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Abstract: In this paper we discuss and demonstrate 
how to conduct validation of data quality attributes, 
e.g., security, data accuracy, data confidence, and 
temporal correctness, can be modeled and validated 
using an architecture description language such as 
AADL. We focus on security, specifically confiden-
tiality.  

Keywords: Security, Modeling, Validation, AADL, 
Software Architecture 

1. Introduction 

Net-centric system are intrinsically distributed 
system-of-systems comprised of a number of 
interconnected heterogeneous, geographically 
dispersed systems, where several systems are 
embedded and operate under real-time constraints. 
Sensor networks are increasingly being deployed in 
applications to monitor, collect, process, and 
communicate data obtained from the environment, 
and thus they provide data services to high-level 
applications. Data quality in a net-centric system can 
be compromised in a number of ways: confidentiality 
might be breached due to lack of adequate 
encryption or incorrectly assigned security clearance 
for subjects operating on object; confidence level of 
data might be insufficient in part due to the set size 
of active sensors or environmental conditions; the 
accuracy of sensor readings is also affected by 
environmental conditions; correctness of data is low 
as it is a function of its temporal coherence. 
Enforcing 100% accuracy, correctness, and 
confidence is in practice not always possible nor 
desirable as the cost becomes too significant with 
respect to cost, computational power, power 
consumption, quality of sensor etc. It is more 
desirable to ensure that data quality is within 
acceptable tolerance levels of the applications, not 
jeopardizing their correctness.  

Model-driven engineering based on an architectural 
model is of paramount importance to validating the 
quality of data, and thereby ensuring that high-level-
systems are provided with data of sufficient quality 
and consistency driven by application requirements. 
Architectural description languages have success-

fully been applied to prove system properties, often 
with a propensity toward task- or component-centric 
perspectives and, thus, generally preclusive of data 
quality attributes. We have developed a modelling 
framework using AADL for validating the enfor-
cement of the previously mentioned data quality 
attributes prior to the implementation phases of the 
system. In this paper we present our developed 
methods for validating quality attributes, specifically 
security, using AADL. This includes The paper 
includes examples from modelling and validation of 
confidentiality under Bell-LaPadula-based frame-
works [1,2]. The approach supports other security 
frameworks, including Chinese Wall [3,4], role-based 
access control [5], and information flow, [6-8]. 

2. Validation of Confidentiality 

The concept of subjects and objects, where subjects 
operate on objects by permissible access op-
erations (read, execute, append, write) enables us to 
model and validate security at both the software and 
hardware levels. At the software level we can view 
processes, threads, and software components as 
subjects and data objects are objects.  

Determining the viability of a system given 
confidentiality requirements of data objects and 
security clearance by users, one can see the 
validation as a two-step process: (1) validation of the 
software architecture followed by (2) validation of the 
system architecture where the software architecture 
is mapped to hardware components. Validating the 
software requires us to 

•  identify the data elements that we want to protect 
(objects); 
•  determine their security requirements; 
•  identify the components (software components, 
processes, threads) that should be allowed to 
access the objects; and 
•  confirm the access is as specified by access 
operations. 

Thus, we can ensure that data elements are 
accessed only by authorized users and that 
confidentiality (as given by security levels) and 
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integrity (as given by access operations) are 
enforced.  

By mapping the entities of a software architecture 
(e.g., processes, threads, and partitions) to a 
hardware architecture (consisting of, for example, 
CPUs, communication channels, and memory) and 
the like enables us further to ensure that the 
hardware architecture supports required security 
levels. Consider the scenario of two communicating 
processes, both requiring a high level of security as 
because the data objects requires secret clearance. 
Furthermore, the system platform in this scenario 
consists of a set of CPUs with hardware support for 
various algorithms that encrypt messages before 
network transmission. By modeling the system, we 
can represent and validate that processes and 
threads (now considered to be objects) can be 
executed (access mode) on CPUs (subjects) with 
adequate encryption support. Furthermore, we can 
validate that CPUs (objects) communicate data 
(access modes of writing and reading) over 
appropriately secured communication channels. In a 
similar fashion, we can enforce design philosophies 
saying that only processes of the same security level 
are allowed to co-exist within the same CPU or 
partition or that they can write to a secured memory. 

