
HAL Id: hal-02269413
https://hal.archives-ouvertes.fr/hal-02269413

Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UML for Validation: Experimenting automatic test
generation for flight software validation

A Hyounet, B Pouly

To cite this version:
A Hyounet, B Pouly. UML for Validation: Experimenting automatic test generation for flight software
validation. ERTS2 2010, Embedded Real Time Software & Systems, May 2010, Toulouse, France.
�hal-02269413�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/227324122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02269413
https://hal.archives-ouvertes.fr

UML for Validation:

Experimenting automatic test generation for flight software
validation

A. Philippe HYOUNET1, B. Jérémie POULY2
1: ASTRIUM SAS, 31 rue des cosmonautes 31402 Toulouse Cedex 4

philippe.hyounet@astrium.eads.net
Phone : +33 (0)5 62 19 5125
Fax : +33 (0)5 62 19 71 58

2: CNES, 18 avenue Edouard Belin 31401 Toulouse Cedex 9
jeremie.pouly@cnes.fr

Phone : +33 (0)5 61 28 23 67
Fax : +33 (0)5 61 27 45 5

Abstract:
UML for validation is a CNES study that aims at
prototyping and experimenting automatic test
generation technologies in the context of a model-
based approach applied to on-board software
development and tests. Starting from real test cases
and test procedures taken from state-of-the-art
onboard software, we first applied a reverse
engineering methodology to obtain an augmented
software specification model, i.e. ready to support
automated test generation. In parallel, we defined
and prototyped a test generation tool using
innovative model-based technologies based on EMF
(Eclipse Modeling Framework). Finally, a
representative end-to-end experiment was
performed to evaluate the benefit of such
technologies.

1. Model driven Engineering

To deal with the increasing complexity of space
systems while maintaining flight software high
validation level, software engineering techniques
must evolve accordingly. Model-based engineering
aims at making complexity management easier by
constructing virtual representations that enable early
prediction of behaviour and performance of a
system, as well as documentation and code
generation. Among the various modelling
techniques, UML is the one that fits best the on-
board software domain.

1.1 Interest of model-based software management
In Model-Driven Engineering; the model is the
reference for all activities. The use of Domain
Specific Languages (DSL) and model
transformations benefits the whole software
development life cycle by allowing a refinement-
based approach.

RB

TS

DDF + Code

Analysis model

Design model

Implementation model

System integration tests

Software integration tests

Component functional tests

Refers toBuild up

Refinement
Coherency
preservation

Refinement
Coherency
preservation

RB

TS

DDF + Code

Analysis model

Design model

Implementation model

System integration tests

Software integration tests

Component functional tests

Refers toBuild up

Refinement
Coherency
preservation

Refinement
Coherency
preservation

Analysis modelAnalysis model

Design model

Component
Test

Functional
Test

Integration
Test

CODINGCODING

ARCHITECTURAL
DESIGN

ARCHITECTURAL
DESIGN

DETAILLED
DESIGN

DETAILLED
DESIGN COMPONENT

TEST
COMPONENT

TEST

INTEGRATION
TESTS

INTEGRATION
TESTS

VALIDATION
TESTS

VALIDATION
TESTS

SPECIFICATIONSPECIFICATION

Implementation
model

Figure 1: Model-drive engineering in the V-cycle

 Page 1/7

mailto:philippe.hyounet@astrium.eads.net
mailto:jeremie.pouly@cnes.frt

During specification phase, the model supports
requirements capture and analysis, and provides a
communication ground between all contributors to
the developed product. Thus the model allows a
better understanding of the future software itself and
makes documentation reading and reviews easier.
During architectural design phase, the use of models
facilitates standardisation and reuse through the
design of configurable software building blocks.
Patterns and framework contribute to know-how and
knowledge capitalisation for maintenance and reuse.
Executable models enable early verification and
validation (V&V) through simulation. Expected
properties can also be modelled and verified during
software specification and design phases. Impact
analysis should be done automatically when
modifying an existing product.
During detailed design phase, model provides
automatic code generation facilities, which reduce
iteration time allowing rapid prototyping on real
target.
Finally, automatic test generation produces test
procedures automatically from test case
specification, with optimal coverage of requirements
and design in the test plan definition.

