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1. ABSTRACT 

Model Based Development (MBD) is now a common 
approach for the automotive industry. Using modeling 
tools to simulate the behavior of a system before 
developing the corresponding product(s) through 
automatic code generation has proven its efficiency.  
The Road vehicles — Functional safety — ISO 
26262 standard (Part6 ) [2] identifies MBD as a 
recommended approach especially for software 
architecture design with semi-formal notation and 
software verification with back-to-back testing through 
Model in the Loop (MIL) , Software in the Loop (SIL) 
and Processor in the Loop (PIL). 
Regarding error detection the standard recommends a 
certain number of monitoring methods such as “Range 
checks of input and output data”, “Plausibility check”, 
“Control flow monitoring”, but does not give any 
concrete recommendation for software implementation 
of those methods and therefore how to test through 
fault injection. In the MBD approach, since code is 
generated automatically, safety mechanisms must be 
introduced at model level.  
 
This paper explains the automated process that has 
been developed to implement safety mechanisms for 
error detection at model level. Concrete example is 
described showing the advantage of MBD for safety 
mechanisms implementation as well as for testing. The 
safety mechanisms tests are done through fault 
injection at both model and code level. It illustrates 
how, from a graphical model implementing functional 
requirements, dedicated safety mechanisms are 
automatically generated in the model on selected 
elements. 
In addition, test cases are automatically generated with 
complete validation environment to allow full test of the 
safety requirements. For functional requirement 
verification, the MIL, SIL, PIL and HIL regular process 
is applied in block box. For safety mechanism 
verification, the same process is applied but as white 
box (fault injection). Results reports for model 
simulation and code as well as coverage reports for 
model and code are automatically generated. 

Benefits of this innovating process are to: 

- Minimize the risks for the implementation of 
monitoring methods since safety mechanisms 
are automatically introduced in the model 
through a plug-in. 

- Improve consistency through code generation 
but also through automatic documentation 
generation from the model. 

- Support full testing and verification process 
(test cases creation, execution and reports 
generation). 

- Push standardization across projects for safety 
mechanisms implementation.  

 

2. INTRODUCTION 

Model Based Development Process including 

automatic code generation is used as standard in 

VALEO for 10 years. It has now reached a mature 

level (even though it continuously improves). In recent 

years new challenges appeared with safety 

requirements defined in the Road vehicles — 

Functional safety — ISO 26262 standard (Part6 ). The 

Part 6 of the standard, released end of 2011, specifies 

Software related Safety requirements. For each main 

topics (SW architecture design, unit design, 

implementation, testing, integration ,…) the standard 

gives some tables in which are listed different methods 

to address the topic. From the process point of view, 

many of the methods are already used in “non-safety 

related“ developments especially for Design approach 

and Verification and Validation strategy.  

Regarding Mechanisms for error detection at the 

software architectural level (Table 4 (Part 6)) the 

ISO 26262 standard defines generic mechanisms to 

be applied for error detection and handling without 

proposing detailed implementation. The systematic 

approach described in this paper gives an example of 

one of the concrete and automated solutions for 

covering Control flow monitoring method. 
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3. MODEL- BASED SOFWARE DEVELOPMENT 
PROCESS 

3.1 Overview 

This chapter will give a brief description of MBD 
process. The aim is to describe only the part of the 
process which is involved in the automatic safety 
mechanism.  

Model Based Development Process including 
automatic code generation is used as standard in 
VALEO for 10 years. For reactive system, which will be 
the use case for MBD safety mechanism described in 
this paper, Statemate tool is used. The scope of the 
model is the functional requirements which will be 
implemented as part of the application layer of the 
embedded software. From Requirements analysis, a 
functional model is first designed in order to validate 
the functional requirements. In parallel Requirement 
based testing is initiated. Validation team analysis 
requirements and build test cases that will be used in 
MIL (Model In the Loop), SIL (Software In the Loop) 
and HIL (Hardware In the Loop). Those test cases are 
generated as test scripts that will be automatically 
applied as inputs to the model for MIL testing. MIL 
reports cover both results comparison (expected 
results vs simulation results) and model coverage. 
Later on for HIL testing with the final ECU the exact 
same test cases will be performed. 

   Figure 1 — MIL validation process 

The process is fully automated with a set of plugins 
allowing translating test scripts into Statemate 
Statecharts that will be added to the simulation 
environment as test drivers for simulation. 

