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Abstract
In this paper, we study the I/O performance of the Santos Dumont supercomputer, since the gap between processing
and data access speeds causes many applications to spend a large portion of their execution on I/O operations. For
a large-scale, expensive, supercomputer, it is essential to ensure applications achieve the best I/O performance to
promote efficient usage. We monitor a week of the machine’s activity and present a detailed study on the obtained
metrics, aiming at providing an understanding of its workload. From experiences with one numerical simulation, we
identified large I/O performance differences between the MPI implementations available to users. We investigated the
phenomenon and narrowed it down to collective I/O operations with small request sizes. For these, we concluded
the customized MPI implementation by the machine’s vendor (used by more than 20% of the jobs) presents the
worst performance. By investigating the issue, we provide information to help improve future MPI-IO collective write
implementations, and practical guidelines to help users and steer future system upgrades. Finally, we discuss the
challenge of describing applications I/O behavior without depending on information from users. That allows for
identifying the applications I/O bottlenecks and proposing ways of improving its I/O performance. We propose a
methodology to do so, and use GROMACS, the application with the largest number of jobs in 2017, as a case study.
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1 Introduction

Applications that execute on High-Performance Comput-
ing (HPC) infrastructures — large-scale clusters or super-
computers — often need to input or output data. This is
usually accomplished by performing I/O operations to a
Parallel File System (PFS), such as Lustre (SUN 2007) or
GPFS (Schmuck and Haskin 2002). The PFS is deployed
over a set of dedicated machines that act as metadata or
data servers. Files are separated into fixed-size chunks and
distributed across data servers through an operation called
“data striping”. High performance is achieved by allowing
each client to access chunks from different servers in parallel.
Nonetheless, I/O operations represent a bottleneck for an
increasing number of applications due to the speed difference
between computation and data access, as the latter depends
on slower components like disks and the network.

Since I/O performance is a limiting factor for many
scientific applications, in this paper, we evaluate the
I/O infrastructure of the Santos Dumont supercomputer
(SDumont). It is a Bull/Atos machine, located at the National
Laboratory for Scientific Computing (LNCC) in Brazil.
With a total of 18, 144 cores, it is one of the largest
supercomputers from Latin America, acquired through an
investment from the Brazilian government of approximately
60 million dollars (Crouch and ATOS 2015). Considering
the high financial costs associated with acquiring and
maintaining a supercomputer, the efficient usage of the
machine is of paramount importance. Furthermore, for

its users, achieving high performance while getting the
required data from executions is essential. Therefore, our
study provides valuable information that can be taken into
consideration by the administrators to promote efficient
system usage and to guide future upgrades.

We present our study in three main parts. In the first
part, we study the I/O workload of the SDumont. We
obtained traces for the machine’s activity during a week,
and investigate them aiming to identify bottlenecks the
applications could encounter when issuing their requests, and
consequently, to propose improvements to the system. From
our analysis, we identify scientific applications and access
patterns of high interest to the system.

In the second part, we focus on the performance
of collective I/O operations in the machine. That was
motivated by the observation of large I/O performance
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differences between MPI implementations available to
users, which we replicated and investigated. We found
this difference comes from the performance of small
collective write operations, and that is due to some
implementations having poor performance for asynchronous
communications between pairs of processes. The customized
MPI implementation by Bull (used by more than 20% of the
jobs) presented the worst I/O performance. By investigating
the reported phenomenon, we provide information that
can be used to improve future MPI-IO implementations.
Additionally, our conclusions provided guidelines so
SDumont users can achieve higher I/O performance. Finally,
our findings can also be applied to other similar machines.

In the third and final part, we propose a methodology
for characterizing jobs I/O behavior. That was motivated
by our experience in the second part when we learned an
application was having a performance issue, but identifying
and understanding the issue required extensive work. That
happens because users are often not from the HPC domain,
and even when they are, they are often not the developers
of the applications, hence detailing their I/O behavior is
not an easy task. To tackle this issue, we propose a
technique to characterize the application I/O phases from
coarse-grained aggregated traces and apply our technique to
GROMACS (Pronk et al. 2013). We chose GROMACS as a
case study because it was the most executed application in
the SDumont in 2017.

Additionally, we are making all the data we collected
and analyzed in this paper freely available*. Traces from
real large-scale systems are seldom available, and we do so
hoping to to encourage researchers to use this data to build
new contributions.

In summary, the main contributions of our work are:

• we present a detailed analysis of the I/O workload
of a medium-size production supercomputer, the
SDumont;

• we study the I/O performance of two production
scientific applications: an atmospheric application and
a molecular dynamics application;

• we document an existing issue observed when
using small MPI collective I/O operations, and
provide details about it to help improve future MPI
implementations;

• we provide guidelines to the SDumont users to help
them achieve higher I/O performance, and those
guidelines could be applied to other similar machines;

• we propose a methodology to identify and characterize
common I/O behaviors of a job from coarse-grained
aggregated traces;

• we made data collected from monitoring the produc-
tion machine publicly available.

The remainder of this paper is organized as follows.
Section 2 describes the Santos Dumont supercomputer.
Sections 3, 4, and 5 present the three parts of our study about
the machine’s I/O performance. Related work is presented
in Section 6. Finally, Section 7 summarizes our findings and
discusses future work.

2 The Santos Dumont Supercomputer
The SDumont supercomputer, located at the LNCC in Brazil,
has a total of 18,144 CPU cores. All 756 compute nodes
have two Intel Xeon E5-2695v2 Ivy Bridge 2.4GHz 12-core
processors, 64GB DDR3 RAM, and one 128GB SSD. There
are three types of nodes:

• 504 B710 (regular) compute nodes;
• 198 B715 with two K40 GPUs each;
• 54 B715 with two Xeon Phi KNC co-processors each.

Compute, login, and storage nodes are connected through
Infiniband FDR (56Gb/sec) on a fat-tree full-nonblocking
topology. The Lustre parallel file system version 2.1 is
deployed through the Xyratex/Seagate ClusterStor 9000
v1.5.0, with one MDS (Metadata Server) and 10 OSS
(Object Storage Service), each with one OST (Object Storage
Target), for a total storage capacity of 1.7 PB. Clients use
the version 2.4.3 and mount the file system with the flock
option. According to the Bull/ATOS technical specification,
the maximum aggregate throughput the Lustre file system
should achieve, without considering the effects of cache,
is 30 GB/s. This performance is limited to the SAS link
between the OSSs servers and the disk enclosure (3 GB/s
for each OSS). The aggregate network access bandwidth
to the Lustre system is 70 GB/s, which would not impose
limitations on the overall storage performance.