1.1 Automatic test generation
Consistency and traceability between development
and validation is improved by including the formal
definition of the test cases in the software UML
model. Test case definition is based on object
oriented concepts in order to factorize common
elements and improve validation productivity.
Automatic generation enables to better separate test
cases and the test environment: this improves test
portability and thus software reuse efficiency.

CODINGCODING

ARCHITECTURAL
DESIGN

ARCHITECTURAL
DESIGN

DETAILLED
DESIGN

DETAILLED
DESIGN COMPONENT

TEST
COMPONENT

TEST

INTEGRATION
TESTS

INTEGRATION
TESTS

VALIDATION
TESTS

VALIDATION
TESTSSPECIFICATIONSPECIFICATION

Automatic Test Generation

Figure 2: Impact of automatic test generation on the
software development cycle

The additional modelling effort required during the
specification and design phases is recovered during
validation phases through automatic code and test
generation. Maintenance effort and in particular
regression testing are significantly reduced.

2. Test generator prototype implementation

During the UML for validation study, we have
implemented a model-based process at architectural
design phase level. Whenever it was possible we
used innovative open source model-based
technologies, such as model transformation and
code generation. Thus we managed to reduce time
and cost for the development of the test generator
prototype, while ensuring reuse capability.

2.1 Actors and relationships
Implementing model-based engineering
methodology involves different actors due to the
numerous skills required. Relationships between
actors has been identified and illustrated on the
figure below for integration test phase relative to
architectural design validation. Similar process
should be applicable for validation tests phase.

Analysis modelAnalysis model

Design model

Component
Test

Functional
Test

Integration
Test

CODINGCODING

ARCHITECTURAL
DESIGN

ARCHITECTURAL
DESIGN

DETAILLED
DESIGN

DETAILLED
DESIGN COMPONENT

TEST
COMPONENT

TEST

INTEGRATION
TESTS

INTEGRATION
TESTS

VALIDATION
TESTS

VALIDATION
TESTS

SPECIFICATIONSPECIFICATION

Implementation
model

Software development team Software validation team

Design model Test model

Test Code
Generator

inheritance

Integration
Tests

Bench
IF

Expand model
For test definition

Generator development team Test bench team

Analysis modelAnalysis model

Design model

Component
Test

Functional
Test

Integration
Test

CODINGCODING

ARCHITECTURAL
DESIGN

ARCHITECTURAL
DESIGN

DETAILLED
DESIGN

DETAILLED
DESIGN COMPONENT

TEST
COMPONENT

TEST

INTEGRATION
TESTS

INTEGRATION
TESTS

VALIDATION
TESTS

VALIDATION
TESTS

SPECIFICATIONSPECIFICATION

Implementation
model

Analysis modelAnalysis model

Design model

Component
Test

Functional
Test

Integration
Test

CODINGCODING

ARCHITECTURAL
DESIGN

ARCHITECTURAL
DESIGN

DETAILLED
DESIGN

DETAILLED
DESIGN COMPONENT

TEST
COMPONENT

TEST

INTEGRATION
TESTS

INTEGRATION
TESTS

VALIDATION
TESTS

VALIDATION
TESTS

SPECIFICATIONSPECIFICATION

Implementation
model

Software development team Software validation team

Design modelDesign model Test modelTest model

Test Code
Generator
Test Code
Generator

inheritance

Integration
Tests

Integration
Tests

Integration
Tests

Bench
IF

Bench
IF

Bench
IF

Expand model
For test definition

Generator development team Test bench team

Figure 3: Actors involved in UML validation process

UML validation process involves the following actors:

• The software development team which
provides UML design models to test
(corresponding to Architectural Design
document) to validation team.

• The software validation team which
implements UML test models corresponding
to test specification document and specifies
test code generator to generator
development team. Then the validation team
gets the environment to automatically
generate test procedures and performs them
on the test bench.

