
HAL Id: hal-02268731
https://hal.archives-ouvertes.fr/hal-02268731

Submitted on 21 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification and Validation of AADL Models
M Bozzano, R Cavada, A Cimatti, J.-P Katoen, V. Nguyen, T Noll, X. Olive

To cite this version:
M Bozzano, R Cavada, A Cimatti, J.-P Katoen, V. Nguyen, et al.. Formal Verification and Validation
of AADL Models. ERTS2 2010, Embedded Real Time Software & Systems, May 2010, Toulouse,
France. �hal-02268731�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/227325141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02268731
https://hal.archives-ouvertes.fr


Formal Verification and Validation of AADL Models

M. Bozzano2, R. Cavada2, A. Cimatti2, J.-P. Katoen1, V.Y. Nguyen1, T. Noll1, X. Olive3

1 Software Modeling and Verification Group, RWTH Aachen University, Germany
2 Embedded Systems Group, Fondazione Bruno Kessler, Italy

3 Research & Technology, Thales Alenia Space, France

Topics: Hardware/Software Co-Design, Model Driven Engineering, Verification and Validation
Domains: Satellite and Space Exploration

1 Introduction

Safety-critical systems are increasingly difficult to com-
prehend due to their rising complexity. Methodologies,
tools and modeling formalisms have been developed
to overcome this. Component-based design is an im-
portant paradigm that is shared by many of them. It
helps to master the overall complexity while in addi-
tion allowing for reusability. Furthermore, it easily sup-
ports the common issues in the engineering disciplines,
like hardware/software (i.e., co-engineering), performa-
bility, dependability, reliability, availability, maintainabil-
ity and safety engineering (RAMS). Model artifacts that
are typical for a discipline can be encapsulated in the
affected components, while staying imperceptible for
non-affected components. This leads to different views
of the system under development, which subsequently
entails the natural distinction in different system ab-
stractions, formalisms and tools. Nonetheless, there is
only one system under development. With the current
methodologies, there is no single view of this system
that links all aspects relevant to all involved engineer-
ing disciplines in a coherent manner.

To overcome this problem, the European Space
Agency (ESA) has set up the COMPASS project1 (Cor-
rectness, Modeling, and Performance of Aerospace
Systems). Its goal is to develop a coherent and multi-
disciplinary approach towards developing systems at
an architecture (i.e., systems engineering) level. The
Architecture and Analysis Design Language (AADL) [1]
and its Error Model Annex [2] is adopted as the key
formalism to fully capture model the system under de-
velopment (see § 2). Furthermore, we base a collection
of verification and validation (V&V) activities over AADL
models on state-of-the-art model checking techniques,
like symbolic and bounded SAT-based model check-
ing, and also probabilistic variants thereof. A mature
graphical-driven toolset has been developed to support
this approach (see § 3). The toolset and its poten-
tial have been evaluated by Thales Alenia Space us-
ing several case studies from the satellite domain (see
§ 4).

1http://compass.informatik.rwth-aachen.de

2 Architecture and Analysis Design
Language

The AADL modeling language is standardized by sev-
eral major industrial and academic partners since 2004
[1]. Models in this language can capture real-time, per-
formance critical and distributed aspects at an architec-
tural level. It supports annexes to extend the language,
among which the Error Model Annex [2] was particu-
larly interesting for our application. We have defined a
formal semantics for its core features and added addi-
tional elements needed to enable formal validation and
verification. The resulting input language has the fol-
lowing design features:

• Modeling both the system’s nominal and faulty
behavior. To this aim, our input language pro-
vides primitives to describe software and hardware
faults, error propagation (that is, turning fault oc-
currences into failure events), sporadic (transient)
and permanent faults, and degraded modes of op-
eration (by mapping failures from architectural to
service level).

• Modeling (partial) observability and the associated
observability requirements. These notions are es-
sential to deal with diagnosability and Fault Detec-
tion, Isolation and Recovery (FDIR) analyses.

