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ABSTRACT 

Can polarity-sensitive fluorescent dyes monitor the response of live cells to fundamental stress 

conditions, such as deprivation from nutrition and oxidative stress? To address this question, we 

developed a push-pull dioxaborine probe (DXB-NIR) for biomembranes and lipid droplets featuring 

strong solvatochromism in far-red to near-infrared region, high fluorescence brightness, photostability 

and two-photon absorption cross section, reaching 13800 GM at 925 nm. In model membranes, DXB-

NIR exhibits unprecedented 80-nm shift between liquid ordered and disordered membrane phases, 

allowing robust imaging of separated membrane microdomains. Two-color imaging of live cells with 

DXB-NIR enables polarity mapping in plasma membranes, endoplasmic reticulum and lipid droplets, 

which reveals that starvation and oxidative stress produce increase in the local polarity, and this change 

is different for each of the studied cell compartments. Thus, by pushing the limits of existing 

solvatochromic dyes, we introduce a concept of polarity mapping for monitoring the response of cells to 

stress. 
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We developed a solvatochromic near-infrared dye based on push-pull dioxaborine and introduced a 

polarity mapping concept for monitoring cell stress. 
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The response of the live cells to stress such as deprivation from nutrition (starvation) and oxidative stress 

is essential for cell survival.1,2 To monitor the cellular stress, an intensive research has been realized 

focusing on new fluorescent probes for detection of reactive oxygen species (ROS),3,4 such as hydrogen 

peroxide,5 peroxyl,6 peroxynitrite,7 hypochlorite,8 etc. An attractive unexplored approach that does not 

require direct chemical reaction of the probe with ROS of interest is to monitor cellular stress through 

biophysical properties of biomembranes and lipid droplets. Starvation can significantly alter cell 

metabolism, favoring degradation of certain types of lipids.9 On the other hand, oxidative stress,10 can 

induce lipid peroxidation 11, leading to dramatic alternation in the lipid organization.  

The emerging powerful tools for deciphering lipid organization in live cells are so-called environment-

sensitive fluorescent probes,12 sensitive to viscosity, lipid order and polarity. Dyes that undergo fast non-

radiative deactivation through internal rotation, so-called molecular rotors, enable imaging membrane 

viscosity, which reflects lipid packing and mechanical properties of membranes.13,14 Fluorophores that 

undergo ground-state planarization in highly ordered membrane phases, so called flippers, were recently 

proposed to characterize lipid order and membrane tension in biomembranes 15,16. Both molecular rotors 

and flippers were successfully used to monitor mechanical stress in live cells.13,15 Finally, solvatochromic 

dyes,17 push-pull fluorophores that undergo excited state charge transfer, can directly probe polarity of 

lipid structures 12. Polarity is a particularly important parameter, because it is remarkably low for all lipid 

structures compared to those of proteins, nucleic acids and carbohydrates. Polarity-dependent shift in the 

emission spectrum of solvatochromic dyes can specifically describe lipid organization, in particular, lipid 

order. Indeed, solvatochromic membrane probes, such as Laurdan,18 NR12S,19 di-4-ANEPPDHQ,20 etc., 

can distinguish by their emission color between liquid ordered (Lo) and liquid disordered (Ld) phases, 

which model formation of microdomains (so-called) rafts at the cell plasma membranes.21,22 Tightly 

packed lipids of Lo phase expel water and limit dipolar relations in the bilayer leading to low-polar 

environment recognized by these dyes.23 Moreover, solvatochromic dyes identify lipid droplets as highly 

apolar entities,24 because their core hosts the most lipophilic molecules of the cell.25,26 However, to date, 

solvatochromic dyes has not been reported to detect subtle changes in the lipid organization in cells under 

starvation and oxidative stress. The reasons are limited sensitivity of these probes to biophysical 

properties and their limited brightness, which do not allow analysis of their color response with sufficient 

contrast. The primary example is Laurdan, showing relatively good sensitivity to phase changes,18 but its 

brightness and photostability are limited24 and it operates in UV-visible spectral region. Nile Red (Fig. 

