
HAL Id: hal-02272246
https://hal.archives-ouvertes.fr/hal-02272246

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Safety mechanisms implementation in
Software Model-Based Development

Florent Fève

To cite this version:
Florent Fève. Automatic Safety mechanisms implementation in Software Model-Based Development.
Embedded Real Time Software and Systems (ERTS2014), Feb 2014, Toulouse, France. �hal-02272246�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/227317335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02272246
https://hal.archives-ouvertes.fr

Page 1/8

Automatic Safety mechanisms implementation in Software
Model-Based Development

ERTSS 2014 : (thema : Model-based system engineering, Safety)

Author : Florent Feve
VALEO Laiernstrasse 12, 74321 Bietigheim-Bissingen, Deutschland; e-mail: florent.feve@valeo.com
Keywords : Model Based Development, Safety, Error detection, Fault injection, MIL, SIL

1. ABSTRACT

Model Based Development (MBD) is now a common
approach for the automotive industry. Using modeling
tools to simulate the behavior of a system before
developing the corresponding product(s) through
automatic code generation has proven its efficiency.
The Road vehicles — Functional safety — ISO
26262 standard (Part6) [2] identifies MBD as a
recommended approach especially for software
architecture design with semi-formal notation and
software verification with back-to-back testing through
Model in the Loop (MIL) , Software in the Loop (SIL)
and Processor in the Loop (PIL).
Regarding error detection the standard recommends a
certain number of monitoring methods such as “Range
checks of input and output data”, “Plausibility check”,
“Control flow monitoring”, but does not give any
concrete recommendation for software implementation
of those methods and therefore how to test through
fault injection. In the MBD approach, since code is
generated automatically, safety mechanisms must be
introduced at model level.

This paper explains the automated process that has
been developed to implement safety mechanisms for
error detection at model level. Concrete example is
described showing the advantage of MBD for safety
mechanisms implementation as well as for testing. The
safety mechanisms tests are done through fault
injection at both model and code level. It illustrates
how, from a graphical model implementing functional
requirements, dedicated safety mechanisms are
automatically generated in the model on selected
elements.
In addition, test cases are automatically generated with
complete validation environment to allow full test of the
safety requirements. For functional requirement
verification, the MIL, SIL, PIL and HIL regular process
is applied in block box. For safety mechanism
verification, the same process is applied but as white
box (fault injection). Results reports for model
simulation and code as well as coverage reports for
model and code are automatically generated.

Benefits of this innovating process are to:

- Minimize the risks for the implementation of
monitoring methods since safety mechanisms
are automatically introduced in the model
through a plug-in.

- Improve consistency through code generation
but also through automatic documentation
generation from the model.

- Support full testing and verification process
(test cases creation, execution and reports
generation).

- Push standardization across projects for safety
mechanisms implementation.

2. INTRODUCTION

Model Based Development Process including

automatic code generation is used as standard in

VALEO for 10 years. It has now reached a mature

level (even though it continuously improves). In recent

years new challenges appeared with safety

requirements defined in the Road vehicles —

Functional safety — ISO 26262 standard (Part6). The

Part 6 of the standard, released end of 2011, specifies

Software related Safety requirements. For each main

topics (SW architecture design, unit design,

implementation, testing, integration ,…) the standard

gives some tables in which are listed different methods

to address the topic. From the process point of view,

many of the methods are already used in “non-safety

related“ developments especially for Design approach

and Verification and Validation strategy.

Regarding Mechanisms for error detection at the

software architectural level (Table 4 (Part 6)) the

ISO 26262 standard defines generic mechanisms to

be applied for error detection and handling without

proposing detailed implementation. The systematic

approach described in this paper gives an example of

one of the concrete and automated solutions for

covering Control flow monitoring method.

Page 2/8

3. MODEL- BASED SOFWARE DEVELOPMENT
PROCESS

3.1 Overview

This chapter will give a brief description of MBD
process. The aim is to describe only the part of the
process which is involved in the automatic safety
mechanism.