Since 2016, SDumont is available to the Brazilian research
community. Brazilian researchers, with relevant projects that
demand high processing performance, can apply to use the
SDumont computational resources (MCTIC-LNCC 2016).
Currently, there are 135 ongoing scientific projects and
over 800 users from 16 research areas. The areas with
more projects are Chemistry, Physics, Engineering, Biology,
and Computing Science. From August 2016 to the end
of December 2018, 253, 678 jobs were submitted to the
machine.

3 Part I – Study of the I/O Workload
A global overview of the I/O sub-system is the first step
to understand the I/O demands on the machine and detect
possible issues that translate into poor I/O performance. We
used the open-source collectl tool† to gather information
about data and metadata access to the Lustre file system.
The information was collected in each node every 2 seconds,
during seven days – from July 16th to July 22th, 2017.

Data collection used, on average, 1.5% of the processing
power of one core and 21 MB of RAM on each node. The
logs were written to the local storage device of each node to
avoid interfering with the observed I/O workload. This data
is publicly available in the companion repository.

3.1 A week of I/O activity
Since we are working with a production system, seeking
to minimize intrusion, we monitored the 192 nodes that
were available among the B715 ones, which represents

∗https://gitlab.com/jeanbez/ijhpca-sdumont
†http://collectl.sourceforge.net/
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(a) Number of jobs

(b) Number of nodes in use

Figure 1. Comparison between the workload on the monitored nodes and on the whole system.

approximately 25% of the machine. Figure 1a depicts the
number of jobs for all the nodes in the supercomputer
(in green) and those using the monitored nodes (in red).
Approximately 30% of the jobs were monitored. Table 1
presents the distribution of the number of concurrent jobs.

Table 1. Distribution of the number of concurrent jobs

Min. 1st Q. Median 3rd Q. Max.

Global 22 29 32 42 55
Monitored 3 9 11 13 18

Figure 1b shows the number of nodes being used.
Regarding the occupancy of the machine in this period,
out of the 756 nodes, on average roughly 544 nodes were
active, or 72%. Furthermore, out of the 192 monitored
nodes, on average 122 nodes were being used, that represents
approximately 64% of them. Table 2 presents the distribution
of the number of nodes used. Moreover, a median of 8 nodes
was used by each of the monitored jobs, whereas globally
the median was of 10 nodes per job. This indicates that, on
average, the number of nodes per job in the monitored nodes
is 28% smaller than the observed for the whole system.

Table 2. Distribution of the number of nodes used

Min. 1st Q. Median 3rd Q. Max.

Global 335 504 559 581 674
Monitored 26 97 118 157 180

The number of monitored jobs, depicted by Figure 1a,
roughly matches the number of jobs performing I/O requests
to the Lustre file system, as illustrated by Figure 2. This
means that during most of the time all of them were issuing
their I/O requests, represented by a median of 11 and a
maximum of 18 jobs.

3.2 Results of the I/O workload study
Figure 3a presents the aggregated read bandwidth observed
in the monitored nodes. Interactive versions of the plots are
available online‡ to improve the visualization of the data.
The median bandwidth was of 71 MB/s and the maximum
observed was of 2 GB/s. For write requests, depicted by
Figure 3b, it is possible to see various behaviors coming
from different applications and I/O demands. The median
bandwidth is 698 MB/s and the maximum observed was of
3.6 GB/s.

Figure 4 presents the number of metadata operations per
second over the studied period. Opening a file from Lustre
requires contacting the metadata server first. We can see
many peaks in metadata activity match the behavior observed
in data write (Figure 3b), as the write workload is heavier and
dominates the machine.

It is also important to consider if the data servers are
getting a balanced workload over time, or if high I/O
demands are directed to a single or a group of servers.
Figure 5 depicts the aggregated write bandwidth during July
17th, 2017, divided by OST. It is possible to see that the
bandwidth to all data servers is quite balanced, i.e., we do
not have a OST that is more used than the others. Results
for the other days were omitted because they display similar
behavior.

We also consider the ratio between read and write
operations to the PFS. Figure 6 presents the amount of data
transferred by read operations divided by the total amount of
data transferred (to both reading and writing). The read and
write bandwidth, presented in Figure 3, gave an indication
to writes dominating the workload, but those numbers could
also come from a low read performance (rather than a low
read demand). The results presented in Figure 6 confirm
that the I/O workload of the machine is dominated by

‡https://jeanbez.gitlab.io/ijhpca-sdumont/
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Figure 2. Number of monitored jobs performing I/O operations

(a) Aggregated read bandwidth (MB/s)

(b) Aggregated write bandwidth (MB/s)

Figure 3. Read and write workload in the SDumont supercomputer. Interactive version of the plots is also available at:
https://jeanbez.gitlab.io/ijhpca-sdumont.

(a) Metadata read operations

(b) Metadata write operations

Figure 4. Read and write metadata operations per second in the SDumont. Interactive versions of the plots are available at:
https://jeanbez.gitlab.io/ijhpca-sdumont.
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Figure 5. Aggregated write bandwidth per data server (OST)
during July 17th, 2017 in the SDumont.

writes. Table 3 details the read distribution, in percentage,
if compared to the total workload. Read operations represent
less than 20% of the workload during over 75% of the studied
period.

Table 3. Distribution of reads, in percentage, if compared to the
total workload over the observed week.

Min. 1st Q. Median Mean 3rd Q. Max.

0.00 4.79 10.86 14.04 19.48 100.00

Related work point out different proportions between the
data transferred by read and by write operations. Nieuwejaar
et al. (1996) studied traces obtained from the Intel iPSC/860
at NASA Ames Numerical Aerodynamics Simulation (NAS)
and the Thinking Machines CM-5 at the National Center
for Supercomputing Applications (NCSA). They observed a
greater amount of written data, as well as a greater number
of files opened for write operations. On the other hand, Carns
et al. (2011), studying the workload on Intrepid, the IBM
BG/P system at the Argonne Leadership Computing Facility
(ALCF), showed that the applications transferring the most
data in that machine usually read more data than write.
Consequently, reads represented 78.8% of their I/O activity
during the period studied by them.

Carns et al. (2011) also analyzed the access sizes, showing
that the most common read size was between 100KiB and
1MiB, while the most common write size was between
100 bytes and 1KiB. On the other hand, a study conducted
in a supercomputer at Oak Ridge National Laboratory
(ORNL) Kim et al. (2010), using Spider, a Lustre-based
storage cluster, observed three main request sizes: less than

16KB, 512KB and 1MB. This three sizes represented more
than 95% of the total requests.

