
HAL Id: hal-02269756
https://hal.archives-ouvertes.fr/hal-02269756

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Developing Automotive Products Using the
EAST-ADL2, an AUTOSAR Compliant Architecture

Description Language
P Cuenot, P Frey, R Johansson, H Lönn, M.-O Reiser, D Servat, R Kolagari,

D Chen

To cite this version:
P Cuenot, P Frey, R Johansson, H Lönn, M.-O Reiser, et al.. Developing Automotive Products Using
the EAST-ADL2, an AUTOSAR Compliant Architecture Description Language. 4th International
Congress ERTS 2008, Jan 2008, Toulouse, France. �hal-02269756�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/227323467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02269756
https://hal.archives-ouvertes.fr

Page 1/10

Developing Automotive Products Using the EAST-ADL2, an AUTOSAR
Compliant Architecture Description Language

P. Cuenot1, P. Frey2, R. Johansson3, H. Lönn4, M.-O. Reiser6, D. Servat5,
R. Tavakoli Kolagari6, D.J. Chen7

1: Siemens VDO Automotive SAS, a Continental Corporation company, 1av. Paul Ourliac, BP 1149, 31036
Toulouse, France

2: ETAS GmbH, Borsigstr. 14, 70469 Stuttgart, Germany
3: Mentor Graphics Corporation, Automotive Networking Business Unit, Theres Svenssons Gata 15, SE-417 55

Gothenburg, Sweden
4: Volvo Technology Corporation, Mechatronics and Software, SE-405 08 Gothenburg, Sweden

5: CEA LIST, Gif sur Yvette F-91191, France
6: Technical University of Berlin, Software Engineering Group, D-10587 Berlin, Germany

7: Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Abstract: Current development trends in automotive
software feature increasing standardization of the
embedded software structure. But it still remains the
critical issue of the overall engineering information
management to control the system definition and
manage its complexity. System modeling based on
an Architecture Description Language (ADL) is a
way to keep these assets within one information
structure. The original EAST-ADL was developed in
the EAST-EEA project (www.east-eea.org) and basic
concepts were reused in the AUTOSAR
standardization initiative. The original EAST-ADL is
currently refined in the ATESST project
(www.atesst.org) to EAST-ADL2. This paper
presents the results of the language extension
provided by the EAST-ADL2 domain model and
focuses on its possible extension of the AUTOSAR
standard to support decomposition of E/E
automotive systems.

Keywords: Modeling, Abstraction, ADL, AUTOSAR

1. Introduction

Current development trends in automotive software
feature increasing standardization of the embedded
software structure, in particular manifested by the
AUTOSAR standardization initiative. The AUTOSAR
consortium [1] defines a generic software
architecture platform by standardization of its
infrastructure and a communication layer suitable for
distributed hardware architectures. The specification
of application software components is standardized,
such that these can be reused and integrated on the
AUTOSAR platform by a third party. Software reuse
is thus favored and implementation-specific
dependencies between application software and
hardware is avoided.

The AUTOSAR approach improves the
OEM/supplier development relation and data

interchange. Higher quality and dependability is
foreseen and cost and complexity can be managed
appropriately.

The AUTOSAR standard for E/E architectures is
becoming more and more mature; its release 3.0 has
been completed in December 2007. Automotive
OEMs are planning to use AUTOSAR for series
production and all new development of embedded
automotive software will in future be compliant to it.

But there are still some numbers of issues outside
the scope of this standardization initiative that are
necessary for managing the engineering information
and its assets attached to system definition.

System modeling based on an architecture
description language (ADL) is a way to keep the
engineering information in a well-defined information
structure. In the context of the ATESST project we
have reused and extended the original EAST-ADL
language primarily developed in the EAST-EAA
project. We consider that Model Based Development
(MBD) as supported by the EAST-ADL is
complementary to the AUTOSAR approach. Through
this combination, it is possible to support system
modeling down to the componentization level
(AUTOSAR). It is thus a means for efficient
development and management of the complexity of
automotive embedded systems: Concepts from MBD
and CBD reinforce one another [2]. We will
demonstrate how EAST-ADL2 solves the challenge
of the full integration of the two, by describing
engineering information supported by the EAST-
ADL2 language.

The important complements to AUTOSAR
represented by the automotive domain specific
language EAST-ADL2, are:

• requirements modeling and tracing including
capability for specific adaptation,

• feature modeling including concepts to
support product lines,

Page 2/10

• structural and behavioral modeling of
functions and hardware entities in the
context of distributed systems, and

• other information, such as a definition of
function timing and failure modes, support of
system analysis.

A main result of the ATESST project is the EAST-
ADL2 domain model, released as a public UML2
profile. The following sections describe the EAST-
ADL2 with reference to the AUTOSAR standard and
how this combination allows modeling of E/E
automotive systems.

Section 2 presents the structural view of the
language constructs including structural relation to
AUTOSAR. Section 3 gives details on behavioral
modeling including behavioral relation to AUTOSAR.
Section 4 describes requirements modeling being
orthogonal to the other models. Section 5 addresses
applied product line techniques and variability
modeling essential for the automotive domain.
Section 6 describes timing modeling support of the
language. Section 7 provides error modeling
overview for analysis of failure propagation. Finally,
conclusions are drawn with consideration of the
designers' and end-users’ perspectives.

