
HAL Id: hal-02270292
https://hal.archives-ouvertes.fr/hal-02270292

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enforcement of Quality Attributes for Net-Centric
Systems through Modeling and Validation with

Architecture Description Languages
Jörgen Hansson, Peter Feiler, Aaron Greenhouse

To cite this version:
Jörgen Hansson, Peter Feiler, Aaron Greenhouse. Enforcement of Quality Attributes for Net-Centric
Systems through Modeling and Validation with Architecture Description Languages. Embedded Real
Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-02270292�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/227322218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02270292
https://hal.archives-ouvertes.fr

 Page 1/10

Enforcement of Quality Attributes for Net-Centric Systems
through Modeling and Validation with Architecture Description

Languages

Jorgen Hansson, Peter H. Feiler, and Aaron Greenhouse

Software Engineering Institute, Carnegie Mellon University
Pittsburgh, PA, USA

{hansson,phf}@sei.cmu.edu

Abstract: In this paper we discuss and demonstrate
how to conduct validation of data quality attributes,
e.g., security, data accuracy, data confidence, and
temporal correctness, can be modeled and validated
using an architecture description language such as
AADL. We focus on security, specifically confiden-
tiality.

Keywords: Security, Modeling, Validation, AADL,
Software Architecture

1. Introduction

Net-centric system are intrinsically distributed
system-of-systems comprised of a number of
interconnected heterogeneous, geographically
dispersed systems, where several systems are
embedded and operate under real-time constraints.
Sensor networks are increasingly being deployed in
applications to monitor, collect, process, and
communicate data obtained from the environment,
and thus they provide data services to high-level
applications. Data quality in a net-centric system can
be compromised in a number of ways: confidentiality
might be breached due to lack of adequate
encryption or incorrectly assigned security clearance
for subjects operating on object; confidence level of
data might be insufficient in part due to the set size
of active sensors or environmental conditions; the
accuracy of sensor readings is also affected by
environmental conditions; correctness of data is low
as it is a function of its temporal coherence.
Enforcing 100% accuracy, correctness, and
confidence is in practice not always possible nor
desirable as the cost becomes too significant with
respect to cost, computational power, power
consumption, quality of sensor etc. It is more
desirable to ensure that data quality is within
acceptable tolerance levels of the applications, not
jeopardizing their correctness.

Model-driven engineering based on an architectural
model is of paramount importance to validating the
quality of data, and thereby ensuring that high-level-
systems are provided with data of sufficient quality
and consistency driven by application requirements.
Architectural description languages have success-

fully been applied to prove system properties, often
with a propensity toward task- or component-centric
perspectives and, thus, generally preclusive of data
quality attributes. We have developed a modelling
framework using AADL for validating the enfor-
cement of the previously mentioned data quality
attributes prior to the implementation phases of the
system. In this paper we present our developed
methods for validating quality attributes, specifically
security, using AADL. This includes The paper
includes examples from modelling and validation of
confidentiality under Bell-LaPadula-based frame-
works [1,2]. The approach supports other security
frameworks, including Chinese Wall [3,4], role-based
access control [5], and information flow, [6-8].

2. Validation of Confidentiality

The concept of subjects and objects, where subjects
operate on objects by permissible access op-
erations (read, execute, append, write) enables us to
model and validate security at both the software and
hardware levels. At the software level we can view
processes, threads, and software components as
subjects and data objects are objects.

Determining the viability of a system given
confidentiality requirements of data objects and
security clearance by users, one can see the
validation as a two-step process: (1) validation of the
software architecture followed by (2) validation of the
system architecture where the software architecture
is mapped to hardware components. Validating the
software requires us to

• identify the data elements that we want to protect
(objects);
• determine their security requirements;
• identify the components (software components,
processes, threads) that should be allowed to
access the objects; and
• confirm the access is as specified by access
operations.

Thus, we can ensure that data elements are
accessed only by authorized users and that
confidentiality (as given by security levels) and

 Page 2/10

integrity (as given by access operations) are
enforced.

By mapping the entities of a software architecture
(e.g., processes, threads, and partitions) to a
hardware architecture (consisting of, for example,
CPUs, communication channels, and memory) and
the like enables us further to ensure that the
hardware architecture supports required security
levels. Consider the scenario of two communicating
processes, both requiring a high level of security as
because the data objects requires secret clearance.
Furthermore, the system platform in this scenario
consists of a set of CPUs with hardware support for
various algorithms that encrypt messages before
network transmission. By modeling the system, we
can represent and validate that processes and
threads (now considered to be objects) can be
executed (access mode) on CPUs (subjects) with
adequate encryption support. Furthermore, we can
validate that CPUs (objects) communicate data
(access modes of writing and reading) over
appropriately secured communication channels. In a
similar fashion, we can enforce design philosophies
saying that only processes of the same security level
are allowed to co-exist within the same CPU or
partition or that they can write to a secured memory.