In this section, we identify and outline desirable 
criteria to enforce when modeling and validating 
security using the model-based engineering 
approach. Our purpose in validating security is to 
ensure that 

• all components only access data they are 
classified for (through security level and 
compartments/categories) 

• data is only used on a need-to-know basis 

• modeling and validating security contributes to 
identifying identify possible errors 

• sanitization (i.e., lowering of security levels) of 
data is conducted controllably 

To model and validate the confidentiality of a 
system, we distinguish between general and 
application-dependent validation. General validation 
of confidentiality is the process of ensuring that a 
modeled system conforms to a set of common 
recommendations or design guidelines, expressed 
as a set of conditions that support system 
confidentiality independent of a specific reasoning 
framework for security. Those conditions should hold 
in the general case; as a result, they are necessary 
but not sufficient (i.e., satisfying the conditions 
indicates the system is viable for enforcing 
confidentiality). General validation of confidentiality 
assumes that subjects and objects are assigned a 

security level, such as ),( ccl  that is the minimum 

representation to enforce what are commonly 

referred to as the basic confidentiality and need-to-
know principles.  

Application-specific validation refers to validating the 
system given detailed confidentiality requirements 
and a specific reasoning-based security framework. 
For example, Bell-LaPadula-based models represent 
permitted access patterns between objects and 
subjects, against which operations are checked 
before they are allowed to be performed.  

These recommendations and design guidelines are 
conditions that verify an architecture is feasible (i.e., 
that the modeled architecture does not compromise 
security and confidentiality). Before elaborating on 
the conditions, we introduce a graphical notation 
(see Figure 1) and an example.  

 

 

Figure 1: Graphical Notation of kji oso →→  

Figure 1 shows the general graphical notation we 
use for subjects and objects. The picture shows a 

subject js accessing the objects io and ko . js has 

security level ),( jj ccl  clearance, and the objects 

require that subjects operating on them meet the 
security classification requirements expressed as 

),( ii ccl  and ),( kk ccl . The relation ji so → implies 

that io is accessed but not modified by js  (i.e., 

corresponding to the access operations read and 

execute). The relation kj os →  shows that ko is 

modified by js , corresponding to the access 

operations append and write. We say that js  is 

using io as input and produces ko as output. We 

represent sanitized access— ),( kk ccl does not 

dominate ),( ii ccl —by a dashed arrow, and 

sanitization is only allowed to be performed on 
modified objects.  

Figure 2 depicts an example consisting of a number 
of scenarios, potential faults, and errors that we refer 
to when discussing the required and recommended 
conditions for performing general validation. For the 
purpose of simplicity and without loss of generality, 
we assume that the objects are data objects read  

( ji so → ) or written ( kj os → ) by subjects; this 

notation simplifies the representation, since we know 
the allowed access operations from the example. 
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The example in Figure 2 contains a feedback loop  

(
111 oso →→ ), subjects reading from and writing 

to multiple objects (e.g.,
21 , ss ), and sanitization  

( 72 os →  and 712 opss →→ ).  

 
Figure 2: Example with Object-Subject Dependencies 

3. Validating Subjects and Objects 

Next we outline a number of conditions for validation. 

Condition 1 (Basic confidentiality principle):  

The basic confidentiality principle states that one 
should only be granted access if one has the 
appropriate security clearance, For example, if a 
document is classified as confidential, the viewer of 
the document should have confidential clearance or 
higher (i.e., secret or top-secret). We say that the 
basic confidentiality principle is enforced if, and only 
if, for all subjects and objects, the class (cl) of a 
subject equals or exceeds the class of an object on 
which it operates. In the example shown in Figure 2, 
this principle is true for all subjects. Thus, in order to 
validate the basic security principle, we only need to 
specify the security class  cl for subjects and objects.  

Condition 2 (Need-to-know principle): 

The need-to-know principle states that one should 
only be granted access to a resource if there is a 
need. For example, a person having top-security 
document clearance should not necessarily be 
allowed access to all documents but only to those 
related to his or her function in a project. In our 
notation, the need is represented as a category c. 
We say that the principle is enforced if, and only if, 
the security level (cl,c) of each subject in the system 
dominates the level of the objects on which the 
subject operates. In the graphical notation given in 
Figure 2, adherence to this principle implies that the 

following relations must hold: ),( jj ccl  should 

dominate ),( ii ccl and ),( kk ccl . In Figure 2, we can 

see that 5s does not dominate 1o  since 5s  does 

have membership in project {b}; thus, the example 

shows an incorrect access. Also, while 5s  dominates 

3o
and 4o

, it actually has a higher security clearance 
than necessary for its purpose. We elaborate on this 
when discussing the principle of least privilege. 