• Specifying timed and hybrid behavior. In particular,
in order to analyze continuous physical systems
such as mechanics and hydraulics, our input lan-
guage supports continuous real-valued variables
with (linear) time-dependent dynamics.

• Modeling probabilistic aspects, such as random
faults, repairs, and stochastic timing.

A complete specification consists of three parts,
namely a description of the nominal behavior, a de-
scription of the error behavior, and a fault injection
specification that describes how the error behavior in-
fluences the nominal behavior.

The nominal model describes the system under nor-
mal operation. It is a system decomposition of inter-
acting components in which system detail can be ab-
stracted by defining a hierarchy among components.

1



The interaction interfaces are specified using port con-
nections of which there are three types. Data port con-
nections expose component variables to other com-
ponents, flow port connections are evaluatable func-
tions based on incoming data ports and event port con-
nections are used to define (multi-way) hand-shaking
communication between components. These port in-
terfaces are complemented by a mode transition sys-
tem, which describe changes over the ports, and thus
essentially capture a component’s behavior. The tran-
sition system can be annotated with linear differential
equations and timing constraints to model the evolu-
tion of physical aspects, like temperature, pressure and
scheduling of tasks. Modes can also be used to rep-
resent degradation of the system. Transitions between
these modes can lead to dynamic reconfigurations by
(de)activating components and port connections.

An error model as defined by AADL’s Error Model An-
nex [2] expresses in which ways the system can fail,
i.e., it models how faults may affect normal operation,
how failure effects propagate throughout the system
and may lead to a degraded mode of operation. It is
modeled as a probabilistic finite-state automaton. Tran-
sitions occur due to spontaneous events or propaga-
tions. Events may be annotated with a rate that in-
dicates the expected number of occurrences per time
unit. Propagations occur between components when
they are in a super-subcomponent relation or when they
access a common bus. This implicit linking reflects the
oblivious and pervasive nature of error models.

As error models bear no relation with nominal mod-
els, an error model does not influence the nominal
model unless they are linked through fault injection.
An injection describes how a failure event lead to data
failures in the nominal model, thereby changing the
system’s operation. There is an automatic procedure,
called model extension, that integrates nominal and er-
rors models with the given fault injections. The princi-
pal idea is that the nominal and error models are run-
ning concurrently. Using the fault injections, error tran-
sitions from the error models are interwoven in the nom-
inal model via an interleaving semantics. The specified
data failures override the nominal data effects. Failures
hold as long as the error model is in an error state.
They can be made transient by allowing the error model
to leave erroneous states. The resulting model after
model extension is an integrated AADL model, also
called the extended model.

3 Toolset for Verification & Validation

A graphical toolset, named COMPASS Toolset, has
been developed to conduct verification and validation
analyses over AADL models. Its development has
reached its final phase, and has been accepted by the
ESA during its Acceptance Review meeting of March
2010. A public release is planned for May 2010.

The toolset leverages existing mature tools like

the NuSMV symbolic model checker [3] and the
MRMC probabilistic model checker [4]. The inputs of
these tools are obtained by fully automated semantic-
preserving model transformations from AADL and the
requirements specification patterns. These patterns act
as parameterized templates [5, 6] for a comprehensi-
ble and easy-to-use method of capturing safety, cor-
rectness, performance and dependability requirements.
Several analyses have been defined using these inputs.
Their outputs are transformed back to a graphical and
engineer-friendly form.

The next subsections introduce the analyses and
their applicability in the system design process.