In this section, we identify and outline desirable
criteria to enforce when modeling and validating
security using the model-based engineering
approach. Our purpose in validating security is to
ensure that

• all components only access data they are
classified for (through security level and
compartments/categories)

• data is only used on a need-to-know basis

• modeling and validating security contributes to
identifying identify possible errors

• sanitization (i.e., lowering of security levels) of
data is conducted controllably

To model and validate the confidentiality of a
system, we distinguish between general and
application-dependent validation. General validation
of confidentiality is the process of ensuring that a
modeled system conforms to a set of common
recommendations or design guidelines, expressed
as a set of conditions that support system
confidentiality independent of a specific reasoning
framework for security. Those conditions should hold
in the general case; as a result, they are necessary
but not sufficient (i.e., satisfying the conditions
indicates the system is viable for enforcing
confidentiality). General validation of confidentiality
assumes that subjects and objects are assigned a

security level, such as),(ccl that is the minimum

representation to enforce what are commonly

referred to as the basic confidentiality and need-to-
know principles.

Application-specific validation refers to validating the
system given detailed confidentiality requirements
and a specific reasoning-based security framework.
For example, Bell-LaPadula-based models represent
permitted access patterns between objects and
subjects, against which operations are checked
before they are allowed to be performed.

These recommendations and design guidelines are
conditions that verify an architecture is feasible (i.e.,
that the modeled architecture does not compromise
security and confidentiality). Before elaborating on
the conditions, we introduce a graphical notation
(see Figure 1) and an example.

Figure 1: Graphical Notation of kji oso →→

Figure 1 shows the general graphical notation we
use for subjects and objects. The picture shows a

subject js accessing the objects io and ko . js has

security level),(jj ccl clearance, and the objects

require that subjects operating on them meet the
security classification requirements expressed as

),(ii ccl and),(kk ccl . The relation ji so → implies

that io is accessed but not modified by js (i.e.,

corresponding to the access operations read and

execute). The relation kj os → shows that ko is

modified by js , corresponding to the access

operations append and write. We say that js is

using io as input and produces ko as output. We

represent sanitized access—),(kk ccl does not

dominate),(ii ccl —by a dashed arrow, and

sanitization is only allowed to be performed on
modified objects.

Figure 2 depicts an example consisting of a number
of scenarios, potential faults, and errors that we refer
to when discussing the required and recommended
conditions for performing general validation. For the
purpose of simplicity and without loss of generality,
we assume that the objects are data objects read

(ji so →) or written (kj os →) by subjects; this

notation simplifies the representation, since we know
the allowed access operations from the example.

 Page 3/10

The example in Figure 2 contains a feedback loop

(
111 oso →→), subjects reading from and writing

to multiple objects (e.g.,
21 , ss), and sanitization

(72 os → and 712 opss →→).

Figure 2: Example with Object-Subject Dependencies

3. Validating Subjects and Objects

Next we outline a number of conditions for validation.

Condition 1 (Basic confidentiality principle):

The basic confidentiality principle states that one
should only be granted access if one has the
appropriate security clearance, For example, if a
document is classified as confidential, the viewer of
the document should have confidential clearance or
higher (i.e., secret or top-secret). We say that the
basic confidentiality principle is enforced if, and only
if, for all subjects and objects, the class (cl) of a
subject equals or exceeds the class of an object on
which it operates. In the example shown in Figure 2,
this principle is true for all subjects. Thus, in order to
validate the basic security principle, we only need to
specify the security class cl for subjects and objects.

Condition 2 (Need-to-know principle):

The need-to-know principle states that one should
only be granted access to a resource if there is a
need. For example, a person having top-security
document clearance should not necessarily be
allowed access to all documents but only to those
related to his or her function in a project. In our
notation, the need is represented as a category c.
We say that the principle is enforced if, and only if,
the security level (cl,c) of each subject in the system
dominates the level of the objects on which the
subject operates. In the graphical notation given in
Figure 2, adherence to this principle implies that the

following relations must hold:),(jj ccl should

dominate),(ii ccl and),(kk ccl . In Figure 2, we can

see that 5s does not dominate 1o since 5s does

have membership in project {b}; thus, the example

shows an incorrect access. Also, while 5s dominates

3o
and 4o

, it actually has a higher security clearance
than necessary for its purpose. We elaborate on this
when discussing the principle of least privilege.