2. Structural view of EAST-ADL2

The following section describes the organization of
EAST-ADL2 with respect to structural view to
describe how to capture system information and how
models are related to each other.

EAST-ADL2 structural overview

EAST-ADL2 is an architecture description language
defined as a domain-specific language for the
development of automotive electronic systems. It
includes modeling entities to describe features,
requirements, variability, software and hardware
components, and specific annotations associated to
models to support the analysis of the system.

The core concept of the structural organization of
EAST-ADL2 is the description of the models in
different abstractions levels (see Figure 1). The
electronic functions/features are described at
different levels of abstraction, reflecting the details of
the architecture and implicitly different stages in the
engineering process. The different artifacts drive the
functional decomposition of the functions from
abstract models down to implementation in software
components and hardware elements of the system
architecture.

Modeling of the electronic systems of a vehicle starts
with capturing the functions at the Vehicle level with
product line organization and description.

These functions are realized at the Analysis level by
abstract entities describing models of software
functions (such as “ADLFunction”) and devices (such

as “FunctionalDevice”) that interact with the vehicle
environment. The Analysis level captures the
principal interfaces and the behavior of the
subsystems of the vehicle.

On the Design level, models are refined with more
implementation-oriented aspects that allow a
subsequent software decomposition of the functional
architecture. Devices are split into elements of the
hardware architecture such as sensors or actuators,
and the software parts for signal transformation
(such as “LocalDeviceManager”). Middleware is
modeled to project the platform specific services and
functionality to the functional level The hardware
architecture is introduced in parallel to capture the
hardware entities as abstract elements (e.g. I/O,
sensor, actuator, power, ECU, electrical wiring
including communication bus) to describe the
topology of the electronic architecture of the
systems. The overall structure is such that one or
several entities can be later realized by AUTOSAR
entities. Design level allows preliminary allocation of
software entities and provides the basis for
verification either by simulation or analysis
techniques such as timing and dependability
modeling.

The implementation of software components such as
basic software and detailed software topology is not
defined in EAST-ADL2, whereas it is in AUTOSAR;
this is why we propose to use AUTOSAR for the
implementation levels. Full traceability is supported
from function definitions at the Vehicle level to
AUTOSAR entities. De facto, Operational level is
hidden by AUTOSAR concepts via deployment of
the configured AUTOSAR Run Time Environment.

Analysis
Level

Design
Level

Implementation
Level

Operational
Level

Vehicle
Level

SystemModel

AnalysisArchitecture

DesignArchitecture

ImplementationArchitecture

Environ
ment
Model

FunctionalAnalysisArchitecture

Funct. Design
Architecture

AUTOSAR
Application SW

OperationalArchitecture

VehicleFeatureModel

AUTOSAR Basic
SW

AUTOSAR
HW

HW Design
Architecture

MW
Abstraction

Figure 1: EAST-ADL2 abstraction layers and relation
to AUTOSAR.

Figure 1 depicts the substitution of the
implementation level of EAST-ADL2 by AUTOSAR,
and how abstract EAST-ADL2 concepts match
AUTOSAR: FunctionalDesignArchitecture defines
application functionality of the AUTOSAR application
software architecture, the Middleware Abstraction

Page 3/10

represents the functionality of the, basic software
architecture and the hardware design architecture
corresponds to AUTOSAR topology and hardware
entities.

Relation EAST-ADL2 – AUTOSAR

As described above, the structural relation between
EAST-ADL2 and AUTOSAR is complementary.
EAST-ADL2 provides modeling artifacts for
functional modeling supporting a refinement process
for decomposition of features to artifacts, such as
software and hardware elements, while keeping
track of the system architecture description.
Software implementation details are not captured as
AUTOSAR provides lower level implementation
mechanisms to support full description of software
components and related information and techniques
for deployment in the AUTOSAR standardized
platform.

The “ADLFunction” introduces a degree of freedom
for the AUTOSAR software implementation
architecture, via the dedicated association
“ADLBehavioralMapping” to map “ADLFunction" to
"Runnable Entities” of AUTOSAR. This mechanism
allows packaging multiple “ADLFunction” entities to
software components and to optimize various
aspects during implementation.

“LocalDeviceManager” is the interface functionality
for sensors and actuators and is realized by the
“SensorActuatorSoftwareComponent” of AUTOSAR.

The port concept of EAST-ADL2 is inherited from
SySML for data descriptions (such as
“ADLFlowPort”) and service interaction (such as
“ADLClientServerPort”). The entities match the
AUTOSAR “SenderReceiver” and “ClientServer”
ports. However, AUTOSAR port configuration and
RTE services include mechanisms abstracted on the
level of EAST-ADL2.

