
HAL Id: hal-02267943
https://hal.archives-ouvertes.fr/hal-02267943v2

Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A relation between log-likelihood and cross-validation
log-scores

P.G.L. Porta Mana

To cite this version:
P.G.L. Porta Mana. A relation between log-likelihood and cross-validation log-scores. 2019. �hal-
02267943v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/227324248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02267943v2
https://hal.archives-ouvertes.fr


 

A relation between log-likelihood 

and cross-validation log-scores 
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ntnu.no> 

18 August 2019; updated 19 August 2019 

It is shown that the log-likelihood of a hypothesis or model given some data is 

equal to an average of all leave-one-out cross-validation log-scores that can be 

calculated from all subsets of the data. This relation can be generalized to any 

k -fold cross-validation log-scores. 

Note: Dear Reader & Peer, this manuscript is being peer-reviewed by you. Thank you. 

1 Log-likelihoods and cross-validation log-scores 

The probability calculus unequivocally tells us how our degree of be- 

lief in a hypothesis Hh 

given data D and background information or 

assumptions I , that is, P ( Hh | D I ) , is related to our degree of belief in 

observing those data when we entertain that hypothesis as true, that is, 

P ( D | Hh 

I ) : 

P ( Hh | D I ) � 

P ( D | Hh 

I ) P ( Hh | I )

 

P ( D | I ) 

(1a) 

� 

P ( D | Hh 

I ) P ( Hh | I )

 

∑ 

h 

′ P ( D | Hh 

′ I ) P ( Hh 

′ | I ) 

. (1b) 

D , Hh , I denote propositions, which are usually about numeric quantities. 

I use the terms ‘degree of belief’, ‘belief’, and ‘probability’ as synonyms. 

By ‘hypothesis’ I mean either a scientific (physical, biological, etc.) 

hypothesis – a state or development of things capable of experimental 

verification, at least in a thought experiment – or more generally some 

proposition, often not precisely specified, which leads to quantitatively 

specific distributions of beliefs for any contemplated data set. In the latter 

case we often call Hh 

a ‘(probabilistic) model’ rather than a ‘hypothesis’. 

Expression (1b) assumes that we have a set { Hh} of mutually exclusive 

and exhaustive hypotheses under consideration, which is implicit in our 

knowledge I . In fact it’s only valid if 

P
�∨ 

h 

Hh | I
� 

� 1 , P ( Hh 

∧ Hh 

′ | I ) � 0 if h , h 

′ . (2) 

Only rarely does the set of hypotheses { Hh} encompass and reflect the 
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extremely complex and fuzzy hypotheses lying in the backs of our minds. 

They’re simplified pictures. That’s also why they’re called ‘models’. 

Expression (1a) is universally valid instead, but it’s rarely possible 

to quantify its denominator P ( D | I ) unless we simplify our inferential 

problem by introducing a possibly unrealistic exhaustive set of hypo- 

theses, thus falling back to (1b) . We can bypass this problem if we are 

content with comparing our beliefs about any two hypotheses through 

their ratio, so that the term P ( D | I ) cancels out. See Jaynes’s 1 insightful 

remarks about such binary comparisons, and also Good’s 2 . 

The term P ( D | Hh 

I ) in eq. (1) is called the likelihood of the hypothesis 

given the data 3 . Its logarithm is surprisingly called log-likelihood: 

log P ( D | Hh 

I ) , (3) 

where the logarithm can be taken in an arbitrary basis (Turing, Good 4 , 

Jaynes 5 recommend base 1 01 / 10, leading to a measurement in decibels; 

see the cited works for the practical advantages of such choice). 

The ratio of the likelihoods of two hypotheses, called relative Bayes 

factor , or its logarithm, the relative weight of evidence , 6 are often used 

to quantify how much the data favour our belief in one versus the 

other hypothesis (that is, assuming at least momentarily that they be 

exhaustive). ‘It is historically interesting that the expression “weight of 

evidence”, in its technical sense, anticipated the term “likelihood” by 

over forty years’ 7 . 

Recent literature 8 seems to exclusively deal with relative Bayes factors. I’d like to recall, lest 

it fades from the memory, the definition of the non-relative Bayes factor for a hypothesis 

Hh 

provided by data D : 9 

P ( D | Hh 

I )

 

P ( D | ¬ Hh 

I ) 

≡ 

O ( Hh | D I )

 

O ( Hh | I ) 

� 

P ( D | Hh 

I ) [ 1 − P ( Hh | I )]

 

∑h 

′ , h 

h 

′ 

P ( D | Hh 

′ I ) P ( Hh 

′ | I ) 

, (4) 

where the odds O is defined as O 

:� P / ( 1 − P ) . Looking at the expression on the right, which 

can be derived from the probability rules, it’s clear that the Bayes factor for a hypothesis 

involves the likelihoods of all other hypotheses as well as their pre-data probabilities. This 

quantity and its logarithm, the (non-relative) weight of evidence, have important properties 

which relative Bayes factors and relative weights of evidence don’t enjoy. For example, the

 

1 Jaynes 2003 §§ 4.3–4.4. 

2 Good 1950 § 6.3–6.6. 

3 Good 1950 § 6.1 p. 62. 

4 e.g. Good 

1985, 1950, 1969. 