• The generator development team which
implements the test code generator tool
according validation team specifications.

 Page 2/7

• The test bench team which implements test
bench interface specific code.

Note: specifications documents, such as

Architectural Design and test Specification, are
part of the UML model and will be
automatically generated by the UML modeller
tool. For the study use case, this part is out of
scope and specifications document are used
for model implementation.

2.2 Modelling
A model-based engineering approach has been
applied. The software architecture design model,
which substitutes to software specification, has been
implemented in UML. Selected test objectives have
been added to the UML model using Object
Constraint Language. Observability and
commandability, involved in OCL constraints, has
been specified by adding stereotypes in the UML
model. Finally, test procedures have been added
using UML activity diagrams.

Stereotypes
Stereotypes are used to clarify the model with label
information added in the graphical description and
tag useful information on UML elements (class,
attributes, and operations) for code generation. Two
profiles have been defined for the study:

• Testing profile allow tagging model classes
to identify design and test models and to
specify test bench interface.

• Tmtc profile allow tagging model class
properties and operations to specify
observability and commandability attributes.

Figure 4: Testing profile stereotypes

Figure 5: TM TC stereotypes

OCL expressions
OCL constraints are used to specify unitary test on
the system under test. Two kinds of constraints have
been implemented for the study.
Invariant constraints are applied to <SUT> class
property and allow specifying a rule which shall be
always verified to ensure the correct behavior of the
class instance.
Pre-post operation constraints are applied to
<SUT_TEST> class operation and allow specifying
system conditions to verify before and after class
operation call.

Activity diagrams
Activity diagrams are used to specify test procedures
relative to a <SUT_TEST> class.
They allow describing sequential class operation
call, class instances and operation parameter
values.

Architecture
The model architecture is packaged to separate
different actors’ contribution.
The system package, designed by the software
team, contains the system model classes to test
tagged with <SUT> stereotype. Observable class
properties, used in OCL expressions, are tagged
with <VAR_READ> or <TM_READ> stereotypes.

The validation package, designed by the validation
team contains classes tagged with <SUT_TEST>
stereotype which inherit from System model
package <SUT> classes. OCL constraints applied
on validation model classes properties and
operations allow specifying static and dynamic
unitary test to perform on the <SUT>. Validation
class operations can be tagged with <TC_SEND>

 Page 3/7

2.3 Generating code stereotype to specify telecommand attributes to
invoke <SUT> operation to test. From the UML model of the software including tests

specification, the test generation tool implements
three java code generators as illustrated below. The bench Facilities package, designed by the

validation team, allows specifying test bench
facilities TM/TC interfaces.

Acceleo generator is an EPL open source “model to
code” generator which is user configurable threw
templates.
OCL and Activity generators make used of a java
Platform Specific Model developed by Astrium.

 The Generated java code is target independent, the

target code interface, relative to observability and
commandability is hand coded in the bench interface
instance specified in <BENCH_IF> stereotype.

OCL GENOCL GEN

UML ModelUML Model

OBSW UML
models

OCL constraints
Opaque exp

<pre>
<comment>
Comments used to add test information

</comment>
<ocl>

(OCL expressions)
</ocl>

</pre>

<post>
<comment>
Comments used to add test information
</comment>

<ocl>
(OCL expressions)
</ocl>

</post>

OCL constraints
Opaque exp

<pre>
<comment>
Comments used to add test information

</comment>
<ocl>

(OCL expressions)
</ocl>

</pre>

<post>
<comment>
Comments used to add test information
</comment>

<ocl>
(OCL expressions)
</ocl>

</post>

OCL constraints
Opaque exp

<pre>
<comment>
Comments used to add test information

</comment>
<ocl>

(OCL expressions)
</ocl>

</pre>

<post>
<comment>
Comments used to add test information
</comment>

<ocl>
(OCL expressions)
</ocl>

</post>

+

ACCELEOACCELEO Class
Code
Class
Code

Unit
Tests
Unit

Tests

target
java files

target
java files

UML / OCL Edition Target dependant code Java Code Auto-Generated

Activity UML
diagrams

+

ACTIVITY GENACTIVITY GEN Sequence
Tests

generic
java files
generic
java files

+

Software Specification

Test Specification

Figure 6: Test generator prototype implementation

inv: self.nbChargeItems() >= 0 and self.nbChargeItems() <= self.get_NB_ITEMS()