Model Based Development Process including
automatic code generation is used as standard in
VALEO for 10 years. For reactive system, which will be
the use case for MBD safety mechanism described in
this paper, Statemate tool is used. The scope of the
model is the functional requirements which will be
implemented as part of the application layer of the
embedded software. From Requirements analysis, a
functional model is first designed in order to validate
the functional requirements. In parallel Requirement
based testing is initiated. Validation team analysis
requirements and build test cases that will be used in
MIL (Model In the Loop), SIL (Software In the Loop)
and HIL (Hardware In the Loop). Those test cases are
generated as test scripts that will be automatically
applied as inputs to the model for MIL testing. MIL
reports cover both results comparison (expected
results vs simulation results) and model coverage.
Later on for HIL testing with the final ECU the exact
same test cases will be performed.

 Figure 1 — MIL validation process

The process is fully automated with a set of plugins
allowing translating test scripts into Statemate
Statecharts that will be added to the simulation
environment as test drivers for simulation.

Once the model has formally been validated, the
implementation phase starts with dedicated design
rules checked automatically by an in-house plug-in.
Code is generated to be executed first on a host PC.
SIL testing is then performed by complete reuse of the
MIL environment. Same as for MIL testing, SIL reports
cover both results comparison (expected results vs
code execution results) and code coverage. Code
coverage is performed using a third party tool which is
part of the full automation. No new scripting or
configuration is needed. This part of the process is
especially useful in case of Safety relevant Sw
development as we will see later on.

Full traceability from requirements to code is covered
though dedicated attributes for all elements of the
model which are generated as comments in the source
code by code generator configuration.

4. MBD PROCESS AND SAFETY
REQUIREMENTS

4.1 Road vehicles – Functional safety -

The ISO 26262 is a set of documents defining the
standard for Functional safety for Road vehicles. It
defines an automotive specific risk-based approach for
determining risk classes: ASIL (Automotive Safety
Integrity Level). Four classes (A, B, C, D) are used to
specify the necessary safety requirements for
achieving an acceptable residual risk. “D” represents
the highest risk.

4.1.1 ASIL determination

ASIL determination is based on the combination of 3
factors: Severity of potential harm (S), Probability of
exposure (E) and Controllability / chances to avoid
harm (C).

- Severity of potential harm has 4 classes: S0
(No injuries) to S3 (Life-threatening injuries or
fatal injuries).

- Probability of exposure has 5 classes: E0
(incredible) to E4 (High probability). Only E1
(Very low probability) to E4 have affect on
ASIL determination.

- Controllability/chances to avoid harm has 4
classes: C0 (Controllable in general) to C3
(Difficult to control or uncontrollable). Only C1
(Simply controllable) to C3 have affect on ASIL
determination.

QM stands for “Quality Management” and means that
there is no ISO 26262 requirement to apply.

Figure 2 — ASIL determination

The ASIL determination is based on the Hazard
Analysis and Risk Assessment and leads to the Safety
goal concept. Next step of the Functional Safety
process is to establish the Functional Safety
requirements which allow to build the Technical Safety

Page 3/8

concept out of which Safety requirements can be
allocated, among others, to software. Therefore ASIL
determination for SW activity is established. It will be
the base for Safety methods choice for Software.

The ISO 26262 Part 6 defines how ASIL level will
influence SW development in terms of Process,
Design and Verification strategy.

Next chapter will give examples on how the ASIL level
will influence MBD process, and what could be the
added value of using MBD approach for safety
relevant requirements to be implemented at Software
level. This approach comes in addition of other
approaches for Safety mechanisms implementation
used for Software modules that are developed
manually (no automatic code generation).

4.1.2 Use of MBD for safety related Software

Part 8 of ISO 26262 [1] : “Supporting processes”
gives a set of tables to indicate which kind of methods
are recommended for each part of the process. For
each method a quotation is given depending on ASIL
level.

”++”: The method is highly recommended for this ASIL
“+“: The method is recommended for this ASIL.
“o“: The method has no recommendation for or

against its usage for this ASIL.

In the document we can find that Model Based
Development is either recommended or highly
recommended for safety related product development
depending on the ASIL level. For example,
specification methods are defined in the table
”Specification of safety requirements” [1]. Three
general methods for requirements specification are
listed:

- Informal notations (1a)

- Semi-formal notations (1b)

- Formal notations (1c)

Tools used for MBD are semi-formal notations. This
method is recommended (“+“) for ASIL A and B and
highly recommended (“++”) for ASIL C and D.

