
HAL Id: hal-02269854
https://hal.archives-ouvertes.fr/hal-02269854

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Linux for industrial projects – A return of
experience

Christian Charreyre

To cite this version:
Christian Charreyre. Using Linux for industrial projects – A return of experience. Embedded Real
Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-02269854�

https://hal.archives-ouvertes.fr/hal-02269854
https://hal.archives-ouvertes.fr

 Page 1/8

Using Linux for industrial projects – A return of e xperience

Christian Charreyre

CIO Informatique Industrielle, BP 710 - 1 Rue de la Presse – 42950 St Etienne Cedex 9 - France

Abstract : This article describes industrial projects
involving embedded and/or real time Linux. After an
introduction dedicated to place Linux regarding the
embedded software market, it explains the adoption
process of Linux in our company, that was working
will legacy RTOS since years. Then it emphasizes 3
aspects of using Linux in industrial projects : using
Linux in an embedded device, using Linux in a real
time context and porting an application from legacy
RTOS to Linux. The article ends up with the problem
of management in an industrial context of a software
base that moves very quickly, and explains what
philosophy to adopt regarding evolutions control.

Keywords : Linux, embedded, real time, return of
experience, porting from RTOS to Linux

1. Introduction

Regarding Operating Systems, the embedded
software market has been for years divided into a lot
of proprietary solutions offered by many specialized
companies. The economic model of such offers is
based on royalties paid by customers for each
device including the O.S., plus development tools
(integrated development environment, performance
analysis tool etc….) that generally represent
important costs, mainly for little companies.

Since a few years, Linux is a new and fast growing
actor on this market. In March 2007, the French
magazine 01 Informatique[1] stated in his article
about RTS Embedded Systems 07 that Linux was
now about 50% of the Embedded OS market.

The annual survey of the Web site
linuxdevices.com[2] presents the same growing
tendencies, and it appears that the couple of ARM
processor with Linux OS is a great solution for low
price mass market devices.

Our company is specialized since 1990 in software
development for embedded and real time
applications, and we have used the various legacy
real time OS during years. At the beginning of 2000,
Linux began to appear in the professional press, not
as an embedded solution, but as a great OS for
servers.

As the management of the company has worked
with Unix solutions on workstations in aeronautics,
we decided to invest in Linux technologies applied to
embedded and real time projects.

This choice was based on the idea that a Unix like
solution useable on low prices devices such as PC
based hardware, and with no royalty cost, would
certainly be very interesting.

The adoption of this OS as the base of the great
majority of our projects has been done into
successive steps :

• Use of a Linux distribution on standard PC, then
on more industrial form factor based on the PC
architecture (PC104 stack, single board
computers, Compact PCI racks).

• Then replacement of the distribution by home
made reduced embedded Linux.

• As long-term real time OS users, Linux was not
able to offer us the traditional performances of
legacy solutions in term of hard real time, so use
of real time extension coupled to Linux.

• Then finally use of Linux on other architectures
that are used in industrial projects, such as
PowerPC (VME boards and racks) and Arm
(mobile or low cost devices).

With such a step-by-step approach, we have
succeeded in the adoption of Linux1 for the whole
spectrum of requirements and hardware
architectures of the projects we develop. This
adoption has been done progressively during 4
years, and today Linux represents merely 70% of our
software development business.

In the next paragraphs, we will emphasize 3 aspects
of Linux used for industrial projects :

• Using Linux for an embedded device

• Using Linux in real time context

• Porting an application from legacy Real Time OS
towards Linux.

2. Using Linux for an embedded device

2.1 Why does Linux fit to main design issues of an
embedded device ?

When you start developing an embedded device,
there are some basic characteristics that your
software must comply with.

1 Alone or coupled with a real time extension

 Page 2/8

The first one is that your device will not necessarily
be built with an Intel, AMD or whatever x86 derived
processor. For many reasons (consumption, long
term availability, cost etc…), many embedded
devices are built with Arm, PowerPC processors, or
even micro controllers.

