality of experience [19].
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Figure 1: Using a per-service model to detect high (bigger than 5 seconds)
startup delay using method from Mazhar and Shafiq [26].

• Rebuffering also increases rate of abandonment and reduces
the likelihood that a user will return to the service [15, 23].

Resolution and bitrate can vary over the course of the video stream.
Players may switch the bitrate to adapt to changes in network
conditions with the goal to select the best possible bitrate for any
given condition.

In the past, ISPs have relied on deep-packet inspection to identify
video sessions within network traffic and subsequently infer video
quality [24, 31, 36]. Yet, most video traffic is now encrypted, which
makes it more challenging to infer video traffic [5, 17].

Previous work has attempted to infer video quality from en-
crypted traffic streams, yet has typically done so (1) in controlled
settings, where the video traffic is the only traffic in the experiment;
(2) for single services, as opposed to a range of services. It turns
out that these existing methods do not apply well to the general
case, or in deployment, for two reasons. First, in real deployments,
video streaming traffic is mixed with other application traffic, and
thus simply identifying the video sessions becomes a challenging
problem in its own right. Any errors in identifying the sessions
will propagate and create further errors when inferring any quality
of experience features. Second, different video streaming services
behave in different ways—video on demand services incur a higher
startup delay for defense against subsequent rebuffering, for exam-
ple. As such, a model that is trained for a specific service will not
automatically perform accurate predictions for subsequent services.

Previous work has developed models that operate in controlled
settings for specific services that often do not apply in deployment
scenarios or for a wide range of services. Mazhar and Shafiq [26],
BUFFEST [22] and Requet [18] infer video quality over short time
intervals, which is closest to our deployment scenario. The method
from Mazhar and Shafiq [26] is the most promising for our goals
because they infer three video quality metrics: rebuffering events,
video quality, and startup delay. In addition, their models are based
on decision trees, so we can retrain them for the four services we
study using our labeled data for each service, without the need to
reverse engineering each individual service. BUFFEST [22] focused
only on rebuffering detection for YouTube, but introduces a method
for identifying video segments that we build on in this work. We
aim to infer other quality metrics that are more indicative of user
experience, sincemost services experience problemswith resolution
and startup delay, as opposed to rebuffering.
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The shortcomings of these previous approaches are apparent
when we attempt to apply them to a wider range of video services.
When we apply the models from Mazhar and Shafiq to the labeled
datasets we collected with the four video services (described in
Section 4.1) the accuracy was low. The models from Mazhar and
Shafiq infer quality metrics at a coarse granularity: whether there
was rebuffering, whether video quality is high or low, and whether
the video session has started or not. Here, we show results for the
startup delay—whether the video started in more than five seconds
after the video page has been requested. We use Scikit-learn’s [29]
AdaBoost implementation with one hundred default weak learners
as in the original paper. We train one model per service and evaluate
how well we can detect long startup delays. Figure 1 shows the false
positive rate (FPR), precision, and recall when testing the model
for each video service. We omit results for Twitch as 99% of Twitch
sessions start playing after five seconds, so predicting a startup
delay that exceeds five seconds was not a meaningful exercise—it
almost always happens.

Mazhar and Shafiq’s method was ineffective at detecting high
startup delay for the other services. False positive rates are around
20% for Netflix and even higher for Amazon. Perhaps a threshold
different than five seconds would be more appropriate for Netflix
and Amazon. Instead of focusing on fine tuning the parameters
of their model with the exact same set of features and inference
goals from the original paper, we apply Mazhar and Shafiq’s gen-
eral approach but revisit the design space. In particular, we define
inference goals that are more fine-grained (e.g., inference of the
exact startup delay instead of whether the delay is above a certain
threshold) and we leverage BUFFEST’s method to identify video
segments from encrypted traffic to consider a larger set of input
features.

In addition to problems with accuracy, many previous models
have problems with granularity. Specifically, many methods infer
video quality metrics of entire video sessions as opposed to continu-
ous estimates of video sessions over shorter time intervals, as we do
in this work. Continuous estimates of video quality are often more
useful for troubleshooting, or other optimizations that could be
made in real-time. Dimopoulos et al. [14] relied on a web proxy in
the network to inspect traffic and infer quality of YouTube sessions;
it is apparent that they may have performed man-in-the-middle
attacks on the encrypted traffic to infer quality. eMIMIC [25] relies
on the method in BUFFEST [22] to identify video segments and
build parametric models of video session properties that translate
into quality metrics. This model assumes that video segments have
a fixed length, which means that it cannot apply to streaming ser-
vices with variable-length segments such as YouTube. Requet [18]
extended BUFFEST’s video segment detection method to infer po-
tential buffer anomalies and resolution at each segment download
for YouTube. These models rely on buffer-state estimation and are
difficult to apply to other video services, because each video service
(and client) has unique buffering behavior, as the service may pri-
oritize different features such as higher resolution or short startup
delays.

3 Metrics and Features
In this section, we define the problem of video quality inference
from encrypted network traffic. We first discuss the set of video

quality metrics that a model should predict, as well as the granu-
larity of those predictions. Then, we discuss the space of possible
features that the model could use.