Condition 3 (Security level range checking): 

The security level assigned to an object should be 
within the specified security levels of the object and 
the capacity of the subject. Some systems require 
that the security measures increase (e.g., when the 
systems appears to be under a security attack) in 
which case stronger encryption algorithms are 
deployed. Those algorithms require more 
computational power; in addition, the execution 
times of tasks processing data increase, and 
message sizes increase and require more network 
bandwidth. This increased resource demand adds to 
the end-to-end latency as well.  

For applications where power consumption is a 
major concern (e.g., sensor networks), it is important 
to maximize the lifetime of the network, which 
suggests that level of security is traded for 
operational lifetime. Furthermore, in overloaded 
systems part of the strategy to resolve an overload is 
to temporarily enforce the minimum acceptable 
security, decreasing the workload imposed on the 
system. Thus, adapting the security policy and the 
security levels to adequately match the current state 
and risk levels seems feasible.  

Indeed, one can adapt the security policy statically 
and dynamically. Assigning a security level to each 
subject based on the security requirements of the 
accessed objects, as we have previously discussed, 
is static as it implicitly states how a subject should 
operate to enforce the security given by an object 
(e.g., what encryption should be used). By assigning 
an allowed range of security levels for each object, 
we are explicitly expressing  

the minimum security requirements acceptable 

normal security level given normal operation 

maximum security level desired for certain situations 
or system states  

We model changing security levels in the following 

way. Each object io can be given a range of security 

levels, expressed as )],(),,[(
maxmin

iiii cclccl . We 

refer to the security level desired in the normal 

system state as ),( i

normal

i ccl .1 Recall, going back to 

a subject’s security clearance, that a subject’s 
security clearance represents its maximum security 
privilege, which also implies that it can manage and 
operate below this security classification. When 

                                                           
1  Note that only the level l changes; the category remains the same. 

Nothing prevents the categories from changing with the state, but 

we have not found an example where there is a practical need for it 
to do so. 
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checking the ranges of objects, a subject js  needs 

to dominate the specified security classification 

range of each accessed object io — that is, 

),( jj ccl  should dominate ).,(
max

ii ccl  Not dominat-

ing the range implies there are states when the 
subject is not authorized to access required 
object(s). 

The desired security level of an object, within its 
range, normally reflects the current system state. To 
facilitate adequate and meaningful checking when 
objects have security level ranges, one should 
connect each level with a system state to enable 
analysis for the different states. (In AADL, this 
connection can be accomplished by modes.) 

Condition 4 (Principle of confidentiality 
constancy):  

The principle of confidential constancy means that 
the security level of an object produced (access is 
write or append) by a subject as output should 
dominate the security level of all objects used as 
input (access is read or execute).  

The condition enforces the philosophy that the 
confidentiality of objects is maintained or increased. 
For example, a derived data object should be at 
least as confidential as the most confidential input 
data object since further analysis has been 
performed and more intelligence added; thus, its 
security level should dominate the security level of 
all input data objects. In the example given in Figure 
1, this principle implies that the following relations 

should hold: ),( kk ccl  should dominate ),( ii ccl .  

Condition 5 (Controlled sanitization):  

Controlled sanitization stipulates that lowering the 
security level of an object or subject should only be 
authorized and performed by a privileged subject.  

In Figure 2, Condition 5 is enforced in the following 

flows: 111
oso →→ , 

4332211 osososo →→→→→→ , 

4332655
osososo →→→→→→ ,  and 

867
oso →→ . Subject 1s takes multiple inputs 

and produces multiple outputs; the security levels of 

3o  and 7o  should at least be 2 given that 2
o was 

used as input and belong to project {a} or {b}. If this 

is indeed the desired security level of 7
o , we lower 

the security level by letting a trusted subject 
authorize sanitization. This state can be viewed as 

having 2
s writing 7o  over a sanitized port or 

channel; alternatively, a dedicated subject for 

sanitization can be invoked. In our example, 1ps  is 

the privileged subject for performing sanitization (*, 
*), meaning that it can sanitize objects across all 
security levels and categories.  

Condition 6 (Non-Alteration of Object’s Security 

Requirements):  

A subject using an object as input should not alter 

the security level of the object, even if the object is 

updated as an output from the subject. The rationale 

for this condition is that a subject can have a security 

clearance that exceeds the maximum required 

security level of an object. Increasing the security 

level of the object beyond its range implies that 

security requirements do not align between the 

subjects that operate on a dependent object. Thus, a 

subject with less security clearance than an object 

cannot continue its operation as expected. In Figure 

2, consider the flow 111 oso →→ . If 1s  is 

increasing the security level of 1o  to (2,{a}), 5s  is no 

longer allowed to read 1o , which probably was not 

intended in the general case. 