So the software environment you use must be
available on the processor you select, and if possible
be usable on the maximum of processor
architectures, so that the coupling between your
application and your hardware is as limited as
possible. If you think on long term, using a software
environment that allows you to swap from one
processor to another without changing the basic
software is a good idea, because it allows you to
easily follow the innovations on hardware without
great impact on your software.

Linux is particularly adapted to this criterion, as it is
available for a very important set of processor
architectures, including those that are generally used
in embedded devices.

The non exhaustive list of processors and micro
controllers used in embedded devices, for which
Linux ports exist in kernel 2.6, is :

• X86 architecture (Intel, AMD, Via etc…)

• Freescale 68K and PowerPC

• ARM (many sources)

• H8/300, SuperH

• AVR32

• v850

• Xtensa

• Blackfin

The 2.6.23 kernel offers about 24 distinct
architectures2, and this number is increasing from
version to version.

The philosophy of the sources organization suits well
with a broad support of processors. The sources
content all the currently supported architectures in
parallel, and it is at configuration and compilation
time that the developer selects which processor he
wants.

With such a strategy, all drivers and features not
related to a precise architecture of processor are
shared among all, so the kernel improvements are
available whatever processor you use. The adoption
of a new architecture is limited to the files directly
depending on the architecture. Even if these files are
strategic ones, they represent a small percentage of
the total kernel sources.

2 Some with little variants

Another important point when you select an OS for
an embedded device is that the hardware
requirements of this OS regarding resources
(memory and mass storage) must remain
reasonable, much more tiny than those of a PC that
currently offers hundreds of gigabytes of disk, and at
least hundreds of megabytes of memory.

On the embedded market, the size of memory and
storage are generally in the range of few megabytes
for both. And as embedded devices are sometimes
built in very big volumes, each megabyte saved can
save big amount of money, due to the number.

Everyone who as already installed a Linux
distribution can be sceptic, as Linux distributions
generally install gigabytes of software components
that require well-dimensioned memories.

In fact, when you work with Linux for embedded
device, you must not think to reuse a distribution
(who is in any case available only for x86). The
good method is to rebuild your Linux file system from
scratch, just putting in your device what you really
need for its dedicated functions.

With such a strategy, you limit the number of
processes that will run on the device, and in
consequence the amount of memory that is
necessary. You also limit the number of files in the
Linux file system3, and so the size of the mass
storage.

A good idea is also to tailor the kernel itself to the
precise characteristics of the hardware platform, so
that you optimise the kernel requirements in term of
memory, and the impact of the kernel and its
components on the mass storage.

By following these basic rules, it is possible to target
sizes like typically 4 MB of mass storages, and 8 MB
of memory, which is acceptable for many devices.

Regarding mass storage, embedded devices
generally use Flash instead of rotating hard disks.
There are two kinds of Flash disk :

• some that offer an IDE interface (CompactFlash,
DiskOnModule), and so emulate an IDE hard
disk. The normal IDE drivers of the kernel
support them.

• the others of type NAND or NOR flash They are
generally managed by the MTD framework of
the kernel. A great number of chips are
managed by native sources of the kernel. If a
chipset is not supported directly in the kernel,
the supplier generally offers a driver that he
developed himself4.

3 With Linux, there is not only the kernel image, but also a root file
system that is filled with a Unix like directories structure
4 This point must nevertheless be checked before the flash
choice.

 Page 3/8

Finally, embedded devices generally need to boot
very quickly, and users generally stop them without a
clean shutdown, simply by switching them off.

So the software environment must deal with these
constraints.

Boot time is the sum of 2 factors, the time before
Linux starts (bootloader, and BIOS if X86
architecture), then the time due to Linux start, until
the application is launched.

Concerning the first one, the developer must tune
the bootloader and eventually the BIOS to reduce
their duration.

Concerning Linux itself, with a dedicated embedded
distribution, start up duration targets from seconds to
few tens of seconds are quite accessible (depending
on processor speed, and quantity of basic services
started).

In order to deal with switch off without proper
shutdown, the Linux kernel offers file systems with
journaling capabilities to reduce the risk of file
system corruption. This solution is totally usable on a
PC as it dramatically reduces the risk of problems,
but it is not sufficient on an embedded device that
must start in any case, without human intervention.
The solution is to work with a file system in RAM
disk, so that even if the file system is corrupted
during the switch off, the next boot regenerates it :
the RAM disk is copied from mass storage to RAM at
each start, and it is only the copy that can be altered
at switch off.