Table 4 summarizes the observed request sizes in
SDumont. Read requests are on average to 92 KB, whereas
write requests are on average a little over 4 MB. Read
requests are in general ≈ 46 times smaller than write
requests. It is possible to observe that the applications
running in SDumont are mostly performing write operations
in greater sizes than the observed by related work. Previous
studies (Carns et al. 2009; Boito et al. 2018) already
demonstrated that issuing larger requests results in higher I/O
performance.

Table 4. Request size (KB) distribution

Operation Min. 1st Q. Median Mean 3rd Q. Max.

READ 0.3 24.3 41.9 92.5 80.6 2119.0
WRITE 4.0 3996.0 4282.0 4162.0 4455.0 88424.0

Table 5 lists the three most executed applications from
the 89, 106 jobs submitted in 2017. These are the ones for
which it was possible to identify the application from the
executable name as users can compile and run their own
source-codes on SDumont. From those, 3, 331 jobs were
for GROMACS, which represents approximately 3.7% of
the total, and account for 20, 851, 588.15 core-hours. The
second and third applications with the largest number of
jobs had 3, 095 and 2, 880 jobs, representing 9, 392, 925.77
and 4, 781, 320.89 core-hours, respectively. GROMACS was
also the most used application in the machine in 2016, with
2, 292 jobs.

Table 5. The most executed applications in the SDumont.

Application Jobs CPU Time (h)

Gromacs
gromacs.org

3, 331 20, 851, 588.15

VASP
vasp.at

3, 095 9, 392, 925.77

Quantum Espresso
quantum-espresso.org

2, 880 2, 919, 831.06

3.3 Discussion
We monitored 25% of the SDumont machine during a week,
covering 34% of the jobs in the period, and presenting
a similar workload to the whole machine. Almost all the
monitored jobs were performing I/O, demonstrating the
importance of a deeper investigation on the machine’s I/O
demand. We were able to conclude that the number of jobs
is quite distributed during the day (Figure 1a), not having a
period with greater activity. The equally divided bandwidth
among the Lustre data servers also shows a balanced demand
(Figure 5).

Write operations dominate the workload in the machine
during over 75% of the observed period, representing 80%
of the workload (Figure 6). This disproportion between
read and write transference might influence the observed
aggregated bandwidth. As depicted by Figure 3, write
bandwidth is greater than the read bandwidth. This difference
between read and write could also be influenced by the

Prepared using sagej.cls
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Figure 6. Amount of data transferred by read operations divided by the total amount of read/written data.

access sizes used by the applications when issuing read and
wire requests. The write sizes observed are on average a little
over 4 MB, while the read sizes are on average 92 KB, i.e.,
approximately 97% smaller. Related work already pointed
out that larger access sizes improve performance. Therefore,
these small access sizes are probably translating into low
bandwidth, while the larger write access sizes are translating
into high bandwidth.

It is also important to note the different behaviors in the
write bandwidth over time, that may indicate different access
patterns. If we consider the higher write bandwidth observed
in the first two days (Figure 3b) and the lower number
of metadata operations at the same period (Figure 4), they
suggest a shared file with collective access pattern.

Even though we monitored 1/4 of the machine, with a
similar occupation and job characteristics from the whole
system, the aggregated write performance never reached 1/4
of the system’s peak (30 GB/s). One of the reasons for
low write performance is discussed in the next Section, the
second part of our study.

4 Part II – Collective I/O Performance

During the study of the machine’s I/O workload, described
in the Part I, it was reported an unexpected behavior
for the OLAM application§. The I/O performance of the
application would change considerably when using different
MPI implementations. In this second part of the paper, we
investigate the reported issue by first analyzing OLAM’s
I/O performance in Section 4.1. We then generalize it to
studying collective I/O performance and deeply investigating
the observed phenomenon in Section 4.2.
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Figure 7. Initial results with OLAM in the SDumont.

Although OLAM is not in the the list of the most
executed applications (Table 5), it is an strategic one
for the machine because of ongoing efforts of Brazilian
institutions (CPTEC/INPE, IAG/USP, LNCC, IME/USP,
UFCG, UFSC, and EMBRAPA) to develop it. Moreover,
its behavior is typical of simulations used for climate and
weather studies. Finally, previous work Osthoff et al. (2012)
has pointed I/O operations to be critical for OLAM. This
situation is illustrated by the results presented in Figure 7.
Bars stack time spent in I/O (in red) and computation (in
green) for different numbers of processes. Up to 73% of
the execution time was spent in I/O operations. Moreover,
despite computation time decreasing as the scale increases,
I/O compromised the application’s scalability.

4.1 Performance Evaluation of OLAM
OLAM is an MPI application. Each process completely reads
the initialization files, which contain initial global conditions
at a certain date and time and information representing the
environment. Next, OLAM simulate time steps, exchanging
messages between neighbor processes at the end of each
time step. After executing a number of time steps, the
variables representing the atmosphere are written to a history
file. During this phase, processes use the HDF5 (The HDF
Group 1997–2016) library to write to the shared file, and the
library generates MPI collective I/O operations. These output
history files can have from a few MB to many GB, depending
on the grid definition and model refinement.

In this section, we discuss the I/O performance results of
OLAM using two workloads: seven grids (Section 4.1.2) and
four grids (Section 4.1.3). Our experimental experimental
methodology is discussed in Section 4.1.1.

4.1.1 Experimental Methodology Experiments were con-
ducted in the SDumont with OLAM version 4.10 (r544),
modeling the northwest region of the São Paulo state, in
Brazil (21°00′00.0′′S 51°00′00.0′′W ). The configuration
for these simulations has six vertical levels. Two days are
simulated, using timesteps of ten seconds and writing output
every simulated hour. A total of 49 files are generated, with
approximately 1.1 GB each.

OLAM was compiled with Intel Parallel Studio XE 2017
update 1 and HDF5 version 1.8.18. The Darshan tool (Carns
et al. 2011) version 3.1.4 was used to profile executions.

The results presented in this section are the medians of
five executions on 10 compute nodes (sdumont[5004–5013])
using the 24 cores per node, for a total of 240 cores. No

§https://sourceforge.net/projects/olam-model/
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Figure 8. Results for OLAM with 7 grids comparing BullxMPI and OpenMPI 1.10, reported by Darshan.

additional hints were passed to HDF5 or MPI-IO, and all
MPI implementations use the same parameters. We used the
default stripe size of 1 MB and a stripe count of 10, i.e., files
are distributed among all 10 Lustre OSTs.

4.1.2 OLAM with 7 grids The first set of experiments
that we will discuss compare BullxMPI and OpenMPI 1.10.
OLAM was executed with seven grids (one global and six
refined) of resolutions 200km (global), 100km, 50km, 25km,
12.5km, 6.25km, and 3.125km. Results, as reported by
Darshan, can be seen in Figure 8. The first graph, in Figure 8a
show time spent in I/O (in red) and computation (in green).
We can see a large decrease in execution time when using
OpenMPI 1.10, due to a much shorter I/O time (computation
time was similar to both implementations).

