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Abstract. Cyber-Physical Systems are becoming software intensive, collocating many functions

on a single processor and requiring a significant processing capacity which increased over the

years. In recent years, improving processing performance has been achieved by adding more

processing cores on the same chip rather than increasing its frequency. This new design also in-

troduces issues: interaction among cores may impact software performance and might also arm

software isolation layers, such as the one defined in ARINC653. For that reason, software us-

ing multi-core architecture must be carefully designed and specified with hardware and software

aspects. This would help to analyze the system and detect potential design issue. This paper

proposes an approach to represent multi-core architectures and their association with software ar-

tifacts, such as the ones used for cyber-physical systems (e.g., the ARINC653 platform). For that

purpose, we use the AADL language and define specific modeling patterns with new properties.
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1 Introduction

1.1 Context

Cyber-physical systems (CPS), as used in military or avionics domains, become in-

creasingly software-reliant and operate many functions. Software defects may have

minor (temporary disturbance) or major impact (mission failure), depending on exe-

cution environment, system criticality, and other criteria. Enforcement of continuity of

operation is difficult because software components interact and may impact each other.

Actual military aircraft systems contain more than 1.7M lines of code [1], and new civil

aircraft feature more than 4M lines of code [2]. Thus, design and validate software by

using traditional design techniques is an overwhelming task.

One solution consists of isolating software functions according different criteria

(criticality level, component provider, etc.) so that one cannot interfere with another.

Thus, each function can be analyzed separately, easing the overall validation process.

For that purpose, the ARINC653 [3] standard (for avionics systems) defines a specific

runtime that isolates system functions from each other.

However, as such systems continue to grow and they now require a significant pro-

cessing power. This trend was traditionally addressed by upgrading hardware and in-

creasing the processor speed, but is now achieved by using multi-core architectures with
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processors containing several processing cores on the same chip. As these cores share

resources (memory, caches, buses), they may interact each other so that one function

executing on one core may affect others executing on remaining cores. This can im-

pact the underlying software architecture by breaking software isolation as defined in

ARINC653 [3].

1.2 Problem and Approach

Software executing on one core may generate disturbance and impact functions exe-

cuting on other cores, even when using specific runtime with isolation services such as

ARINC653 [3]. This may affect different business drivers: from a reliability perspec-

tive, a function issuing several requests on a shared bus may postpone the execution of a

function that is using the same resource so that it overruns its deadline. From a security

perspective, a function classified at a low security level may also read data from a soft-

ware component classified at a higher security level if their processing cores use shared

memories. These issues are dependent on both software and hardware architectures as

well as the system business goals. Thus, there is no standard and general solution, and

these issues must be evaluated on a per-project basis.

For that reason, modeling multi-core processors and their association to the soft-

ware and architecture (such as ARINC653 [3]) would help system designers to review,

analyze, and detect potential issues when using multi-core processors. This would also

help represent different system criteria, such as

– use of shared resources (caches, buses, devices, etc.)

– allocation strategies of software on multiple cores

– impact on software scheduling

– allocation of mixed-criticality levels on several cores

We propose an approach to model such architectures with appropriate patterns using

the Architecture Analysis and Design Language (AADL) [4], a language that already

supports analysis tools for CPS design and analysis. It is compatible with the core lan-

guage and its extensions (such as the ARINC653 annex[5]) so that use of multi-core

architectures does not require a new model and can be added as a component refine-

ment. The paper is organized as follows:

1. Overview of the related work: CPS software architectures (such as the ARINC653

[3] partitioned architecture), multi-core processors, and AADL

2. Modeling partitioned multi-core systems with AADL

3. Application with a case study

4. Conclusion and perspectives

2 Related Work

2.1 Multi-Core Architectures

Until recently, increasing processing capability of processors consisted of increasing

their frequencies or adding more transistors on the same chip. This trend has been used
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for years, but the process has reached its limits; the number of transistors being collo-

cated in the same area have some physical limitations. One solution consists of reusing

the symmetric multiprocessing (SMP) architecture that executes software functions in

parallel. Collocated processing cores also share resources (buses, memory, caches, etc.),

which may create disturbance between concurrent cores.