In conclusion, Linux is able to answer to the main
issues we need to deal with in embedded context,
either basically or by an adequate strategy of use.

2.2 Ethernet redundancy solution based on Linux

We have used Linux to build the embedded software
of a device that was designed to offer redundancy on
Ethernet networks.

normal flux

duplicated flux

Redundancy

duplication

filtering

device

Figure 1: The function of the device

The purpose of the device is to transparently
duplicate Ethernet flux between distinct computers,
without having to rewrite the existing software
applications. So the devices are connected between
the computers and the switches, and they duplicate
Ethernet frames on the two redundant networks, and
then filter the frames received twice.

They act at the Ethernet level of the TCP/IP stack,
and they are completely ignored by the computers
on the network, and by their software applications.

The customer requirements about the solutions
were:

• Complete access to the source code of all the
software components

• Possibility to use distinct hardware architectures
and form factors for the device

• Use a software with performant and reliable
TCP/IP stacks

• Quick availability after power on

We have proposed Linux because all the software
components are delivered under the GPL license, so
it guarantees the accessibility to the OS sources. As
the application was also developed as Open Source,
the first requirement was met.

The device possible first configurations used a X86
CPU in Compact PCI rack, and a PowerPC CPU in
VME rack. Ethernet ports (3 ports needed per
device) were located on the CPU itself, plus an
additional multiport board with the same format than
the rack. As Linux is available for both architectures
and has a huge set of Ethernet drivers, it was also a
great candidate for this requirement.

It is well known that Linux TCP/IP stacks are very
good, as Linux is the base of the majority of the
servers of the Web.

The quick availability after power on was reached
thanks to the development of a very tiny embedded
distribution, with just the loading of the Ethernet
chips drivers, and the start of the Ethernet frames
treatment application.

So Linux succeed to build such a dedicated
embedded application that acts like a firmware in the
device, and allows very versatile configuration
without application rewriting, the only change is to
select the good Ethernet driver when we go from a
configuration towards the over (and of course
recompile the sources with the corresponding tool
chain if the architecture changes).

3. Using Linux in real time context

3.1 What kind of real time for your project ?

For a company like us that has been for years
working with many Real Time Operating Systems

 Page 4/8

(RTOS), the use of Linux based solutions could not
lead us to loose the level of determinism we need in
our projects.

When we look back at projects built around legacy
RTOS, some are just embedded development
without real time characteristics, but some really
need to rely on a hard real time environment.

When working with RTOS, as they are both
designed for embedded and real time purposes,
there was no question regarding the level of
determinism that the project needed, in any case the
RTOS could sustain any requirement.

With Linux, the developer must answer to the
following question during the design phase : “Is the
process simply an embedded device, or does it need
soft real time performance, or hard real time
performance ?”.

Depending on the answer to such a question, the
strategy to use Linux will be different.

For just embedded needs, Linux will be useable with
the strategy explained in § 2.

If the requirements are soft real time, Linux can be
used, but the developer will have to adopt an
adapted strategy to get soft real time performances.

And if finally the process implies hard real time
characteristics, Linux won’t be the solution, but the
couple Linux + real time extension will be.

The following paragraph will detail the positioning of
Linux in term of real time capabilities.

3.2 A tour of real time solutions with Linux

Linux, like Windows, is a general purpose Operating
System.

Its main mission is to manage a lot of concurrent
processes on a machine (desktop or server), with a
global time-sharing among all.

The scheduler’s basic strategy is not to advantage a
precise process, but make all processes run on a
sufficient large time scale, so that all are going head
on a fair basis.

It is nevertheless possible to place selected
processes in another class, called “real time”
scheduling class. When attributed to this type of
scheduling, the processes are placed above all
standard processes in the scheduler’s strategy to
allocate the processor(s).

All processes with that class are ordered through
increasing priorities. The process with the top priority
always preempts processes with lowest priority. If
many processes compete at the same level of
priority, processes are managed according two
policies :

• SCHED_FIFO : no reallocation until explicit
release by the running process

• SCHED_RR (Round Robbin) : time sharing
among processes in the same priority level.