1a), on the other hand, is brighter and it operates in suitable green-red region, which made it useful tool 

for imaging polarity in cells with nanoscopic resolution.27 However, its environment-sensitivity is weaker 

and it is 2-3-fold less bright than classical dyes, such as rhodamine or cyanines.12 In the last decade, 

multiple efforts have been done to improve these fluorophores, resulting in different push-pull 

fluorophores, based on fluorene,28 pyrene,29 DCDHF family,30 diphenylamino derivatives,31,32 phenyl-

furane,33 P=O‐Rhodols 34, etc and some of them were successfully applied to study biomembranes24,35,36 

and lipid droplets.24,31,32 Nevertheless, so far it remains a challenge to obtain a probe combining high 

solvatochromism, brightness, response to lipid order and operation in the far red to near infrared (NIR) 

region. The latter has multiple advantages, such as (i) low photo-toxicity and auto-fluorescence; (ii) color 

complementarity with commonly used fluorescent proteins; and (iii) deep tissue penetration in eventual 

small animal imaging. Boron-bridged pi-conjugated systems constitute a promising scaffold for highly 

emissive fluorophores.37 In particular, dioxaborine unit was successfully used to design cyanine or 
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merocyanine-type dyes,38-40 featuring high brightness and photostability. Push-pull dioxaborines are 

much less explored, and their solvatochromism is limited.38,41 

In this work, we have developed a solvatochromic dye based on push-pull dioxaborine (DXB-NIR, Fig. 

1b), exhibiting NIR emission, high brightness and photo-stability as well as unprecedented 80 nm band 

shift in response to change in the lipid order. By changing its emission color, this probe provides the first 

evidence that starvation and oxidative stress increase significantly the local polarity in the intracellular 

membranes and in the lipid droplets. The developed probe proposes a new strategy to study response of 

the cell to the external stress. 

Previously reported push-pull dioxaborine derivative showed limited solvatochromism, associated with 

molecular rotor properties.41 To enhance the push-pull character and to minimize rotational deactivation, 

we replaced phenyl with benzofurayl moiety, which was shown earlier to improve optical properties of 

push-pull 3-methoxychromones.42 The target dye DXB-NIR was obtained by Knoevenagel condensation 

of benzofuran aldehyde with corresponding dioxaborine-ketone (Fig. 1b and Scheme S1). Newly 

synthesized compound was characterized by standard analytical methods (Figs. S1-S9). 

 

Fig. 1. (a) Previously reported push-pull dyes Nile Red and DXB-Red. (b) Synthesis of DXB-NIR. (c) 

normalized absorption and emission spectra of DXB-NIR (200 nM) in the organic solvents of varying 

polarity. For the fluorescence measurements DXB-NIR was excited at 580 nm. (d) Scheme showing that 

DXB-NIR probe is expected to provide color response to local polarity changes in live cell at different 

stress conditions. 

 

The absorption spectra of DXB-NIR in organic solvents cover red to NIR region (602-678 nm, Fig. 1c 

and Table 1). These values are red shifted by 95-120 nm with respect to Nile Red and by 60-70 nm with 

respect to the previously reported DXB-Red (Fig. 1a).41 The latter is the result of extended fluorophore 

conjugation. On increase in solvent polarity from non-polar cyclohexane to polar DMSO, the absorption 

spectra shifted from 602 to 678 nm, respectively, thus showing positive solvatochromism. Remarkably, 
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DXB-NIR showed ~2-fold higher molar extinction coefficients in most of the studied solvents (83000-

128000 M-1 cm-1) compared to Nile Red (Table S1).  

The emission spectra of DXB-NIR exhibited strong positive solvatochromism, as its maximum red 

shifted from 622 nm to 778 nm upon changing the solvent from apolar cyclohexane to polar DMSO (Fig. 

1c, Table 1). This observation suggests a strong charge transfer character of the excited state of DXB-

NIR, in line with its push-pull structure. The emission maximum of Nile Red also showed red shift, but 

it was significantly smaller, namely from 528 till 636 nm, respectively (Fig. S10). Similar to absorption 

spectra, the emission spectra of Nile Red in protic solvents showed red shifts compared to polar aprotic 

solvents, whereas for DXB-NIR they were significantly blue shifted (Table 1). These drastic differences 

can be due to the fact that in the case of DXB-NIR, the carbonyl lone pairs are involved in the 

complexation with boron, which should drastically decrease capacity of this carbonyl to form H-bonds 

with protic solvents. 