Another example is for verification methods which are

listed in the table « Specification Verification of safety

requirements in part 8 » [1]. Four methods are listed:

- Verification by walk-through (1a)

- Verification by inspection (1b)

- Semi-formal verification (1c)

- Formal verification (1d)

For method 1c, there is the following note : “can be
supported by executable models” which is indeed in-
line with the MBD process. Actually MBD is also an

added value for method 1b in the way that large part of
the inspection can be automated.

Method 1b is recommended (“+“) for ASIL A and highly
recommended (“++”) for ASIL B, C and D.
Method 1c is recommended (“+“) for ASIL A and B and
highly recommended (“++”) for ASIL C and D.

In addition Part 6 of ISO 26262 [2] mentions the
following:

- Table 6 (PART 6)— Methods for the verification of
the software architectural design, method 1C :

Simulation of dynamic parts of the design which
“requires the usage of executable models for the
dynamic parts of the software architecture”.

- Table 10 (PART 6)— Methods for software unit
testing, method 1e : Back-to-back comparison test
between model and code, if applicable which
“requires a model that can simulate the functionality of
the software units. Here, the model and code are
stimulated in the same way and results compared with
each other”.

Both methods are either recommended or highly
recommended for safety related product development
depending on the ASIL level.

Globally, Model based development process is a
recommended approach for Safety related product
development in terms of Requirement formalization,
architecture, testing and validation. VALEO MBD
process is already in line with most of the
recommendation of the ISO 26262 Standard.

The main adaptation needed comes from the safety
mechanisms to be implemented at software level. In
the MBD approach, since code is generated
automatically from the model, safety mechanisms must
be introduced at model level.

4.2 Safety mechanisms for error detection

This steps of the process comes after the Safety
analyze, that is to say, the Software functions/modules
to be protected by safety mechanisms has been
already identified. Critical Path Analysis can be applied
to identify all modules for which safety mechanisms
should be implemented.

[2] Table 4 (PART 6)— Mechanisms for error
detection at the software architectural level,
indicates methods to be applied but does not specify
any concrete implementation mechanism. Six
methods/measures are listed :

- Range checks of input and output data (1a)

- Plausibility check (1b)

- Detection of data errors (1c)

Page 4/8

- External monitoring facility (1d)

- Control flow monitoring (1e)

- Divers software design (1f)

Method 1b is recommended (“+“) for ASIL A, B and C
and highly recommended (“++”) for ASIL D.
Method 1e is recommended (“+“) for ASIL B and highly
recommended (“++”) for ASIL C and D.

The ISO 26262 Part 6 lists methods without giving
definitions. “Plausibility check” and “Control flow
monitoring” for example are not clearly defined.
Examples of those methods can be found in some
publications but it seems that different interpretations
can be found. This paper describes one safety
mechanism implemented for error detection which we
have classified as “Control flow monitoring” even
though some would see it has “Plausibility check”. The
implementation is done automatically in the model
through a plug-in. It should be performed when
functionality is implemented using state machines.

The workflow is the following:

- functional model is designed without safety
mechanisms.

- functional test scripts are created based on
Requirements analyze (classical MIL and SIL
process)

- once safety analyze has identified which part
of the design should be protected (this can be
done through Critical Path Analisis), automatic
implementation is generated through a plug-in.

- Test scripts are also generated automatically
by the plug-in in order to be able to produce
Model and code coverage reports for all safety
related code. This is done by automatic
modification of existing test scripts introducing
Faults to trigger the ”safety code “ (white box
testing).

4.3 Control flow monitoring :

4.3.1 Rational

The aim of the safety mechanism is to detect, in a
state machine, during SW execution, any transition
between one state to the other which is not in line with
the design. From formally designed Statecharts from
functional requirements, a table is build which lists all
basic states and indicates all allowed former state. The
table is a 2 dimensional array. The size is determined
with the number of basic states of the state machine,
including subcharts. Bit- array is used to represent the
valid transitions to reach a state. Each bit represents a
state. Value “1” indicates a valid transition. In the basic
example below, 5 transitions are allowed :
TR_DEF_S1, TR_S2_S1, TR_S1_S2, TR_S1_S3 and
TR_S3_S2.