This kind of scheduling is similar to the scheduling
principles of RTOS, so Linux can reach in term of
scheduling the same functionality than RTOS, if the
developer uses the right scheduling class.

It does not mean at all that Linux is a RTOS,
because the important factor is the time to take into
account an interrupt, and to react to it at applicative
level, in a well-known and limited duration.

Due to the internal nature of the kernel, it is not
possible to guarantee in any case this duration,
unless setting this limit to very high values, of
course.

Until the arrival of kernel 2.6, the kernel code was
not preemptible, so that means that when kernel
code is currently executing, if an interrupt occurs, the
interested process can not react to it until the end of
the kernel code. As kernel code execution (drivers,
system call etc…) before releasing the processor is
not bounded throughout the kernel, there can be no
guarantee in term of reaction latency.

In version 2.6 of the kernel, there is a possibility to
make the kernel preemptible, through its
configuration before compilation.

When this configuration option is selected, the kernel
code can be pre-empted. This leads to best reaction
latencies than with a not preemptible kernel.

Nevertheless, large portion of the kernel code are
executed with interrupts masked, and there are not
preemptible sections due to re-entrance problems,
so even with preemptible kernel, one cannot
guarantee bounded reaction latency.

That’s the reason why a preemptible kernel coupled
with SCHED_FIFO or SCHED_RR scheduling class
can answer to soft real time needs only. In such a
configuration, the average latency can be good, but
potentially not the worst case. So the true hard real
time performance remains impossible to Linux.

To deal with hard real time, the only solution is to
work with a real time extension that is coupled to
Linux.

The main real time extensions for Linux are :

• RTLinux was the first one, designed by the
University of New Mexico. After a first phase
where the product was GPL, it divided in 2
products driven by a company, FSMLabs. The
basic version of RTLinux was available under a
free license (RTLinux/Free), and the performant
one became a commercial product

 Page 5/8

(RTLinux/Pro). WindRiver has recently bought
RTLinux to introduce it in is offer as RTCore,
beside Linux and VxWorks offer.

• RTAI was derived from the former RTLinux. The
Dipartimento di Ingegneria Aerospaziale,
Politecnico di Milano, develops it. It is and
remains a GPL solution.

• Xenomai has started in the RTAI environment
has a new branch, and is now completely
autonomous. It is the newest of the 3
extensions, and seems promising. It offers a
neutral nucleus with skins API for many RTOS
(VRTX, VxWorks, µITRON, RTAI), and a neutral
one. It also offers a smooth migration path from
Linux to real time and vice versa.

All these extensions use the main rough principles.
They are implemented as a set of kernel modules,
and so rely on Linux for their startup.

Once the extension is loaded, it takes precedence
on Linux by distinct technical means (virtualization of
interruptions in RTLinux and initial RTAI, ordered
pipeline of interruptions with the new RTAI and
Xenomai).

The extension implements a fully deterministic
RTOS. When there is no activity in the RTOS, the
extension gives the processor to Linux world (Linux
is the idle task of the RTOS).

The extension offers an API to make IPC among
tasks in the real time part, but also IPC between
tasks in the RTOS and processes in Linux.

When using such solutions, the developer has to
split its application in 2 parts :

• The part that must be real time, which is
implemented in the RTOS

• The part that has no real time constraints, that is
implement has legacy Linux process.

For instance, in a data acquisition chain, the
reception of the data and their time stamping would
be done in the RTOS, with real time performances,
and a graphical representation or a send to a
storage server over a network would be done in
Linux. The exchanges between the two parts would
be done through exchange FIFOS.

With such a design approach, the developer “put the
right thing in the right place”, but this leads to a more
complicated design. It is necessary to assure that
Linux will have the processor enough to avoid
saturating the intermediate buffers through which the
real time part sends data to Linux. So there is a
trade off between the load of the global system, and
the buffers size.

Linux drivers are not available in the extension, so
Inputs/Outputs done in the real time part necessitate
a Real Time driver.