The hardware architecture of EAST-ADL2 is
complementary to the AUTOSAR system topology
and ECU resource definition and configuration.
AUTOSAR focuses on the impact of software
implementation based on the required configuration
of the various software elements (bus topology
including communication signal allocation,
"Runnable Entities" allocation to task from operating
system, driver configuration in relation to ECU pins
...). EAST-ADL2 entities abstract the overall
hardware topology to capture physical elements of
the vehicle electronic architecture and wiring
harness. Some elements are present on both sides
but with abstract representations: “ECU”, “IOPort”
and “Communication” bus as elementary entities are
not decomposed at this level. A more complex
relation is abstracted with hardware ports of EAST-
ADL2 (as “ADLHWPort”). This entity is realized by
platform “HAL” service to map software IO driver and
hardware pin configuration at AUTOSAR Level.

Finally, interfaces of complex device drivers and
AUTOSAR platform services independent of
hardware allocation are captured by “ADLFunction”
entities in middleware.

3. Behavior models

The goal of EAST-ADL2 with respect to behavior is
to describe how model components (from different
tools, in different modeling languages, or just
representing code) are related to each other in order
to capture behavior and algorithms of the vehicle
systems as well as the environment. A report
publicly available summarizes the work conducted
during the ATESST project (see [3]). Two main
issues are accounted for here: 1) behavioral
semantics of the “ADLFunction” entities and 2)
mapping to AUTOSAR behavioral constructs.

EAST-ADL2 behavioral semantics
In EAST-ADL2, behavior modeling relies on the
definition of a set of elementary functions that are
executed based on the assumption of synchronous
run-to-completion execution (read inputs from ports,
compute, and write outputs on ports). This was
chosen to enable analysis and behavioral
composition and to make the function execution
independent of behavioral notations: inside each
function, the data transformation could be described
according to various languages and paradigms, and
various legacy tools including general UML tools and
domain-specific tools (e.g. Simulink, ASCET).

The triggering of each function is defined by time or
an event on one of the input ports. A precedence
constraint construct allows definition of any
constraint that needs to be honored when the
scheduling and task allocation is made.

ADLBehavior

ExternalBehavior

+ path: String
+ representation: ExternalBehaviorRepresentationKind

NativeBehavior

ADLEntity
ADLVariableElement
AllocateableElement

Block
FunctionModeling::
ADLFunctionType

+ isDiscrete: Boolean
+ isElementary: Boolean

FunctionModeling::Trigger

+ offset: TimingRestriction
+ triggerCondition: OCL
+ triggerPeriod: TimingRestriction
+ trigPolicy: TrigPolicyKind

«enumeration»
FunctionModeling::

TrigPolicyKind

+ «enumeration» EVENT:
+ «enumeration» TIME:

0..1+behavior

0..1
0..1+triggerparameters

Figure 2: “ADLFunction” entities and triggering
aspects

There are two types of “ADLFunction” entities, time
discrete and time continuous (see Figure 2). Each
time the function is invoked, the read-execute-write

Page 4/10

pattern is performed, i.e. all inputs are read at the
same time and outputs are written at the same time.
For discrete functions, this is done after a
computation delay, “ExecutionTime”. Time
continuous functions (“ADLContFunction”) define the
transfer functions from input to output, and the
computation rate is infinite. In practice, invocations
are implicitly defined by the solver tool used to
simulate or analyze a set of connected functions. In
order to allow different behavioral definitions, all
inputs are read simultaneously, and all outputs are
written simultaneously.

Time discrete “ADLFunction” entities,
“ADLDiscFunction”, have an explicitly defined
invocation pattern. Functions may be time-triggered,
in which case time alone causes execution to start.
Event triggered functions may be invoked due to
data arrival or calls on the input ports. This is defined
by the “TrigPolicy” attribute. “TriggerPeriod” defines
the time between invocations for time trigged
functions or the inter-arrival time between
invocations for event-triggered functions. Offset is
the offset of invocations relative to a nominal period
for time trigged functions. It is not applicable to event
triggered functions A textual/OCL “TriggerCondition”
rule may be used to define the conditions for when
the function is invoked. For example, a port value
has to exceed X or data must arrive on more than
one port. In order for offsets and periods to be
meaningful, the assumption regarding synchrony has
to be declared. This is done with the “TimeBase”,
which lists all “ADLFunction” entities that share the
same time base (not shown on figure). This may be
realized by co-allocation to the same ECU, or co-
allocation to a set of ECUs with a shared clock (e.g.
based on FlexRay).

Functions own an “ADLBehavior” that is refined in
“ExternalBehavior”, when definition is made in
external tools (e.g. Simulink, ASCET, etc.) and
“NativeBehavior”, when definition is made according
to the behavioral semantics of EAST-ADL2.

These concepts are implemented as stereotypes
applicable to UML classes and UML behavioral
constructs such that information can be shown both
in composite structure diagrams and behavioral
diagrams, such as activity diagrams.
“ExternalBehaviors” are mapped to the UML
“OpaqueBehavior”, which features both a language
and body attributes (holding references to the type of
external tool and language used, e.g. Simulink,
ASCET, etc.). “NativeBehaviors” are mapped directly
to UML “Behaviors” such that “StateMachines”,
“Activities”, or “Interactions” – depicted as sequence
diagrams – can be used w.r.t to modeling needs.
The application of EAST-ADL2 stereotypes on these
UML concepts alters UML2 semantics such that
among other things, triggering policies and run-to-
completion assumption hold (see [3]).