3.1 Target Quality Metrics
We focus on building models to infer startup delay and resolution.
Prior work has focused on bitrate as a way to approximate the video
resolution, but the relationship between bitrate and resolution is
complex because the bitrate also depends on the encoding and the
content type [1]. Resolution switches can be inferred later from
the resolution per time slot. We omit the models for rebuffering
as our dataset only contains rebuferring for YouTube. We present
rebuffering models for YouTube at a technical report [3].
Startup delay. Prior work presents different models of startup de-
lay. eMIMIC [25] defines startup delay as the delay to download the
first segment. This definition can be misleading, however, because
most services download multiple segments before starting playback.
For example, we observe in our dataset that Netflix downloads, on
average, four video segments and one audio segment before play-
back begins. Alternatively, Mazhar and Shafiq [26] rely on machine
learning to predict startup delay as a binary prediction [26]. The
threshold to classify a startup delay as short or long, however, varies
depending on the nature of the service, (e.g., roughly three seconds
for short videos on a service like YouTube and five seconds for
movies on a service such as Netflix). Therefore, we instead use a re-
gression model to achieve finer inference granularity and generalize
across video services.
Resolution. Resolution often varies through the course of a video
session; therefore, the typical inference target is the average res-
olution. Previous work has predominantly used classification ap-
proaches [14, 26]: either binary (good or bad) [26] or with three
classes (high definition, standard definition, and low definition) [14].
Such a representation can be misleading, as different clients may
have different hardware configurations (e.g., a smartphone with
a 480p screen compared to a 4K smart television). Therefore, our
models infer resolution as a multi-class classifier, which is easier
to analyze. Each class of the classifier corresponds to one of the
following resolution values: 240p, 360p, 480p, 720p, and 1080p.

One can compute the average resolution of a video session [14,
25] or of a time slot [26]. We opt to infer resolution over time as
this fine-grained inference works for online monitoring plus it can
later be used to recover per-session statistics as well as to infer
the frequency and amplitude of resolution switches. We consider
bins of five and ten seconds or at the end of each downloaded
video segment. To determine the bin size, we study the number
of resolution switches per time bin using our ground truth. The
overwhelming majority of time bins have no bitrate switches. For
example, at five seconds, more than 93% of all bins for Netflix have
no quality switch. As the bin size increases, more switches occur
per bin and resolution inference occurs on a less precise timescale.
At the same time, if the time bin is too short, it may only capture the
partial download of a video segment, in particular when the network
conditions are poor. We select ten-second bins, which represents
a good tradeoff between the precision of inferring resolution and
the likelihood that each time bin contains complete video segment
downloads.
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Network Layer Transport Layer Application Layer
throughput up/down (total, video, non-video) # flags up/down (ack/syn/rst/push/urgent) segment sizes (all previous, last-10, cumulative)
throughput down difference receive window size up/down segment requests inter arrivals
packet count up/down idle time up/down segment completions inter arrivals
byte count up/down goodput up/down # of pending request
packet inter arrivals up/down bytes per packet up/down # of downloaded segments
# of parallel flows round trip time # of requested segments

bytes in flight up/down
# retransmissions up/down
# packets out of order up/down

Table 1: Summary of the extracted features from traffic.

3.2 Features

For each video session, we compute a set of features from the cap-
tured traffic at various levels of the network stack, as summarized
in Table 1. We consider a super-set of the features used in prior
models [14, 25, 26] to evaluate the sub-set of input features that
provides the best inference accuracy.
Network Layer. We define network-layer features as metrics that
solely rely on information available from observation of a network
flow (identified by the IP/port four-tuple).

Flows to video services fall into three categories: flows that
carry video traffic, flows that belong to the service but transport
other type of information (e.g., the structure of the web page), and
all remaining traffic flows traversing to-and-from the end-host
network. For each network flow corresponding to video traffic, we
compute the upstream and downstream average throughput as well
as average packet and byte counts per second. We also compute the
difference of the average downstream throughput of video traffic
between consecutive time slots. This metric captures temporal
variations in video content retrieval rate. Finally, we compute the
upstream and downstream average throughput for service flows
not carrying video and for the total traffic.
Transport Layer. Transport-layer features include information
such as end-to-end latency and packet retransmissions. These met-
rics reveal possible network problems, such as presence of a lossy
link in the path or a link causing high round-trip latencies between
the client and the server. Unfortunately, transport metrics suffer
two shortcomings. First, due to encryption, some metrics are only
extractable from TCP flows and not flows that use QUIC (which is
increasingly prevalent for video delivery). Second, many transport-
layer features require maintaining long-running per-flow state,
which is prohibitive at scale. For the metrics in Table 1, we compute
summary statistics such as mean, median, maximum, minimum,
standard deviation, kurtosis, and skewness.
Application Layer. Application-layer metrics include any feature
related to the application data, which often provide the greatest in-
sight into the performance of a video session. Encryption, however,
makes it impossible to directly extract any application-level infor-
mation from traffic using deep packet inspection. Fortunately, we
can still derive some application-level information from encrypted
traffic. For example, BUFFEST [22] showed how to identify indi-
vidual video segments from the video traffic, using the times of
upstream requests (i.e., packets with non-zero payload) to break
down the stream of downstream packets into video segments. Our

experiments found that this method works well for both TCP and
QUIC video traffic. In the case of QUIC, signaling packets have non-
zero payload size, so we use a threshold for QUIC UDP payload
size to distinguish upstream and downstream packets. Based on
observations obtained from a dataset of YouTube QUIC sessions
traffic traces, we set the threshold to 150 Bytes.