3.1 Requirements Validation

The validation activities are centered around the re-
quirements. In order to ensure the quality of require-
ments, they can be validated independently of the sys-
tem. For this, the requirements are converted automat-
ically to their underlying formal logics (like Linear Tem-
poral Logic and Computational Tree Logic), after which
the analyses can be run. This includes both property
consistency (i.e., checking that requirements do not ex-
clude each other), property assertion (i.e., checking
whether an assertion is a logical consequence of the
requirements), and property possibility (i.e., checking
whether a possibility is logically compatible with the re-
quirements) [7]. Altogether these features allow the de-
signer to explore the strictness and adequacy of the
requirements. Expected benefits of this approach in-
clude traceability of the requirements and easier shar-
ing between different actors involved in system design
and safety assessment. Furthermore, high-quality re-
quirements facilitate incremental system development
and assessment, reuse and design change, and they
can be useful for product certification.

3.2 Functional Verification

The formalized requirement and the AADL model are
the input for analyzing operational correctness, which is
the first step to be performed during the system devel-
opment life cycle. It consists in verifying that the system
will operate correctly with respect to a set of functional
requirements, under the hypothesis of nominal condi-
tions, that is, when software and hardware components
are assumed to be fault-free. One particular instance
of this general model-checking problem that is specifi-
cally supported by the toolset is deadlock checking, i.e.,
ensuring that the system does not give rise to terminat-
ing computations. This is usually required for reactive
systems. Moreover the toolset offers the feature to in-
teractively simulate the execution of the system.

3.3 Safety and Dependability

Analyzing system safety and dependability is a funda-
mental step that is performed in parallel with system

2



Figure 1: Main screen of the COMPASS toolset with AADL models loaded.

design and verification of functional correctness. The
goal is to investigate the behavior of a system in de-
graded conditions (that is, when some parts of the sys-
tem are not working properly, due to malfunctions) and
to ensure that the system meets the safety require-
ments that are mandatory for its deployment and use.
For this the toolset generates common-practice arti-
facts, namely (dynamic) fault trees, (dynamic) Failure
Modes and Effects Analysis tables (FMEA), fault toler-
ances, and criticality numbers [8].

3.4 Performability

To guarantee the required system performance in the
presence of faults, integrated hardware and software
models can be evaluated with respect to their perfor-
mance behavior in degraded modes of operation. The
measures resulting from this analysis can be used to
evaluate design decisions for costs and risks. The anal-
ysis is based on the input AADL model extended with
its error models and fault injections. The resulting ex-
tended model is transformed to its underlying Markov
model, which enables MRMC to compute the measures
of interest like reliability, maintainability and survivabil-
ity.

3.5 Fault Detection, Isolation and Recovery

System models can include a formal description of both
the fault detection and isolation sub-systems, and the
recovery actions to be taken. Based on these mod-
els, tool facilities are provided to analyze the opera-
tional effectiveness of the FDIR system, especially on
how faults are detected, whether observability require-
ments suffice for system diagnosability [9], how the
FDIR system isolates faults and whether recovery ac-
tions, in presence of failures, lead to an operational sys-
tem state.

4 Case Studies

Two distinct case studies have been used to evaluate
the AADL modeling language and the applicability of
the COMPASS toolset in an industrial context. The
first case study is related to the definition of satellite
mode management and its associated FDIR strategy.
The second case study models the thermal regulation
function, where two sub cases have been derived at
functional and behavioral levels. Both case studies are
described in the next subsections

3



4.1 Global FDIR Strategy

The global FDIR strategy case study deals with the
definition of satellite mode management and with the
FDIR strategy management. The case study models
the satellite mode management, the AOCS (Attitude
and Orbital Control System) mode management, the
configuration and reconfiguration sequences and an
abstracted model of the AOCS equipments and other
functional subsystems.

The satellite mode management consists of three
modes and seven elementary transitions. The AOCS
mode management has six modes and about 20 tran-
sitions. Five AOCS units have been considered. The
model of the equipment is based on a six-state au-
tomaton, which can include timed transitions. The two
functional chains are represented in an time-abstracted
way. No behavioral part is modeled, only flags have
been used to inject the faults, and emit the system
alarm. The fault flag represents the level 1 faults (de-
tected by software), which occur on the equipments.
Examples of such faults are transmission error, elec-
trical default and data inconsistency. The system level
alarm represents several hardware detected faults (loss
of pointing Earth or Sun). They are used as last barrier
before losing the satellite and a direct reconfiguration to
the satellite’s safe mode.