Table 1. Spectroscopic properties of Nile Red and DXB-NIR in large unilamellar vesicles (LUVs) of 

different compositions.a 

  Nile Red DXB-NIR 

Solvent/LUVs  λ abs, max (nm) λ em, max (nm) QY 

(%) 

λ abs, max (nm) λ em, max (nm) QY 

(%) 

Cyclohexane 2.017 489 528 49 602 622 93 

Toluene 2.374 509 571 68 627 687 81 

1,4-Dioxane 2.210 517 581 91 627 699 71 

Ethyl acetate 5.987 521 593 87 631 720 22 

Acetone 20.493 532 615 75 646 751 19 

Ethanol 24.852 550 636 52 645 748 18 

Methanol 32.613 553 640 38 647 754 3 

Acetonitrile 35.688 533 621 82 654 760 11 

DMF 37.219 544 626 63 666 769 9 

DMSO 46.826 554 636 46 678 778 3 

Buffer 78.355 593 667 5 585 721 0.03 

DOPC - 545 641 41 641 715 35 

DOPC/Chol - 550 635 45 632 711 44 

SM/Chol - 538 589 36 617 635 27 

Labrafac Oil - 531 590 55 628 701 39 

 a   is solvent dielectric constant; λ abs, max and λ em, max are absorption and emission maxima; QY (%) is 

fluorescence quantum yield, measured using Nile Red in  as reference (QY = 38% in methanol). 

 

The fluorescence quantum yield of DXB-NIR showed high values in the apolar solvents and it gradually 

decreased in the polar solvents (Table 1). This behavior is typical for the dye undergoing strong excited-

state charge transfer,12,43 Remarkably, DXB-NIR was non-fluorescent in water, clearly due to the strong 

quenching phenomenon in this highly polar solvent. Moreover, as the absorption spectrum DXB-NIR in 

water is blue shifted compared to other solvents, we cannot exclude some dye aggregation accompanied 

by self-quenching. In a mixture of glycerol and methanol, absorption and emission spectra of DXB-NIR 

were found to be poorly sensitive to the viscosity (Fig. S11). Thus, in contrast to previously reported 
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push-pull dioxaborine DXB-Red,41 DXB-NIR does not exhibit molecular rotor properties, probably 

because of its longer conjugation that ensures lower energy of its excited state and minimizes quenching 

through intramolecular rotation. Overall, the results suggest that DXB-NIR is promising as a fluorogenic 

and solvatochromic probe for polarity sensing in the apolar compartments of the cells such as 

biomembranes and lipid droplets. 

Finally, two-photon (2P) absorption cross-section of DXB-NIR was evaluated, because this property is 

important in two-photon microscopy, a powerful tool in bioimaging.44 In three solvents, the intensity 

showed quadratic dependence on the 2P excitation power (Fig. S12) and the maximum of 2P absorption 

bands centered around 930 nm (Fig. S13). The 2P absorption values varied significantly with solvent, 

being the highest for dichloromethane (13800 GM) and the lowest for toluene (3240 GM). Such influence 

of solvent dielectric constant is known for push-pull dyes that increase their charge transfer character in 

more polar media.45 These values are ~10-fold higher than that of Nile Red.19 Remarkably, the obtained 

value of 13800 GM at 925 nm for DXB-NIR in dichloromethane is among the largest reported to date 

for organic dyes and can only be compared to that of asymmetrical merocyanine-type dioxaborines.40,46 

The remarkable 2P efficiency of our push-pull dioxaborine is probably linked to strong intramolecular 

charge transfer (ICT) character of this dye, which is known to be a key factor in the 2P absorption.44 

We further evaluated the fluorescence response of DXB-NIR and Nile Red in large unilamellar vesicles 

(LUVs) of various lipid compositions. Binding to dioleoylphosphatidylcholine (DOPC) LUVs was 

accompanied by ~1000-fold enhancement in the fluorescence quantum yield: 27-44% in LUVs vs 0.03% 

in water (Table 1). The fluorogenic response of DXB-NIR was significantly larger compared to Nile 