Once the model has formally been validated, the 
implementation phase starts with dedicated design 
rules checked automatically by an in-house plug-in. 
Code is generated to be executed first on a host PC. 
SIL testing is then performed by complete reuse of the 
MIL environment. Same as for MIL testing, SIL reports 
cover both results comparison (expected results vs 
code execution results) and code coverage. Code 
coverage is performed using a third party tool which is 
part of the full automation. No new scripting or 
configuration is needed. This part of the process is 
especially useful in case of Safety relevant Sw 
development as we will see later on. 

Full traceability from requirements to code is covered 
though dedicated attributes for all elements of the 
model which are generated as comments in the source 
code by code generator configuration.    

4. MBD PROCESS AND SAFETY 
REQUIREMENTS 

4.1 Road vehicles – Functional safety - 

The ISO 26262 is a set of documents defining the 
standard for Functional safety for Road vehicles. It 
defines an automotive specific risk-based approach for 
determining risk classes: ASIL (Automotive Safety 
Integrity Level). Four classes (A, B, C, D) are used to 
specify the necessary safety requirements for 
achieving an acceptable residual risk. “D” represents 
the highest risk. 

4.1.1 ASIL determination  

ASIL determination is based on the combination of 3 
factors: Severity of potential harm ( S ), Probability of 
exposure ( E ) and Controllability / chances to avoid 
harm ( C ). 

- Severity of potential harm has 4 classes: S0 
(No injuries) to S3 (Life-threatening injuries or 
fatal injuries). 

- Probability of exposure has 5 classes: E0 
(incredible) to E4 (High probability). Only E1 
(Very low probability) to E4 have affect on 
ASIL determination. 

- Controllability/chances to avoid harm has 4 
classes: C0 (Controllable in general) to C3 
(Difficult to control or uncontrollable). Only C1 
(Simply controllable) to C3 have affect on ASIL 
determination.  

 

QM stands for “Quality Management” and means that 
there is no ISO 26262  requirement to apply.  

Figure 2 — ASIL determination 

The ASIL determination is based on the Hazard 
Analysis and Risk Assessment and leads to the Safety 
goal concept. Next step of the Functional Safety 
process is to establish the Functional Safety 
requirements which allow to build the Technical Safety 
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concept out of which Safety requirements can be 
allocated, among others, to software. Therefore ASIL 
determination for SW activity is established. It will be 
the base for Safety methods choice for Software. 

The ISO 26262 Part 6 defines how ASIL level will 
influence SW development in terms of Process, 
Design and Verification strategy. 

Next chapter will give examples on how the ASIL level 
will influence MBD process, and what could be the 
added value of using MBD approach for safety 
relevant requirements to be implemented at Software 
level. This approach comes in addition of other 
approaches for Safety mechanisms implementation 
used for Software modules that are developed 
manually (no automatic code generation).    

4.1.2 Use of MBD for safety related Software  

Part 8 of ISO 26262 [1] : “Supporting processes” 
gives a set of tables to indicate which kind of methods 
are recommended for each part of the process. For 
each method a quotation is given depending on ASIL 
level. 

”++”: The method is highly recommended for this ASIL 
“+“:   The method is recommended for this ASIL. 
“o“:   The method has no recommendation for or 

against its usage for this ASIL. 

In the document we can find that Model Based 
Development is either recommended or highly 
recommended for safety related product development 
depending on the ASIL level. For example, 
specification methods are defined in the table 
”Specification of safety requirements” [1]. Three 
general methods for requirements specification are 
listed: 

- Informal notations (1a) 

- Semi-formal notations (1b) 

- Formal notations (1c) 

Tools used for MBD are semi-formal notations. This 
method is recommended (“+“) for ASIL A and B and 
highly recommended (“++”) for ASIL C and D. 

Another example is for verification methods which are 

listed in the table « Specification Verification of safety 

requirements in part 8 » [1]. Four methods are listed: 

- Verification by walk-through (1a) 

- Verification by inspection (1b) 

- Semi-formal verification (1c) 

- Formal verification (1d) 

For method 1c, there is the following note : “can be 
supported by executable models” which is indeed in-
line with the MBD process. Actually MBD is also an 

added value for method 1b in the way that large part of 
the inspection can be automated. 