Core 1 + L1 Core 2 + L1 Core 2 + L1

Shared Bus

Shared Resources

Fig. 1. Example of a multi-core architecture

Most multi-core processors have their own cache (L1) and share resources (such as

the second cache (L2)) through one or several dedicated buses, as shown in Figure 1.

Unlike single-core architecture, applications performance with multi-core proces-

sors mostly depends on software: a specific scheduler for multi-cores, data dependen-

cies between tasks, use of lock mechanisms between concurrent threads, etc. Sharing

resources may create problems [6–8], especially if a core issues many memory access

requests that increase bus latency.

On the other hand, having several cores may be of special interest, especially when

isolating applications (such as in ARINC653 [3]). Each software partition may be al-

located to a separate partition, ensuring time isolation. However, this may create dis-

turbance, especially because some resources are still shared (such as the L2 cache) and

may break the partitioning policy. Several research efforts have already been performed

in that context.

2.2 ARINC653 and Partitioned Runtime

ARINC653 [3] is an industrial avionics standard published by Aeronautical Radio. It

defines a set of services and a standardized interface to isolate software applications

into partitions. Each partition is independent with its own resources and appears to be

running as if it were allocated to a single processor. The isolation policy is enforced by

an underlying kernel (as shown in Figure 2) in terms of space and time:

– Space: Each partition is associated to a unique address space (memory segment) to

store code and data. One partition cannot read/write other segments.
– Time: Time frames are allocated to each partition to execute their threads and can-

not be overrun. In addition, each partition uses its own scheduling policy because

the overall system has two scheduling layers: kernel level (scheduling of partitions)

and partition level (scheduling of partitions tasks).

Most of the time, the kernel-level scheduler uses a static scheduling protocol that

executes partitions at a fixed rate called the major time frame. An example of such iso-

lation is shown in Figure 3 with two partitions being executed consecutively according

to a fixed and pre-configured timeline.
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Partition 1 Partition 2

Isolation Kernel

Fig. 2. Architecture of an ARINC653 system

Execution

TimeMajor Frame

Execution of partition 1

Execution of partition 2

Fig. 3. Scheduling of ARINC653 partitions

Because partitions are isolated into their memory space and cannot share memory,

communications are implemented with a dedicated inter-partition communication ser-

vice. Cross-partition communication channels are pre-configured at design time so that

no partition can create a communication path that has not been explicitly declared.

Finally, the standard defines a service to detect, recover, and isolate fault occurrence

and propagation. A fault can occur at different level: kernel, partition, or task. Upon

fault occurrence, a dedicated function is executed to fix the error.

ARINC653 defines a set of common faults/exceptions (that can be extended by

each specific ARINC653-compliant OS) that may arise in the system. They range from

software fault (e.g., division by zero) to hardware fault (e.g., loss of power). The system

provides the flexibility to detect and recover fault at different levels so that the system

designer can easily implement a system health-monitoring policy.

As new systems are currently switching from single- to multi-core processors, one

major concern is to ensure isolation enforcement with new hardware components. To do

so, users need methods and tools to model an ARINC653 software architecture (with

partitions, tasks, communication channels, etc.) and its association on the hardware

platform using either using single- or multi- core processors. Thus, this representation

could then be supported by analysis tools to check scheduling feasibility and any po-

tential issue that may break ARINC653 isolation principles.

2.3 AADL

AADL [4] is a modeling language standardized by the Society of Automotive Engineers

(SAE). It defines a notation for describing architecture hardware and software concerns

within a single and consistent model. The language uses a component-based approach,

with each system artifact being defined as a component. The core language specifies

several components (processor, process, bus, thread, etc.). Each one defines its inter-

faces and characteristics. Components are aggregated (with one component containing

subcomponents; for example, a task includes several subprograms or a process contains

several tasks) and connected (for example, a processor accesses a bus or a memory,

or two tasks are connected to exchange values/data). Component-specific characteris-

tics are parameterized using properties (for example, period of a task, size of a memory,

speed of a processor). The components composition constitutes the system architecture.