Red, which had non-negligible emission in aqueous media (5%). Moreover, the absorption and emission 

maxima of DXB-NIR were 50-100 nm red shifted with respect to Nile Red (Table 1). Generally, 

solvatochromic dyes suffer from poor photostability.12 Moreover, shifting dyes towards NIR leads to 

decrease in their photostability.47 Remarkably, despite NIR emission of DXB-NIR in DOPC vesicles 

with maximum at 715 nm, which was 74 nm red shifted compared to Nile Red, DXB-NIR showed a bit 

higher photostability than Nile Red (Fig. S14). This high photostability of DXB-NIR could be explained 

in part by the presence of the boron bridge, which should minimize excited state isomerization 

processes.37,41 
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Fig. 2. Evaluation of DXB-NIR in model membranes. (a) Normalized emission spectra of Nile Red and 

DXB-NIR (200 nM) in large unilamellar vesicles of various composition. For the emission 

measurements, Nile Red was excited at 530 nm and DXB-NIR was excited at 580 nm. (b) Two-color 

fluorescence microscopy imaging of Ld, Lo, and mixed Lo/Ld phases in GUVs stained with DXB-NIR: 

far red channel (<640 nm), NIR channel (>640 nm) and merge of the two channels. GUVs were 

composed of DOPC (Ld), SM/Chol (2/1) (Lo), and DOPC/SM/Chol (1/1/0.5) (Lo/Ld mixture). The 

intensity scales are indicated for each channel. Excitation wavelength was 550 nm. Scale bar, 10 m. 

 

The emission spectrum of DXB-NIR showed strong dependence on the lipid order in LUVs (Fig. 2a). In 

Lo phase of LUVs composed of sphingomyelin (SM) and cholesterol (Chol), the emission spectrum was 

centered at 635 nm, which was significantly blue shifted compared to Ld vesicles made of DOPC or 

DOPC/Chol (Fig. 2a and Table 1). Similarly to Nile Red,19 DXB-NIR reports much lower polarity in Lo 

vs Ld phases, because of much tighter lipid packing in the former. Remarkably, the emission shifted by 

80 nm from Ld to Lo phase, which is much higher than that of the Nile Red (52 nm). To the best of our 

knowledge, this 80-nm shift is the largest ever reported for a solvatochromic dye and can only be 

compared to mechanophores that can strongly shift their excitation16 or emission48 spectra in response to 

planarization in lipid bilayers of solid ordered (gel) phase. 

Next, we performed fluorescence microscopy studies using giant unilamellar vesicles (GUVs) in order 

to visualize Lo and Ld phases. To image the spectral response of DXB-NIR, the signal was split into far 
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red (<640 nm) and NIR (>640 nm) channels. GUVs presenting Ld phase (DOPC) showed a strong 

emission of DXB-NIR in the >640 nm channel, whereas a negligible emission was observed in the <640 

nm channel (Fig. 2b). Remarkably, in the case of GUVs presenting Lo phase (SM/Chol), the emission 

was mainly observed in the <640 channel (Fig. 2b). This impressive color switching is clearly due to 

strong (80-nm) band shift displayed by this dye when pure Lo and Ld phases are compared. Importantly, 

in the ternary mixture composed of both Lo and Ld phases (DOPC/SM/Chol) distinct emission was 

observed in the <640 and >640 channels and in the overlay image, so that Lo and Ld domains were easily 

distinguishable (Fig. 2b). For comparison, Nile Red based probe (NR12S) showed less clear color change 

in GUVs, so that the ratiometric analysis was required to distinguish Lo and Ld phases.19 Overall, DXB-

NIR displays remarkable sensitivity to lipid order and could be of interest to detect subtle changes in the 

lipid organization in eukaryotic cells. 

We further characterized the staining of the cells with DXB-NIR using fluorescence microscopy.  Live 

cells incubated with DXB-NIR displayed intense fluorescence in different cellular compartments. To 

understand better dye bio-distribution, we localized its fluorescence with different cellular markers (Fig. 