Since we could not conclude all these results follow
a normal distribution, we have used the Wilcoxon-Mann-
Whitney test (Feltovich 2003) to compare them, and
compare the medians instead of the means. The statistical
test has indicated the computation time for the two MPI
implementations is not significantly different, but I/O and
total execution time are.

Figure 8b separates time spent in I/O operations per API
– POSIX and MPI-IO. It shows most of the I/O time is spent
in MPI-IO operations (through HDF5), and the performance
difference between the MPI implementations comes mostly
from this part. In Figure 8c the number of MPI-IO write
calls is presented by type. We can see most of the write
operations are collective. Furthermore, Table 6 shows the
most usual sizes for I/O requests generated by OLAM.
Requests are rather small, with most MPI-IO operations
accessing approximately 1300 bytes.

4.1.3 OLAM with 4 grids The large performance differ-
ence between the MPI implementations was unexpected, and
thus we have conducted more comprehensive experiments,
including all MPI implementations that are available at the
machine. To decrease the processing time in the supercom-
puter while keeping the same I/O behavior we executed an
OLAM configuration with four grids of resolution 200km
(global), 100km, 50km, and 25km.

Table 6. Size of I/O operations generated by OLAM, as
reported by Darshan.

API
BullxMPI OpenMPI-1.10

Size
(bytes) Count

Size
(bytes) Count

POSIX

8192 8585280 8192 8585280
8190 6785760 8190 6785760
512 126186 512 126186

1048576 46011 1048576 46011

MPI-IO

1308 94521 1308 110397
1312 55713 1312 94521
1316 44394 1316 63798

59040 43904 58860 59584

3022.59

192.90 154.41

2004.46

2430.34

3460.50

659.31 642.70

2576.52
2874.26

0

500

1000

1500

2000

2500

3000

3500

4000

BullxMPI IntelMPI OpenMPI
1.10

OpenMPI
2.0

OpenMPI
2.1

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Computation I/O

Figure 9. Results for OLAM with 4 grids.

Because of incompatibilities between Darshan and some
MPI implementations, we have modified the OLAM source
code to measure and report execution and I/O time internally.

Results are presented in Figure 9, and show one more
time that BullxMPI is the alternative that causes OLAM to
spend the most time on I/O operations, 87% of the execution
time with four grids. The large difference to OpenMPI 1.10
performance was still present, IntelMPI presented similar
results to OpenMPI 1.10, and OpenMPI 2.0 and 2.1 were
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Figure 10. Results for BT-IO class D.

better than BullxMPI, but worse than OpenMPI 1.10 and
IntelMPI.

Similarly to the OLAM configuration with seven grids, we
have not concluded that all the sets of results follow a normal
distribution, and thus used a non-parametric test to compare
them. The Dunn test (Dunn 1961) could not conclude results
for IntelMPI are significantly different from results with
OpenMPI 1.10 (not for I/O nor for total execution time).
Similarly, results for BullxMPI are not statistically different
from results for OpenMPI 2.1. Finally, results for OpenMPI
2.0 and 2.1 are not significantly different.

4.2 Collective I/O Performance
In the previous section, experiments with OLAM indicated
large performance differences between MPI implementa-
tions. Because of the application’s characteristics, reported
by Darshan, these differences were believed to be related
to MPI collective write operations. Consequently, this sec-
tion presents an investigation of collective I/O performance
through a series of experiments.

4.2.1 Experiments with the BT-IO benchmark To confirm
that it was not something specific to the application, we
conducted experiments with the BT-IO benchmark from
the NPB (NASA 1994), the second most used benchmark
in the parallel I/O research field, as pointed by Boito
et al. (2018). We used the D class, which generates a file
of approximately 132.6 GB and yields an execution time
in order of minutes. This benchmark generates MPI-IO
collective write calls. These experiments were executed over
eight nodes (sdumont[5004–5011]), using 18 cores per node,
for a total of 144 cores.

Results are presented in Figure 10, and represent the
median values of 5 repetitions. The Dunn test was used
to compare all sets of results. It indicated that the results
for BullxMPI are significantly different from IntelMPI and
OpenMPI 1.10, and the results for OpenMPI 1.10 are
different from OpenMPI 2.0 and OpenMPI 2.1. Nonetheless,
we can see this difference is quite small if compared to what
was observed before. Studying the information provided by
Darshan, we observed the size of requests generated by the
benchmark was approximately 18 MB, much larger than
requests generated by OLAM.

4.2.2 Experiments with IOR benchmarking tool The fact
we observed large performance differences between different
MPI implementations with OLAM, but not with the BT-IO
benchmark, indicates this difference does not happen for
large collective write requests. To confirm it happens for
small requests (that it was not something specific related
to OLAM), we conducted more experiments using the IOR
benchmarking tool ¶.

IOR experiments were executed with all the MPI imple-
mentations available, including the OMPIO implementation
of MPI-IO, available for OpenMPI versions. We only used
ROMIO for previous results (detailed in Section 4.1.3)
because of incompatibilities between OMPIO and OLAM.
IOR was configured to perform collective read and write
tests, generating a file of 1.5 GB using MPI-IO and HDF5
(the latter also used by OLAM, as discussed in Section 4).
Tested request sizes were 1024, 1312, 58864, and 65536
bytes. Request sizes of 1312 and 58864 bytes are the most
common access sizes used by OLAM, as seen in Table 6.
They generate misaligned access on the Lustre parallel file
system that is configured with a stripe size of 1 MB. To verify
the impact of accesses that are not aligned with the stripe
size, we also included requests of 1024 and 65536 bytes,
which do not lead to misaligned accesses. Table 7 details the
IOR parameters used for these experiments. The results are
depicted by Figure 11, and they represent the median values
of five executions on 10 compute nodes (sdumont[5004–
5013]) using 24 cores per node, for a total of 240 cores.

Table 7. Parameters of IOR experiments.

Transfer Block Segment Segment
Size Size Size Count

1024 1024 245760 6554
1312 1312 314880 5116

58864 58864 14127360 116
65536 65536 15728640 104

For the small request sizes (1024 and 1312 bytes), shown
in Figure 11a, we can see performance differences between
MPI implementations (for both read and write tests) that are
very similar to what was observed for OLAM in Figure 9.
These differences are smaller and show different behavior
for the large request sizes (58864 and 65536 bytes), shown in
Figure 11b and 11c. This confirms the differences observed
in Section 4 are not specific to OLAM, but happen when
small requests (of up to approximately 1 KB) are generated.