5 Jaynes 2003 § 4.2. 

6 Good 1950 ch. 6, 1975, 1981, 1985, and many 

other works in Good 1983; Osteyee et al. 1974 § 1.4, MacKay 1992, Kass et al. 1995; see also 

Jeffreys 1983 chs V, VI, A. 

7 Osteyee et al. 1974 § 1.4.2 p. 12. 

8 for example Kass et al. 1995. 

9 Good 1981 § 2. 
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expected weight of evidence for a correct hypothesis is always positive, and for a wrong 

hypotheses always negative 10 . See Jaynes 11 for further discussion and a numeric example. 

The literature in probability and statistics has also employed and 

debated other ad-hoc measures to quantify how the data relate to the 

hypotheses – or even to select one hypothesis for further use, discarding 

the others 12 . Here I consider one measure in particular: the leave-one-out 

cross-validation log-score 12 , which I’ll just call ‘log-score’ for brevity: 

1

 

d 

d∑ 

i � 1 

log P ( Di | D− i 

Hh 

I ) (5) 

where every Di 

is one datum in the data D ≡ 

∧d 

i � 1 

Di , and D− i 

denotes 

the data with datum Di 

excluded. The intuition behind this score can 

be colloquially expressed thus: ‘let’s see what my belief in one datum 

would be, on average, once I’ve observed the other data, if I consider 

Hh 

as true’. ‘On average’ means considering such belief for every single 

datum in turn, and then taking the geometric mean of the resulting 

beliefs. Other variants of this score use more general partitions of the 

data into two disjoint subsets 12 . 

If you find this you can claim a postcard from me. 

My purpose is to show an exact relation between the log-likelihood (3) 

and the leave-one-out cross-validation log-score (5) . This relation doesn’t 

seem to appear in the literature, and I find it very intriguing because 

it portrays the log-likelihood as a sort of full-scale use of the log-score: 

it says that the log-likelihood is the sum of all averaged log-scores that can be 

formed from all data subsets . The relation can be extended to more general 

cross-validation log-scores, and it can be of interest for the debate about 

the soundness of log-scores in deciding among hypotheses. 

2 A relation between log-likelihood and log-score 

We can obviously write the likelihood as the d th root of its d th power: 

P ( D | H I ) ≡ 

� 

P ( D | H I ) × · · · × P ( D | H I )

 

d times 

�1 / d (6)

 

10 Good 1950 § 6.7. 

11 Jaynes 2003 §§ 4.3–4.4. 

12 Bernardo et al. 2000 §§ 3.4, 6.1.6 gives the 

clearest motivation and explanation, see also Stone 1977, Geisser et al. 1979, Vehtari et al. 

2012, 2002, Krnjajić et al. 2011, 2014, Gelman et al. 2014, Gronau et al. 2019, Chandramouli 

et al. 2019. 
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where we have dropped the subscript h 

for simplicity. By the rules of 

probability we have 

P ( D | H I ) � P ( Di | D− i 

Hh 

I ) × P ( D− i | Hh 

I ) (7) 

no matter which specific i ∈ { 1 , . . . , d } we choose (temporal ordering 

and similar matters are completely irrelevant in the formula above: it’s 

a logical relation between propositions). So let’s expand each of the d 

factors in the identity (6) using the product rule (7) , using a different i 

for each of them. The result can be thus displayed: 

P ( D | H I ) ≡ 

� 

P ( D1 | D− 1 

H I ) × P ( D− 1 | H I ) × 

P ( D2 | D− 2 

H I ) × P ( D− 2 | H I ) × 

. . . × 

P ( Dd | D− dx 

 

this column leads to the log-score 

H I ) × P ( D− d | H I ) 

�1 / d 

. 