3a): (i) BODIPY 493/503 for lipid droplets, (ii) ER tracker green for endoplasmic reticulum and (iii) 

F2N12SM49 for plasma membranes (PM). First, the dotted fluorescence of DXB-NIR inside the cells co-

localized well with BODIPY 493/503 (Fig. 3a), suggesting that it originates from LDs. Second, the 

continuous fluorescence inside the cells corresponded well to the staining with ER tracker (Fig. 3a), 

indicating that the DXB-NIR also distributed in the membranes of endoplasmic reticulum. Finally, non-

negligible fluorescence of DXB-NIR was also observed at the cell contour (Fig. 3a and S15), which 

corresponded to cell PM, in line with the F2N12SM staining. We can conclude that, owing to its 

lipophilic nature, DXB-NIR distributes all over different lipid structures of the cells, which enabled us 

to map distribution polarity all over these structures. To this end, we split the emission of the dye at 640 

nm, as we did for GUVs and studied intact live cells stained exclusively with DXB-NIR. Both <640 and 

>640 nm channels, presented in green and red, respectively, exhibited considerable fluorescence, and the 

merge of these two channels revealed variation of pseudo-color throughout the cell (Fig. 3b), suggesting 

uneven polarity distribution in the lipid compartments. To provide a quantitative information, we 

analyzed the ratio of NIR to far red channels, I(>640) / I(<640) in cells as well as in different model 

media: apolar oil of medium chain triglycerides (Labrafac) modeling LDs and lipid vesicles (LUVs) 

composed of SM/Chol and DOPC, modeling Lo and Ld phases in biomembranes. The ratio images of 

cells (Fig. 3b, c, e) confirmed the heterogeneity within different cellular compartments, observed in the 

merged images. Remarkably, magenta pseudo-color observed for LDs in cells corresponded to that 

observed for DXB-NIR in apolar oil (Fig. 3b and c). Blue pseudo-color of PM matched well to the 

SM/Chol, which confirmed that cell plasma membranes rich in SM and cholesterol present highly 

ordered state close to Lo.19,24,50 Finally, green-yellow color corresponding to intracellular membranes 

showed significantly higher polarity, compared to LDs and PM. The quantitative ratio analysis confirmed 

this observation, showing that polarity in PM, intracellular membranes (IM) and LDs corresponded to 

that in SM/Chol LUVs, DOPC LUVs and Labrafac oil (Fig. 3d). The observed higher polarity of 

intracellular membranes compared to PM is in agreement with previous reports 24 and reflects much 

lower content in cholesterol and SM in the intracellular membranes.51 Thus, by changing its emission 

color between far-red and NIR regions, DXB-NIR could clearly distinguish polarity of different cellular 

lipid compartments. These results corroborated with two-photon excited imaging of HeLa cells stained 
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with DXB-NIR, revealing uneven polarity distribution in the two-color merge and ratio images, featuring 

a nearly zero background (Fig. S16). Even though DXB-NIR shows solvent polarity dependent 2P 

absorption cross-section, it is high enough (3240 – 13800 GM) in the whole polarity range to ensure cell 

polarity mapping. This result suggests that DXB-NIR is also compatible with 2P imaging.   

 

 

Fig. 3. Imaging of HeLa cells with DXB-NIR. (a) Spinning-disk fluorescence microscopy of intracellular 

distribution of DXB-NIR Probe (200 nM, incubated with CD in OptiMEM for 30 min at 20 ˚C) co-

stained with membrane probe F2N12SM (100 nM, in HBSS for 7 min at 20˚ C), ER tracker Green (1 

mM, incubated in OptiMEM for 30 min at 37 ˚C) and LDs marker BODIPY 493/503 (500 nM, in 

OptiMEM for 5 min at 20˚C). Scale bar, 20 m. (b) Two-color wide-field fluorescence imaging of DXB-

NIR in live cells: far red channel (<640 nm), NIR channel (>640 nm), merge of the two channels and the 

ratio of NIR to far red channels (I>640/I<640). Scale bar, 10 m. (c) Ratio (I>640/I<640) images of DXB-NIR 

in LUVs composed of SM/Chol and DOPC and in Labrafac oil. Excitation wavelength was 550 nm (b,c). 