Condition 7 (Hierarchical) 

The hierarchical condition ensures that (i) a 

component has a security level that is the maximum 

of the security levels of its subcomponents, and (ii) 

all connections are checked to determine whether 

the source component of a connection declaration 

has a security level that is the same or lower than 

that of the destination component.  

Consider the example given in Figure 3, which is an 

extract from the one shown in Figure 2 on 3. 

Hierarchical decomposition supports incremental 

modeling. In the high-level model where it is a 

component, 0
s  takes 1o  and 5

o  as inputs and 

generates 5o  and 6o  as outputs. Security 

requirements of the objects are not compromised, 

because the security level of 0
s  dominates their 

requirements. Developing the refined model, the 

subcomponents 1s  and 5
s  and their relation to the 

objects are modeled. Similarly, we need to ensure 

that the 
1s

 
dominates 1o

 
and 2o , and 5

s  

dominates 1o , 5
o , and 6

o . Furthermore, 0
s  should 
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dominate 1s  and 5
s  to ensure that they act within 

the privileges of 0s . 

If the security requirements of 1o  would be (2,{a}), 

Condition 4 is violated. Condition 4 concerns 

keeping confidentiality at the minimum level derived 

from maximum security requirements of the inputs. 

Thus, →1o
6

o  seems to be sanitized 

uncontrollably. In the refined model, we see that 1o  

is used as input to derive 6o ; thus it is indeed 

uncontrollably sanitized (as opposed to the 

circumstance in which only 5o  is used as input to 

6
o , where security is not compromised).  

 

Figure 3: Hierarchical Modeling 

Condition 8 (Principle of least privilege)  

The principle of least privilege has been identified as 
important for meeting integrity objectives [10]; it 
requires that a user (subject) be given no more 
privilege than necessary to perform a job. This 
principle includes identifying what the subject’s job 
requires and restricting the subject’s ability by 
granting the minimum set of privileges required. With 
the object’s security requirements specified in an 
AADL model, the least amount of privileges for the 
subjects can be generated in a straightforward 
manner by analyzing the security levels of all objects 

accessed by the subject. For a set of objects Ο ={ 1o

, …, no
} accessed by is

, the least privileges 

),( ii ccl of is
 are given by 














==

Ο∈
Ο∈

U
j

j l

jij
l

i ccclcl ),(max
, 

the maximum security level clearance of accessed 
objects and required membership in the categories.  
Given that the subjects’ privileges are specified, a 
mismatch between the least privilege and what has 
been specified results in two possible cases:  

• The assigned privilege is insufficient. It does 
not dominate the required least privilege 
(i.e., the subject has been given incorrect 
privileges, the object has been wrongly 
associated with a subject, or there is an 
unauthorized access). 

• The assigned privilege exceeds the 
minimum privilege, which either is 
unnecessary or a consequence of that the 
subject might be associated with other 
objects that have not yet been described in 
the model. In Figure 2, privileges of subject 

5
s  exceed the least privileges necessary 

given the current model.  
 

The least privileges of subjects represent a 
snapshot, since it is a function of currently existing 
objects in the model. This view may change over 
time as a model is incrementally refined (e.g., as 
additional objects and subjects are modeled and 
more detail added).  

4. Modeling and Representation in AADL  

In the following, we describe our approach to 
mapping the concepts from the Bell-LaPadula 
security model to AADL 

4.1 SECURITY LEVELS IN AADL 

The security level of a subject/object is usually a pair 
of a security class value and a set of categories. The 
classification value is drawn from a partially ordered 
set and denotes how securely an object must be 
handled and how privileged a subject is. Categories 
further refine the security level by labelling objects 
and giving subjects permission to access 
appropriately labelled objects. This style of security 
level captures the typical governmental model 
wherein data is labelled as unclassified, confidential, 
secret, or top secret and categories are used to 
further restrict access. Represented this way, a 

security level ( )
11

,categoriesclass  is said to 

dominate another security level ( )
22

,categoriesclass  

iff 
21

classclass ≥ and  
21

categoriescategories ⊇ . 