The configuration and reconfiguration sequences
represents sequences of commands, which are send to
the AOCS units. Each AOCS mode has a configuration
sequence to set up the right configuration of the AOCS
units. The reconfiguration sequences are used in case
of a detected failure. Both sequences used the same
mechanism to initiate. An event is sent by the moni-
tor (reconfiguration) or by the mode transition between
two AOCS modes. The event is caught by a sequence
manager, which emits an event for starting the proce-
dure. Initially all the procedures are in an Idle state,
waiting for the start event. This mechanism is similar to
the one provided by the ECSS Packet Utilization Stan-
dard (PUS) for communication between ground and on-
board application (see Figure 2). Service 5 is used to
raise events, service 12 is dedicated to on-board moni-
toring, and service 19 allows one to launch an action on
the reception of an event. These services are chained
as such to achieve a reconfiguration that starts from a
monitoring failure.

4.2 Verification

The COMPASS toolset was used to analyze the three
following items:

1. Identification of all the failures leading to a given
level of FDIR. It should allow to validate that the
classification of failures by each level is well done.
For instance, for level 1 (equipment failure), only
the monitor can be the root cause. Level 4 (ulti-
mate one) can only be reached by a system alarm

Figure 2: Synopsis of PUS mechanism used for recon-
figuration.

or a combination of failures from lower levels

2. Identification of the failures, which can lead to the
activation of a reconfiguration sequence. The infor-
mation is then used to check the absence of border
effects on the design.

3. Impact of a reconfiguration sequence on the satel-
lite mode and AOCS mode. It allows one to ver-
ify the correctness and completeness of the satel-
lite and AOCS modes automata with regard to the
equipment configuration.

The analyses for this case study have been conducted
on a standard computer (2GHz processor and 2GB
memory). The duration of analysis is dependent on
the model. All the analyses completed in less than one
hour.

4.2.1 Simulation

Before the verification of the above items, the AADL
model was checked for deadlocks. This analysis
checks for any dead ends in the system, and it is also
needed to ensure the correctness of the verification re-
sults. Simulations were then used to generate traces
of the model. Both random (where the evolution of the
trace is determined by a randomly choosing succes-
sor transitions) and guided (where the user interactively
chooses successor transitions) have been used. Also
traces have been generated with and without fault in-
jections. The main goal of the simulations was to check
the sanity and fidelity of the model.

4.2.2 Fault Tree Generation

The first two analysis items (identification of failures
leading to a given level of FDIR and the activation of
reconfiguration sequence) have been verified by gener-
ating fault trees. For each FDIR level, one fault tree has
been generated. Each leaf represents a fault, which
can lead to this level. In this case, the FDIR level is
considered as the feared event. Figure 3 shows the
resulting fault tree for the most critical event (level 4).
From the requirements, level 4 can only be reached,

4



Figure 3: Generated fault tree for FDIR level 4.

when one of five system alarms occurs. The expected
result is manually verified using the fault tree.

The second item has been verified similarly. The
feared event is the occurrence of the first step of the re-
configuration sequence. Moving to this first step means
that the fault occurrence is related to this sequence.
One fault tree has been generated for each reconfigura-
tion sequence. Each fault set leading to the reconfigu-
ration sequence has been identified. Then we checked
manually, that the FDIR level of the reconfiguration se-
quence and of the faults set are the same. Each time
we identified the same FDIR level for the faults and the
sequence. This analysis validates the FDIR level clas-
sification of the faults and reconfiguration sequence, by
crossing both.

4.2.3 Model Checking

The third item, the impact of the reconfiguration se-
quence on the satellite, was verified using model check-
ing. We wanted to check that the AOCS units will be in
the right status (from requirements), depending on the
AOCS mode. The requirement was formalized using
the global universality requirement pattern. This pat-
tern must be used for system invariants. Informally, the
requirement states that being in mode M implies that
unit U has states S. Twenty properties (five units times
four modes) have been model checked this way.