Method 1b is recommended (“+“) for ASIL A and highly 
recommended (“++”) for ASIL B, C and D. 
Method 1c is recommended (“+“) for ASIL A and B and 
highly recommended (“++”) for ASIL C and D. 
 
 

In addition Part 6 of ISO 26262 [2] mentions the 
following: 

- Table 6 (PART 6)— Methods for the verification of 
the software architectural design, method 1C :  

Simulation of dynamic parts of the design which 
“requires the usage of executable models for the 
dynamic parts of the software architecture”. 

- Table 10 (PART 6)— Methods for software unit 
testing, method 1e : Back-to-back comparison test 
between model and code, if applicable which 
“requires a model that can simulate the functionality of 
the software units. Here, the model and code are 
stimulated in the same way and results compared with 
each other”. 

Both methods are either recommended or highly 
recommended for safety related product development 
depending on the ASIL level. 

Globally, Model based development process is a 
recommended approach for Safety related product 
development in terms of Requirement formalization, 
architecture, testing and validation. VALEO MBD 
process is already in line with most of the 
recommendation of the ISO 26262 Standard. 

The main adaptation needed comes from the safety 
mechanisms to be implemented at software level. In 
the MBD approach, since code is generated 
automatically from the model, safety mechanisms must 
be introduced at model level.  

4.2 Safety mechanisms for error detection 

This steps of the process comes after the Safety 
analyze, that is to say, the Software functions/modules 
to be protected by safety mechanisms has been 
already identified. Critical Path Analysis can be applied 
to identify all modules for which safety mechanisms 
should be implemented.    

[2] Table 4 (PART 6)— Mechanisms for error 
detection at the software architectural level, 
indicates methods to be applied but does not specify 
any concrete implementation mechanism. Six 
methods/measures are listed : 

- Range checks of input and output data (1a) 

- Plausibility check (1b) 

- Detection of data errors (1c) 
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- External monitoring facility (1d) 

- Control flow monitoring (1e) 

- Divers software design (1f) 

Method 1b is recommended (“+“) for ASIL A, B and C 
and highly recommended (“++”) for ASIL D. 
Method 1e is recommended (“+“) for ASIL B and highly 
recommended (“++”) for ASIL C and D. 
 

The ISO 26262 Part 6 lists methods without giving 
definitions. “Plausibility check” and “Control flow 
monitoring” for example are not clearly defined. 
Examples of those methods can be found in some 
publications but it seems that different interpretations 
can be found. This paper describes one safety 
mechanism implemented for error detection which we 
have classified as “Control flow monitoring” even 
though some would see it has “Plausibility check”. The 
implementation is done automatically in the model 
through a plug-in. It should be performed when 
functionality is implemented using   state machines. 

The workflow is the following:  

- functional model is designed without safety 
mechanisms. 

- functional test scripts are created based on 
Requirements analyze (classical MIL and SIL 
process) 

- once safety analyze has identified which part 
of the design should be protected (this can be 
done through Critical Path Analisis), automatic 
implementation is generated through a plug-in. 

- Test scripts are also generated automatically 
by the plug-in in order to be able to produce 
Model and code coverage reports for all safety 
related code. This is done by automatic 
modification of existing test scripts introducing 
Faults to trigger the ”safety code “ (white box 
testing).   

4.3 Control flow monitoring :  

4.3.1 Rational 

The aim of the safety mechanism is to detect, in a 
state machine, during SW execution, any transition 
between one state to the other which is not in line with 
the design. From formally designed Statecharts from 
functional requirements, a table is build which lists all 
basic states and indicates all allowed former state. The 
table is a 2 dimensional array. The size is determined 
with the number of basic states of the state machine, 
including subcharts. Bit- array is used to represent the 
valid transitions to reach a state. Each bit represents a 
state. Value “1” indicates a valid transition. In the basic 
example below, 5 transitions are allowed : 
TR_DEF_S1, TR_S2_S1, TR_S1_S2, TR_S1_S3 and 
TR_S3_S2.  