This leads to the following table :

Figure 3 — Transition Statechart table: example 1

The algorithm for this table is pretty simple, but
becomes more complicated when considering all
possibility of Statechart modeling with sub charts,
parallelism, and History connector. History connector
is a notation indicating that when leaving a chart or an
encapsulated state, the last validate state will be
entered when the chart is active again (instead of the
default state). Parallel charts leads to consider more
than 1 default state (as many as there are parallel
state machines in a Statechart), History connector
leads to consider all transitions leading to the chart as
possible transition to each elementary state.

Page 5/8

The initial version of the plug-in supported only simple
Statecharts. It now supports all possibility of modeling,
See example Figure 4.

Figure 4 — Transition Statechart table: example 2

Each time a state is entered, the above table is
analyzed to detect any invalid former state by
comparing the former state value to the “allowed
former state” defined in the table for each state.
Current state is then stored to be used for next state
entered. If an invalid former state is detected an error
function is called.

 The plug-in analyzes the Statecharts in which safety
mechanism needs to be introduced. to be secured,
creates the necessary table and adds in each state an
“entering static reaction” to perform the check each
time the state is entered. Following items are
automatically created in the model :

- enumeration listing all basic states (includes
subcharts) and Parallel states. Number of
enumeration values equal number of states.

- Statechart table listing valid transitions for
each state

- subroutine for error detection (to be
customized for each project)

- “entering static reaction” (actions performed
when entering a state) for each state to detect
non allowed transition.

This instrumentation of the model is possible due to a
set of API provided with Statemate which allows any
user to develop plugins able to parse the model and
retrieve any elements by using a set of query functions
but also to create any kind of model element. This
approach of using the so called dataport APIs was
already used in the Standard MIL process to translate
test scripts into Satecharts (see Figure 1 plug-in
GenStatechartVal).

Therefore each elementary state will be instrumented
with following pseudo code:

S2

Figure 5 — Pseudo code instrumentation if

elementary states

“entering” is a keyword for specifying actions to be
performed only when the state is entered. The former
state (hold in the array
CTRL_TOPCHART_OLD_SATE in the example) and
the current one are checked against the Statechart
table. If a mismatch is detected an error handler is
triggered (CTFL_STM_ERROR) passing as
parameter the current state value and the former one.

For Default state (initial state when a Statechart
becomes active) specific pseudo code is generated in
order to distinguish the entering in the state due to the
first activation of the Statechart with further entry in the
state.

Deep History connector

Parallelism

Sub chart

Sub chart

Page 6/8

4.3.2 Plug-in workflow

The plug-in displays the whole tree structure of the
model allowing choosing which part of the model
should be instrumented with Safety mechanisms.

Figure 6 — Model instrumentation workflow

In the above example the whole model is selected.

Statechart PARALLEL_STATE_SC has 2 subcharts

S4 and S6. In addition it has some parallel charts ST1

and ST2 (identified we the green dotted line) and a

History connector. This use case is taken into account

by the plug-in algorithm. Parallel states impact the

number of Statecharts table, history connector impacts

the values of the Statecharts table. The plug-in will

create Statechart tables (one per parallel chart) and

static reaction for States S1, S2, S3, S5 (+ all basic

states of the subcharts).

Static reaction of elementary states now contains

pseudo code (later on translated in C language as part

of the graphical model). A generic function is created.

This function is called during simulation and execution

in case of fault error detection. Each project using this

plug-in will customize the function to define the failure

reaction depending of the safety analyze.

 4.4 Verification and Testing:

Regarding Validation and Verification strategy, the ISO

26262 has a dedicated chapter “Software unit testing”

in which we can find that [1] Software unit testing can

be executed in different environments with MIL, SIL,

PIL and HIL. It is also mentioned that in the case of

model-based development, software unit testing may

be moved to the model level using analogous

structural coverage metrics for models.

The following tables can be found:

Table 12 (Part 6)— Structural coverage metrics at

the software unit level, mentions Branch coverage

and MC/DC coverage as recommended or highly

recommended methods.

 Table 10 (Part 6)— Methods for software unit

testing, method 1c : Fault injection test

We have seen how a safety mechanism is

implemented automatically in a model. To be

compliant with the standard the instrumented code

needs to be covered in MC/DC mode.