Condition 3 (Security level range checking):

The security level assigned to an object should be
within the specified security levels of the object and
the capacity of the subject. Some systems require
that the security measures increase (e.g., when the
systems appears to be under a security attack) in
which case stronger encryption algorithms are
deployed. Those algorithms require more
computational power; in addition, the execution
times of tasks processing data increase, and
message sizes increase and require more network
bandwidth. This increased resource demand adds to
the end-to-end latency as well.

For applications where power consumption is a
major concern (e.g., sensor networks), it is important
to maximize the lifetime of the network, which
suggests that level of security is traded for
operational lifetime. Furthermore, in overloaded
systems part of the strategy to resolve an overload is
to temporarily enforce the minimum acceptable
security, decreasing the workload imposed on the
system. Thus, adapting the security policy and the
security levels to adequately match the current state
and risk levels seems feasible.

Indeed, one can adapt the security policy statically
and dynamically. Assigning a security level to each
subject based on the security requirements of the
accessed objects, as we have previously discussed,
is static as it implicitly states how a subject should
operate to enforce the security given by an object
(e.g., what encryption should be used). By assigning
an allowed range of security levels for each object,
we are explicitly expressing

the minimum security requirements acceptable

normal security level given normal operation

maximum security level desired for certain situations
or system states

We model changing security levels in the following

way. Each object io can be given a range of security

levels, expressed as)],(),,[(
maxmin

iiii cclccl . We

refer to the security level desired in the normal

system state as),(i

normal

i ccl .1 Recall, going back to

a subject’s security clearance, that a subject’s
security clearance represents its maximum security
privilege, which also implies that it can manage and
operate below this security classification. When

1 Note that only the level l changes; the category remains the same.

Nothing prevents the categories from changing with the state, but

we have not found an example where there is a practical need for it
to do so.

 Page 4/10

checking the ranges of objects, a subject js needs

to dominate the specified security classification

range of each accessed object io — that is,

),(jj ccl should dominate).,(
max

ii ccl Not dominat-

ing the range implies there are states when the
subject is not authorized to access required
object(s).

The desired security level of an object, within its
range, normally reflects the current system state. To
facilitate adequate and meaningful checking when
objects have security level ranges, one should
connect each level with a system state to enable
analysis for the different states. (In AADL, this
connection can be accomplished by modes.)

Condition 4 (Principle of confidentiality
constancy):

The principle of confidential constancy means that
the security level of an object produced (access is
write or append) by a subject as output should
dominate the security level of all objects used as
input (access is read or execute).

The condition enforces the philosophy that the
confidentiality of objects is maintained or increased.
For example, a derived data object should be at
least as confidential as the most confidential input
data object since further analysis has been
performed and more intelligence added; thus, its
security level should dominate the security level of
all input data objects. In the example given in Figure
1, this principle implies that the following relations

should hold:),(kk ccl should dominate),(ii ccl .

Condition 5 (Controlled sanitization):

Controlled sanitization stipulates that lowering the
security level of an object or subject should only be
authorized and performed by a privileged subject.

In Figure 2, Condition 5 is enforced in the following

flows: 111
oso →→ ,

4332211 osososo →→→→→→ ,

4332655
osososo →→→→→→ , and

867
oso →→ . Subject 1s takes multiple inputs

and produces multiple outputs; the security levels of

3o and 7o should at least be 2 given that 2
o was

used as input and belong to project {a} or {b}. If this

is indeed the desired security level of 7
o , we lower

the security level by letting a trusted subject
authorize sanitization. This state can be viewed as

having 2
s writing 7o over a sanitized port or

channel; alternatively, a dedicated subject for

sanitization can be invoked. In our example, 1ps is

the privileged subject for performing sanitization (*,
*), meaning that it can sanitize objects across all
security levels and categories.

Condition 6 (Non-Alteration of Object’s Security

Requirements):

A subject using an object as input should not alter

the security level of the object, even if the object is

updated as an output from the subject. The rationale

for this condition is that a subject can have a security

clearance that exceeds the maximum required

security level of an object. Increasing the security

level of the object beyond its range implies that

security requirements do not align between the

subjects that operate on a dependent object. Thus, a

subject with less security clearance than an object

cannot continue its operation as expected. In Figure

2, consider the flow 111 oso →→ . If 1s is

increasing the security level of 1o to (2,{a}), 5s is no

longer allowed to read 1o , which probably was not

intended in the general case.