(d) NIR/far red intensity ratio (I>640/I<640) in LUVs composed of SM/Chol and DOPC, Labrafac oil, and 

in different cell compartments: plasma membranes (PM), intracellular membranes (IMs) and lipid 

droplets (LDs), obtained from fluorescence images (b) and (c). (e) Zoomed ratio image (b); scale bar, 5 

m. 



10 
 

 

To generate a model stress condition that can drastically alter properties of biomembranes, we deprived 

cells from cholesterol using methyl-β-cyclodextrin (MβCD)52 and imaged them in the two-color mode. 

Cholesterol extraction induced gradual increase in the relative intensity at the NIR emission channel 

(>640 nm), indicating polarity increase and the decrease in the lipid order in different biomembranes 

(Fig. 4a, c, e). To better visualize changes at the two channels, ratiometric images were generated (Fig. 

4b, d, f). They confirm the observations in the merged images showing that the ratio NIR to far red 

increased with cholesterol depletion time. At 30 min depletion time, the relative intensity in the NIR 

channel increased significantly only for the intracellular membranes, which was confirmed by the 

analysis of the ratio changes (Fig. 5c). On the other hand, for 2h of the depletion, the changes were 

already observed for all three lipid compartments studied (Fig. 4f, 5c). This result suggests that 

cholesterol depletion with MβCD produces the fastest effect at the level of intracellular membranes, in 

line with an earlier report, where cholesterol depletion was shown to be much faster in ER than in PM.53 

We could speculate that ER membranes could easily lose the small amount of cholesterol they contain, 

which seems not to be the case for LDs and PM. In case of PM, cholesterol is strongly associated with 

sphingomyelin, whereas in LDs cholesterol is present in the form of esters, which should be hydrolyzed 

before the removal. Nevertheless, 2h of cholesterol extraction appears sufficient to produce strong 

changes in all studied lipid compartments. These results suggest that DXB-NIR is useful to study changes 

in cholesterol distribution throughout the cell. 

 

 

Fig. 4. Cholesterol depletion studies in HeLa cells stained with DXB-NIR (200 nM). (a,b) Intact cells 

(a,b); cells treated with MβCD (2mg/ml) for 30 min (c,d) and 2 h (e,f). (a,c,e)Merged images in far red 

(presented in green) and NIR (presented in red) channels. (b,d,f) Ratio images of NIR to far red channels 

(I>640/I<640). A dichroic mirror at 640 nm was used to split the emission into the two channels. Excitation 

wavelength was 550 nm. Scale bar, 10 m. 
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To evaluate the effect of starvation, HeLa cells were maintained under serum-free conditions for 3 and 

24 h and then stained with DXB-NIR. The bright spots of DXB-NIR in starved cells (24 h) colocalized 

well with the LDs marker BODIPY 493/503, which confirms the presence of LDs and their labeling by 

our probe even after starvation (Fig. S17). The two-color imaging suggested a gradual increase in the 

relative intensity of the NIR channel with the starvation time (Fig. 5a, S18). The shift of DXB-NIR 

emission towards NIR region in response to the starvation was in agreement with the analyzed probe 

ratiometric response in the intracellular membranes and LDs (Fig. 5c) and with the histogram of the 

NIR/far red ratio distribution over the cells (Fig. S19). This spectral response indicated that polarity at 

different lipid compartments of starved cells increased over time. During the starvation, the cells are 

expected to use lipids as the energy source for their survival, which in turn alter the lipid order and hence 

the polarity monitored by DXB-NIR. The changes were particularly well seen at the level of LDs and 

intracellular membranes (Fig. 5a, 5c). As starvation is known to cause consumption and lipolysis of lipid 

components of LDs,9,54 the hydrophobic core of LDs should shrink, which is probably detected by DXB-

NIR as the increase in their polarity. Moreover, previous studies showed that starvation can be a source 

of autophagy and oxidative stress,9,55 which may favor lipid peroxidation,11 including that in LDs,56 

which could also explain the observed increase in the local polarity at the different lipid structures. 

Therefore, we further studied the effect of oxidative stress in cells by DXB-NIR. 

