
HAL Id: hal-02268667
https://hal.archives-ouvertes.fr/hal-02268667

Submitted on 30 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shape Designer for ShEx and SHACL Constraints
Iovka Boneva, Jérémie Dusart, Daniel Fernández Alvarez, Jose Emilio Labra

Gayo

To cite this version:
Iovka Boneva, Jérémie Dusart, Daniel Fernández Alvarez, Jose Emilio Labra Gayo. Shape Designer
for ShEx and SHACL Constraints. ISWC 2019 - 18th International Semantic Web Conference, Oct
2019, Auckland, New Zealand. 2019. �hal-02268667�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/227324869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02268667
https://hal.archives-ouvertes.fr

Shape Designer for ShEx and SHACL
Constraints∗

Iovka Boneva1, Jérémie Dusart2, Daniel Fernández Álvarez3, and
Jose Emilio Labra Gayo3

1 Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de
Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France

2 Inria, France
3 University of Oviedo, Spain

Abstract. We present Shape Designer, a graphical tool for building
SHACL or ShEx constraints for an existing RDF dataset. Shape Designer
allows to automatically extract complex constraints that are satisfied by
the data. Its integrated shape editor and validator allow expert users to
combine and modify these constraints in order to build an arbitrarily
complex ShEx or SHACL schema.

Keywords: RDF validation, SHACL, ShEx, Wikidata, LOD quality

1 Introduction

The Shape Constraint Language (SHACL) and Shape Expressions Language
(ShEx) are gaining popularity for asserting quality of RDF datasets, but also for
describing their structure. However, the construction of SHACL or ShEx schemas
remains a difficult problem. It requires to master different tools and languages
and swap between them in order to complete a schema construction task: the
syntax and semantics of the constraint language, the existing validation APIs
or tools, query languages, or other means of exploring the data. Shape Designer
integrates all these functionalities within a single graphical user interface. It can
help non expert users to grasp the structural characteristics of an RDF dataset
thanks to the automatic construction of valid constraints. Expert users on the
other hand can use constraint patterns to parameterize the automatic extraction
algorithm, use the schema editor to build a complex schema, and test the quality
of the schema or the data thanks to the integrated validator.

In this demo we present two use cases of Shape Designer. The tool and user
documentation are available on https://gitlab.inria.fr/jdusart/shexjapp.

2 Tool Overview

A Shape Designer project is associated with an RDF graph G and a ShEx
or SHACL schema under construction S. The language to use for the schema,

∗Copyright c© 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

https://gitlab.inria.fr/jdusart/shexjapp

2 I. Boneva et al.

Fig. 1. A schema under development in Shape Designer

ShEx or SHACL, is fixed at project creation. The GUI of Shape Designer is
shown in Fig. 1. It includes the following panels: (1) a list of shape patterns;
(2) a list of node selection queries; (3) an editing area containing the schema
under construction S; (4) a validation view (not shown in Fig. 1).

The main functionality of Shape Designer is the automatic construction of a
(ShEx or SHACL) shape constraint. For a given node selection query Q and a
shape pattern P , it creates a shape constraint constr(Q,P) that has a structure
as indicated by pattern P and that is satisfied by all the nodes of G in the result
of query Q. The constraint thus obtained can be added to the schema under
construction, or simply used to gather information about the data.

3 Use Case : Constraint for every rdf:type

We demonstrate how to construct a recursive ShEx schema S that has one
constraint for every rdfs:Class used in G and accounts for the references between
types. We use a dataset with uniform structure from DBTunes4.

Create the project. At project creation we choose the shape language, here ShEx,
and indicate to the tool where to find the graph: in a local file, a local RDF4J
database, or through a SPARQL endpoint. A new project comes with a set
of predefined useful patterns. For instance, pattern P1 = { rdf:type [] ; ˜ }
is predefined and indicates that the constraint to be constructed should con-
tain the list of possible values ([]) for property rdf:type, and a datatype or

4downloaded from http://dbtune.org/classical/ on June 16, 2019.

http://dbtune.org/classical/

Shape Designer for ShEx and SHACL Constraints 3

demo:Composition { :Shape_QComp_P2 {

a [mo:Composition] ; mo:composer {

mo:composer [composer:~]; a [type:Composer] } ;

mo:produced_work IRI * ; mo:produced_work {

bio:date xsd:integer ? ; a [mo:MusicalWork] } *

bio:place xsd:string ? } }

Fig. 2. Automatically generated shapes.

node kind value constraint () for all other properties (˜). We also ask the
tool to construct queries that select all nodes of some class, for all the classes
that appear as objects of rdf:type in the graph. For instance, query QComp =
SELECT ?x WHERE {?x a mo:Composition} is generated by the tool. Note that
the prefixes defined in the graph can be used in queries and in patterns.