Condition 7 (Hierarchical)

The hierarchical condition ensures that (i) a

component has a security level that is the maximum

of the security levels of its subcomponents, and (ii)

all connections are checked to determine whether

the source component of a connection declaration

has a security level that is the same or lower than

that of the destination component.

Consider the example given in Figure 3, which is an

extract from the one shown in Figure 2 on 3.

Hierarchical decomposition supports incremental

modeling. In the high-level model where it is a

component, 0
s takes 1o and 5

o as inputs and

generates 5o and 6o as outputs. Security

requirements of the objects are not compromised,

because the security level of 0
s dominates their

requirements. Developing the refined model, the

subcomponents 1s and 5
s and their relation to the

objects are modeled. Similarly, we need to ensure

that the
1s

dominates 1o

and 2o , and 5

s

dominates 1o , 5
o , and 6

o . Furthermore, 0
s should

 Page 5/10

dominate 1s and 5
s to ensure that they act within

the privileges of 0s .

If the security requirements of 1o would be (2,{a}),

Condition 4 is violated. Condition 4 concerns

keeping confidentiality at the minimum level derived

from maximum security requirements of the inputs.

Thus, →1o
6

o seems to be sanitized

uncontrollably. In the refined model, we see that 1o

is used as input to derive 6o ; thus it is indeed

uncontrollably sanitized (as opposed to the

circumstance in which only 5o is used as input to

6
o , where security is not compromised).

Figure 3: Hierarchical Modeling

Condition 8 (Principle of least privilege)

The principle of least privilege has been identified as
important for meeting integrity objectives [10]; it
requires that a user (subject) be given no more
privilege than necessary to perform a job. This
principle includes identifying what the subject’s job
requires and restricting the subject’s ability by
granting the minimum set of privileges required. With
the object’s security requirements specified in an
AADL model, the least amount of privileges for the
subjects can be generated in a straightforward
manner by analyzing the security levels of all objects

accessed by the subject. For a set of objects Ο ={ 1o

, …, no
} accessed by is

, the least privileges

),(ii ccl of is
 are given by














==

Ο∈
Ο∈

U
j

j l

jij
l

i ccclcl),(max
,

the maximum security level clearance of accessed
objects and required membership in the categories.
Given that the subjects’ privileges are specified, a
mismatch between the least privilege and what has
been specified results in two possible cases:

• The assigned privilege is insufficient. It does
not dominate the required least privilege
(i.e., the subject has been given incorrect
privileges, the object has been wrongly
associated with a subject, or there is an
unauthorized access).

• The assigned privilege exceeds the
minimum privilege, which either is
unnecessary or a consequence of that the
subject might be associated with other
objects that have not yet been described in
the model. In Figure 2, privileges of subject

5
s exceed the least privileges necessary

given the current model.

The least privileges of subjects represent a
snapshot, since it is a function of currently existing
objects in the model. This view may change over
time as a model is incrementally refined (e.g., as
additional objects and subjects are modeled and
more detail added).

4. Modeling and Representation in AADL

In the following, we describe our approach to
mapping the concepts from the Bell-LaPadula
security model to AADL

4.1 SECURITY LEVELS IN AADL

The security level of a subject/object is usually a pair
of a security class value and a set of categories. The
classification value is drawn from a partially ordered
set and denotes how securely an object must be
handled and how privileged a subject is. Categories
further refine the security level by labelling objects
and giving subjects permission to access
appropriately labelled objects. This style of security
level captures the typical governmental model
wherein data is labelled as unclassified, confidential,
secret, or top secret and categories are used to
further restrict access. Represented this way, a

security level ()
11

,categoriesclass is said to

dominate another security level ()
22

,categoriesclass

iff
21

classclass ≥ and
21

categoriescategories ⊇ .

AADL properties associate security levels with the
AADL components and features that represent
subjects and objects. Because AADL does not
support tuple-valued properties, we use a pair of
properties to associate both a classification and a set
of categories with each subject/object. The
properties Class and Category that declare an
item’s classification and set of categories,
respectively, are defined in the property set

Security_Attributes, shown in Table 1.

Table 1: The Property Set Security_Attributes
property set Security_Attributes is

 -- Specifiy security class of a component.

 Class: inherit Security_Types::Classifications

=>

 value(Security_Types::Default_Classification)

 applies to (data, subprogram, thread, thread

 group, process, memory, processor, bus,

 Page 6/10

 device, system, port, server subprogram,

 parameter);

 -- Specify security categories of a component.