 

 

Fig. 5. Imaging HeLa cells under starvation and oxidative stress using DXB-NIR (200 nM): two-color 

merge (left) and ratio (right) images. (a) Intact cells and cells after 3 and 24 h starvation. (b) Intact cells 

and cells treated with 2 mM H2O2 for 1 h. A dichroic mirror at 640 nm was used to split the emission 

into the two channels. Excitation wavelength was 550 nm. Scale bar for main images (a,b), 10 m; for 

insets, 3 m. (c) Changes in the NIR/far red intensity ratio ((R - R0) / R0 × 100%, where R and R0 are the 

average intensity ratios of the stressed and intact cells, respectively) in the intracellular membranes (IMs) 

and lipid droplets (LDs) after cholesterol extraction, starvation and oxidative stress measured from 

corresponding fluorescence images. 



12 
 

 

The exposure of cells to hydrogen peroxide (H2O2) leads to oxidative stress, accompanied by lipid 

peroxidation11 that should alter structure and properties of lipid-based cell compartments. Here, the cells 

treated with H2O2 (2 mM for 1 h)57
 were further stained with DXB-NIR and imaged by two-color 

fluorescence microscopy. The obtained images suggested that H2O2 treatment induced drastic increase 

in the relative fluorescence signal at the NIR channel in cytoplasm and especially in LDs (Fig. 5b), which 

is already evident from the images with two channels merged (Fig. 5b, left). Analysis of the intensity 

ratio (Fig. 5b, right) further confirmed the drastic increase in the NIR emission of DXB-NIR in the H2O2-

treated cells. The effect is particularly strong at the level of LDs, where the NIR/far red ratio increased 

>2-fold from 8-10 (blue pseudo-color) to 22-25 (yellow-orange). The observation is confirmed by the 

analysis of the probe ratiometric response, showing that major changes are observed in LDs (Fig. 5c). It 

should be noted that after H2O2 treatment DXB-NIR colocalized well with LDs marker BODIPY 

493/503, which also confirmed the presence of LDs and their labelling by DXB-NIR after the oxidative 

stress (Fig. S20). To the best of our knowledge, the direct effect of oxidative stress on LDs polarity is 

reported for the first time. This could imply that LDs, rich in cholesterol and unsaturated lipids, are prone 

to oxidize rapidly under the condition of oxidative stress. Moreover, LDs has been recently shown to 

play protective antioxidant role in different cell types,58,59 which suggest that during oxidative stress LDs 

may undergo oxidation faster than other components. On the other hand, the cell plasma membrane and 

other intracellular membranes were less affected at this step, probably because of multiple anti-oxidant 

defense mechanisms. Thus, DXB-NIR can monitor oxidative stress in cells, but, unlike classical probes 

of oxidative stress that directly react with ROS,3 its response is indirect, being linked to changes in the 

local polarity in lipid compartments. 

 

In conclusion, we have developed a push-pull dioxaborine probe, DXB-NIR, showing strong 

solvatochromism in the emission changing from the far red to NIR region, high fluorescence quantum 

yield, photostability and molar extinction coefficient as well as outstanding two-photon absorption cross 

section at 930 nm. In model lipid membranes it showed unprecedented solvatochromic shift of 80 nm 

when liquid ordered and disordered membrane phases are compared, which enabled high-contrast 

imaging of these phases in giant vesicles. Importantly, two-color ratiometric imaging of cells in far-red 

and NIR regions using DXB-NIR dye allowed polarity mapping of different lipid structures, such as 

plasma membranes, endoplasmic reticulum and lipid droplets. The polarity mapping with DXB-NIR in 

live cells was also achieved using two-photon microscopy. Moreover, DXB-NIR probe revealed that 

different stress conditions, such as cholesterol extraction, starvation and oxidative stress produced drastic 

increase in local polarity, which was characteristic for each lipid compartment. Indeed, cholesterol 

extraction had a strong and rapid effect on endoplasmic reticulum, whereas starvation and oxidative stress 

affected strongly polarity of lipid droplets with less pronounced changes in other lipid structures. Thus, 

based on a powerful solvatochromic dye, we propose a concept of polarity mapping of lipid 

compartments of cells for monitoring their response to starvation and oxidative stress, which are in the 

center of variety of pathologies. 
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