4.3 Thermal Regulation System

The second case study is a thermal subsystem that
regulates the satellite’s temperature. It is a co-designed
system and performs both active and passive regula-
tion. Passive regulation is achieved by optical solar
reflectors, shields, and heat pipes. They have no be-
havior and are therefore not modeled. Active regulation
relies on sensors and heaters at dedicated positions in
the satellite. Their position is not taken into account as
no requirement uses that information.

Figure 4: Automaton pattern of a function.

4.3.1 Functional Model

The model at functional level covers the whole perime-
ter of the thermal regulation function. It consists of
five subfunctions and twelve elements (five passive and
seven active). As the functional representation is rep-
resented by the tree decomposition, we have defined
a formal pattern used for all functions. The pattern for
a function was defined only once (see Figure 4). The
AADL code of that pattern is shown in Figure 5.

Safety analyses have been performed to identify the
critical path on the function tree. The fault trees allow
one to identify the single failure point. This kind of anal-
ysis can be used at system level to trade-off different
architectures. FMEA tables have been generated too.
Due to the simplicity of the model, the results of the
analyses were obtained in less than one second.

This functional model’s fidelity is interesting at sys-
tem level. It permits to take into account the passive
component and to have a global representation of satel-
lite. For further analysis, this functional model was com-
pleted by a more detailed logical model. It takes into
account the behaviors of the thermal lines.

4.3.2 Logical Model

The thermal subsystem consists of thermal lines,
heaters and sensors. A thermal line consists of
two heater lines (nominal and redundant), two safety
switches and three thermistors in hot redundancy. If a
failure occurs, the software switches the nominal heater
line off and enables the redundant one to continue tem-
perature regulation. Figure 6 shows the decomposition
of a thermal line. The behavior of the line depends on
the computation of the median of the three thermistor’s
measurements. Based on this value, it switches the
heaters on or off, according to the thresholds of the
measured temperature.

AADL Model We only present the interface of the
AADL model, which is shown in Figure 7. The descrip-
tions of the interface is presented in Table 1.

5



system Function

features

Activate: in event port;

Deactivate : in event port;

Operational : out data port bool

default false;

end Function;

system implementation Function.Impl

modes

Idle: initial mode;

Activated : mode;

Deactivated : mode;

transitions

Idle -[ Activate

then Operational := true] ->

Activated;

Idle -[ Deactivate

then Operational := false]->

Deactivated;

Deactivated -[ Activate

then Operational := true] ->

Activated;

Activated -[ Deactivate

then Operational := false]->

Deactivated;

end Function.Impl;

Figure 5: AADL code pattern of a function.

Figure 6: Structure of a thermal line.

Figure 7: Interface of thermal line component.

Input Port Type Description
T1, T2, T3 data measured values from thermistors
enable line event externally switch line on
disable line event externally switch line off
enable monitor event switch monitoring on
disable monitor event switch monitoring off
do event used for simulation
Output Port Type Description
nom is heating data status of nominal heater
red is heating data status of redundant heater
is enabled data status of thermal line
is monitored data status of monitoring

current used data currently used heater
(nominal/redundant)

done event used for simulation

Table 1: Meaning of thermal line component ports.

The AADL model contains the seven active compo-
nents from the functional model. Each function has
been mapped logically on one or several of these com-
ponents. Two error states have been considered for
each unit of the model: (i) for temperature sensor, stuck
at min value and stuck at max value, (ii) for the heater,
no heating and always heating and (iii) for the switch,
stuck at ON and stuck at OFF. An environment model
has been used to describe the evolution of temperature.
Several reconfiguration sequences have been modeled
to move from nominal to redundant switches and to
move from nominal to redundant heaters. Three mod-
els, describing alternative system designs, have been
developed: (M1) without any reconfiguration, (M2) with
a reconfiguration from nominal to redundant, and (M2)
from nominal to redundant and back (case of transient
failure based on ground expertise). The models were
analyzed for correctness, reliability, safety and diagnos-
ability capabilities.