 Category: inherit list of

Security_Types::Categories => ()

 applies to (data, subprogram, thread, thread

 group, process, memory, processor, bus,

 device, system, port, server subprogram,

 parameter);

end Security_Attributes;

Both properties apply to all component categories as
well as to all feature categories. The definitions
references two property types, Classifications and
Categories, and a property constant,
Default_Classification that are defined in the

secondary property set Security_Types. This
facilitates customization of the space of security
levels and is analogous to the AADL standard’s use
of the AADL_Project property set to allow
customization of the property definitions in the

otherwise fixed AADL_Properties property set.

More specifically, the Classifications property

type of the Class property is expected to be an
enumeration. Because AADL treats enumeration
literals as being ordered as they are declared in the

enumeration type, the Classifications type thus
provides a totally ordered set of classifications for
the space of security levels. The property constant

Default_Classification provides the default

value for the Class property. The value of this
constant is expected to be the first literal of the

Classifications enumeration type.

The Categories property type is also expected to
be an enumeration. In this case, the enumeration is
used to define the set of categories applicable to the
problem space of the model. Because we are not
interested in ordering the categories, we could have

used aadlstring as the type instead. We chose to
use a specific user-defined enumeration type
because it provides better support for error checking;
the AADL parser flags the use of categories that are
not part of the declared enumeration type as syntax
errors (i.e., typographical errors in category labels
are detected at the time the model is parsed).

Because aadlstring values cannot be checked this
way, errors in category labels would be more difficult
to detect (i.e., they would appear as unexpected
security level mismatch errors). Acceptable values

for the Category property are actually lists of values

of type Categories, thus providing the second
component of the security level, the set of
categories.

The property types Classifications and

Categories and the property constant

Default_Classification are declared in the

Security_Types property set, shown in Table 2.

Table 2: The Property Set Security_Types

property set Security_Types is

 -- The levels of security that are

applicable to the system.

 Classifications:

 type enumeration (unclassified,

 confidential, secret,top_secret);

-- This constant should always be set to

-- the first element of the Classifications

-- enumeration.

 Default_Classification:

 constant Security_Types::Classifications

=> unclassified;

 -- The categories for information.

 Categories:

 type enumeration (A, B, C, D);

end Security_Types;

The default classifications levels are the standard
military classifications levels with the ordering
unclassified < confidential < secret < top secret. The
default categories are place holders to be replaced.
As stated previously, the intent is that the modeler

customizes the Classifications and Categories
enumerations based on the domain of the system
being modeled.

4.2 SUBJECTS AND OBJECTS IN AADL

In the Bell-LaPadula model, active subjects act on
passive objects. In AADL, components com-
municate through ports and other categories of
features. For the most part, data is not explicitly
represented in the model; the exceptions are data
subcomponents and data access features. Instead,
data ports and other features are associated with a
data classifier that describes the data objects that
flow over connections and into or out of ports. A
feature, with its associated attributes and properties,
is a proxy for the data that pass through it. These
observations motivate us to consider, in general,
AADL components as subjects and AADL features
as objects.

4.2.1 AADL Components

We treat all AADL components with the exception of
data and subprogram components as subjects.
Components are sites of activity that coordinate the
movement and generation of data throughout the
system. Each component is expected to have a
security level to describe its clearance to utilize
objects. Table 3 shows an example of a component
type with a security level.

Table 3: A Thread Component with the Security
level (confidential, {A}).

 Page 7/10

thread producer

 // Features, etc. are elided

 properties

 Security_Attributes::Class =>

 confidential;

 Security_Attributes::Category => (A);

end producer;

AADL data components are pure objects. Although
they can contain subprogram features, data
components do not possess an active nature:
external threads of control must invoke data
component’s subprograms. A data component is
operated on through data access features that
enable direct access to its contents. Thus, a data
component is expected to have a security level to
describe its contents.

AADL subprogram components are both subjects
and objects. They are subjects in the sense that they
have the capacity to manipulate objects as a result
of being executed. But they are objects in the sense
that they need to be executed by an external agent.
So a subprogram component is expected to have a
security level to describe simultaneously its
clearance to use objects and the clearance required
to invoke the subprogram.