The language is extensible; users may adapt it to their needs using two mechanisms:

1. User-defined properties. New properties can be defined to extend the components’

characteristics. This is a convenient way to add specific architecture criteria into the

model (for example, criticality of a subprogram or task)



5

2. Annex languages. Third-party languages [9, 10] can be attached to AADL com-

ponents to augment their description and specify additional characteristics and re-

quirements (for example, specifying the component behavior [10] by attaching a

state-machine). They are referred to as annex languages, constituting additional

pieces of information related to the component.

AADL provides two views to represent models:

1. The graphical view outlines components’ hierarchy and dependencies (bindings,

connection, bus access, etc.). While not providing all architecture details, it is very

useful for documenting the architecture.

2. The textual view shows the complete model description, with component inter-

faces, properties, and languages annexes. It is appropriate for users to capture

system-internal details and for tools to process and analyze the system architec-

ture from models.

Latency Analysis

AADL
Code

Generation

Requirements

Validation

Consistency

Validation

Performance

Analysis

Security

Analysis

Fig. 4. AADL ecosystem

The language is supported by several tools for analyzing system requirements or

producing the implementation, as shown in Figure 4. AADL has already been success-

fully used to validate several quality attributes such as security [11], performance, and

latency [12]. Supporting analysis functions have been implemented in the Open Source

AADL Tool Environment (OSATE) [13], an Eclipse-based tool that supports AADL.

A standard annex document (the ARINC653 annex [5]) provides guidance to model

avionics architecture, as defined in the ARINC653 [3]. However, modeling of multi-

core applications has not been yet explored and no modeling pattern has been proposed.

This makes the design of such systems more difficult because each model would repre-

sent the architecture in a different manner that is not suitable for all analysis tools.

Our contribution consists of proposing AADL modeling patterns for multi-core pro-

cessors that are consistent with the existing standards documents, including the AR-

INC653 annex [5]. Keeping compatibility with existing modeling patterns would also

help the transition of models using single-core to multi-core processors and keep the

potential changes to the minimum.

3 Model of Partitioned Multi-Core Architectures

3.1 Multi-Core Processors

Processor cores are hardware parts similar to physical processors: they access a bus

to read/write into shared resources, have their own private resources, etc. Thus, a core
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is associated with an AADL processor component and a multi-core processor with

an AADL system component containing multiple AADL processor subcomponents,

each one representing a separate core. This modeling approach also provides flexibility:

an AADL system can contain other components to represent heterogeneous architec-

tures, such as system on chip (SoC), that include a network controller, USB bus, and

other shared resources.

In order to specify processor requirements, we introduce a new dedicated AADL

property to describe the following processor characteristics:

– Speed: using various metrics such as core frequency or instructions per second

– Power Dissipation: using a range value for each core

– Power Consumption: using a range value for each core, reflecting the power used

at full speed or when using energy-saving mode

core1

partition

runtime partition

address space

segment

core2

Fig. 5. First modeling pattern for partitioned

multi-core architectures

partition address space

core1

partition

time1

segment

core2

partition

time2

segment

Fig. 6. Second modeling pattern for partitioned

multi-core architectures

3.2 Binding with Isolation Runtime

The ARINC653 annex [5] for AADL mandates to model partitions at runtime using

a virtual processor within a processor component. Then, the partition address

space (AADL process that abstracts partition code and data) is associated with this

runtime using the regular AADL property (Actual Processor Binding). Represent-

ing partitioned architectures on multi-core processors uses the same approach: the par-

tition’s runtime (virtual processor) is added to each core (processor) and its ad-

dress space (process) bound to it.

However, in the context of multi-core, a partition can be associated to several cores

according to a particular policy (a partition being relocated from one core to another

upon failure, redundancy, etc.). To specify this particular requirement, the following

approaches are proposed:

1. Define the partition runtime (virtual processor) separately and bound it to the

partitions’ supporting cores (processor) with the Actual Processor Binding or

Allowed Processor Binding properties. Then, we also associate it with the par-

tition address space (process). This approach assumes that the underlying exe-

cution platform (Operating System) can relocate the partition execution context
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from one core to another. For one partition executed on two cores, this modeling

pattern would use one virtual processor (associated with the partition address

space – an AADL process component) bound to two processors, as shown on

Figure 5. We also associate the memory segment to the virtual processor, not

the process, which means that when relocating the partition, the same memory

segment would be used.