We use sequences of inferred video segment downloads to build
up the feature set for the application layer. For each one of the
features in Table 1 we compute the following statistics: minimum,
mean, maximum, standard deviation and 50th, 75th, 85th, and 90th
percentile.

4 Model Selection and Training
We describe how we gathered the inputs for the prediction model,
how we selected the prediction model for startup delay and resolu-
tion, and the process for training the final regressor and classifier.

4.1 Inputs and Labeled Data

Gathering input features.We train models considering different
sets of input features: network-layer features (Net), transport-layer
features (Tran), application-layer features (App), as well as a combi-
nation of features from different layers: Net+Tran, Net+App and
all layers combined (All). For each target quality metric, we train
32 models in total: (1) varying across these six features sets and
(2) using six different datasets, splitting the dataset with sessions
from each of the four video services—Netflix, YouTube, Amazon,
and Twitch—plus two combined datasets, one with sessions from
all services (which we call composite) and one with sessions from
three out of four services (which we call excluded). For models that
rely on transport-layer features, we omit YouTube sessions over
UDP as we cannot compute all features. For each target quality
metric, we evaluate models using 10-fold cross-validation. We do
not present the results for models based only on transport-layer or
application-layer features, because the additional cost of collecting
lightweight network-layer features is minimal, and these models
are less accurate, in any case.
Labeling: Chrome Extension. To label these traffic traces with
the appropriate video quality metrics, we developed a Chrome
extension that monitors application-level information for the four
services. This extension, which supports any HTML 5-based video,
allowed us to assign video quality metrics to each stream as seen
by the client.1

1We will release the extension upon publication.
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The extension collects browsing history by parsing events avail-
able from the Chrome WebRequest APIs [10]. This API exposes
all necessary information to identify the start and end of video
sessions, as well as the HTTPS requests and responses for video
segments. To collect video quality metrics, we first used the Chrome
browser API to inspect the URL of every page and identify pages
reproducing video for each of the video services of interest. After
the extension identifies the page, collection is tailored for each
service:

• Netflix: Parsing overlay text. Netflix reports video quality
statistics as an overlay text on the video if the user provides
a specific keystroke combination. We injected this keystroke
combination but render the text invisible, which allows us to
parse the reported statistics without impacting the playback
experience. This information is updated once per second, so
we adjusted our collection period accordingly. Netflix reports
a variety of statistics. We focused on the player and buffer
state information; including whether the player is playing or
not, buffer levels (i.e., length of video present in the buffer),
and the buffering resolution.

• YouTube: iframe API.We used the YouTube iframe API [38]
to periodically extract player status information, including
current video resolution, available playback buffer (in sec-
onds) and current playing position. Additionally, we collect
events reported by the <video> HTML5 tag, which exposes
the times that the player starts or stops the video playback
due to both user interaction (e.g., pressing pause) or due to
lack of available content in the buffer.

• Twitch and Amazon: HTML 5 tag parsing. As the two services
expose no proprietary interface, we generalized the module
developed for YouTube to solely rely on the <video> HTML5
tag to collect all the required data. This approach allowed us
to collect all the events described above as well as player sta-
tus information, including current video resolution, available
playback buffer (in seconds), and current playing position.

4.2 Training

Startup delay. We trained on features computed from the first
ten seconds of each video session. We experimented with different
regression methods, including: linear, ridge, SVR, decision tree
regressor, and random forest regressor. We evaluate methods based
on the average absolute error and conclude that random forest leads
to lowest errors. We select the hyper parameters of the random
forest models on the validation set using the R2 score to evaluate
all combinations with exhaustive grid search.
Resolution. We trained a classifier with five classes: 240p, 360p,
480p, 720p, and 1080p. We evaluated Adaboost (as in prior
work [26]), logistic regression, decision trees, and random forest.
We select random forests because it again gives higher precision
and recall with lower false positive rates. Similarly to the model
for startup delay, we select hyper parameters using exhaustive grid
search and select the parameters that maximize the F1 score.
Generating and labeling traffic traces.We instrumented 11 ma-
chines to generate video traffic and collect packet traces together
with the data from the Chrome extension: six laptops in residences

Service Total Runs % Home % Lab
Netflix 3,861 53% 47%
YouTube TCP 4,511 16% 74%
YouTube QUIC 1,310 58% 42%
Twitch 2,231 17% 83%
Amazon 1,852 10% 90%

Table 2: Summary of the labeled dataset.