Relation EAST-ADL2 – AUTOSAR

As said previously, AUTOSAR concepts are
organized as the implementation level of EAST-
ADL2. Elementary “ADLFunction” entities are to be
mapped to AUTOSAR behavioral units, which are
the “RunnableEntities” contained in
“AtomicSoftwareComponents” (SWC). Different
mappings can be made, depending on the
implementation configuration. It is also possible to
leave out the traceability to "RunnableEntities", if this
level of detail is unnecessary, or if component
internals are yet unknown or confidential.

The ports of EAST-ADL2 models are transformed
into ports on the AUTOSAR SWC. One or several
EAST-ADL2 ports may be realized by one
AUTOSAR port, as these may have several “signals”
or data elements per interface.

Figure 3 below shows an example on how
elementary “ADLFunction” entities are mapped to
three AUTOSAR SWCs. Each elementary
“ADLFunction” has its own logical execution thread
and no internal concurrency. It therefore maps well
to a “Runnable”. Note that the ports follow the
elementary “ADLFunction” entities to the AR SWCs,
and that this is one out of several possible
mappings.

Design
Level

ADLFunction C1

ADLFunction
E3

ADLFunction
E2

Implementation
Level

ADLFunction C2

In_A : SCS1

out_A : SCS1ADLFunction

E1

out_B : SCS2 out_D : C_1

In_B : SCS2

In_D : C_1

ADLFunction
E4

ADLFunction
E5

Runnable R1

Runnable R4

Runnable R5

Runnable R2

Runnable R3

ApplicationSWC
A1

ApplicationSWC
A3

ApplicationSWC
A2

out_D

out_A : SCS1

out_B : SCS2 In_B : SCS2

In_D : C_1

Figure 3 Mapping of EAST-ADL2 "ADLFunctions" to
AR Runnables

One further aspect of the AUTOSAR behavior to
consider is the execution condition of the runnable
entities. These are executed in the context of a task
policy but controlled by the Run-time environment
(RTE) for execution condition. RTE manages all
invocation of atomic software components, and in
particular the scheduling of the runnables by
triggering mechanism with RTE-Events. The
triggering parameters associated to “ADLFunction”
are considered as an abstraction of the AUTOSAR
mechanism in a simplified context of synchronous
execution (read-execute-write) for EAST-ADL2.

The execution semantics of AUTOSAR runnables
can either be "asynchronous" (runnables triggered
by event) or "synchronous" (runnables triggered by
time or event period). Both concepts match the

Page 5/10

execution semantics of the elementary
“ADLFunction”. Sleep mode and waiting point are
not covered but are implementation issues. Behavior
of functions in sleep mode via associated services
(sending event and waiting point) are dedicated to
real time operating systems, to gain CPU resource
for application performance. From a design
perspective there is no need to describe this
behavior.

The matching between RTE events and EAST-ADL2
triggering mechanism can be summarized as
follows:

AUTOSAR RTE events ADLFunction triggers

Timing Event for
periodical execution

TrigPolicy: ‘periodic’
TriggerPeriod:value
Offset:none
TriggerCondition:NA

DataReceivedEvent TrigPolicy: ‘event’
TriggerPeriod:value
Offset:none
TriggerCondition:ADLFlowPort

OperationInvokedEvent TrigPolicy: event
TriggerPeriod:value
Offset:none
TriggerCondition:ADLClientServer

DataSendCompleteEvent Not Applicable
(see text justification)

WaitPoint Not Applicable
(see text justification)

The execution of “RunnableEntities” managed by
AUTOSAR RTE configuration can thus be specified
by the semantic properties of the “ADLFunction”.
AUTOSAR runnable may exhibit more complex
behavior as well, but this is excluded from the EAST-
ADL2 behavioral semantics in order to preserve
analyzability.

4. Requirements models

Requirements are captured in EAST-ADL2
according to the principles of SysML[4]:
Requirements are separate entities that are
associated to its target elements with a specific
association, “ADLSatisfy”.

Requirements are related to each other to support
traceability between requirements. Typically,
requirements on the higher abstraction levels of
EAST-ADL2 are refined to more detailed
requirements on lower abstraction levels.

Verification and Validation is supported through the
concept of Verification& Validation Cases. A
“VVCase” is linked to requirements and target
entities, in order to show how a certain requirement
is verified in the context of a specific model entity.
EAST-ADL2 distinguishes between the model entity
that is verified to meet the requirement, from the
target system.

An important aspect of traceability is the possibility to
follow which requirements are the results of safety
concerns. This is needed to comply with the
upcoming automotive standard for safety, ISO
26262[5]. EAST-ADL2 also supports this standard by
providing support for safety case, safety integrity
levels and error propagation (see further section 7).

The Requirements Interchange Format (RIF)[6] has
been considered in the ATESST project to represent
Requirements from external tools. RIF is a general
standard that supports the interchange of
requirements, but also other engineering information.
Due to this generality, an ADL such as EAST-ADL2
cannot support the full RIF without loosing
stringency, and a subset is chosen instead.