There are greatly fewer drivers directly available for
the extensions than for Linux, but there is a
framework to develop Real Time drivers (RTDM).
Drivers are generally not built from scratch, but
adapted to the extension from their Linux version.

The real time part of the application can be built
through 2 types :

• As kernel modules directly running in the RTOS,
for the maximum of performance, but less
comfort (no memory protection, debug less
easy)

• Or packaged as special Linux processes, that
are not scheduled by Linux but by the RTOS.
This allows protection by the MMU, and
facilitates the debug process.

3.3 An example : numerical data recorder for
automotive

One of our customers had to develop a new
generation of data recorders to store the flux of
information exchanged on numerical buses on
modern vehicles.

The hardware platform was a PC104 stack with an
Intel CPU, a CAN board and another board with
DSP, who acts as a specialized co processor for the
main CPU.

The requirements for the software were :

• Ability to precisely time stamp the data received
on the CAN buses.

• High bandwidth towards a hard disk used for
storage.

• Full determinism for the exchanges between the
main CPU and the DSP coprocessor.

To fulfil these requirements, it was decided to use a
Linux based solution, coupled with RTAI to ensure
complete determinism of the software.

We have selected a 2.4 kernel. The project was
made after arrival of 2.6 kernel, but for industrial
applications, we generally adopt a very conservative
approach. We generally start using a major kernel
version only a quite long time after its release, so
that a maximum of potential problems have been
already solved.

Another reason to choose kernel 2.4 is that Linux
drivers for CAN and DSP boards were available for
2.4, and not for 2.6.

Our job was to set up the basic software
environment (Linux + RTAI base), and to deliver a
skeleton of the final application.

Due to the fact that CAN and DSP were managed by
the real time part of the application, it was necessary
to port the drivers. As there was a single task that
would drive a board, we have not used RTDM
model, but the existing Linux driver code was
adapted and used as a hardware management

 Page 6/8

library linked with the task. As the task was a kernel
module, there was no trouble to access the
hardware.

The main job for this port was to remove things
related to device nodes, and replace Linux kernel
functions by their equivalent for RTAI.

After installing and validating the Linux kernel, the
RTAI extension and the ported drivers, we have built
the skeleton of the application. The idea was to let
the customer deal with the details of the application
and to concentrate ourselves on what was related to
RTAI :

• Global design between Linux processes and
RTAI tasks

• Implementation of IPC and synchronizations
between these processes and tasks

• Access to the CAN board and exchanges with
the DSP

This job was made thanks to the global requirements
written by the customer.

We finally delivered the platform with Linux and RTAI
installed, and the skeleton developed. The customer
finalized the development by himself : he added the
final code round the templates of functions of the
skeleton.

Such a development approach allowed using Linux
plus real time extension in the new device, with a
good share were each company acts where she has
the maximum added value.

4. Porting an application from legacy RTOS to
Linux

In the industrial world, there are a lot of architectures
built around 68K boards with VME interface towards
Inputs/Outputs, and legacy RTOS.

Due to the increase in computing needs, it is
sometime necessary to replace this generation of
boards by new ones, much more powerful.

But in the history of RTOS, there have been great
changes on the market. Some have disappeared,
some still exist but their relative part has greatly
decreased, so the drivers or BSP for these OS are
not available for new hardware.

When a complete software application exists and
has been validated, and it is necessary to change
the hardware, this can trigger the need to port this
application towards the new Operating System.

The idea to minimize the impact, and in
consequence the costs, of such evolution is to try to
preserve as much as possible the sources of the
existing application, and to manage the port at the
system level.

By remapping system calls of the old OS to the new
one, and developing an emulation library when strict
remapping is not possible, the application sources

are very few impacted. In consequence, the
validation phase is much more light than if the
application was rewritten for the new environment,
and the regression risk is minimized.

This approach is possible only if the developer has
good knowledge of the two OS : the old and the new
one.

We have managed this kind of project for a port of a
SNMP stack from OS9 towards Linux.

The initial stack was running on a 68K CPU, and the
new hardware was a PowerQuick (PowerPC family).

OS9 was not available for this new CPU, so it was
quickly decided to use Linux.