connected to the home WiFi network (three homes in a large Euro-
pean city with download speeds of 100 Mbps, 18 Mbps, and 6 Mbps,
respectively; one room in a student residence in the same city; one
apartment in a university campus in the US; and one home from a
rural area in the US), four laptops located in our lab connected via
the local WiFi network, and one desktop connected via Ethernet to
our lab network. We generated video sessions automatically using
ChromeDriver [12]. We played each session for 8 to 12 minutes
depending on the video length and whether there were ads at the
beginning of the session (in contrast to previous work [26], we did
not remove ads from the beginning of sessions in order to recreate
the most realistic setting possible). For longer videos (e.g., Netflix
movies), we varied the playback starting point to avoid always
capturing the first portion of the video. We generate five categories
of sessions: Netflix, Amazon, Twitch, YouTube TCP, and YouTube
QUIC. We randomly selected Netflix and Amazon movies from
the suggestions presented by each service in the catalog page. To
avoid bias, we selected movies from different categories including
action, comedies, TV shows, and cartoons. We ultimately selected
25 movies and TV shows used in rotation from Netflix and 15 from
Amazon. Similarly for YouTube, we select 30 videos from different
categories. Twitch automatically starts a live video feed when open-
ing the service home page. Thus, we simply collect data from the
automatically selected feed. To allow Netflix to stream 1080p con-
tent on Chrome, we installed a dedicated browser extension [11].
Finally, we collected packet traces using tcpdump [35] on the net-
work interface the client uses and compute traffic features presented
in the previous section.
Emulating Network Conditions. In the lab environment, we
manually varied the network conditions in the experiments using
tc [9] to ensure that our training datasets captured a wide range
of network conditions. These conditions can either be stable for
the entire video session or vary at random time intervals. We var-
ied capacity from 50 kbps to 30 Mbps, and introduced loss rates
between 0% and 1% and additional latency between 0 ms and 30 ms.
All experiments within homes ran with no other modifications of
network conditions to emulate realistic home network conditions.
Measurement period.We collected data from November 20, 2017
to May 3, 2019. We filtered any session that experienced playing
errors during the execution. For example, we noticed that when
encountering particularly challenging video conditions (e.g., 50 kbps
download speeds), Netflix’s player simply stops and shows an error
instead of stalling and waiting for the connectivity to return to
playable conditions. Hence, we removed all sessions that required
more than a high threshold, i.e., 30 seconds, to start reproducing
the video. The resulting dataset contains 13,765 video sessions from
Netflix, Amazon, Twitch, and YouTube, that we use to train and
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Figure 2: Startup delay inference error across different features sets.

test our inference models.2 Table 2 shows the number of the runs
per video service and under the different network conditions.

5 Model Validation
We evaluate the accuracy of models relying on different features sets
for predicting startup delay and resolution. Our results show that
models that rely on network- and application-layer features out-
perform models that rely on network- and transport-layer features
across all services. This result is in contrast with prior work [14, 26],
which provided models that rely on transport-layer features.

We also evaluate whether our models are general. A composite
model—where we train the model with data from multiple services
and later predict quality of any video service—is ideal as it removes
the requirement to collect data with ground truth for a large number
of services. Our evaluation of a composite model trained with data
from the four video services shows that it performs nearly as well as
specific models that rely only on sessions from a single service across
both quality metrics. This result raises hopes that the composite
model can generalize to a wide variety of video streaming services.
When we train models using a subset of the services and evaluate
it against the left out one (excluded models), however, the accuracy
of both startup delay and resolution models degrades significantly,
rendering the models unusable. This result highlights that although
our modeling method is general in that it achieves good accuracy
across four video services, the training set used to infer quality
metrics should include all services that one aims to do prediction
for.

5.1 Startup Delay
To predict startup delay, we train one random forest regressor for
each features set and service combination. We study the magnitude
of the inference errors in our model prediction. Figure 2 presents
the error of startup delay inference across the four services for
different features sets. Interestingly, our results show that the model
using a combination of features from network and application
layer yields the highest precision, minimizing the root mean square
error (RMSE) across the four services. These results also show that
we can exclude Net+Tran models, because Net+App models have
consistently smaller errors. ISPs may ultimately choose a model that
uses only network-layer features, which rely on features that are
readily available in many monitoring systems for a small decrease
in inference accuracy.

To further understand the effect of different types of features
on the models, we study feature importance (based on the Gini
index [8]) across the different services. Figure 3 ranks the ten most

2We will release the collected dataset upon publication.
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Figure 3: Startup delay feature importance for Netflix and YouTube Net+App
models.

important features for both Netflix and YouTube for the Net+App
model. Overall, application-layer features dominate YouTube’s rank-
ing with predominantly features that indicate how fast the client
downloads segments, such as the cumulative segment size and
their interarrival times. We observe the same trend for Amazon
and Twitch. In contrast, the total amount of downstream traffic (a
network-layer feature) dominates Netflix’s list. Although this result
seems to suggest a possible difference across services, this feature
also indicates the number of segments being downloaded. In fact,
all of these features align with the expected DASH video streaming
behavior: the video startup delay represents the time for filling the
client-side buffer to a certain threshold for the playback to begin.
Hence, the faster the client reaches this threshold (by downloading
segments quickly), the lower the startup delay will be.