The Dunn statistical test was used to compare all
sets of results. Write/read time obtained with IntelMPI
and OpenMPI 1.10 with ROMIO were not significantly
different. Results for OpenMPI 1.10 with OMPIO were not
significantly different from the other two sets in small tests
with HDF5 and small write tests with MPI-IO.

Time obtained with BullxMPI was significantly different
from OpenMPI 1.10 and IntelMPI in most small tests, except
small read tests with MPI-IO, where it was not significantly
different from OpenMPI 1.10 with OMPIO. For large tests,
BullxMPI and OpenMPI 1.10 were similar in most cases —
except BullxMPI and OpenMPI 1.10 with OMPIO in read

¶https://github.com/hpc/ior
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Figure 11. IOR results. It is important to notice the scale is not the same in all graphs.

tests with HDF5 and 64 KB requests, and in read tests with
MPI-IO and requests of 58864 bytes.

Comparing results for BullxMPI to the ones for OpenMPI
2.0 and 2.1, they are different when using ROMIO for
small read experiments and large write experiments —
except OpenMPI 2.0 with ROMIO in the tests with MPI-
IO and requests of 58864 bytes. In small write experiments,
BullxMPI results are significantly different from the ones
for OpenMPI 2.0, except using MPI-IO with OMPIO for 1
KB requests and with both ROMIO and OMPIO for 1312
bytes requests, and from the ones for OpenMPI 2.1 with
ROMIO, except using MPI-IO with requests of 1312 bytes.
Finally, in large read experiments, results for BullxMPI are
not significantly different from results for OpenMPI 2.0 and
2.1 with OMPIO in tests using MPI-IO with 64 KB requests.

As expected, larger requests lead to higher performance
from all MPI implementations (all differences were
confirmed with the Wilcoxon-Mann-Whitney test). The
misaligned access only presented a large negative impact
on versions 2.0 and 2.1 of OpenMPI with OMPIO, using
the MPI-IO API and large request sizes. Nonetheless, the
difference was not confirmed by the statistical test for
read experiments with large requests, using MPI-IO through
OpenMPI 2.1 with OMPIO.

Regarding the I/O APIs, HDF5 presented an inferior
performance than MPI-IO, due to its added overhead.
This difference was not confirmed by the Wilcoxon-Mann-
Whitney test for large write tests with BullxMPI, write

tests with requests of 58864 bytes with OpenMPI 1.10 with
ROMIO, small read tests with OpenMPI 2.1 with ROMIO,
read tests with 1 KB requests with IntelMPI, read tests
with 58864 bytes requests with IntelMPI, OpenMPI 1.0 with
ROMIO, OpenMPI 2.0 with ROMIO, and OpenMPI 2.1; and
read tests with 64 KB requests with OpenMPI 1.10 with
ROMIO and OpenMPI 2.1 with OMPIO.

4.2.3 Experiments using a customized microbenchmark
After detecting the performance difference between MPI
implementations in the OLAM experiments, and confirming
through benchmarks that it happens for small collective
I/O requests, we developed a microbenchmark to further
investigate this phenomenon. It was developed based on
the two-phase collective write operations as implemented
by ROMIO (the Lustre-specific implementation). The same
MPI calls internally used by ROMIO are used to implement
the different steps, and the microbenchmark reports time
spent on each step. Table 8 details these steps. The source
code is freely available ||.

This experiment was configured to issue collective
write requests of 1312 bytes, using 10 compute nodes
(sdumont[5004–5013]) and all 24 cores per node, for a total
of 240 cores. Figure 12 shows results, which are median
values from five executions. It is possible to notice that
most of the time was spent in Step 3, where processes

‖https://github.com/francielizanon/pretend_coll
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Figure 12. Time on each step of the collective write operation.

communicate request information (offset and size) to their
aggregators. Most of the difference in performance between
the MPI implementations comes from this step. There is
some difference in Step 4, but on a much smaller scale.

We applied the Dunn test in each step to compare results
for different MPI implementations. In step 3, BullxMPI
results are significantly different from results obtained for
OpenMPI 1.10, and IntelMPI results are different from
OpenMPI 1.0, OpenMPI 2.0 with OMPIO, and OpenMPI
2.1 with ROMIO. In step 4, BullxMPI results are different
from results with OpenMPI 1.10, and results with IntelMPI
are different from OpenMPI 2.0 and OpenMPI 2.1.

Table 8. Steps of the custom microbenchmark that mimics
two-phase collective write operations.

Step
1

Exchange messages between all processes so
that every one knows the start and end offsets of
the whole requested portion (MPI Allgather).

Step
2

Exchange messages between all processes so
that every one knows the number and size of
original requests (MPI Allreduce).

Step
3

Exchange messages between aggregators and
processes to communicate the offsets and access
sizes (MPI Isend and MPI Irecv).

Step
4

Exchange messages between aggregators and
processes so that every aggregator obtain the
data to perform the write operation (MPI Isend
and MPI Irecv).

Step
5

Aggregators execute the I/O operation to the
parallel file system (MPI File write at).

As detailed in Table 8, steps 3 and 4, where we can see
differences between the MPI implementations, use the same
asynchronous MPI calls. The main difference between them
is that step 3 sends two numbers, while step 4 sends data
(which size depends on the size of the operation). In this
case, with requests of 1312 bytes by 240 processes, less data
is transferred by step 4 than by step 3.

It is also interesting to observe how performing the
operation to the remote parallel file system, which could
be expected to be the most important step for performance,
does not account for most of the time. Instead, most of
the time spent on such small collective write operations is
used for coordinating processes and exchanging data. We
have not observed differences for large collective calls in
Sections 4.2.1 and 4.2.2 because their steps 4 and 5 will be
longer, decreasing the impact of step 3.

4.2.4 Discussion We investigated the I/O performance of
OLAM because a large portion of its execution time was
spent in I/O operations, and also because it was reported
to have an unexpected behavior: large I/O performance
differences between MPI implementations. We reproduced
the scenario and confirmed these differences. SDumont users
can choose between the three available implementations:
BullxMPI v1.2.8.4, based on OpenMPI, IntelMPI v5.1.3
build 20160120, based on MPICH, and OpenMPI versions
1.10, 2.0, and 2.1. Figure 13 shows the percentage of jobs
using each MPI implementation, as observed from June 15
to July 22, 2017. We can verify that 22.76% of the submitted
jobs used the BullxMPI implementation, which presented the
longest I/O times.