5. Variability models

In order to give an overview of variability
management in EAST-ADL2, we examine two
questions:

• In what development situations and contexts
is variability management needed? Or: For
what parts of EAST-ADL2 is variability
management support provided?

• What is the basic modeling means used for
variability modeling and to which of these
development situations/contexts are they
applicable?

Needs

First, variability management starts on the Vehicle
Feature Level, where model range features and
variability is viewed. At this point, the purpose of
variability management is to provide a highly
abstract overview of the variability in the system
such as the complete system together with
dependencies between these variabilities. A
“variability” in this sense is a certain aspect of the
complete system that changes from one variant of
the complete system to another. “Abstract” here
means that for an individual variability it is not the
idea to define how the system varies with respect to
this variability but only that the system shows such
variability. For example, the front wiper may or may
not have a rain sensor. On vehicle level the impact
of this variability on the design is not defined; only
the fact that such variability exists is defined by
introducing an optional feature named ‘RainSensor’.
This is later validated and refined during analysis
and design.

While the details of how variability is actually realized
in the system are largely suppressed on the vehicle
level, they are just the focus of attention when
managing variability on other areas of the
development process. In fact, certain variability may
lead to modifications in any development artifact,
such as requirements specifications, and functional

Page 6/10

models. With respect to EAST-ADL2, three areas
are to be distinguished: (1) requirements, (2) the
artifacts AnalysisArchitecture, DesignArchtiecture
and ImplementationArchitecture and (3) test
artifacts. Here, describing that certain variability
occurs is not sufficient; it is necessary to describe
how each variability concept affects and modifies the
corresponding artifact.

Basic modeling means

Having answered question no. 1 above, we can now
turn our attention to the second question: the basic
modeling means provided as support for variability
management in these different situations. They are:
feature modeling, product decision modeling and
multi-level feature trees.

The purpose of feature modeling is to define the
commonalities and variabilities of the product
variants within the scope of a product line. Usually
feature models are used on a high level of
abstraction, as described above for vehicle level
variability.

CruiseControl

Standard Adaptive

[1]

[1] [1]

Radar

[0..1]

CruiseControl

Standard Adaptive

[1]

[1] [1]

CruiseControl

[0..1]

CruiseControl

Standard

[1]

Adaptive

[1]

[1] [1]

CruiseControl

Radar

Series A

Series Cluster

InnovativeCC

LowEnergy

Series B

Feature
Model

Change

referenceFeature

reference-
Model

referenceModel
Adaptive.allowReduction = YES
Radar.allowRemoval = NO

Figure 4. Reference model and referring models in
the multi-level feature modeling approach.

However, in EAST-ADL2, they are also used on
design level and get a much more concrete meaning
there. Product decision modeling on the other hand
is aimed at defining configuration: The configuration
of a feature model fa – i.e. the selection and de-
selection of its features – is defined in terms of the
configuration of another feature model fb. A product
decision model can thus be seen as a link from fb to
fa that allows deriving a configuration of fa from a
given configuration of fb. Finally, multi-level feature
trees (see Figure 4) are a means to strategically
manage two or more separate, independent product
lines. With this instrument at hand, not all variants of
the complete system need to be managed within a
single, extremely complex global product line. It is
instead possible to subdivide the product line into
smaller, subordinate product lines (called product
sublines) without loosing the possibility to manage
them from a global perspective.

Variability management on the artifact level is driven
by the variability captured on the VFM. This means
that the main driver for variability and also variability
instantiation is the Vehicle Feature Model. Variability
on the artifact level essentially consists of the use of
variation points and simple feature models (i.e. non-
multi-level feature models) at the public interface of
functions.

The basic idea of the artifact level variability
modeling is that whenever variability on the
respective abstraction level occurs, a variation point
is introduced (see Figure 5). The variation point is
introduced and is linked via its variation point
configuration to the possible variants, which may
replace the variation point. The variation point can
be replaced by either of the specified variants. If the
variation point has the cardinality [0..1] the variation
point as a whole can be deselected, meaning that
the variation point is optional. The variation point in
Figure 5 is not optional (marked by the cardinality
[1]) and can only be replaced by one of its two
variants. The variation point has one input port and
two output ports. Variant 1 only needs one output
port, whereas variant 2 needs two output ports. So
the variation point has the superset of ports of all
possibly replacing variants. But those ports that are
not used in all circumstances are marked by the
cardinality [0..1], meaning that they are optional.
Also, the port expecting input from an optional output
port is marked by the cardinality [0..1] (i.e. implicit
optional) in order to reflect that this port cannot in all
instantiations expect input from this port, which must
be coped with in the behavior of the respective
function.

Figure 5. An "ADLFunction" as a variation point
with two variants.

To summarize the discussion on ports we can say:
• An optional port is a port in a variation point that

is not used by all variants.
• An implicit optional port is the port of a function

that will always appear in the implementation, but
it will not always be used:
• an implicit optional output port means:

à data will always be sent; but there are
cases when there is no other function that
consumes this data.