AADL properties associate security levels with the 
AADL components and features that represent 
subjects and objects. Because AADL does not 
support tuple-valued properties, we use a pair of 
properties to associate both a classification and a set 
of categories with each subject/object. The 
properties Class and Category that declare an 
item’s classification and set of categories, 
respectively, are defined in the property set 

Security_Attributes, shown in Table 1. 

 

Table 1: The Property Set Security_Attributes  
property set Security_Attributes is 

 -- Specifiy security class of a component. 

 Class: inherit Security_Types::Classifications 

=>  

  value(Security_Types::Default_Classification) 

  applies to (data, subprogram, thread, thread  

  group, process, memory, processor, bus,  
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  device, system, port, server subprogram,  

  parameter); 

  -- Specify security categories of a component. 

 Category: inherit list of 

Security_Types::Categories => ()  

  applies to (data, subprogram, thread, thread  

  group, process, memory, processor, bus,  

  device, system, port, server subprogram,  

  parameter); 

end Security_Attributes; 

 

Both properties apply to all component categories as 
well as to all feature categories.  The definitions 
references two property types, Classifications and 
Categories, and a property constant, 
Default_Classification that are defined in the 

secondary property set Security_Types. This 
facilitates customization of the space of security 
levels and is analogous to the AADL standard’s use 
of the AADL_Project property set to allow 
customization of the property definitions in the 

otherwise fixed AADL_Properties property set.  

More specifically, the Classifications property 

type of the Class property is expected to be an 
enumeration. Because AADL treats enumeration 
literals as being ordered as they are declared in the 

enumeration type, the Classifications type thus 
provides a totally ordered set of classifications for 
the space of security levels. The property constant 

Default_Classification provides the default 

value for the Class property. The value of this 
constant is expected to be the first literal of the 

Classifications enumeration type.   

The Categories property type is also expected to 
be an enumeration. In this case, the enumeration is 
used to define the set of categories applicable to the 
problem space of the model. Because we are not 
interested in ordering the categories, we could have 

used aadlstring as the type instead. We chose to 
use a specific user-defined enumeration type 
because it provides better support for error checking; 
the AADL parser flags the use of categories that are 
not part of the declared enumeration type as syntax 
errors (i.e., typographical errors in category labels 
are detected at the time the model is parsed). 

Because aadlstring values cannot be checked this 
way, errors in category labels would be more difficult 
to detect (i.e., they would appear as unexpected 
security level mismatch errors). Acceptable values 

for the Category property are actually lists of values 

of type Categories, thus providing the second 
component of the security level, the set of 
categories.  

The property types Classifications and 

Categories and the property constant 

Default_Classification are declared in the 

Security_Types property set, shown in Table 2. 

  

Table 2: The Property Set Security_Types 

 
property set Security_Types is 

 -- The levels of security that are 

applicable to the system. 

 Classifications: 

   type enumeration (unclassified,  

  confidential, secret,top_secret); 

  

-- This constant should always be set to 

-- the first element of the Classifications 

-- enumeration. 

 Default_Classification: 

  constant Security_Types::Classifications 

=> unclassified; 

   

 -- The categories for information.  

 Categories:  

   type enumeration (A, B, C, D); 

end Security_Types; 

 

The default classifications levels are the standard 
military classifications levels with the ordering 
unclassified < confidential < secret < top secret. The 
default categories are place holders to be replaced. 
As stated previously, the intent is that the modeler 

customizes the Classifications and Categories 
enumerations based on the domain of the system 
being modeled. 

4.2 SUBJECTS AND OBJECTS IN AADL 

In the Bell-LaPadula model, active subjects act on 
passive objects. In AADL, components com-
municate through ports and other categories of 
features. For the most part, data is not explicitly 
represented in the model; the exceptions are data 
subcomponents and data access features. Instead, 
data ports and other features are associated with a 
data classifier that describes the data objects that 
flow over connections and into or out of ports. A 
feature, with its associated attributes and properties, 
is a proxy for the data that pass through it. These 
observations motivate us to consider, in general, 
AADL components as subjects and AADL features 
as objects.  

4.2.1 AADL Components  

We treat all AADL components with the exception of 
data and subprogram components as subjects. 
Components are sites of activity that coordinate the 
movement and generation of data throughout the 
system. Each component is expected to have a 
security level to describe its clearance to utilize 
objects. Table 3 shows an example of a component 
type with a security level. 