4.2.2 AADL Port Features

Because of its name, the data port feature is the
most obvious starting point for the discussion. A data
port feature transmits or receives a data object. It is
thus clearly a conduit through which we can observe
a component’s access to a passive Bell-LaPadula
object. A fully specified data port feature includes a
data classifier that describes the data objects that
pass through the port. When this classifier is

available, we retrieve the Class and Category
properties from it to determine the security level of
the data port feature; when the classifier is not
available, we retrieve the security attributes from the
feature itself. This is consistent with the metaphor
that the data classifier describes the data that
passes through the port. Table 4 shows the
declaration of a data port feature output in the thread
type producer. The security level of the feature is
(confidential, {A}) because that is the security level of
the data type A.

Table 4: An Example Declaring the Security level of
Features: Data port output gets its security level from
the data classifier A.

data A

 properties

 Security_Attributes::Class =>

 confidential;

 Security_Attributes::Category => (A);

end A;

thread producer

 features

 output: data port A;

 interrupt: event port {

 Security_Attributes::Class =>

 confidential;

 Security_Attributes::Category => (B);

 };

 properties

 Security_Attributes::Class =>

 confidential;

 Security_Attributes::Category => (A, B);

end producer;

Event data port features and subprogram parameter
features are modeled in the same way as data port
features. Event data port features differ from data
ports only by their delivery semantics, so it is also
straightforward to consider them as Bell-LaPadula
objects. Because subprogram parameter features
also represent the transfer of data objects, we
consider them to be objects in the application of the
Bell-LaPadula model.

Event ports do not pass explicit data objects
between components. The raising of an event,
however, can be interpreted as the transfer of an
“event happened” data object, one that need not be
explicitly represented because there is only one
value. Alternatively, one can easily imagine the need
to constrain the observation of particular events to
those components with an appropriate security level.
For example, an event that communicates that an
intruder was detected should not necessarily be
publicly available because we might not want the
intruder to be able to learn of the detection by
querying a public access point. We thus also
consider event ports to be objects in the Bell-
LaPadula model. Because it never has an
associated data classifier, an event port feature’s
security level property values are always retrieved
from the feature itself. Table 4 also shows the
declaration of an event port feature interrupt in the
thread type producer. Its security level (confidential,
{B}) must be explicitly declared with the feature.

The security level of a port represents the exact
security level of the data that passes through the
port. In particular, it does not represent the maximum
security level of the data. Such a choice would cause
less precise modeling and analysis. We deliberately
opted to provide more precise modeling and analysis
by having a port’s security level represent the exact
security level of the data passing through the port.

4.2.3 AADL Port Group Features

AADL port groups aggregate features. From an
architectural point of view, they are a container for
ports. A fully defined port group feature includes a
reference to a port group type. The port group type
declares the features of the port group. As with port

 Page 8/10

features, the security level of the port group feature
is obtained from the port group type declaration. As
a basic principle of containment, we require that the
security level of the port group dominates the
security levels of the features in the port group. The
feature declarations in the port group determine the
security levels of the ports in the port group.

4.2.4 AADL Access Features

Unlike data ports, data access features represent
direct access to a data object that is ultimately
represented by a data component instance. We must
still, however, treat the feature as a proxy for the
data because the exact data component being
accessed is unknown outside the “providing”
component. As might be expected, the rules for
checking data access features differ from those for
checking data port features due to their differing
semantics in AADL.

So Class and Category as defined previously, do
not apply to data access features but to data
components. If we were to modify their definitions
with the access modifier, as shown in Table 5,
however, the properties would apply to data access
features but not data components.

Table 5: Modifying Feature Definitions
property set Security_Attributes is

 Class:

 access inherit … applies to (data, …);

 Category:

 access inherit … applies to (data, …);

end Security_Attributes;

The solution is to declare a second a pair of property
names that apply to data (and bus) access features
only. This declaration, unfortunately, makes
annotating the model more inconvenient, but the
strict checking of property applicability by the AADL
tool environments prevents the wrong pair of
properties from being used for a particular model
element.

The additional property definitions are shown in
Table 6. Besides their name and applies to clauses,

they are defined identically to the Class and

Category. Our use of the secondary property set

Security_Types now comes into its own because it
prevents the modeler from having to modify two
pairs of property definitions when the classifications
and categories applicable to a model need to be
altered.

Bus access features are analogous to data access
features, as Table 6 shows.

Table 6: The Property Set Security_Attributes,
Revised to Handle Data Access Features

property set Security_Attributes is

 -- Class & Category defined here...

 -- Specifiy the security class of an

 -- access feature.

 Class_Access: access inherit

 Security_Types::Classifications =>

 value(Security_Types::Default_Classifica

tion)

 applies to (data, bus);

 -- Specify the security categories of an

 -- access feature.