(8) 

Upon taking the logarithm of this expression, the d factors vertically 

aligned on the left add up to the log-score (5) , as indicated. But the 

mathematical reshaping we just did for P ( D | H I ) – that is, the root- 

product identity (6) and the expansion (8) – can be done for each of 

the remaining factors P ( D− i | H I ) vertically aligned on the right in the 

expression above; and so on recursively. Here is an explicit example for 

d � 3 : 

P ( D | H I ) ≡ 

{ 

P ( D1 | D2 

D3 

H I ) × 

�
P ( D2 | D3 

H I ) × P ( D3 | H I ) × 

P ( D3 | D2 

H I ) × P ( D2 | H I )�1 / 2 

× 

P ( D2 | D1 

D3 

H I ) × 

�
P ( D1 | D3 

H I ) × P ( D3 | H I ) × 

P ( D3 | D1 

H I ) × P ( D1 | H I )�1 / 2 

× 

P ( D3 | D1 

D2 

H I ) × 

�
P ( D1 | D2 

H I ) × P ( D2 | H I ) × 

P ( D2 | D1 

H I ) × P ( D1 | H I )�1 / 2}1 / 3 

. (9) 

In this example the logarithm of the three vertically aligned factors in 

the left column is, as already noted, the log-score (5) . The logarithm of 
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the six vertically aligned factors in the central column is an average of 

the log-scores calculated for the three distinct subsets of pairs of data 

{ D1 

D2} , { D1 

D3} , { D2 

D3} . Likewise, the logarithm of the six factors 

vertically aligned on the right is the average of the log-scores for the 

three subsets of data singletons { D1} , { D2} , { D3} . 

In the general case with d data there are 

�d 

k 

� 

subsets with k data points. 

We therefore obtain 

log P ( D | H I ) ≡ 

1

 

d 

d∑ 

i � 1 

log P ( Di | D− i 

H I ) + 

1

 

d 

∑ 

i ∈ { 1 , . . . , d } 

1

 

d − 1 

j , i∑ 

j ∈ { 1 , . . . , d } 

log P ( D− i , j | D− i , − j 

H I ) + 

( 

d 

d − 2 

) − 1 

i < j∑ 

i , j ∈ { 1 , . . . , d } 

1

 

d − 2 

k , i , j∑ 

k ∈ { 1 , . . . , d } 

log P ( D− i , − j , k | D− i , − j , − k 

H I ) + 

· · · + (
d 

2 

) − 1 

i < j∑ 

i , j ∈ { 1 , . . . , d } 

1

 

2 

�
log P ( Di | D j 

H I ) + log P ( D j | Di 

H I )� 

+ 

1

 

d 

d∑ 

i � 1 

log P ( Di | H I ) , (10) 

which can be compactly written 

log P ( D | H I ) ≡ 

d∑ 

k � 1 

(
d 

k 

) − 1 ∑ 

ordered
k -tuples 

1

 

k 

∑ 

cyclic 

permutations 

log P ( Di1 | Di2 

· · · Dik 

H I ) .

 

(11) 

That is, the log-likelihood is the sum of all averaged log-scores that can be formed 

from all (non-empty) data subsets with k elements , the average for log-scores 

over k data being taken over the 

�d 

k 

� 

subsets having the same cardinality 

k . 

There’s also an equivalent form with a slightly different cross- 

validating interpretation: We take each datum D j 

in turn and calculate 

our log-belief in it conditional on all possible subsets of remaining data, 
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from the empty subset with no data (term k � 0 ), to the only subset D− j 

with all data except D j 

(term k � d − 1 ). These log-beliefs are averaged 

over the 

�d − 1 

k 

� 

subsets having the same cardinality k . The result can be 

expressed as 

log P ( D | H I ) ≡ 

1

 

d 

d∑ 

j � 1 

d − 1∑ 

k � 0 

(
d − 1 

k 

) − 1 ∑ 

ordered
k -tuples, 

j excluded 

log P ( D j | Di1 

· · · Dik 

H I ) .

 

(12) 

3 Brief discussion 

It’s remarkable that the individual log-scores in expressions (11) and 

(12) above are computationally expensive, but their sum results in the 

log-likelihood, which is less expensive. 

The relation (11) invites us to see the log-likelihood as a refinement 

and improvement of the log-score. The log-likelihood takes into ac- 

count not only the log-score for the whole data, but also the log-scores 

for all possible subsets of data. Figuratively speaking it examines the 

relationship between data and hypothesis locally, globally, and on all 

intermediate scales. To me this property makes the log-likelihood prefer- 

able to any single log-score (besides the fact that the log-likelihood is 

directly obtained from the principles of the probability calculus), be- 

cause our interest is usually in how the hypothesis H relates to single 

data points as well as to any collection of them. I hope to discuss this 

point, which also involves the distinction between simple and composite 

hypotheses 13 , more in detail elsewhere 14 . 

By applying the identity (6) and generalizing the expansion (7) to 

different divisions of the data – leave-two-out, leave-three-out, and so 

on – we see that the relation (11) can be generalized to any k -fold cross- 

validation log-scores. Thus the log-likelihood is also equivalent to an 

average of all conceivable cross-validation log-scores for all subsets of 

data, though I haven’t calculated the weights of such average. 

Thanks 

. . . to the Kavli Foundation and the Centre of Excellence scheme of the 

Research Council of Norway (Yasser Roudi group) for financial support.

 

13 Bernardo et al. 2000 § 6.1.4. 

14 Porta Mana 2019. 
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