Table 3: A Thread Component with the Security 
level (confidential, {A}). 
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thread producer 

 // Features, etc. are elided 

 properties 

  Security_Attributes::Class =>  

  confidential; 

  Security_Attributes::Category => (A); 

end producer; 

 

AADL data components are pure objects. Although 
they can contain subprogram features, data 
components do not possess an active nature: 
external threads of control must invoke data 
component’s subprograms. A data component is 
operated on through data access features that 
enable direct access to its contents. Thus, a data 
component is expected to have a security level to 
describe its contents. 

AADL subprogram components are both subjects 
and objects. They are subjects in the sense that they 
have the capacity to manipulate objects as a result 
of being executed. But they are objects in the sense 
that they need to be executed by an external agent. 
So a subprogram component is expected to have a 
security level to describe simultaneously its 
clearance to use objects and the clearance required 
to invoke the subprogram.  

4.2.2 AADL Port Features 

Because of its name, the data port feature is the 
most obvious starting point for the discussion. A data 
port feature transmits or receives a data object. It is 
thus clearly a conduit through which we can observe 
a component’s access to a passive Bell-LaPadula 
object. A fully specified data port feature includes a 
data classifier that describes the data objects that 
pass through the port. When this classifier is 

available, we retrieve the Class and Category 
properties from it to determine the security level of 
the data port feature; when the classifier is not 
available, we retrieve the security attributes from the 
feature itself. This is consistent with the metaphor 
that the data classifier describes the data that 
passes through the port.  Table 4 shows the 
declaration of a data port feature output in the thread 
type producer. The security level of the feature is 
(confidential, {A}) because that is the security level of 
the data type A. 

Table 4: An Example Declaring the Security level of 
Features: Data port output gets its security level from 
the data classifier A. 

 
data A 

 properties 

  Security_Attributes::Class =>  

  confidential; 

  Security_Attributes::Category => (A); 

end A; 

 

thread producer  

 features 

  output: data port A; 

  interrupt: event port { 

   Security_Attributes::Class =>  

  confidential; 

   Security_Attributes::Category => (B); 

  }; 

 properties 

  Security_Attributes::Class =>  

  confidential; 

  Security_Attributes::Category => (A, B); 

end producer; 

 

Event data port features and subprogram parameter 
features are modeled in the same way as data port 
features. Event data port features differ from data 
ports only by their delivery semantics, so it is also 
straightforward to consider them as Bell-LaPadula 
objects. Because subprogram parameter features 
also represent the transfer of data objects, we 
consider them to be objects in the application of the 
Bell-LaPadula model. 

Event ports do not pass explicit data objects 
between components. The raising of an event, 
however, can be interpreted as the transfer of an 
“event happened” data object, one that need not be 
explicitly represented because there is only one 
value. Alternatively, one can easily imagine the need 
to constrain the observation of particular events to 
those components with an appropriate security level. 
For example, an event that communicates that an 
intruder was detected should not necessarily be 
publicly available because we might not want the 
intruder to be able to learn of the detection by 
querying a public access point. We thus also 
consider event ports to be objects in the Bell-
LaPadula model. Because it never has an 
associated data classifier, an event port feature’s 
security level property values are always retrieved 
from the feature itself. Table 4 also shows the 
declaration of an event port feature interrupt in the 
thread type producer. Its security level (confidential, 
{B}) must be explicitly declared with the feature. 

The security level of a port represents the exact 
security level of the data that passes through the 
port. In particular, it does not represent the maximum 
security level of the data. Such a choice would cause 
less precise modeling and analysis. We deliberately 
opted to provide more precise modeling and analysis  
by having a port’s security level represent the exact 
security level of the data passing through the port. 

4.2.3 AADL Port Group Features 

AADL port groups aggregate features. From an 
architectural point of view, they are a container for 
ports. A fully defined port group feature includes a 
reference to a port group type. The port group type 
declares the features of the port group. As with port 
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features, the security level of the port group feature 
is obtained from the port group type declaration. As 
a basic principle of containment, we require that the 
security level of the port group dominates the 
security levels of the features in the port group. The 
feature declarations in the port group determine the 
security levels of the ports in the port group.  

4.2.4 AADL Access Features 

Unlike data ports, data access features represent 
direct access to a data object that is ultimately 
represented by a data component instance. We must 
still, however, treat the feature as a proxy for the 
data because the exact data component being 
accessed is unknown outside the “providing” 
component. As might be expected, the rules for 
checking data access features differ from those for 
checking data port features due to their differing 
semantics in AADL. 

So Class and Category as defined previously, do 
not apply to data access features but to data 
components. If we were to modify their definitions 
with the access modifier, as shown in Table 5, 
however, the properties would apply to data access 
features but not data components. 