Page 7/10

• an implicit optional input port means:
à data is always expected; but there are
cases when there is no other function that
actually sends such data.

By introducing implicit optional ports it is possible to
reduce explicit variability modeling, because the
function with an implicit optional port does not need
to be variable as a whole.

As depicted in Figure 6, the starting point of
variability modeling is on the VFM level. The core
feature model of the VFM influences the instantiation
of artifact variability. Each single artifact entity
(especially ”ADLFunction“) has at its public interface
a parameterized feature model that is a function
feature model (see Figure 6), without being a multi-
level feature model. These public interfaces describe
internal variability of the functions. This is needed to
have an adequate overview of the respective
variability of the functions.

Figure 6. Function feature model at the public
interface of a function.

Besides using feature models at the public interface
of single modeling entities, feature models are used
to describe the variability of a complete product sub-
line at an artifact (e.g. FDA).

In order to make the development of individual
subsystems independent from the whole system,
artifact lines are introduced. This is of specific
interest for suppliers because they use their own
product line approach for the subsystems they
develop. So the artifact line as a whole has an own
feature model, whose instantiation is driven once
again by the core feature model of the VFM level
using product decisions.

In order to extend language elements of other
languages or standards connected to EAST-ADL2
(like AUTOSAR, SysML) with the variability
approach of EAST-ADL2, the respective element is
enhanced by a generalized link to the
”ADLVariableElement“ (see Figure 7). Hence, the
variability technique of EAST-ADL2 can also be used
for these elements.

cd ArtifactLev elVariationManagement

FunctionModeling::
ADLVariableElement

+ configuration: String
InternalBehavior:
:RunnableEntity

Figure 7. Extend AUTOSAR ”RunnableEntity“ to a
variable element.

6. EAST-ADL2 Timing Modeling Support

Why automotive timing is important

Many automotive functions are control applications
which often impose hard real-time requirements on
their form of realization in the E/E system. Such
control applications can mainly be found in the
power-train domain (e.g. engine management,
transmission control) and chassis domain (electronic
stability program, antilock braking system), but also
in the body domain where even non-control
applications have timing requirements (indicator,
window lifter). For control applications, it is important
that the sensing of input data, actual control
algorithm computations and output data actuation
are in synchrony with the speed of the controlled
plant and with its proceeding dynamics. In distributed
embedded systems, the task of implementing
potentially distributed control applications becomes
truly challenging, especially when multiple sensors
and multiple actuators are involved where
determinism and consistency in both the time and
value domain for the involved sensors and actuators
are required.

Timing as integrated engineering information
and relation to AUTOSAR

The EAST-ADL2 provides support to capture specific
engineering information which is relevant for the
timing of automotive functions. Conceptually, timing
information can be distinguished into timing
requirements (what is demanded), timing properties.
(what is offered), and timing contracts (what is
negotiated between stakeholders). This is in-line with
how OMG in the UML Profile for Modeling and
Analysis of Real-time and Embedded Systems
(MARTE)[7], represents non-functional properties as
of either required, offered or contract nature. The
general notion is that the actual timing properties of
a solution (=implementation, realization) must satisfy
the specified timing requirements stemming from the
automotive function specification.

Figure 8 presents an overview sketch how the
considered timing information is perceived in general
in the EAST-ADL2 system model. Note that the start
of the arrows describes the origin of timing related
engineering information, and the direction of the

Page 8/10

arrow (top-down or bottom-up) describes their inter-
abstraction level relation. The concept of contract
based timing is a way of decomposing the complex
problem of end-to-end timing, which may depend on
detailed implementation details from a number of
different companies not willing to share too much
data among each other. The timing contracts thus
also enables complete verification on a higher level
of abstraction, without having all implementation
details on lower level of abstraction present. As
EAST-ADL2 is still being developed, the language
currently covers aspects of the timing requirements
part on the two functional abstraction levels only
(Analysis Level and Design Level in Figure 8).

Figure 8. Timing information as perceived in the
EAST-ADL2 system model

Ensuring operational correctness

To ensure operational correctness with respect to
timing, validation and verification activities (V&V) can
be performed on every abstraction level. However,
different techniques provided through different tools
or a combination of those might have to be applied.
Note that these V&V techniques may require specific
input in the form of execution time bounds which can
be derived in different quality and by different
techniques themselves (e.g. measurements,
mathematical code analysis). The so derived timing
properties of the system or function are checked
against timing requirements which have been
derived either directly from a contract or through
refinement from the original function specification on
higher levels of abstraction (Analysis and Design
levels).

In the EAST-ADL2, timing requirements are
distinguished into various kinds of delays (=
latencies) as well as specific timing requirements for
the temporal synchronization of input data or output
data respectively. Delays can either be end-to-end
delays from sensors to actuators or atomic delays or
composed delays for the single time consuming
modeling entities which are part of a timing chain.
The latter type of delays are referred to as timing-
chain-segments of an end-to-end timing chain
(=end-to-end delay). End-to-end delays are subject
to segmentation along the functional decomposition

track, i.e. when progressing from a functional model
on Analysis Level to a refined functional model on
Design Level to an implementation model in terms of
AUTOSAR software component architecture on
Implementation Level. Note that the level of end-to-
end timing delays is not automatically following the
level of abstraction. For example can the number of
elementary "ADLFunction" timing segments present
on the Design level, be much higher than the
number of (composed) software component timing
segments on the (AUTOSAR) implementation level,
when representing the same end-to-end timing.