 

 

 

 

 

 

 

This leads to the following table : 

  

Figure 3 — Transition Statechart table: example 1 

The algorithm for this table is pretty simple, but 
becomes more complicated when considering all 
possibility of Statechart modeling with sub charts, 
parallelism, and History connector. History connector 
is a notation indicating that when leaving a chart or an 
encapsulated state, the last validate state will be 
entered when the chart is active again (instead of the 
default state). Parallel charts leads to consider more 
than 1 default state (as many as there are parallel 
state machines in a Statechart), History connector 
leads to consider all transitions leading to the chart as 
possible transition to each elementary state.  
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The initial version of the plug-in supported only simple 
Statecharts. It now supports all possibility of modeling, 
See example Figure 4.   

 

 

 

 

Figure 4 — Transition Statechart table: example 2 

Each time a state is entered, the above table is 
analyzed to detect any invalid former state by 
comparing the former state value to the “allowed 
former state” defined in the table for each state. 
Current state is then stored to be used for next state 
entered. If an invalid former state is detected an error 
function is called.  

 The plug-in analyzes the Statecharts in which safety 
mechanism needs to be introduced. to be secured, 
creates the necessary table and adds in each state an 
“entering static reaction” to perform the check each 
time the state is entered. Following items are 
automatically created in the model : 

- enumeration listing all basic states (includes 
subcharts) and Parallel states. Number of 
enumeration values equal number of states. 

- Statechart table listing valid transitions for 
each state 

- subroutine for error detection (to be 
customized for each project) 

- “entering static reaction” (actions performed 
when entering a state) for each state to detect 
non allowed transition.  

This instrumentation of the model is possible due to a 
set of API provided with Statemate which allows any 
user to develop plugins able to parse the model and 
retrieve any elements by using a set of query functions 
but also to create any kind of model element. This 
approach of using the so called dataport APIs was 
already used in the Standard MIL process to translate 
test scripts into Satecharts (see Figure 1 plug-in 
GenStatechartVal). 

Therefore each elementary state will be instrumented 
with following pseudo code: 

 

S2 

 

Figure 5 — Pseudo code instrumentation if 

elementary states 

“entering” is a keyword for specifying actions to be 
performed only when the state is entered. The former 
state (hold in the array 
CTRL_TOPCHART_OLD_SATE in the example) and 
the current one are checked against the Statechart 
table. If a mismatch is detected an error handler is 
triggered ( CTFL_STM_ERROR) passing as 
parameter the current state value and the former one.  

For Default state (initial state when a Statechart 
becomes active) specific pseudo code is generated in 
order to distinguish the entering in the state due to the 
first activation of the Statechart with further entry in the 
state. 

Deep History connector 

Parallelism 

Sub chart 

Sub chart 
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4.3.2 Plug-in workflow 

The plug-in displays the whole tree structure of the 
model allowing choosing which part of the model 
should be instrumented with Safety mechanisms. 

 

 

Figure 6 — Model instrumentation workflow 

In the above example the whole model is selected. 

Statechart PARALLEL_STATE_SC has 2 subcharts 

S4 and S6. In addition it has some parallel charts ST1 

and ST2 (identified we the green dotted line) and a 

History connector. This use case is taken into account 

by the plug-in algorithm. Parallel states impact the 

number of Statecharts table, history connector impacts 

the values of the Statecharts table. The plug-in will 

create Statechart tables (one per parallel chart) and 

static reaction for States S1, S2, S3, S5 (+ all basic 

states of the subcharts).  

Static reaction of elementary states now contains 

pseudo code (later on translated in C language as part 

of the graphical model). A generic function is created. 

This function is called during simulation and execution 

in case of fault error detection. Each project using this 

plug-in will customize the function to define the failure 

reaction depending of the safety analyze.  

 4.4 Verification and Testing: 

Regarding Validation and Verification strategy, the ISO 

26262 has a dedicated chapter “Software unit testing” 

in which we can find that [1] Software unit testing can 

be executed in different environments with MIL, SIL, 

PIL and HIL. It is also mentioned that in the case of 

model-based development, software unit testing may 

be moved to the model level using analogous 

structural coverage metrics for models. 

The following tables can be found:    

Table 12 (Part 6)— Structural coverage metrics at 

the software unit level, mentions Branch coverage 

and MC/DC coverage as recommended or highly 

recommended methods. 

  Table 10 (Part 6)— Methods for software unit 

testing, method 1c : Fault injection test  

We have seen how a safety mechanism is 

implemented automatically in a model. To be 

compliant with the standard the instrumented code 

needs to be covered in MC/DC mode.  