Finally, we aim to understand how much the larger errors ob-
served in Figure 2 could negatively impact real world applications
of the model for the different services. Figure 4 shows for each
service the distribution of the relative errors for inferred startup
delays split into two-second bins (using the Net+App features set).
We see that the errors depend heavily on the number of samples in
each bin (displayed at the top of each box): the larger the number
of samples, the smaller the errors. This result is expected as the
model better learns the behavior of video services with more data
points, and is also reassuring as the model is more accurate for the
cases that one will more likely encounter in practice. The bins with
more samples have less than one second error most of the time. For
example, the vast majority of startup delays for YouTube occur in
the zero to four seconds bins (91% of total sample) and errors are
within one second for the majority of these instances. Overall, our
models perform particularly well for startup delays of less than ten
seconds with errors mostly within one second (with the exception
of Amazon, which only has six samples in the (0,2] range of startup
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Figure 4: Startup delay inference error across different services for Net+App specific models.
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Figure 5: Relative error in startup delay inference with same or composite
Net+App models.

delay). Above ten seconds the precision degrades due to the lower
number of samples.
Composite models. We evaluate a composite model for inferring
startup delay across multiple services. Figure 5 reports startup
delay inference errors for Netflix for the model trained using solely
Netflix sessions (specific model), the one using data from all four
services (composite model), and finally the one using only the other
three services (excluded model). The composite model is helpful
in that we can perform training and parameter tuning once across
all the services and deploy a single model online for a small loss in
accuracy. We present results for Netflix, but the conclusions were
similar for the other three services. The composite model performs
almost as well as the specific model obtained from tailored training
of a regressor for Netflix; the RMSE of the specific model is 1.24
and that of the composite model is 1.45. Our analysis of the data
shows that errors are mostly within one second for startup delays
between two and ten seconds, the biggest discrepancies occur for
delays below two and above ten seconds due to the low number of
samples. In summary, these results suggest it is possible to predict
startup delay with a composite model across multiple services.
Applying a compositemodel to new services.Given that all the
video streaming services use DASH, our hope was to train themodel
with data from a few services and later use it for other services not
present in the training set. To test the generality of the model, we
evaluate a model for inferring startup delay, where we train with
Amazon, YouTube, and Twitch data and test with Netflix (excluded
model). Unfortunately, the results in Figure 5 show that the excluded
model performs very poorly compared to both the specific and
composite models more than doubling the RMSE to 2.91. To better
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Figure 6: Total down throughput is similar across services; number of dow-
naloded segments is not.

understand this result, we analyze the differences and similarities
of the values of input features among the four different services.
Although Netflix’s behavior is often similar to that of Amazon, the
similarities are concentrated on only a sub-set of the features in our
models. For example, Figure 6a shows the distribution of the total
downstream throughput in the first ten seconds and Figure 6b shows
the number of downloaded segments—two of the most important
features for Netflix’s inference. We observe that the distribution
of the downstream throughput is fairly similar between Netflix
and Amazon. On the other hand, the distributions of the number
of downloaded segments present significant differences peaking
respectively at 25 and 100 segments. Given these discrepancies, the
models have little basis to predict startup delay for Netflix when
trained with only the other three services. Whether it is possible
to build a general model to infer startup delay across services is
an interesting question that deserves further investigation. In the
rest of this paper, we rely on the composite models based on the
Net+App features to infer startup delay across services.

5.2 Resolution
Next, we explore resolution inference. We divide each video ses-
sion into ten-second time intervals and conduct the inference on
each time bin. We train one random forest multi-class classifier for
each service features set and service combination. Similarly to the
previous section, we present aggregated results for the different
layers across the studied services. We report the receiver operating
characteristic (Figure 7a) and precision-recall (Figure 7b) curves for
the models weighted average across the different resolution labels
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Figure 7: Resolution inference using different features sets (For all four video
services).
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Figure 8: Resolution inference feature importance for Netflix and YouTube
Net+App models.

to illustrate the performance of the classifier for different values
of the detection threshold. The models trained with application
layer features consistently achieve the best performance with both
precision and recall reaching 91% for a 4% false positive rate. Any
model not including application features reduces precision by at
least 8%, while also doubling the false-positive rate.

We next investigate the relative importance of features in the
Net+App model. Figure 8 reports the results for YouTube and Net-
flix, which show that most features are related to segment size. The
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Figure 9: Resolution inference across services (with Net+App features set).
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Figure 10: Kernel Density Estimation function for the relative error in resolu-
tion inference for Net+App models (normalized to levels).

same applies to the other services. This result confirms the general
intuition: given similar content, higher resolution implies more
pixels-per-inch, thereby requiring more data to be delivered per
video segment. Models trained with network and transport layer
features infer resolution by relying on attributes related to byte
count, packet count, bytes per packet, bytes in flight, and through-
put. Without segment-related features, these models achieve com-
paratively lower precision and recall.

Figure 9 presents the accuracy for each video service using the
specific model. We see that overall the precision and recall are
above 81% and false positive rate below 12% across all services.
The accuracy of the resolution inference model is particularly high
for YouTube and Twitch with average precision of 0.98 for both
services. The accuracy is slightly lower for Amazon and Netflix,
because these services change the resolution more frequently to
adapt to playing conditions, whereas YouTube and Twitch often
stick to a single, often lower, resolution.
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Figure 11: Composite vs. specific Net+App models performance for resolution
inference.