User challenges

Clearly, the EAST-ADL2 users’ challenge will be to
perform a functional decomposition and refinement
of top-level functions from Analysis Level to Design
Level while considering the segmentation of the end-
to-end delays into single timing chain segments at
the same time. By introducing well defined segments
EAST-ADL supports the concept of timing contracts,
thus fitting to the automotive world where the
responsibility for fulfilling end-to-end timing
requirements will continue to be split between a Car
OEM and a number of TIER1s. The proposed EAST-
ADL2 will have to prove its soundness and
applicability in future evaluations. However, only
recently the demand for additional levels of
abstractions and separation of concerns has been
raised and should not be overheard [8].

The general concept of traceability of engineering
information between multiple levels of abstraction,
which is also applicable to timing information,
enables sound and comprehensible design
decisions which are documented in the overall
system model.

7. EAST-ADL2 Error Modeling Support

Why error modeling is necessary

Automotive embedded systems are inherently safety
critical due to the devices and dynamics under
control. In other words, an error of such systems, if
not detected and properly handled, could endanger
human life and result in damages to environment
and property. Currently, embedded software is
increasingly introduced and integrated in modern
automotive systems, accounting to a large portion of
innovations and also to growing product complexity.
Meanwhile, the competitive forces are also driving
for short time-to-market, cost efficiency,
configuration flexibility and accommodation of new
technologies, etc. For these reasons, the design of
safety in embedded automotive systems is posing an
increasing challenge for the developers. While state-
of-the-art safety analysis techniques providing
analysis support for deriving the causes and
consequences of errors, the difficulties remain in
capturing and maintaining plausible errors, safety

Page 9/10

requirements, and other related information while
performing design refinement, changes and
evolution, and in providing arguments that a system
is safe enough.

The overall objective of the EAST-ADL2 error
modeling is to allow an explicit reasoning of
functional safety and thereby to facilitate safety
engineering along with an architecture design or
maintenance process. As an overall system
property, safety is concerned with the abnormalities
(in terms faults, errors, and failures) and their
consequences under given certain environmental
conditions. Functional safety represents the part of
safety that depends on the correctness of a system
operating in its context [9]. In other words, it
addresses the hazardous abnormalities of a system
in its operation (e.g., component errors and their
propagations).

Error modeling as an analytical view extension to
nominal architecture
EAST-ADL2 facilitates safety engineering in regards
to the system modeling and information
management. While supporting the safety design
through its intrinsic architecture modeling and
traceability support, the language allows the
developers to explicitly capture the error logics in
terms of component errors and the error
propagations in an architecture error model through
its error modeling support (see also Figure 9). The
error modeling is treated as a separated analytical
view orthogonal to the nominal architecture model.
This separation of concern in modeling is considered
necessary in order to avoid some undesired effects
of error modeling, such as the risk of mixing nominal
and erroneous behavior in regards to the
comprehension, reuse, and system synthesis (e.g.,
code generation).

The EAST-ADL2 error modeling package extends a
nominal architecture model, typically at the functional
and design levels, with the information of failure
semantics and error propagations. The failure
semantics can be provided in terms of logical or
temporal expressions, depending on the analysis
techniques and tools of interest. Such analytical
information, together with environmental conditions,
forms the basis for identifying the likely hazards,
reasoning about the causes and consequences, and
thereby deriving safety requirements. The
relationships of local error behaviors are captured by
means of explicit error propagation ports and
connections. Due to these artifacts, EAST-ADL2
allows advanced properties of error propagations,
such as the logical and temporal relationships of
source and target errors, the conditions of
propagations, and the synchronizations of
propagation paths. Hazards or hazardous events are
characterized by attributes for severity, exposure
and controllability. A hazardous event may be further

detailed by e.g. use cases, sequence or activity
diagrams. In an architecture specification, an error is
allowed to propagate via design specific architectural
relationships when such relationships also imply
behavioral or operational dependencies (e.g.,
between software and hardware). In EAST-ADL2, a
safety requirement derived from the safety analysis
has attributes specifying the hazard to be mitigated,
the safety integrity level (ASIL/SIL), operation state,
fault time span, emergency operation times, safety
state, etc [5],[9]. The safety requirement is then
traced to or used to derive other nominal
requirements such as in regards to safety functions
and performance.

Figure 9. EAST-ADL2 Architecture Error Model as a
separate architecture view extending the nominal
architecture model and providing analysis leverage
through external tools.

Analysis leverage through external tools and
other engineering support

Given an error model, the analysis of the causes and
consequences of failure behaviors can be automated
through external tools. There is currently a
(prototype) analysis plug-in in the Eclipse
environment, allowing the integration of the HiP-
HOPS tool (Hierarchically Performed Hazard Origin
and Propagation Studies) [10] for static safety
analysis in terms of FFA, FTA, and FMEA. The
analysis leverage includes fault trees from functional
failures to software and hardware failures, minimal
cut-sets, FMEA tables for component errors and
their effects on the behaviors and reliability of entire
system.