The SNMP stack was just a part of the application,
but the port was a mock up to evaluate both the
feasibility and cost of the same port for the entire
application.

As mentioned earlier in this article, the initial version
used OS9 not for real time purposes, but just as an
embedded OS on 68K boards, so there were no time
constraints that could justify the need of a real time
extension.

The initial sources of the application were written in
Ansi C, a few years ago.

So the first problem we had to face was not directly
due to Linux, but to the difference between the OS9
tool chain and the current Gnu tool chain : as
modern compilers make much more controls than
old ones, some syntax errors were detected when
compiling for Linux, when there was no trouble when
compiling for OS9.

These difficulties must be taken into account when
planning a port, even if they are not directly related
to Linux, because they can necessitate hours of
sources cleanup, if the old compiler was too tolerant.

With the Gnu tool chain, you can decrease the level
of controls the compiler makes to avoid correcting
the sources, but is it really a good solution ? The
best thing is to rely on the compiler’s check to get
the cleanest sources, in order to avoid future
problems. That is what we have done regarding this
point, even if this generated additional work.

We faced to another difficulty also related to
compilers. As some data structures were not
correctly aligned in the initial sources, the old and
new compilers did not manage these structures the
same way. So there were some troubles when
dealing with offsets of members of these structures,
or computing their length.

Like sources syntax, this point is not directly due to
Linux, but it was important because such problems
involved bad functionalities of the ported software,
and were difficult to identify.

An important difference between Linux and some
RTOS is that RTOS may have a flat memory model,

 Page 7/8

without any boundaries between global variables
spared into different executables.

With Linux, every executable has its own memory
space, under the control of the MMU, and global
variables of one executable are not seen by the
others, except if the developer used dedicated
shared memory API.

Under OS9, it is possible to use flat memory model,
or a segmented one with MMU. This is the
developer’s choice.

Unfortunately for the port we faced to, the initial
developers used the flat memory model, with shared
variables between the distinct executables of the
SNMP stack.

An additional difficulty was that the shared global
structures had members that were pointers on
members on other data, so these pointers were
shared between distinct executables.

With a flat memory model, there was no trouble, but
with Linux, the pointer that had sense in the
executable where the variable pointed to was
located, had no sense for other executables.

To solve this, we had 3 solutions :

• Replacing the OS9 architecture with many
executables, by a single multi threaded Linux
process (convert OS9 executables to Linux
threads). In this case, as all threads shared the
same addressing space, the shared pointers
would be correct in each thread.

• Use the shared memory API to share all needed
structures, and replace all pointers by offsets
regarding the base of the related shared data, to
avoid pointers that have no sense.

• Use the shared memory API to share all needed
structures, and try to map all data to the same
address for each process, because the API
allows to make a hint for the mapped address.

The best possible solutions would have been to use
a single multithreaded process, but we did not
identify the use of pointers in shared structures early
enough.

So we started the port with a multi process
architecture, and use of shared memory API.

When during the test phase the pointers problem
appeared, we preferred to map all the shared data to
the same address for each process, to avoid to swap
from multi processes to multi threads.

Converting pointers to offset would have generated
too much source rewriting, and after analysing the
memory mapping of all processes, there were
identical addresses ranges free for all. A hint on
these addresses for all shared data were successful
for each process, so with this technique, the original
data shares were OK even on the Linux port.

The only penalty of this technique was that in case of
software evolution, it would be necessary to check
that the used address zone still remained available
for each process.

The last OS9 features that were not so easy to port
were signals and alarms.

In a multi process OS9 environment, developers
often use a lot of signals to synchronize processes
or trigger functionalities. OS9 signals are very reach,
with a lot of values available for users.

Linux signals are poorer, and they are not really
intended to be the base of IPC between processes.
To minimize the changes on the sources, we have
developed some emulation of the OS9 signal API,
based on the Linux SIGUSR1 signal, with associated
data containing the value of the OS9 signal (OS9
users signal multiplexed to a single underlying Linux
signal).

As the original OS9 sources used a huge quantity of
alarms running in parallel, we also needed to
emulate the alarm API through the launch of alarm
threads, one thread per alarm duration.