2. Define as many runtimes (virtual processor) as required on each core (processor)

and associate the partition address space (process) with each of them. This ap-

proach assumes that the underlying OS also isolates the different execution run-

times in separate memory segments (each one being associated with a separate

virtual processor) and would relocate the context between partitions’ runtimes

when relocating the partition from one core to another. For one partition executed

on two cores, this modeling pattern would use two virtual processors, each one

contained within a core (processor). Then, the partition address space (process)

is associated with both virtual processor components, as shown in Figure 6.

Users may distinguish the cores that can execute the partition from the one that is

actually executing it. For that, the language defines two properties:

1. Allowed Processor Binding provides the list of cores that may execute the par-

tition. These cores may be selected when relocating the partition.

2. Actual Processor Binding defines the list of cores that execute the partition.

As properties may be mode-specific, we can define bindings for each component

mode, showing the different deployment strategies according to the system state.

4 Case Study

We established a model of a multi-core partitioned architecture. The graphical model

is shown in Figure 7. The textual model is not included in this paper but is available

online at the official OSATE examples repository [14] and documented on the official

AADL wiki [15]. This architecture defines an architecture that is representative of an

acquire-and-control system with three partitions:

1. Acquisition that retrieves raw values from sensors

2. Processing that receives the data and does some computation (filtering bad data,

checking values according to predefined bounds, etc.)

3. Control that activates motors and/or thrusters according to the received command

These partitions are then associated with a memory segment (space isolation of an

ARINC653 architecture) and a dedicated runtime (dashed boxes in the middle-right).

Then, these components are associated with the processor, which is represented using a

single system component:

– The hardware memory component that hosts partitions memory segments is then

connected to the processor using a bus access, which is shared among all cores.
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Fig. 7. AADL model of our case-study

– Each partition is replicated on two cores. To capture this requirement in the model,

we associate each partition runtime virtual processorwith two cores (processor).

When a failure is detected, the underlying operating system can be relocated from

one core to another. In this architecture, six cores are used (two per partition) while

two are not associated with any partition.

processor e500mc

features

l3access : requires bus access l3cachebus ;

ram bus : requires bus access ram bus ;

temp a le r t : in event port ;

modes

Nominal : i n i t i a l mode ;

Degraded : mode ;

properties

Processor Proper t ies : : Speed =>

[ Freq => 0.0 Mhz . . 750.0 MHz; Kind => (FREQ ) ; ] in modes ( Degraded ) ;

Processor Proper t ies : : Speed =>

[ Freq => 0.0 Mhz . . 1.5 GHz; Kind => (FREQ ) ; ] in modes ( Nominal ) ;

end e500mc ;

processor implementation e500mc . gener ic

subcomponents

dcache : memory Mult i Core Cache : : cache {Byte Count => 32 000 ;} ;

icache : memory Mult i Core Cache : : cache {Byte Count => 32 000 ;} ;

l2cache : memory Mult i Core Cache : : cache {Byte Count => 128 000 ;} ;

end e500mc . gener ic ;

Listing 1.1. Model or a core of the P4080 processor



9

The processor represented is a P4080, an SoC that integrates eight cores on a single

chip and provides dedicated functionalities with respect to software partitioning [16].

The textual AADL model representing a core is shown in Listing 1.1. The main benefits

of using the processor AADL component to represent the core are shown here by

defining bus accesses (use of shared resources) and additional properties (as the speed

that may vary according to internal modes).

5 Conclusion

Cyber-Physical Systems (CPS) become software intensive and requires more process-

ing capacity. For that reason, use of multi-core processors will be mandatory. As this

type of architecture may impact software execution, new technologies and tools are

required to identify and avoid potential defects.

This paper presents an approach for designing multi-core architectures using AADL.

We propose modeling patterns for describing multi-core processors with respect to their

attributes. This component aggregation fits with methods and approaches specific to

CPSs (such as ARINC653, an avionics standard for building partitioned architecture).

The resulting models would be used as inputs for analysis tools to simulate sys-

tem execution and detect issues related to CPSs requirements, such as scheduling or

security. For example, one application would consist of exporting the AADL notation

to a scheduling analyzer to check the enforcement of timing constraints on each core,

ensuring that task deadlines can be met according to a specific software allocation on

each processor core.
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