Further supports of EAST-ADL2 for safety
engineering include the integration of safety case,
referring to a technique that provides a structure for
the qualitative argumentation about why a system is
safe [11]. The integration, which is currently under
development, aims to enable the development of
safety case based on the architecture and error
information captured in EAST-ADL2. This
complements other standardization efforts such as in

Page 10/10

the ISO WD 26262 [5] and in the MISRA safety
guidelines [12], which emphasize the importance of
safety case but provide no coverage on the content
and implementation.

8. Conclusion

The ATESST project defining the EAST-ADL2
language has been running for the last two years
(since beginning of 2006). During this period there
have also been running two initiatives having a major
impact on the development of automotive E/E
systems: AUTOSAR [1] and the ISO working group
on functional safety for road vehicles (ISO TC 22/SC
3/WG 16) [5]. Both these are aiming at
standardization and at enabling the development of
safety-critical automotive E/E systems while the
complexity of these systems are growing rapidly.
The focus of safety in AUTOSAR has especially
grown in its second phase starting 2007.

The implications of these two initiatives on the
definition of EAST-ADL2 have been obvious. The
applicability of an automotive ADL will be heavily
dependent on its conformance to AUTOSAR and to
the upcoming safety standard ISO/WD 26262.

Thus, the evolvement of EAST-ADL2 has had a
focus of being complementary to AUTOSAR,
supporting modeling the more abstract levels, thus
extending AUTOSAR in a consistent way.

In ISO/WD26262 there are requirements on the
existence of a so called safety case. A safety case is
a tool that provides structure to the qualitative
argumentation about why a system is safe. This is
done by separating the argumentation from the facts
or justifications and providing an explanation of the
relationships and dependencies between them.

EAST-ADL2 includes a meta-model for a safety
case, thus enabling safety case development in
close connection to the system model. Furthermore,
modeling systems in EAST-ADL2 makes it possible
to provide explicit descriptions of faults in functions,
software and hardware, and the mechanisms by
which they can propagate. Such descriptions in turn
facilitate safety analysis techniques like FTA and
FMEA, generating evidences for the safety cases.

In addition, the traceability, consistency and rigor
required when developing safety-related systems are
well supported by an ADL.

To conclude, EAST-ADL2 both supports the
generation of a safety case as prescribed in ISO WD
26262, as the generation of its supporting evidence.

Having had the opportunity to define this architecture
description language in parallel with the dynamic
phases of the definitions of AUTOSAR and ISO WD
26262, EAST-ADL2 has a good potential to become
a de facto standard as it fits well with the major
critical needs of the automotive industry of today. To

enable a wide spread use of EAST-ADL2, the
domain model is now released as a public UML2
profile.

9. Acknowledgement

This work was supported by contribution of all the
partners of the ATESST project consortium funded
by the European Commission. We wish to
acknowledge useful participation of all partners and
feedback from the anonymous reviewers.

10. References
[1] AUTOSAR Development Partnership,

http://www.autosar.org
[2] M. Törngren, D.J. Chen, I. Crnkovic, “Component-

based Development vs. Model-based
Development: A Comparison in the Context of
Vehicular embedded Systems”, Proceedings of the
2005 31st EUROMICRO Conference on Software
Engineering and Advanced Applications.

[3] ATESST consortium, Report on behavioral
modeling within EAST-ADL2, D3.2 deliverable,
http://www.atesst.org/, December 2007.

[4] SysML Partners. Systems Modeling Language
(SysML) open source specification project,
http://www.sysml.org

[5] International Organization for Standardization: ISO
Working Draft 26262 Baseline 10, 2007.

[6] HIS, Specification Requirements Interchange
Format (RIF), version 1.1a, 2007.

[7] OMG, UML Profile for Modeling and Analysis of
Real-time and Embedded Systems (MARTE),
Beta1, OMG Document Number: ptc/07-08-04,
August 2007.

[8] Alberto Sangiovanni-Vincentelli, Marco Di Natale:
“Embedded System Design for Automotive
Applications”, IEEE Computer, Volume 40, Issue
10, IEEE Computer Society Press, October 2007.

[9] International Electrotechnical Commission
Functional safety of electrical/electronic/
programmable electronic safety-related systems –
Part 0: Functional safety and IEC 61508, 2005.

[10] Y.Papadopoulos, J.A. McDermid: “Hierarchically
Performed Hazard Origin and Propagation
Studies”. SAFECOMP, 1999.

[11] T.P. Kelley, PhD thesis: "Arguing Safety - A
Systematic Approach to Managing Safety Cases",
University of York, 1998.

[12] The Motor Industry Software Reliability Association:
"Development Guidelines for Vehicle Based
Software", MISRA, 1994.

11. Glossary
ATESST: Advancing Traffic Efficiency and Safety through

Software Technology
CBD: Component Based Development
E/E: Electronic Environment
HAL: Hardware Abstraction Layer
IO: Input Output
MBD: Model Based Development