4.3.3 Verification

All models have been checked for deadlock-freedom.
Model checking was used to verify that the tempera-
ture is regulated between the lower and upper bounds
of the safe range under nominal operation. Several
simulations has been performed for sanity-checking the
model. Figure 8 shows a simulation with an injected
fault on a heater and the switch to the redundant one.

4.3.4 Safety & Dependability

Fault trees and FMEA tables have been generated.
They conform to the expectations. The general form of
the fault tree shows the absence of a single point of fail-
ure. All the fault sets have at least cardinality two. Fault
detection analysis has been used to verify that there
exists a means of detecting each feared event. Fault
isolation analysis has been conducted too. It provides
for each observable the list of faults set to which the ob-
servable is sensitive. The two analyses are sufficient to

6



Figure 8: Simulation with fault injection.

validate the observability of the modeled system. The
collected data have been used to improve the depend-
ability of the thermal regulation line from a hardware
and software point of view.

4.3.5 Recovery Analysis

The main objective was to determine which designs
were able to sustain multiple faults by recovering from
them. The three configurations of the model (without
reconfiguration, with simple reconfiguration and with
double reconfiguration) have been checked with the
fault recovery analysis. The results are outlined in Fig-
ure 9. The columns names indicate failure configura-
tions for the nominal heater (named H1 in Figure 9) and
the redundant heater (named H2 in Figure 9).

5 Scalability

Two synthetic benchmarks have been crafted to mea-
sure the scalability of the toolset. The adder benchmark
is parametric in the number of input modeled. Higher
number of inputs increase the model’s size. The sen-
sorfilter benchmark is parametric in the degree of re-
dundancy. A higher level of redundancy increases the
model’s size. The three analysis engines fundamental
to all the supported analyses were benchmarked using
these two synthetic benchmarks.

The BDD-engine is used for time-abstract models.
The results for this engine (see Figure 10) shows that
an increasing number of bits (indicating the model’s
complexity) leads to a higher computation time. As the
figure shows, the increase grows exponentially.

The SAT-engine can be used for time-abstract mod-
els and is mandatory for timed and hybrid models. The
results from the synthetic benchmarks (see Figure 11)
shows a similar trend akin to the BDD-engine although
this engine can cope with larger models easier.

 0

 500

 1000

 1500

 2000

 0  5  10  15  20  25  30  35  40  45

T
im

e 
(s

ec
s.

)

Size (N)

Bdd-based Mc

Figure 10: Scalability of the BDD-based engine. The
size N means the number of Boolean variables needed
to hold a model’s state.

 0

 50

 100

 150

 200

 0  20  40  60  80  100  120  140  160  180  200

T
im

e 
(s

ec
s.

)

Size (N)

SAT-based MC

Figure 11: Scalability of the SAT-based engine. The
size N means the number of Boolean variables needed
to hold a model’s state.

7



Figure 9: Results for fault recovery analysis.

Model Complexity Time
sensorfilter 2 2 4.05
sensorfilter 3 3 16.96
sensorfilter 4 4 74.21
sensorfilter 5 5 273.43
sensorfilter 6 6 861.69
sensorfilter 7 7 2677.01

Table 2: Scalability of the probabilistic engine. The
complexity is measured as the degree of redundancy.

The probabilistic engine is computationally heavier.
Our results with the sensorfilter benchmark (see Table
2) have shown that the computation time increase ex-
ponentially with the model’s complexity.

The nature of the algorithms used by the toolset show
that the computation time increases exponentially with
the model’s size. The evaluation by the industrial part-
ner has however shown that the current engines are
fast enough to allow for mildly complex models, pro-
vided they are modeled with reasonable care.