We also quantify the error rate for resolution inference. Figure 10
shows the kernel density estimation obtained plotting relative er-
rors for the time slots for which the model infers an incorrect
resolution. Recall that we model resolution using a multi-class
classifier, resulting in discrete resolution “steps”. Hence, the error
corresponds to distance in terms of the number of steps away from
the correct resolution. As with the startup delay, errors tend to be
centered around the real value, with the vast majority of errors
falling within one or two resolution steps away from the ground
truth. For example, Netflix is the service with the higher number
of incorrectly inferred time slots at 14%, but 83.9% of these errors
are only one step away. Even given these error rates, this model
still offers a better approximation of actual video resolution than
previous models that only reflect coarse quality (e.g., good vs. bad).
Composite models. Figure 11 shows model accuracy when test-
ing with Netflix using the specific model, the composite model,
and the excluded model. We illustrate with results for Netflix, but
the conclusions are similar when doing this analysis for the other
three services. The composite model performs nearly as well as
the specific model (with average precision 0.92 compared to 0.93
for the specific model). These results are aligned with the general
correlation between segment sizes and resolution that we observed
for all services. Indeed, the four most important features for the
composite model are all related to segment size: weighted aver-
age and standard deviation of the sizes of the last ten downloaded
segments, and the maximum and average segment sizes. This ob-
servation thus provides a solid basis for a composite model based
on features related to segments.
Applying a composite model to new services. Figure 11 also
presents the accuracy of the excluded model, which is trained with
data from Amazon, YouTube, and Twitch and tested with Netflix.
As with the startup delay model, we observe a strong degradation
of model accuracy in this case. The average precision is only 0.2.

0 1 2 3
Avg Previous Segment Sizes (MB)

0

2

PD
F

Netflix

(a) Average previous segment sizes.

0 10 20
Max Previous Segment Sizes (MB)

0.0

0.5

1.0

PD
F

Amazon

(b) Max size previous segments.

Figure 12: Both max previous segment size and average previous segment
size differ across services.

Our analysis of the distributions of values of the most important
input features for the different services reveals even worse trends
than discussed for the startup delay. Although Netflix’s behavior
is most similar to Amazon’s, there are sharp differences across all
the most important features. For example, Figure 12 shows the
distribution for the two most important features for Netflix, the
average segment size of previously downloaded segments and their
max size. As a result, the accuracy of the excluded model suffers.
Our comprehensive analysis of the distributions of feature values
across all services indicates that achieving a general model for
resolution seems even more challenging than for startup delay as
services’ behavior vary substantially. As for startup delay, the rest of
this paper will rely on the composite model with Net+App features
to infer resolution across services.

6 Video Quality Inference in Practice
We apply our models to network traffic collected from a year-long
data collection effort in 66 homes. In this sectionwe present the chal-
lenges we discovered when applying the methods in practice and
techniques we apply to mitigate them. We then use the Net+App,
unified models from Section 4 to infer startup delay and resolu-
tion on all video sessions collected throughout the lifetime of the
deployment (Table 3).

6.1 In-Home Deployment Dataset

Embedded home network monitoring system.We have devel-
oped a network monitoring system that collects the features shown
in Table 1. Our current deployment has been tested extensively on
both Raspberry Pi and Odroid platforms connected within volun-
teers’ homes. The system is flexible and can operate in a variety of
configurations: our current setup involves either setting the home
gateway into bridge mode and placing the device in between the
gateway and the user’s access point, or deploying the device as
a passive monitoring device on a span port on the user’s home
network gateway. We present the software architecture and design
in a separate paper currently under submission [4].

The system collects network and application features aggregated
across five-second intervals. For each interval, we report average
statistics for network features divided per flow, together with the
list of downloaded video segments. Every hour, the system uploads
the collected statistics to a remote server. To validate the results
produced by the model, we instrument the extension presented in
Section 4.1 in five homes. Through the extension we collect ground
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Speed Homes Devices # Video Sessions
[mbps] Netflix YouTube Amazon Twitch
(0,50] 20 329 21,774 65,448 2,612 2,584
(50,100] 23 288 11,788 50,178 3,273 3,345
(100,500] 19 277 13,201 38,691 2,030 197
(500,1000] 4 38 523 442 86 1
Total 66 932 47,286 154,759 8,001 6,127

Table 3: Number of video sessions per speed tier.
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Figure 13: Effect of domain adaptation on startup delay inference.

truth data for 2,347 streaming sessions for the four services used to
train the models.
Video sessions from 66 homes. We analyze data collected be-
tween January 23, 2018, and March 12, 2019. We concluded the data
collection in May 2019, at which point we had 60 devices in homes
in the United States participating in our study, and an additional 6
devices deployed in France. Downstream throughputs from these
networks ranged from 18 Mbps to 1 Gbps. During the duration of
the deployment, we have recorded a total of 216,173 video sessions
from four major video service providers: Netflix, YouTube, Amazon,
and Twitch. Table 3 presents an overview of the deployment, in-
cluding the total number of video sessions collected for each video
service provider grouped by the homes’ Internet speed (as per the
users’ contract with their ISP) and the number of unique device
MAC addresses seen in the home networks.