 Category_Access: access inherit list of

 Security_Types::Categories => ()

 applies to (data, bus);

end Security_Attributes;

4.2.5 AADL Subprograms as Features

A subprogram feature represents an execution entry
point provided by the component. The actual
subprogram to which access is provided is described
by the feature’s associated subprogram classifier. As
with port and access features, the security level of a
subprogram feature is retrieved from the feature’s
associated subprogram classifier if it is present or
from the feature itself if the classifier is missing.

4.3 ACCESS MODES IN AADL

The Bell-LaPadula model defines four access modes
to describe a subject’s effects on an object:

• Execute access does not permit the subject to
observe or alter the contents of the object.

• Read access permits a subject to observe, but
not to alter, the contents of the object.

• Append access permits a subject to alter, but
not to observe, the contents of the object.

• Write access permits a subject both to alter
and observe the contents of the object.

Given our mapping of objects to AADL features and
data and subprogram components, we must derive
access rights based on the AADL semantics for
those features.

4.3.1 AADL Port Features

Data ports transmit and receive data objects by
marshalling and un-marshalling, respectively,
complete objects between threads through buffers
that represent the port in the component. That is,
objects obtained from an in data port are read, and
objects sent throughout data ports are newly
created. Thus, an in data port corresponds to read
access, and an out data port corresponds to append
access. An in out data port is bidirectional, but not on
the same data object: it is more like a port that can
be used for both sending and receiving object, but

not simultaneously. When used to receive, an in

out data port thus corresponds to read access,

 Page 9/10

and when used to transmit it corresponds to append
access.

Event ports communicate events between threads.
An in event port facilitates the observation of the
event’s occurrence and corresponds to read access.

An out event port creates a new announcement
of the event and corresponds to append access.
Again, an in out event port is never
simultaneously observing and announcing, so its
access mode is determined according to its current
usage.

An event data port combines the semantics of an
event port with that of a data port. For our purposes,
an event data port is like a data port; in particular,
event data ports transmit complete data objects

between threads. Unlike an in data port, an in

event data port queues received objects. You

might suspect that an in event data port is
considered to have a write access because it must
read from and modify the queue. However, it is worth
noting that the queue is not significant for security
analysis, since we are interested in the data being
transmitted through the queue.

The semantics of subprogram parameter features
are similar to those of data port features. Data is
copied into the subprogram when it is called and out
of the subprogram when it returns. As with data

ports, an in parameter corresponds to read

access, an out parameter corresponds to append
access, and an in out parameter has read access
during the call phase and append access during the
return phase.

4.3.2 AADL Port Group Features

Fundamentally, a port group is simply a bundle of
ports, including those ports of any nested port
groups. Conceptually, components interact via the
ports contained in a port group not via the port group
itself; the port group is simply an abstraction that
bundles together related ports. Thus a port group
itself has no direction, but the ports it contains do
have direction. Therefore, in general, we cannot
speak of the access mode of the port group feature,
only of the access modes of the individual ports
contained in the port group. These are determined
as described in Section 4.3.1.

There are, however, two aspects of AADL port
groups that complicate the above reasoning:

• A port group might be empty. This aspect
supports incremental modeling by allowing
empty port groups to be declared to abstractly
represent communication between components,
even when the exact nature of the
communication has not yet been decided upon.

• Two port groups may be directly connected via
port group connections. In fact, AADL allows
access to the contained features of a port group
when connecting a subcomponent and its

containing component only; sibling
subcomponents must connect port groups in
their entirety using port group connections.

There are cases where we must consider the port
group as a single entity in terms of data access. In
those instances, the security level of the accessed
object is the security level of the port group. Just as
the security level of a port group must be a
maximization of the security levels of its constituent
ports, so must the access attributed to the port group
be a maximization of the access attributed to its
ports. Conservatively, this implies that we treat a port
group as having append access—the only choice
when dealing with an empty port group (because we
do not know the directions of the ports yet to be
added). We can be less conservative by inspecting
the directions of the port group’s features: if all the
features in a port group (including any nested port
groups) are in ports, the port group can be treated as
read access.

4.3.3 AADL Access Features

AADL data access features represent direct access
to shared data. Although AADL distinguishes

between provides and requires data access
features, this distinction does not indicate the nature
of the access to the data enabled by the port. The

standard properties Required_Access and

Provided_Access apply to requires access and

provides access features, respectively, and indicate
the kind of access enabled by the feature.