6 Conclusion

We introduced a comprehensive and coherent method-
ology for the design of complex safety-critical systems.
Our approach is applicable to any domain where, e.g.,
timing, system performance and safety are at stake.
Examples are avionics, transportation, including rail-
ways and automotive, power and the medical domain.
The methodology is based on a formal specification
language that is derived from AADL and its Error Model
Annex. It supports a variety of V&V activities such as
consistency analysis, simulation, correctness verifica-
tion, performability evaluation, dynamic fault tree gener-
ation, FMEA table generation, FDIR, and diagnosability
analysis. These are implemented by a graphical toolset
which integrates state-of-the-art analysis and verifica-

tion tools.
An industrial partner evaluated the methodology us-

ing their own case studies has taken place as part
of the COMPASS project. They have shown that
AADL provides enough expressiveness to model all the
hardware and software subsystems in satellite avion-
ics. They found that the hierarchical structure and
the component-based paradigm enabled them to reuse
models from one satellite to another. Also the approach
supported their incremental modeling approach. The
results provided by the RAMS analyses allowed the
evaluation of design alternatives. An issue was how-
ever scalability. It is foreseen that larger models come
with increased computation time. A follow-up research
project has been approved by the European Space
Agency to tackle this issue.

A comprehensive report of the COMPASS project
can be found in [10]. It describes the modeling lan-
guage, its semantics, the toolset and the supported
analyses in more detail.

References

[1] Architecture Analysis and Design Language
(AADL) V2. SAE Draft Standard AS5506 V2, Inter-
national Society of Automotive Engineers, March
2008.

[2] Architecture Analysis and Design Language An-
nex (AADL), Volume 1, Annex E: Error Model An-
nex. SAE Standard AS5506/1, International Soci-
ety of Automotive Engineers, June 2006.

[3] A. Cimatti, E. Clarke, F. Giunchiglia, and
M. Roveri. NuSMV: a new symbolic model
checker. Int. J. on Software Tools for Technology
Transfer, 2(4):410–425, 2000.

[4] J.-P. Katoen, I.S. Zapreev, E. M. Hahn, H. Her-
manns, and D.N. Jansen. The ins and outs of the

8



probabilistic model checker MRMC. In Quantita-
tive Evaluation of Systems (QEST), pages 167–
176. IEEE CS Press, 2009.

[5] Lars Grunske. Specification patterns for prob-
abilistic quality properties. In Wilhelm Schäfer,
Matthew B. Dwyer, and Volker Gruhn, editors,
ICSE, pages 31–40. ACM, 2008.

[6] M. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns
in property specifications for finite-state verifica-
tion. In Int. Conf. on Software Engineering (ICSE),
pages 411–420. IEEE CS Press, 1999.

[7] I. Pill, S. Semprini, R. Cavada, M. Roveri,
R. Bloem, and A. Cimatti. Formal analysis of hard-
ware requirements. In Design Automation Confer-
ence (DAC), pages 821–826. ACM, 2006.

[8] M. Bozzano and A. Villafiorita. The FSAP/NuSMV-
SA Safety Analysis Platform. Int. J. on Software
Tools for Technology Transfer, 9(1):5–24, 2007.

[9] A. Cimatti, C. Pecheur, and R. Cavada. Formal
verification of diagnosability via symbolic model
checking. In Int. Joint Conf. on Artificial Intel-
ligence (IJCAI), pages 363–369. Morgan Kauf-
mann, 2003.

[10] Marco Bozzano, Alessandro Cimatti, Joost-
Pieter Katoen, Viet Yen Nguyen, Thomas
Noll, and Marco Roveri. Safety, depend-
ability, and performance analysis of ex-
tended AADL models. The Computer Jour-
nal, doi: 10.1093/com, March 2010. http:

//comjnl.oxfordjournals.org/cgi/reprint/

bxq024?ijkey=JJ1GiN0GnkxUCGV&keytype=ref.

9