Concerning other system aspects, it was quite easier
to port them, mainly by simple remapping through an
include file that was included by all sources. This file
was redefining the OS9 system call in the equivalent
one for Linux.

For a few system calls, it was necessary to treat
them in a simple compatibility library, mainly due to
differences in the parameters between the two OS,
that prevent simple remapping through the
compatibility include file.

In conclusion, for the majority of the system calls
encountered, it was not so difficult to port them at
system level, thanks to a good knowledge of both
OS9 and Linux.

Signals and alarms were a little bit challenging, due
to the fact that they are very common tools in OS9,
and very often used in the original sources, but less
central in Linux, and so less easy to use in the Linux
version.

Memory model and compilers differences were the
most difficult aspects to face to.

Starting with a flat memory model is a point to check
when porting to Linux, because of the consequences
on data sharing.

The difference between compilers, mainly if the
original one is quite old, can lead to a lot of
unforeseen job, because it can impact all the
sources set, and potentially generate hours and
hours of corrections.

After treating these difficulties, the port was finally
achieved and successful.

The test campaigns demonstrated that the ported
software features and performances were identical
to the initial one.

 Page 8/8

So this mock up reached its main goals :
demonstrate the feasibility of a port of the whole
application, help estimate the global cost, and point
the main difficulties of such a job.

4. Evolutions management

In the industrial world, when an application has been
successfully validated, there is generally no reason
to change anything, unless bugs appear.

In the opposite, Linux and open source software are
constantly evolving, because project teams deliver
new releases at high rates when projects are active.

For instance, minor versions of Linux 2.6 kernel are
released about every 2 or 3 months.

That is clear that a company cannot afford to
maintain the OS base of its product in phase with
such a rhythm of new deliveries.

So is the evolving world of open source software a
bad thing regarding the adoption of Linux in
industrial projects ?

In fact not really, because you perfectly can “freeze”
the situation to that particular version used to
develop and validate the application or product. In
our company, we do consider that both Linux kernel
sources, basic GPL software used and the
application itself we have developed are the distinct
components of the project, and we manage them
collectively as a whole, so that we are able to always
restart with the same basic environment.

And if we discover some problems in the OS or in
basic GPL software used, we have more liberty than
in RTOS world.

With legacy RTOS, there are indeed less new
releases. But when you face a bug or a problem with
the current release of the RTOS, there is generally
no solution but upgrading it to the new one that will
correct it, as editors don’t want to correct old
releases.

With open source software, you have much more
solutions to choose from :

• As with RTOS, the first one is to adopt the latest
release, if it corrects the problem you face to.

• The second one is to locate in changelogs, or by
comparing sources, the precise corrections
corresponding to your problem, and to
selectively backport them into the version you
used when developing. Even if it is not always
easy, it can be a way to avoid revalidation
process due to OS release change.

• And finally, if the problem is still not corrected in
the latest version, you can try to correct it by
yourself, and then recontribute it to the project
team.

 5. Conclusions

In this article, we have browsed distinct aspects of
using Linux in the kind of projects that our company
is developing, with embedded, real time
characteristics.

Today, we can say that according to our point of
view Linux is perfectly usable as a base for these
kind of projects.

Linux comes with a lot of high quality software
development tools, like versioning tools (CVS, SVN
…), compilers (GNU chains), documentation tools
(doxygen) etc….

Using open source software is interesting due to full
access to the sources, absence of royalties for
deploying products, or free availability of a lot of
developing tools.

Nevertheless, new adopters must have in mind that
if buying costs are quite absent, it is necessary to
invest in developers knowledge because of the
adoption of a new technology, but also because
using free software changes the way of working :
you need to interact with a community of developers,
instead of a supplier’s maintenance team, for
support, bugs correction etc…

The interesting point is that you convert money that
you used to buy software to reinvest it in your team’s
human skills, and we do think that it is a quite good
investment !

6. References

[1] 01 Informatique, n° 1897, March 23 rd 07.

[2] www. linuxdevices.com/articles/
AT7065740528.html

7. Glossary

API: Application Programming Interface

BSP: Board Support Package

GPL: GNU Public License

MMU: Memory Management Unit

RTOS : Real Time Operating System