Acceptable property values are read_only,

write_only, read_write, and by_method. The first
three indicate direct manipulation of the shared data
and map naturally to the access modes read,

append, and write, respectively. The by_method
access form indicates that the shared data object
may be manipulated using the sub-program features
associated with its data classifier only. Because we
do not know what the sub-programs do to the data,

we map by_method to the write access mode
because it could read or write the data.

Bus access features are analogous to data access
features.

4.3.4 AADL Subprograms

The use of an AADL subprogram within a
component implementation calls block corresponds
to an invocation of the subprogram. For both
subprogram features and subprogram classifiers,
invocation corresponds to a Bell-LaPadula execute
access. Even though the caller must be able to
observe the sequence of machine instructions that
compose the subprogram in order to invoke it, we do
not consider invocation to be a read access because
the subject is not reading the instructions themselves

 Page 10/10

and using them as data for a computation. If that
computation were performed—for example, to
compute a checksum of the program’s image in
memory or as part of self-modifying code—we would
have to consider the subprogram as data with the
appropriate read/write/append access modes.

5. Conclusion

In this paper we have discussed how model-based
engineering can support early modeling and
validation of security. Specifically, using the AADL
we have defined described common and well-
defined security attributes and represented them in
the AADL models. The adopted notion is primarily
based on the Bell-LaPadula model, which has been
recognized as a cornerstone in validating security.
Using the AADL and based on the Bell-LaPadula
and extended sibling models, one can model and
validate security according to flow-based
approaches, Bell-LaPadula, Chinese Wall, and role-
based access. To support security analysis, we have
taken established criteria from the Bell-LaPadula
model and defined additional criteria that allow us
evaluate how viable a system is to enforce security,
given confidentiality requirements of data objects
and security clearance by users (e.g., ensure
processes and threads are mapped to appropriate
hardware, communicate over secured channels, and
reside/store data in protected memory). The analysis
techniques are implemented in an OSATE plug-in.

The overall objective of a secure system implies that
security clearances are given conservatively (as
opposed to generously). To this end, we can analyze
models to derive the minimum security clearance on
components in the model. Or to put it differently, we
can use the notion of subjects and objects to
determine the minimum security clearance for a
subject based on the requirements of the objects
being accessed by the specific subject. By also
pointing out differences between actual security
clearances and the minimum security clearance
required, a system designer can evaluate how
effective and tight security is. By providing
mechanisms to ensure that sanitization is conducted
within allowed boundaries, the designer is allowed to
analyze and trace these relatively more threatening
security risks, as since sanitizing actions are
permitted exemptions of security criteria and rules,
and as such should be minimized in the system.

References

[1] Bell, D. E. & LaPadula, L. J. Secure Computer
Systems: Mathematical Foundations (MITRE
Technical Report 2547, Voume 1). 1973.

[2] Bell, D. E. & La Padula, L. J. Secure
Computer Systems: Unified Exposition and

MULTICs Interpretation (MITRE Technical
report ESD-TR-75-306). 1976.

[3] Brewer, David D. C. & Nash, Michael J. “The
Chinese Wall Security Policy,” 206−214. IEEE
Symposium on Security and Privacy, Oakland,
CA, May 1−3, 1989.

[4] Lin, T. Y. “Chinese Wall Security Policy—An
Aggressive Model,” 282–289. Proceedings of
the Fifth Aerospace Computer Security
Application Conference. 1989.

[5] Ferraiolo, David & Kuhn, Rick. “Role-Based
Access Control,” 554–563. Proceedings of the
15th National Computer Security Conference,
1992. ACM Press, 1992.

[6] Fenton, J. S. “Memoryless Subsystems.” The
Computer Journal 17, 2 (May 1974): 143–147.

[7] Denning, Dorothy E. “A Lattice Model of
Secure Information Flow.” Communications of
the ACM 19, 5 (May 1976): 236–243.

[8] Denning, Dorothy E. & Denning, Peter J.
“Certification of Programs for Secure
Information Flow.” Communications of the
ACM 20, 7 (July 1977): 504–513.

[9] Hansson, Jorgen & Greenhouse, Aaron.
Modeling and Validating Security and
Confidentiality in System Architectures.
SEI/CMU-2007-TN-005.

[10] Mayfield, Terry; Roskos, J. E.; Welke,
Stephen R.; Boone, John M.; & McDonald,
Catherine W. Integrity in Automated
Information Systems (ADA253990).
Alexandria, VA (USA): National Computer
Security Center, 1991.