Acceleo generator
Acceleo generator chain generates the code relative
to UML Class diagram. It is customised to implement
body functions according stereotypes defined in the
model.<VAR_READ>, <TM_READ> and
<TC_SEND> stereotypes attributes allow
implementing observability and commandability
functions based on <BENCH_IF> interface.

OCL generator Figure 7: OCL invariant constraint code
OCL generator generates the code relative to OCL
expressions defined in the model. When a class
owns OCL constraints a new class is generated
which contain all produced code relative to these
constraints.

public void set_busVoltageThdDelta_constraint_nominal(
PowerCtrlVal self_var,
double valueBusVoltageThdDelta)

throws PowerCtrlValTestException {
// -- check all invariants
checkAllInvariant(self_var);
// -- pre
if (! (PowerCtrlVal.getObjectState().valueState == EnumState.ON)) {

throw new PowerCtrlValTestException("pre condition error");
}
// -- call
(self_var).set_busVoltageThdDelta_nominal(valueBusVoltageThdDelta);
// -- post
if (! (java.lang.Math.abs(PowerCtrlVal.getBusVoltage()-valueBusVoltageThdDelta)

<= 1.0E-8)) {
{

System.out.println("post condition error");
}

}
// -- check all invariants
checkAllInvariant(self_var);
System.out.println(« test SUCEEDED");

}

pre: self.objectState.isOn()

post: (self.busVoltageThdDelta -valueBusVoltageThdDelta).abs()<=0.00000001

All invariant constraints are merged in a common
function which is call in each pre-post operation
constraint.

Figure 8: OCL pre-post constraint code

 Page 4/7

Activity generator
Activity generator generates the code relative to
activity diagrams defined in the model. When a class
owns activity diagrams a new class is generated
which contains all produce code relative to these
diagrams.

Figure 9: Activity diagram

package company;

import company.Company;
import company.Employee;

public class CompanyTestSequence {

 public void employAndDismiss(Company company, Employee employee)
 System.out.println("Starting Activity 0 : employAndDismiss");
 try {
 System.out.println("Action 0 : employ");
 company.employ(employee, 1000);
 System.out.println("Action 1 : dismiss");
 company.dismiss(employee);
 System.out.println("Activity 0 has succeed.");
 }catch (java.lang.RuntimeException e){
 System.out.println("Activity 0 has failed.");
 System.err.println("Activity 0 has failed. Reason is: " +
e.getMessage());
 }finally{}
 }

}
Figure 10: Activity diagram code

3. Use case experiment

The experimentation is built on a subset of Pleiades
on-board software. It is based on two major
equipments:

• Modelling and test code generation have
been performed using Topcased software
environment toolkit.

• Test procedures have been executed on the
Simops simulator (internal product of
Astrium).

3.1 Topcased modelling tool
Topcased is an eclipse platform integrated tool
dedicated to the realisation of critical embedded
systems which promotes model-driven engineering
facilities. During the study Topcased has been
improved to integrate UML Validation model design
requirements. Customized Activity diagram editor
and test code generator chain has been integrated in
Topcased as Eclipse plugins.
Starting from Pleiades software specification and
associated test specification, the UML/OCL model
has been implemented in Topcased environment.

 System Under Test

Test Procedure

System Under Test

Test Procedure

Observability stereotypeObservability stereotype

Commandability stereotypeCommandability stereotype

OCL unitary testOCL unitary test

Inheritance linkInheritance link

Test sequenceTest sequence

Figure 10: Use case UML model

 Page 5/7

Test procedures were automatically generated from
the model. Stubbed bench interface have been
produced to integrate OCL model implementation
under eclipse native java execution platform.