These differences were believed to be due to MPI-IO
collective write operations, as inspecting Darshan traces we
found most operations generated by the application were
collective writes. A further investigation was conducted
with benchmarks. Results demonstrated that the observed
difference happens for small requests (of approximately
1 KB), and comes from the step of the collective I/O
operation where processes exchange small asynchronous
messages (with Isend and Irecv calls) to communicate with
aggregators.

We believe the performance difference between BullxMPI
and the other OpenMPI implementations is due to BullxMPI
being based on an older OpenMPI version than 1.10. Neau
et al. (2013) observed similar behavior. The results with
the microbenchmark show this difference comes from the
Isend/Irecv pairs, as previously discussed. Our results with
OLAM (Figure 9) and with the IOR benchmark (Figure 11a)
also pointed to a performance difference between OpenMPI
1.10 and 2. That difference was not observed in the results
with the microbenchmark. Upon further investigation, we
observed the OpenMPI 1.10 installation in the SDumont
did not use the Lustre-specific collective write operation
(emulated by the microbenchmark). Moreover, the generic
implementation used in the experiments with OpenMPI 1.10
chooses not to actually perform the collective operation if the
different processes’ requests are not interleaved. For these
small requests in the SDumont, not performing the collective
operation was hence a better decision.

With this investigation, we provide valuable information
that can be used to improve future versions of collective write
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implementations, especially when considering tiny request
sizes. Furthermore, the most concrete contribution is advice
to be given to SDumont users, as it was observed that 22.76%
of the submitted jobs used BullxMPI, the implementation
that presented the worst results in our analysis. By helping
users achieve better performance for their applications, we
promote better usage of the machine.

22.76

37.60

13.50

26.14

BullxMPI

Intel MPI

OpenMPI

Unknown

0 10 20 30 40
Submitted jobs (%)

Figure 13. MPI usage among jobs submitted in the SDumont.

5 Part III – Characterization of Jobs’ I/O
Behavior

The Part II of this paper was motivated by a report on a
performance issue from an application using the SDumont
machine. Investigating it required conducting a performance
evaluation of the application, and using a profiling tool
(Darshan). A challenge is that users are often not familiar
with the specifics of the application, hence they cannot
provide enough details about it. In the case of OLAM, users
familiar with its source code could have told us it uses the
HDF5 library to write to shared files, but that would not tell
us it generated small collective operations.

The observation of this challenge motivated the systematic
use of such a tool for all jobs in the machine, so
future performance issues require less effort to investigate.
However, multiple executions of an application will generate
multiple coarse-grained traces, with aggregated statistics
about their I/O activities. Obtaining information from those
traces is another challenge, specially if we are interested in
temporal aspects of the application’s I/O behavior.

To tackle this issue, in this third part of the paper we
propose a strategy to characterize jobs’ I/O phases from
coarse-grained aggregated traces. We present our method
by applying it to the OLAM’s application, studied in the
Part II, in order to demonstrate its usefulness. We then
apply it to traces obtained from production executions of
the GROMACS application (van der Spoel and Hess 2011)
as a case study. GROMACS was selected for this analysis
because it is the most executed application in SDumont, as
discussed in Section 3.

5.1 Proof-of-concept: OLAM characterization
We used the Darshan profiles of two OLAM executions,
one that used BullxMPI and another that used OpenMPI
1.10 by extracting the information in Darshan’s counters.
As discussed in the Part II of this paper, these two
MPI implementations show the worst and the best I/O
performances for OLAM, respectively.

Seeking to understand and characterize the I/O behavior of
these executions, we use the concept of I/O phases to identify

intervals where I/O operations are made with a certain
access pattern. As we base the start and end of each phase
on the timestamps reported by Darshan, we cannot assure
that throughout that entire period I/O operations are indeed
happening, but we can be sure that if any I/O operations are
happening those patterns will characterize them. That is due
to the way Darshan capture its metrics, collecting, for each
file handle, the time of the first and the last operations of
a given pattern. Furthermore, as these phases may overlap
in time, due to multiple processes issuing simultaneous
requests, with the help of the GenomicRanges (Lawrence
et al. 2013) library, we identified the overlapping I/O phases
that represented the behavior throughout the application
executions.

Figure 14 depicts the four most relevant I/O phases of the
two OLAM executions. The green phases are the ones where
the two MPI implementations took different times to execute
the same set of operations, and it is the only phases to have
collective MPI-IO writes. Therefore, this analysis of the jobs
I/O phases would have quickly pointed the collective write
operations were the source of the performance difference
between the MPI implementations.

5.2 Case study: GROMACS characterization
GROMACS is a widely used molecular dynamics (MD)
software. From the I/O point of view, it uses the master-
slave paradigm to write its results to file. At each output
phase, the master synchronously receives data from all
files through MPI, and then writes it to the file system.
During I/O operations, the simulation is blocked, what may
affect performance and force scientists to reduce the output
frequency (Dreher and Raffin 2014).

Figure 15 depicts the execution time of all the 3, 331
GROMACS jobs from 2017. It is possible to see that most
of the jobs execute for more than one hour. Approximately
40% execute in less than one hour, and roughly half of the
remainder jobs execute for more than 24 h. This distribution
comes from different usages of the application to different
scientific scenarios, what may translate into different I/O
behaviors and performance. These jobs were obtained from
versions 4.x, 5.x and 2016 of GROMACS.

We applied the same methodology employed to evaluate
OLAM’s I/O phases, by harnessing data from Darshan logs,
with the jobs that ran GROMACS with the profiler enabled
from July 5th, 2017 to July 20nd, 2017. 165 jobs had
their I/O profile captured by Darshan 3.1.4. This represents
approximately 5% of all the GROMACS’ jobs that ran in that
period. After characterizing the I/O phases, we selected only
the phase that mostly represents the I/O of the application.
For that, we multiplied the average duration of each phase
by the number of observations and selected the phase with
the largest value. Following this approach, we could group
all the jobs into four distinct classes, with well defined
I/O behaviors. Despite considering executions from distinct
users, it was also possible to notice differences in the
I/O workload among executions of the same user. Table 9
presents the number of jobs in each group.

We selected four representatives, one for each group, by
taking the jobs with the longest I/O time and plotted all their
phases in Figure 16. We normalized the execution times to
facilitate visualization. It is important to notice that since
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Figure 14. I/O phases of the OLAM application using two MPI implementations.
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Table 9. Number of jobs grouped by the characterization of
their most representative I/O phase.

Group Jobs Percentage

A 17 10.30
B 73 44.24
C 31 18.79
D 44 26.67

Total 165 100.00

we are not using a fine-grained trace from the application,
but rather aggregated information on its I/O profile, it is not
possible to pinpoint when exactly those operations occur in
that phase. Nevertheless, this gives us an overview of the
expected I/O behavior. Group A writes to unique files during
most of the execution, with a phase that includes reads that
happens by the end of the execution. On the other hand,
group B is mainly characterized by read operations to a
shared-file. In group C, GROMACS jobs can be issuing read
operations to a shared-file, and read and write operations to
individual file throughout the execution. Finally, group D has
the same I/O phases than group A, but distributed differently
over the execution time.