By definition the code introduced for safety mechanism

cannot be reached by regular test cases generated

from the model interfaces. Those tests will need to be

generated as white box through fault injection by

modifying internal state variables in order to generate

an error. The aim of those test scripts is to cover the

structural tests of the implemented safety mechanism.

The solution chosen for the automation of the fault

injection through test scripts was to reuse the

functional test cases and introduce fault to cover fault

error detection functions. As mentioned in chapter 3,

our regular process for black box testing uses test

scripts which describes some test sequences with the

expected results. In general the signals used are the

interfaces of the module. During MIL testing, inputs

and outputs are stored by the simulation tool. The

format of this file contains Timing reference, name of

variables and new value. List of variables to be

recorded is defined by the test cases. Statemate will

record during simulation every signals in the list each

time a signal changes. In example of recorded output

file Figure 7, we can find regular output signals

(EWO_xxx).

Selection of charts

Instrumentation

of charts

Creation of Safety

SW mechanism

Page 7/8

Figure 7 — Simulation output files format

In regular functional MIL testing, this output file allows

comparing the results of the simulation with the

expected results defined in the script. Model coverage

and, after performing SIL, code coverage reports are

produced in order to check coverage. Therefore the

verification that all states and all transitions are

reached by functional test cases is available. The

100% coverage for states and transitions is a

mandatory condition in order to generate test scripts

for Safety mechanisms as we will see further on. For

conditions, only Decision coverage (DC) is needed,

no need of MC/DC coverage. Indeed what is needed is

to have at least one test scenario that will lead to cover

a transition, no matter if we cover all the possibility to

trigger the transition. For example if the label of a

transition is [Condition_A] OR [Condition_B], a

scenario in which Condition_A is true is enough.

The test cases that will be generated for the Safety

mechanism structural coverage are not generated from

scratch but from existing tests scripts developed based

on functional requirements. Necessary step is to run

the functional tests with adding in the list of “output”

signals to be stored the state variables that were

introduced by the plug-in. This will lead to have output

files containing references of state variables (see

Figure 7 CTRL_AUTH_DRINK_OLD_STATE state

variables).

The test scripts are, as well has the output recorded

files during simulation, inputs for the plug-in. Both files

are parsed to detect which input change in the script

leads to a new state. Due to the presence of State

variables in the “outputs” file it is possible to detect in

the output recorded file each reference to the entering

in a state with its timing reference. This timing

reference will be used to identify in the input test script

where to modify. The scripts are then duplicated and

modified so that state variables could be corrupted in

order to generate safety error.

Figure 8 describes this structural coverage test script

generation workflow

 Figure 8 — workflow for Structural coverage script

generation

During the generation of the structural coverage test

scripts, in addition of the fault injection, the expected

results are defined (triggering of error handler). The

scripts are now ready to be performed in MIL and SIL.

Input: Output file from former MIL

for identification of state variable

Input: Test script from former MIL

Output: New Test script

Regular output signals

of charts
State variables

Page 8/8

5. CONCLUSION

This example of automated Safety mechanism
generation is only one part of safety techniques to be
designed and implemented at Software level but it has
the great advantage to be fully automated not only for
implementation but also for test cases. This innovating
automated process is a first step on how to fill the gap
between MBD regular approach and the Safety related
requirements defined in the ISO 26262. It minimizes
the risks for the implementation of monitoring methods
since the safety mechanisms are automatically
introduced in the model through a plug-in. In case of
functional change request, model is modified and
safety mechanism is regenerated with no effort. The
process also supports full automated testing and
verification workflow (test cases creation, execution
and reports generation). Finally it pushes
standardization across projects for safety mechanisms
implementation. Projects only need to determine the
actual error handler implementation for error detection.

6. GLOSSARY

MBD Model Based Development

MIL Model In the Loop

SIL Software In the Loop

PIL Processor In the Loop

HIL Hardware In the Loop

ASIL Automotive Safety Integrity Level

MC/DC Modified Condition / Decision Coverage

7. REFERENCES

[1] Road vehicles — Functional safety — Part 8:

Supporting processes

[2] Road vehicles — Functional safety — Part 6:

Product development: software level

[3] MISRA AC AGC Guidelines for the application
of MISRA-C:2004 in the context of automatic
code generation, ISBN 978-1-906400-02-6,
MIRA, November 2007.