By definition the code introduced for safety mechanism 

cannot be reached by regular test cases generated 

from the model interfaces. Those tests will need to be 

generated as white box through fault injection by 

modifying internal state variables in order to generate 

an error. The aim of those test scripts is to cover the 

structural tests of the implemented safety mechanism. 

The solution chosen for the automation of the fault 

injection through test scripts was to reuse the 

functional test cases and introduce fault to cover fault 

error detection functions. As mentioned in chapter 3, 

our regular process for black box testing uses test 

scripts which describes some test sequences with the 

expected results. In general the signals used are the 

interfaces of the module. During MIL testing, inputs 

and outputs are stored by the simulation tool. The 

format of this file contains Timing reference, name of 

variables and new value. List of variables to be 

recorded is defined by the test cases. Statemate will 

record during simulation every signals in the list each 

time a signal changes. In example of recorded output 

file Figure 7, we can find regular output signals 

(EWO_xxx).  

Selection of charts 

Instrumentation 

of  charts 

Creation of Safety 

SW mechanism 
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Figure 7 — Simulation output files format 

In regular functional MIL testing, this output file allows 

comparing the results of the simulation with the 

expected results defined in the script. Model coverage 

and, after performing SIL, code coverage reports are 

produced in order to check coverage. Therefore the 

verification that all states and all transitions are 

reached by functional test cases is available. The 

100% coverage for states and transitions is a 

mandatory condition in order to generate test scripts 

for Safety mechanisms as we will see further on. For 

conditions, only Decision coverage ( DC ) is needed, 

no need of MC/DC coverage. Indeed what is needed is 

to have at least one test scenario that will lead to cover 

a transition, no matter if we cover all the possibility to 

trigger the transition. For example if the label of a 

transition is [Condition_A] OR [Condition_B], a 

scenario in which Condition_A is true is enough.  

The test cases that will be generated for the Safety 

mechanism structural coverage are not generated from 

scratch but from existing tests scripts developed based 

on functional requirements. Necessary step is to run 

the functional tests with adding in the list of “output” 

signals to be stored the state variables that were 

introduced by the plug-in. This will lead to have output 

files containing references of state variables (see 

Figure 7 CTRL_AUTH_DRINK_OLD_STATE state 

variables). 

The test scripts are, as well has the output recorded 

files during simulation, inputs for the plug-in. Both files 

are parsed to detect which input change in the script 

leads to a new state. Due to the presence of State 

variables in the “outputs” file it is possible to detect in 

the output recorded file each reference to the entering 

in a state with its timing reference. This timing 

reference will be used to identify in the input test script 

where to modify. The scripts are then duplicated and 

modified so that state variables could be corrupted in 

order to generate safety error. 

Figure 8 describes this structural coverage test script 

generation workflow 

 

 

 

 

 

 

 

 

  Figure 8 — workflow for Structural coverage script 

generation  

During the generation of the structural coverage test 

scripts, in addition of the fault injection, the expected 

results are defined (triggering of error handler). The 

scripts are now ready to be performed in MIL and SIL. 

 

 

 

Input: Output file from former MIL 

for identification of state variable 

Input: Test script from former MIL 

Output: New Test script 

Regular output signals 

of charts 
State variables 
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5. CONCLUSION  

This example of automated Safety mechanism 
generation is only one part of safety techniques to be 
designed and implemented at Software level but it has 
the great advantage to be fully automated not only for 
implementation but also for test cases. This innovating 
automated process is a first step on how to fill the gap 
between MBD regular approach and the Safety related 
requirements defined in the ISO 26262. It minimizes 
the risks for the implementation of monitoring methods 
since the safety mechanisms are automatically 
introduced in the model through a plug-in. In case of 
functional change request, model is modified and 
safety mechanism is regenerated with no effort. The 
process also supports full automated testing and 
verification workflow (test cases creation, execution 
and reports generation). Finally it pushes 
standardization across projects for safety mechanisms 
implementation. Projects only need to determine the 
actual error handler implementation for error detection.   

 

6. GLOSSARY  

MBD  Model Based Development 

MIL Model In the Loop 

SIL Software In the Loop 

PIL Processor In the Loop 

HIL Hardware In the Loop 

ASIL Automotive Safety Integrity Level 

MC/DC Modified Condition / Decision Coverage 
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