By grouping all the jobs we can also have an estimate
of the median execution time, I/O time and transfer size.
Table 10 presents these data. The total absolute time spent in
I/O, as reported by Darshan, is considerably smaller than the
total runtime for all the groups. If we compute the achieved
bandwidth by each group, we have approximately 7 MB/s
for group A, 9 MB/s for group B, 126 MB/s for group C, and
69 MB/s for group D.

Nonetheless, we also observed two extreme behaviors that
are summarized by Table 11:

I. a job that spent less than one minute on I/O, but that
issued a large number of requests (over 49 million); and

Table 10. Metrics of each group of GROMACS jobs.

Group Runtime (s) I/O Time (s) Total Data (KB)

A 295 0.175 1232.39
B 1 0.005 44.67
C 93587 22.509 2904276.42
D 79563 23.304 1669392.70

II. a job that spent most of its execution on I/O operations,
but issued 33 times fewer requests than I.

Job I is a representative of the I/O characterization defined
by group C, whereas job II is of group D. We picked these
two to delve into its I/O phases. Job I has six different
types of phases in total, and five of them only happen
at the beginning of the execution. Table 12 details the
identified phases, their characterization, the number of times
each phase was observed, their average duration, and the
difference between the start time of phases with that same
characterization. The one with the most extended duration
took approximately 1.3 hours, and it is characterized by read
and write operations to a unique file and reads to a shared
file. By unique files we used the name denomination used
by Darshan, which means any files that were not opened by
every rank in the job. This includes independent files (opened
by one process) and partially shared files (opened by a proper
subset of the job’s processes). It is important to recall that
Darshan captures the first and last operation for a given file
handle. Therefore, these phases do not mean that the job
spent 1.3 hours making I/O requests, but instead tells us that
if any I/O operation happened during that amount of time, it
would be characterized as described. This phase was also the
one that appeared the most (12 times).

On the other hand, job II, that took 29.23 hours, presents
a quite different behavior than job I, having less I/O phases.
It also differs from job I by not using collective operations.
Table 13 present further details. In this job, we have a
phase characterized by reads to unique files with 10 ms
duration, followed by a phase with writes to unique files, with
five occurrences and an average length of 3 minutes. The
predominant one, characterized by read and write operations
also to unique files, was observed 11 times, with an average
duration of 2.6 hours.

Considering the performance achieved by the job I, out
of the 15.89 hours of execution time, only 50.92 seconds
were spent in I/O operations to transfer approximately
1 GB of data. This translated into a bandwidth of
roughly 20.39 MB/s. Differently, job II, that spent 29.23
hours running, needed 8, 22 minutes to transfer 3.74 GB
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Figure 16. Representative jobs of GROMACS and their different I/O behaviors throughout execution, normalized.

Table 11. (I) Job that made the largest number of I/O operations; (II) Job that spent the most time in I/O.

Execution Processes Runtime (s) I/O time (s) Reads Writes Read (MB) Write (MB)

I 48 57, 227 27.77 47, 734, 940 1, 226, 680 683 413
II 384 105, 257 291.49 27, 992 1, 428, 605 2, 103 1, 723

Table 12. Characterization and statistics of each I/O phase
detected in execution I.

I/O Phase
Characterization N

Duration
(ms)

Difference
(ms)

STDIO, READ, SHARED 1 34.00 0.00

STDIO, READ, SHARED

STDIO, READ, UNIQUE
3 39.67 47.50

STDIO, READ, SHARED

STDIO, READ, UNIQUE

STDIO, WRITE, UNIQUE
12 4, 768, 497.17 5, 201, 996.40

STDIO, READ, UNIQUE 1 64.00 0.00

STDIO, READ, UNIQUE

STDIO, WRITE, UNIQUE
3 79.00 5.50

STDIO, READ, UNIQUE 3 957.67 835.00

Table 13. Characterization and statistics of each I/O phase
detected in execution II.

I/O Phase
Characterization N

Duration
(ms)

Difference
(ms)

STDIO, READ, UNIQUE 1 10.00 0.00

STDIO, READ, UNIQUE

STDIO, WRITE, UNIQUE
11 9, 485, 752.50 10, 434, 495.00

STDIO, WRITE, UNIQUE 5 181, 500.8 263, 125.18

throughout its execution, yielding a bandwidth of 7.78 MB/s.
If we consider the I/O characterization of both jobs, as
depicted by Figure 16 the difference between the two is the
existence of shared-file read operations in group C, and its
absence in group D.

With this phase analysis, we can observe how the
I/O behavior of the application changes between different
executions. In the job I, that made more I/O operations,
we observed more I/O phases, which did not happen for
the job II. The largest amount of time spent by job II

might be related to the fact that this execution is using
individual operations, where few optimization opportunities
are available.

5.3 Discussion
In this section, we presented our proposed strategy to harness
information from Darshan’s coarse-grained profiling of jobs
which facilitates investigating I/O issues. As a proof of
concept, we applied it to two HPC applications that run of
SDumont: the OLAM and the GROMACS.

The technique’s usefulness was illustrated by the OLAM
investigation, where it was possible to point to collective
write operations as the source of the performance difference
between the MPI implementations. We also applied it to
GROMACS, the most executed application in SDumont
supercomputer. With this phase analysis, we can observe
how the I/O behavior of the application changes between
different executions. By analyzing the behavior of all the
165 executions of GROMACS during the studied period, we
could detect four groups with different I/O characteristics.

Therefore, in addition to providing information to help
identify I/O performance issues, our proposal can be valuable
to guide I/O optimizations at the application or system
level. Furthermore, it can also be a source of information
to researchers from the parallel I/O field by identifying
common I/O behaviors in an HPC system using already
available Dashan traces.

6 Related Work

In a previous work, we conducted an in-depth investigation
of the performance differences between MPI implementa-
tions for small collective I/O operations on the SDumont. To
the best of our knowledge, ours was the first work (Carneiro
et al. 2018) to document this phenomenon.
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It is fairly common that vendors prepare customized
MPI implementations for use in their supercomputers and
large-scale clusters. These commercial solutions often claim
improved performance over open-source alternatives. Some
studies seek to evaluate such implementations considering
distinct workloads and applications.