PowerCtrl

PowerCtrlVal

ACCELEO GEN

ACCELEO GEN

PowerCtrl.java

PowerCtrlVal.java

OCL GEN PowerCtrlValOcl.java

UML model Java code

SEQUENCE GEN

PowerCtrlTestSequence.java

PowerCtrl

PowerCtrlVal

ACCELEO GEN

ACCELEO GEN

PowerCtrl.java

PowerCtrlVal.java

OCL GEN PowerCtrlValOcl.java

UML model Java code

SEQUENCE GEN

PowerCtrlTestSequence.java

Figure 11: Test java code architecture

3.1 Simops test environment

Simops test environment is connected to a numerical
simulation of the equipments and the on-board
computer. The connection is made of TM/TC
interface and processor emulator services such as
read/write of memory symbols. It allows executing
the real On-Board Software in a representative
configuration.
Java test procedures, automatically generated under
Topcased tool, have been executed on Simops test
control environment.

PC Linux 2.6

Native Tests Execution

Simops Tests Execution

OBSW

Test Development

JavaSimops 4.5

Test Execution

Native Tests Execution

Test Development

PC Linux 2.6

Simops Tests Execution

JavaSimops 4.5
OBSW OBSW

Test Execution

Figure 6: Test experiment configuration

4. Compliance with existing standards

If we take ECSS-E-40 standard, the main
requirements on software testing and validation are
coming from the “Software design and
implementation engineering” and “Software
validation” processes defined in the standard. They
require that Unit, Integration and Validation test are
developed to produce test plans, test procedures
test data and reports to provide evidence that the
software is working according to its requirements
and design.
The technologies investigated in this study integrate
quite well in the existing software development life
cycle and do not change the objectives of software
testing and validation. They just provide new ways of

implementing them: by adding test related elements
to the software models and by automating the
generation of test procedures from the software
models. The most challenging point, that is general
to the use of model based engineering, is to
organize efficient reviews of the produced UML
models.
Today’s ECSS standard is focussed on documents
and it is quite difficult to produce and easy to read
documentation from models. Using direct access to
models offers the possibility to navigate and follow
the links between model entities but modelling tools
do not support and formalized model review process
to ensure completeness of the review. Using
modelling also puts strong requirements on the
people involved in the review: mastering UML and
OCL language requires some specific training
compared to natural language documents.

 Page 6/7

4. Conclusion

The UML for validation study demonstrated the
feasibility of using automatic test generation to
produce test scripts that can be executed in a real
onboard software environment. It also allowed
benchmarking a new methodology for future
validation process, which combines software
development and validation teams.
A consequent effort should be performed by actors
to define and implement the test behaviour model,
but the quality relative to the coherence in the test
engineery process is improved as all information’s
are defined in the model. During maintenance
phase, the evaluation impact of software
modification and corresponding test regression is
also improved.
The test generator prototype implementation
highlight that if OCL is adapted to specify unitary
test, its syntax is complex and real type is limited as
it not support both floating and double types.
Model based methodology is innovative for space
applications, which get very specific quality
constraints. Applying such process required a robust
and high quality model design tool. Topcased
demonstrated enough robustness to perform test
modelisation on dimensioning models, but an
industrial development is mandatory to fulfil space
quality standards.

7. References

[EPL] Eclipse Public License.
[UML] Meta Model UML 2.0 Specification,

October 2003.
[OCL] Meta Model UML 2.0 OCL

Specification, October 2003.
[MDA] Model Driven Architecture Guide,

Object management group (OMG),
June 2003.

[Acceleo] http://www.acceleo.org.
[Topcased] http://topcased.gforge.enseeiht.fr.

8. Glossary

EMF: Eclipse Modelling Framework
OCL: Object Constraint Language, declarative

language for describing rules, which is part of
the UML standard, and provides constraint
and object query expressions on any model

SUT: System Under Test

 Page 7/7