Automatic construction of shapes. Now, given P1 and QComp, the tool inspects
the graph and constructs constr(QComp, P1) shown on the left hand side of
Fig. 2. Remark that the cardinality of each triple constraint was automatically
inferred from the data, among four possible cardinality constraints that are ex-
actly one, optional (?), at least one (+), and any number (*). We can choose
to add constr(QComp, P1) to the schema S under construction. By repeating the
construction of constr(QC , P1) for all classes C, a novice user can build a schema
that models the data without need of mastering the shape constraint language.
For instance, we create shapes demo:Composer and demo:MusicalWork for the
nodes with classes type:Composer and mo:MusicalWork, respectively.

Validation. At any time the user can validate graph G against the schema under
construction S. The validation result is shown in a list and allows to explore the
neighbourhood of nodes to help understand validation errors.

Shape patterns to explore the structure of the data. Automatic shape con-
struction can be used to gather information about the data. Consider pattern
P2 = { mo:˜ { rdf:type [] } }. It indicates that we are interested only in prop-
erties with namespace mo:, and we want to retrieve the lists of rdf:types of their
values. The shape constr(QComp, P2) is presented on the right-hand side of Fig. 2
and it shows that the values of property mo:composer have class type:Composer,
and the values of property mo:produced work have class mo:MusicalWork.

Editing the schema. Automatically inferred schemas use only subsets of the
ShEx and SHACL languages. For instance, they never use shape references. We
can create complex schemas by editing the schema under construction. For in-
stance, using the information gathered from constr(QComp, P2) we can introduce
shape references in demo:Composition in Fig. 2 as follows.

mo:composer @demo:Composer ;

mo:produced_work @demo:MusicalWork *

4 I. Boneva et al.

4 Use Case : Explore Wikidata

Wikidata is (partially) crowd-sourced, thus highly heterogeneous. This is an
essential difference compared to the first use case in which nodes with same
rdf:type have very similar properties. Shape Designer can be used to understand
the structure of Wikidata entries and assert the quality of such entries for a
particular application in mind. We assume the reader familiar with the basic
concepts of Wikidata (direct properties, property statements, qualifiers).

Shape Designer offers special support for Wikidata in the form of Wikidata
project type that comes with predefined prefixes and patterns. Shape construc-
tion and validation are performed by querying the Wikidata SPARQL endpoint,
therefore we put a limit on the number of query results. Validating the whole
Wikidata set or even all entities of given type is computationally prohibitive.
In this context the most useful feature of Shape Designer are patterns, as they
allow to focus on a particular kind of information in Wikidata. For instance, a
simple pattern for direct properties allows to get an idea on which properties
can be expected for entities of given type. More complex patterns can account
for the presence of absence of provenance information.

5 Conclusion

We have presented Shape Designer, a versatile tool for constructing shape sche-
mas or exploring RDF datasets designed to be usable by novices and experts.
Shape Designer uses ideas similar to several prototype tools for extracting ShEx
or SHACL constraints from RDF graphs or from Wikidata [1,2,3,4,5]. The orig-
inality of Shape Designer lies in shape patterns that provide a general and suc-
cinct way to parametrize the automatic shape construction, and its user interface
that integrates schema editor, validator, and a way to explore the data.

Shape Designer is being actively developed, in particular by adding more
functionality for exploring Wikidata. In the near future we plan to extend shape
patterns and the schema construction algorithm so that even more complex
schemas could be built automatically, including recursive shapes.

Acknowledgments This work was partially funded by a grant from CPER Nord-Pas
de Calais/FEDER DATA Advanced data science and technologies 2015-2020, by the
ANR project DataCert ANR-15-CE39-0009, by the Spanish Ministry of Economy and
competitiveness (Society Challenges: TIN2017-88877-R), and by the “Severo Ochoa”
research program (BP17-88).

References
1. Fernández-Álvarez, D., Garćıa-González, H., Frey, J., Hellmann, S., Labra Gayo, J.E.: In-

ference of Latent Shape Expressions Associated to DBpedia Ontology. In: International
Semantic Web Conference (2018)

2. Labra Gayo, J.E., Fernández-Álvarez, D., Garćıa-González, H.: RDFShape: An RDF play-
ground based on Shapes. In: Proceedings of ISWC (2018)

3. Principe, R.A.A., Spahiu, B., Palmonari, M., Rula, A., De Paoli, F., Maurino, A.: AB-
STAT 1.0: Compute, Manage and Share Semantic Profiles of RDF Knowledge Graphs. In:
European Semantic Web Conference. pp. 170–175 (2018)

4. Spahiu, B., Maurino, A., Palmonari, M.: Towards Improving the Quality of Knowledge
Graphs with Data-driven Ontology Patterns and SHACL. In: WOP@ISWC

5. Werkmeister, L.: Schema Inference on Wikidata. Master Thesis (2018)

	Shape Designer for ShEx and SHACL Constraints