In (Vinter et al. 2004) the authors evaluated three MPI
implementations, two open-source (MPICH and LAM-
MPI) and one proprietary (MESH-MPI). They employed
benchmarks such as the NPB – NAS Parallel Benchmarks –
and showed the commercial implementation is significantly
faster than the open-source alternatives. Additionally, they
demonstrated that the customized solution yields much
better performance for small collective communication
operations. Closely related is the evaluation conducted
in (Brightwell 2005) for the Cray Red Storm computing
platform. The vendor-supported MPICH2 implementation
(MPICH2-0.97) was compared to two other solutions
based on MPICH (MPICH-1.2.6 and MPICH-1.2.6 using
SHMEM (Brightwell 2004)). They demonstrated that the
first is slightly outperformed by an open-source alternative
in terms of latency and bandwidth. However, they did not
take into account in their evaluation the use of collective I/O.

This paper extends our previous one (Carneiro et al.
2018) by presenting a more comprehensive study of the I/O
performance in the SDumont. In addition to the investigation
on collective operations, we characterize the workload of the
machine and propose a strategy for obtaining information
about jobs I/O behaviors from traces.

A wide range of factors can negatively impact I/O
performance in HPC. Understanding and characterizing a
platform can provide insights on how the applications should
perform I/O operations to obtain the best performance. Zoll
et al. (2010) studied a set of application-side I/O traces
from the ASCI cluster at Lawrence Livermore National
Laboratory, using the Lustre parallel file system for storage.
Their traces were obtained in 2003 with the strace tool,
ranged from tens of seconds to half an hour, and included
two scientific applications from the physics domain and
three benchmarks generated with IOR (file-per-process,
shared-contiguous and shared-strided). They concluded that
a Markov model could not represent the request arrival rate
of applications’ I/O streams present self-similarity. They
presented a stochastic model to predict I/O arrival rate.

Wang et al. (2004) studied request size behavior from
the same traces, and showed applications performed large
numbers of small requests (from a few bytes to 1 MB) in
small time intervals. Their results for request size and inter-
arrival time are specific to the traced applications.

To motivate their work on cross-application coordination,
Dorier et al. (2014) used data from the Parallel Workload
Archive, from the period between January and September
2009. Through a simple optimistic model, they used the
distribution of some concurrent jobs to show that there was a
high probability of having multiple applications concurrently
performing I/O operations, even when applications spent as
little as 5% of their execution time on I/O.

Kim et al. (2010) characterized the scientific workload
of the Spider (Lustre) HPC storage cluster, at Oak Ridge
Leadership Computing Facility (OLCF). They considered
the system utilization, the demands of read and write

operations, idle time, and the distribution of read requests
to write requests. The study summarized six months of
observation. They demonstrated that the bandwidth usage
and the inter-arrival time of requests can be modeled as a
Pareto distribution.

Luu et al. (2015) analyzed the Darshan logs of over
a million jobs executed during 2013 over Intrepid and
Mira supercomputers, at the Argonne Leadership Computing
Facility (ALCF), and Edison, at the National Energy
Research Scientific Computing Center (NERSC). The work
aimed at identifying behaviors that impacted performance
to guide future optimizations. They pointed out that every
widely adopted I/O paradigm (file per process, shared file,
subsetting I/O) is represented among the best-performing
and worst-performing applications. Hence, the usage of a
paradigm could not provide any guarantees in terms of
performance. Regarding throughput, they demonstrated that
almost a third of the jobs had an aggregated throughput of
no more than 256MB/s. They also pointed out that over a
third of the jobs spent more time in metadata operations than
actually transferring data. Additionally, despite the existence
of high-level parallel libraries, three-quarters of the jobs used
only POSIX to perform I/O.

In (Xie et al. 2012), the authors presented a charac-
terization of the storage performance of the Cray XK6
Jaguar supercomputer while examining the implications of
those results for application performance. They observed and
quantified limitations from competing traffic, concurrency,
interference, and stragglers of writes on shared files.

In the same way as the works presented in this section,
we also seek to characterize the workload of the machine by
proposing a strategy to extract information about the jobs’
I/O behaviors from traces. Nonetheless, differently from Zoll
et al. (2010) and Wang et al. (2004), we based our approach
on traces transparently collected by the Darshan profiler, a
method also used by Luu et al. (2015). However, differently
from the latter, we also employ the concept of I/O phases
to group similar I/O behaviors and to characterize the I/O
workload of the machine. Such information can be used to
improve the I/O performance of the applications and to guide
system administrators to improve resource usage.

7 Conclusion and Future Work
In this paper, we have evaluated the I/O performance
of Santos Dumont, one the largest supercomputers in
Latin America. Such analysis is essential to ensure the
efficient use of the machine, as many applications spend a
significant portion of their execution time in I/O operations.
Additionally, our study provides valuable information that
can be taken to guide future upgrades on the I/O subsystem.

This paper was organized in three main parts. In Part I,
we presented a study of the I/O sub-system, by monitoring
a week of the supercomputer’s activity. This study aimed
to understand the I/O demands and detect possible issues
that translate into poor I/O performance, in addition to
identifying the most representative applications. As rarely
done for data from production systems, we made the data
set of metrics collected from the machine publicly available
to encourage future research: https://gitlab.com/
jeanbez/ijhpca-sdumont.
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During the study presented in Part I, an unexpected
behavior observed with the OLAM was reported. In Part
II, we reproduce the behavior to find large performance
differences between the MPI implementations available
for users. We have further investigated this difference by
conducting experiments with the BT-IO benchmark, the IOR
benchmarking tool, and with a custom benchmark. Results
indicated that the observed difference happens for small
requests (of approximately 1 KB), and comes the fact some
implementations have a lower performance for asynchronous
point-to-point communication. Our detailed documentation
of the phenomenon provides information that can be used to
improve future implementations of collective I/O operations.
Furthermore, an important contribution of this work is advice
to be given to SDumont users, as it was observed over 20%
of jobs use BullxMPI, the implementation that presented the
worst results in our analysis. By helping users achieve better
performance for their applications, we promote better usage
of the machine.

From the report of unexpected performance for an
application, identifying and understanding the issue require
considerable effort. In Part III, we discuss the challenge
of obtaining information about jobs I/O behaviors without
relying on users. That is important because users often do
not know the specificities of applications, and describing I/O
behavior is not trivial. We proposed a strategy for obtaining
a characterization of jobs I/O phases from Darshan traces.
After presenting our approach by applying it to OLAM
traces, we used GROMACS as a case study. In our analysis
of the GROMACS application, we were able to detect
four distinct groups that characterize and represent the I/O
behavior of these jobs.

As future work we plan to extend our investigation with
Darshan traces to the ten most used applications in the
machine and the top ten regarding I/O demands. Such
analysis will further assist in characterizing and optimizing
SDumont I/O infrastructure.
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