Additionally, we periodically (four times per day) record the
Internet capacity using active throughput measurements (e.g., speed
tests) from the embedded system. We collect this information to
understand relationships between access link capacity and video
QoE metrics.

6.2 Practical Challenges for Robust Models
Testing our models in a long-running deployment raises a new set
of challenges that are not faced by offline models that operate on
curated traces in controlled lab settings. Two factors, in particular,
affected the accuracy of the models: (1) the granularity of training
data versus what is practical to collect in an operational system;
and (2) the challenge of accurately detecting the start and end of a
video session in the presence of unrelated cross-traffic.
Granularity and timing of traffic measurements. An opera-
tional monitoring system cannot export information about each
individual packet. It is hence common to report traffic statics in
fixed time intervals or time bins (e.g., SNMP or Netflow polling
intervals). The training data that we and prior work collect has a

Net + App Domain adaptation
Precision Recall FPR Precision Recall FPR

Netflix 86% 86% 3.4% 90% 90% 2.5%
YouTube 82% 82% 4.4% 78% 78% 5.5%
Twitch 82% 82% 4.6% 91% 91% 2.2%
Amazon 76% 76% 6% 78% 78% 5.6%

Table 4: Effect of domain adaptation on resolution inference.
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Figure 14: Sample session for errors with/without domain adaptation.

precise session start time, whereas the data collected from a de-
ployed system will only have data collected in time intervals, where
the session start time might be anywhere in that interval. This cor-
responding mismatch in granularity creates a challenge for training.
Furthermore, any error in estimating the start time propagates to
the time bins used for inference across the entire session, resulting
in a situation where the time bins in the training and deployment
data sets do not correspond to one another at all.
Session detection Identifying a video session from encrypted net-
work traffic is a second challenge as network traffic is noisy. First,
one must identify the relatively few flows carrying traffic of a given
video service out of all the haystack of flows traversing a typical net-
work monitor. Second, not all flows of a video service carries video.
For example, some flows may carry the elements that compose the
webpage where users can browse videos and others may carry ads.
Finally, within the video flows, one must be able to identify when
each video session starts and ends.

To detect session start and end times, we extend the method from
Dimopoulos et al. [14], which identifies a spike in traffic to specific
YouTube domains to determine the start of a video session and a
silent period to indicate the end of a video session. We evaluate
their method with our ground truth and find that the session start
time error typically falls between zero and five seconds due to the
granularity of the monitoring system, but in some cases—because
browsing a video catalog sometimes initiates the playback of a
movie trailer, for example—the method may incorrectly inflate the
length of any particular video session.We present further validation
in [4].
Domain adaptation. Intuitively, our approach to address these
challenges involves accounting for additional noise that the practi-
cal monitoring introduces that is not present in a lab setting or in
the training data. To do so, we introduce noise into the training data
so that the training data more closely resembles the data collected
from deployment. The techniques that we apply are grounded in
the general theory of domain adaptation [34]; they work as follows:
Because the actual start time can fall anywhere within the five-
second interval, we pre-processed our training data and artificially
adjusted each session start time over a window of -5 seconds to +5
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Figure 15: Startup Delay Inference vs. Nominal Speed Tier.
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(b) YouTube.
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Figure 16: Startup Delay Inference vs. Active Throughput Measurements (95th Percentile).
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Figure 17: Resolution vs Nominal Speed Tier
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Figure 18: Resolution vs. Active Throughput Measurements (95th Percentile).

seconds from the actual start value in increments of 0.5 seconds. For
each new artificial start time, we recalculated all metrics based on
this value for the entire session. This technique has two benefits: it
makes the model more robust to noise, and it increases the volume
of training data.
Validation.We validated the domain-adapted models against 2,347
sessions collected across five homes of the deployment. We com-
pared each session collected from the extension with the closest
session detected in the deployment data. We present results for both
startup delay and resolution using the Net+App, unified model (as
presented in Section 4) and the model after domain adaptation.

Figure 13 shows the resulting improvement in startup infer-
ence when we apply domain adaption based models to Netflix and
YouTube: In both cases, the root mean square error improves—quite
significantly for YouTube. Table 4 shows that we obtain similar

improvements for resolution inference, except for YouTube. We
posit that this result is attributable to the ground truth dataset col-
lected; the YouTube data is heavily biased towards 360p resolutions
(90+%), whereas all other services operated at higher (and more
diverse) resolutions. While domain adaptation increases balance
across classes, it may slightly impact classes with more prevalence
in the training dataset. We leave investigation into mitigating such
issues for future exploration. Finally, Figure 14 illustrates how do-
main adaption helps correct errors on resolution inference through
an example session. These results suggest that domain adaptation
is a promising approach for bridging the gap between lab-trained
models and real network deployments. We expect that results could
be further improved by applying domain adaptation with smaller
time intervals.
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6.3 Inference Results
We ran the quality inference models from Section 4 on all video ses-
sions collected throughout the lifetime of the deployment (Table 3).