Table 5: Modifying Feature Definitions  
property set Security_Attributes is 

 Class:  

 access inherit … applies to (data, …); 

 Category:  

 access inherit … applies to (data, …); 

end Security_Attributes; 

 

The solution is to declare a second a pair of property 
names that apply to data (and bus) access features 
only. This declaration, unfortunately, makes 
annotating the model more inconvenient, but the 
strict checking of property applicability by the AADL 
tool environments prevents the wrong pair of 
properties from being used for a particular model 
element.   

The additional property definitions are shown in 
Table 6. Besides their name and applies to clauses, 

they are defined identically to the Class and 

Category. Our use of the secondary property set 

Security_Types now comes into its own because it 
prevents the modeler from having to modify two 
pairs of property definitions when the classifications 
and categories applicable to a model need to be 
altered. 

Bus access features are analogous to data access 
features, as Table 6 shows. 

Table 6: The Property Set Security_Attributes, 
Revised to Handle Data Access Features 

 
property set Security_Attributes is 

 -- Class & Category defined here... 

 -- Specifiy the security class of an 

 -- access feature. 

 

 Class_Access: access inherit  

 Security_Types::Classifications =>  

 value(Security_Types::Default_Classifica

tion) 

 applies to (data, bus); 

  

 -- Specify the security categories of an  

 -- access feature. 

 Category_Access: access inherit list of 

 Security_Types::Categories => ()  

 applies to (data, bus); 

end Security_Attributes; 

 

4.2.5 AADL Subprograms as Features 

A subprogram feature represents an execution entry 
point provided by the component. The actual 
subprogram to which access is provided is described 
by the feature’s associated subprogram classifier. As 
with port and access features, the security level of a 
subprogram feature is retrieved from the feature’s 
associated subprogram classifier if it is present or 
from the feature itself if the classifier is missing. 

  

4.3 ACCESS MODES IN AADL 

The Bell-LaPadula model defines four access modes 
to describe a subject’s effects on an object: 

• Execute access does not permit the subject to 
observe or alter the contents of the object. 

• Read access permits a subject to observe, but 
not to alter, the contents of the object. 

• Append access permits a subject to alter, but 
not to observe, the contents of the object. 

• Write access permits a subject both to alter 
and observe the contents of the object. 

Given our mapping of objects to AADL features and 
data and subprogram components, we must derive 
access rights based on the AADL semantics for 
those features. 

4.3.1 AADL Port Features 

Data ports transmit and receive data objects by 
marshalling and un-marshalling, respectively, 
complete objects between threads through buffers 
that represent the port in the component. That is, 
objects obtained from an in data port are read, and 
objects sent throughout data ports are newly 
created. Thus, an in data port corresponds to read 
access, and an out data port corresponds to append 
access. An in out data port is bidirectional, but not on 
the same data object: it is more like a port that can 
be used for both sending and receiving object, but 

not simultaneously. When used to receive, an in 

out data port thus corresponds to read access, 
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and when used to transmit it corresponds to append 
access.   

Event ports communicate events between threads. 
An in event port facilitates the observation of the 
event’s occurrence and corresponds to read access. 

An out event port creates a new announcement 
of the event and corresponds to append access. 
Again, an in out event port is never 
simultaneously observing and announcing, so its 
access mode is determined according to its current 
usage. 

An event data port combines the semantics of an 
event port with that of a data port. For our purposes, 
an event data port is like a data port; in particular, 
event data ports transmit complete data objects 

between threads. Unlike an in data port, an in 

event data port queues received objects. You 

might suspect that an in event data port is 
considered to have a write access because it must 
read from and modify the queue. However, it is worth 
noting that the queue is not significant for security 
analysis, since we are interested in the data being 
transmitted through the queue. 

The semantics of subprogram parameter features 
are similar to those of data port features. Data is 
copied into the subprogram when it is called and out 
of the subprogram when it returns. As with data 

ports, an in parameter corresponds to read 

access, an out parameter corresponds to append 
access, and an in out parameter has read access 
during the call phase and append access during the 
return phase. 

4.3.2 AADL Port Group Features 

Fundamentally, a port group is simply a bundle of 
ports, including those ports of any nested port 
groups. Conceptually, components interact via the 
ports contained in a port group not via the port group 
itself; the port group is simply an abstraction that 
bundles together related ports. Thus a port group 
itself has no direction, but the ports it contains do 
have direction. Therefore, in general, we cannot 
speak of the access mode of the port group feature, 
only of the access modes of the individual ports 
contained in the port group. These are determined 
as described in Section 4.3.1.  