6.3.1 Startup Delay We infer the startup delay for each video ses-
sion in the deployment dataset in order to pose a question that both
ISPs and customers may ask: how does access link capacity relate to
startup delay? Answering this question allows us to understand the
tangible benefits of paying for higher access capacity with regard to
video streaming. We employ two metrics of “capacity”: the nominal
download subscription speed that users reported for each home,
and the 95th percentile of active throughput measurements that we
collected from the embedded in-home devices. Figure 15 presents
box plots of startup delay versus nominal speeds, whereas Figure 16
presents startup delay versus the 95th percentile of throughput mea-
surements. Note that the number of samples for the highest tier
for both Amazon and Twitch is too small to draw conclusions see
Table 3), so we focus on results in the first three tiers for these
services.

Figure 15 shows our unexpected result. We see that median
startup delays for each service tend to be similar across the subscrip-
tion tiers. For example, YouTube consistently achieves a median of
<5 second startup delay across all tiers and Amazon a constant me-
dian startup delay of <6 seconds. Netflix and Twitch’s startup delay
differs by at most ± 2 seconds across tiers, but these plots exhibit
no trend of decreasing startup delay as nominal speeds increases
as one would expect. There are several possible explanations for
this result. One possibility is that actual speeds vary considerably
over time due to variations in available capacity along end-to-end
paths due (for example) to diurnal traffic demands.

Startup delays follow a more expected pattern when we consider
capacity as defined by active throughput measurements. Figure 16
shows that startup delay decreases as measured throughput in-
creases for Netflix, YouTube, and Twitch. For Netflix, the difference
in startup delay between the highest and lowest tier is four seconds,
this difference is three seconds for YouTube. This figure also high-
lights the difference in startup delay across services, given similar
network conditions. These differences reflect the fact that different
services select different design tradeoffs that best fit their business
model and content. For example, Netflix has the highest startup
delay of all the services. Because Netflix content is mostly movies
and long-form television shows—which are relatively long—having
higher startup delays may be more acceptable. As we see in the
next section, our inference reflects the expected trends that Netflix
trades off higher startup delay to achieve higher resolution video
streams.

6.3.2 Resolution Next, we infer the resolution for each ten-second
bin of a video session. As with our startup delay analysis, we study
the correlation between resolution and access capacity. For this
analysis, we omit the first 60 seconds of video sessions, since many
Adaptive Bitrate (ABR) algorithms begin with a low resolution to
ramp up as they obtain a better estimate of the end-to-end through-
put. Recall that our video quality inference model outputs one of
five resolution classes: 240, 360, 480, 720, or 1080p.

Figure 17 presents resolution versus the nominal speed tier,
whereas Figure 18 presents resolution versus the 95th percentile of

active throughput measurements. As with startup delay, we observe
expected results (i.e., higher resolutions with higher capacities) with
measured throughput (Figure 18); the trend is less clear for nominal
speed tiers (Figure 17). Recall that the number of samples in the
highest speed bar for Amazon and Twitch is small; focusing on
the other three tiers shows a clear trend of increased percentage
of bins with higher resolutions as capacity increases. For example,
Netflix and YouTube in the highest speed tier achieve about 40%
more 1080p than in the lowest speed tier. We also observe that, in
general, YouTube streams at lower resolution for the same network
conditions than other services.

Video resolution is dependent on more factors than simply the
network conditions. First, some videos are only available in SD,
and thus, will stream at 480p regardless of network conditions.
Second, services tailor to the device type as a higher resolution may
not be playable on all devices. We can identify the device type for
some of the devices in the deployment based on the MAC address.
Of 1,290,130 ten-second bins of YouTube data for which we have
device types, 616,042 are associated with smartphones, indicating
that device type may be a confounder.

7 Conclusion
Internet service providers increasingly need ways to infer the qual-
ity of video streams from encrypted traffic, a process that involves
both identifying the video sessions and segments and processing the
resulting traffic to infer quality across a range of services. We build
on previous work that infers video quality for specific services or
in controlled settings, extending the state of the art in several ways.
First, we infer startup delay and resolution delay more precisely,
attempting to infer the specific values of these metrics instead of
coarse-grained indicators. Second, we design a model that is robust
in a deployment setting, applying techniques such as domain adap-
tation to make the trained models more robust to the noise that
appears in deployment, and developing new techniques to identify
video sessions and segments among a mix of traffic that occurs in
deployment. Third, we develop a composite model that can pre-
dict quality for a range of services: YouTube, Netflix, Amazon, and
Twitch. Our results show that prediction models that use a com-
bination of network- and application-layer features outperforms
models that rely on network- and transport-layer features, for both
startup delay and resolution. Models of startup delay achieve less
than one second error for most video sessions; the average preci-
sion of resolution models is above 0.93. As part of our work, we
generated a comprehensive labeled set with more than 13,000 video
sessions for four popular video services: YouTube, Netflix, Amazon,
and Twitch. Finally, we applied these models to 16 months of traffic
from 66 homes to demonstrate the applicability of our model in
practice, and to study the relationship between access link capacity
and video quality. We found, surprisingly, that higher access speeds
provide only marginal improvements to video quality, especially at
higher speeds.

Our work points to several avenues for future work. First, our
composite model performs poorly for services that are not in the
training set; a truly general model that can predict video quality for
arbitrary services remains an open problem. Second, more work
remains to operationalize video quality predictionmodels to operate
in real time.
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