There are, however, two aspects of AADL port 
groups that complicate the above reasoning: 

• A port group might be empty. This aspect 
supports incremental modeling by allowing 
empty port groups to be declared to abstractly 
represent communication between components, 
even when the exact nature of the 
communication has not yet been decided upon. 

• Two port groups may be directly connected via 
port group connections. In fact, AADL allows 
access to the contained features of a port group 
when connecting a subcomponent and its 

containing component only; sibling 
subcomponents must connect port groups in 
their entirety using port group connections.  

There are cases where we must consider the port 
group as a single entity in terms of data access. In 
those instances, the security level of the accessed 
object is the security level of the port group. Just as 
the security level of a port group must be a 
maximization of the security levels of its constituent 
ports, so must the access attributed to the port group 
be a maximization of the access attributed to its 
ports. Conservatively, this implies that we treat a port 
group as having append access—the only choice 
when dealing with an empty port group (because we 
do not know the directions of the ports yet to be 
added). We can be less conservative by inspecting 
the directions of the port group’s features: if all the 
features in a port group (including any nested port 
groups) are in ports, the port group can be treated as 
read access.  

 

4.3.3 AADL Access Features 

AADL data access features represent direct access 
to shared data. Although AADL distinguishes 

between provides and requires data access 
features, this distinction does not indicate the nature 
of the access to the data enabled by the port. The 

standard properties Required_Access and 

Provided_Access apply to requires access and 

provides access features, respectively, and indicate 
the kind of access enabled by the feature. 

Acceptable property values are read_only, 

write_only, read_write, and by_method. The first 
three indicate direct manipulation of the shared data 
and map naturally to the access modes read, 

append, and write, respectively. The by_method 
access form indicates that the shared data object 
may be manipulated using the sub-program features 
associated with its data classifier only. Because we 
do not know what the sub-programs do to the data, 

we map by_method to the write access mode 
because it could read or write the data. 

Bus access features are analogous to data access 
features. 

 

4.3.4 AADL Subprograms 

The use of an AADL subprogram within a 
component implementation calls block corresponds 
to an invocation of the subprogram. For both 
subprogram features and subprogram classifiers, 
invocation corresponds to a Bell-LaPadula execute 
access. Even though the caller must be able to 
observe the sequence of machine instructions that 
compose the subprogram in order to invoke it, we do 
not consider invocation to be a read access because 
the subject is not reading the instructions themselves 
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and using them as data for a computation. If that 
computation were performed—for example, to 
compute a checksum of the program’s image in 
memory or as part of self-modifying code—we would 
have to consider the subprogram as data with the 
appropriate read/write/append access modes.  

5. Conclusion 

In this paper we have discussed how model-based 
engineering can support early modeling and 
validation of security. Specifically, using the AADL 
we have defined described common and well-
defined security attributes and represented them in 
the AADL models. The adopted notion is primarily 
based on the  Bell-LaPadula model, which has been 
recognized as a cornerstone in validating security. 
Using the AADL and based on the Bell-LaPadula 
and extended sibling models, one can model and 
validate security according to flow-based 
approaches, Bell-LaPadula, Chinese Wall, and role-
based access. To support security analysis, we have 
taken established criteria from the Bell-LaPadula 
model and defined additional criteria that allow us 
evaluate how viable a system is to enforce security, 
given confidentiality requirements of data objects 
and security clearance by users (e.g., ensure 
processes and threads are mapped to appropriate 
hardware, communicate over secured channels, and 
reside/store data in protected memory). The analysis 
techniques are implemented in an OSATE plug-in.  

The overall objective of a secure system implies that 
security clearances are given conservatively (as 
opposed to generously). To this end, we can analyze 
models to derive the minimum security clearance on 
components in the model. Or to put it differently, we 
can use the notion of subjects and objects to 
determine the minimum security clearance for a 
subject based on the requirements of the objects 
being accessed by the specific subject. By also 
pointing out differences between actual security 
clearances and the minimum security clearance 
required, a system designer can evaluate how 
effective and tight security is. By providing 
mechanisms to ensure that sanitization is conducted 
within allowed boundaries, the designer is allowed to 
analyze and trace these relatively more threatening 
security risks, as since sanitizing actions are 
permitted exemptions of security criteria and rules, 
and as such should be minimized in the system.  
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