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Abstract

We compare the performance of humans (English and French
listeners) versus an unsupervised speech model in a perception
experiment (ABX discrimination task). Although the ABX
task has been used for acoustic model evaluation in previous
research, the results have not, until now, been compared di-
rectly with human behaviour in an experiment. We show that a
standard, well-performing model (DPGMM) has better accu-
racy at predicting human responses than the acoustic baseline.
The model also shows a native language effect, better resem-
bling native listeners of the language on which it was trained.
However, the native language effect shown by the models is
different than the one shown by the human listeners, and, no-
tably, the models do not show the same overall patterns of
vowel confusions.
Keywords: linguistics; language acquisition; machine learn-
ing; speech recognition

Introduction
Comparing cognitive models with human behaviour often
involves some idealization. The ideal comparison between
a model and a human behavioural experiment would sim-
ply have the model “participate” in the experiment, ex-
posed to the same stimulus files as are presented to the hu-
mans, responding as if it were just another human subject.
Its responses would be compared to human subjects’ on a
stimulus-by-stimulus level. This ideal is reached only rarely
(for example, Riochet et al., 2018). Most settings either
simplify the stimuli given to models (for example, showing
images of objects to human participants, but providing the
model instead with a discrete input indicating whether the ob-
ject was a dog or a cat, as in Xu & Tenenbaum, 2007), or com-
pare highly aggregated results rather than predictions on in-
dividual stimuli (for example, Gulordava et al., 2018). These
simplifications, while often essential, may mask aspects of
the real task which have a major impact on the results.

Meanwhile, a large body of recent research has proposed
to evaluate acoustic models trained on speech databases, par-
ticularly those trained in an unsupervised way, using an ABX
phone discrimination task (Schatz et al., 2013). This eval-
uation considers pairs of speech stimulus items (A and B)
coming from two different phonemic categories, assessing
whether the model’s representation of a third stimulus (X) is
more similar to its representation of A or of B.

While this task is analogous to the standard human ABX
perception task, a direct comparison of the two to evaluate

models or better understand human behaviour has not yet
been done. We propose a direct, stimulus-by-stimulus com-
parison of an acoustic model with human perception in an
ABX perception task. Additionally, the stimuli for our task
come from two different languages. We examine the be-
haviour of human subjects, and trained models, for whom one
of the languages is a second language (L2). Previously, un-
supervised acoustic models have typically been evaluated by
assessing how well they discriminate phonemes of the lan-
guage on which they are trained (L1), their objective being to
reach perfect discrimination of all pairs of phonemes in the
L1 (Schatz et al., 2013; Versteegh et al., 2015). A few stud-
ies have investigated patterns of L2 discrimination in acoustic
models, looking at overall accuracy on phonemic contrasts
from languages other than the training language. But their
conclusions have been based on qualitative summaries of the
behaviour of the models, with no human reference data on the
same stimuli (Schatz et al., 2017; Schatz & Feldman, 2018).

A stimulus-by-stimulus comparison of an acoustic model
with human performance on a speech perception task might
reveal major differences between the two. If a trained acous-
tic model is seen as an acoustic baseline, the comparison will
highlight aspects of human speech perception which are sur-
prising given properties of the signal alone. On the other
hand, if the goal of the acoustic model is to be human-like,
such a comparison shows us where the model falls short.

We train an unsupervised acoustic model which is known
to perform globally well on corpus-based ABX evaluations
(Chen et al., 2015). We train the model on English and
French corpora. We expose both the English-trained model
and the French-trained model to novel, experimental stimuli.
We evaluate the models’ ABX discrimination accuracy. We
give English and French human native listeners the same task.

Our results show that the model is globally more predictive
of the human results than a baseline based on low-level acous-
tic features. The model also shows a native language effect:
when trained on French, its error pattern is more like French
native speakers’, and similarly for English. However, we an-
alyze these error patterns, and show that the native language
effects shown by the models, while globally predictive, differ
importantly from those shown by the human participants.1

1All modelling code, analysis code, stimuli, and anonymized



Methodology: Human ABX evaluation
In an ABX paradigm, participants hear three sounds in se-
quence, and indicate which of the first two sounds (A or B)
is more similar to the last (X), a sound always drawn from
the same category (for example, phoneme) as either A or B.
The task is intended to tap the perceptual similarity between
A and X, on the one hand, and B and X, on the other, to assess
the overall distinctness of the categories A and B belong to.

We develop stimuli to test cross-linguistic (En-
glish/French) perception of vowels in an ABX discrimination
paradigm. Within each stimulus triplet, A and B always
consist of CVC non-words contrasting one English vowel
with one French vowel, with the flanking consonants held
constant. We use the American English vowels [I], [2],
[U], and [æ], and the Hexagonal French vowels [a], [O], [E],
[i], [u], [y], and [œ].2 Only consonants appearing in both
languages are used: [v], [z], [s], [S], [f], in both consonant
positions, and, additionally, [p], [b], [g], and [k] in coda.3

While the stimuli are designed to differ only in the vowel,
there are inevitable phonetic differences in the realization
of these consonants across the two languages, which may
provide additional cues to the correct answer. Real words
in either language are excluded. For details of stimulus
construction, see Experiments: Humans below.

We expect that human listeners will vary in their discrimi-
nation ability, with triplets like [vip]–[væp]–[vip] being gen-
erally more difficult than more acoustically similar triplets
such as [v2p]–[vOp]–[v2p]. We also expect cross-linguistic
differences, with English listeners doing better than French
listeners on acoustically similar contrasts which do not exist
in French, such as [i]–[I]. We examine the patterns of confu-
sions shown by both listener groups, and present the same
experimental stimuli to models trained on English and on
French, to evaluate the models’ internal representations.

Methodology: Model ABX evaluation
Unsupervised acoustic models are models that learn represen-
tations of speech by exposure to speech without associated
phonemic category labels. They can be seen as learning the
organization of a perceptual space for speech.

We train a Dirichlet Process Gaussian Mixture Model
(DPGMM) as an acoustic model. It is a non-parametric
Bayesian clustering model. It finds, in an unsupervised way,
a set of multi-dimensional Gaussian distributions appropriate
to cluster the observations (here acoustic features). It adapts
its number of Gaussian distributions automatically depend-
ing on the training data. The computations needed by the

data for this paper are available in the following online repository:
https://github.com/geomphon/CogSci-2019-Unsupervised
-speech-and-human-perception.git.

2This reduced set of vowels is constructed with special attention
to French native listeners’ perception of the English vowel [2]. Pre-
vious research shows (Peperkamp, 2015) that French native listeners
identify this vowel with a number of different French vowels, sug-
gesting that a fair number of pairs will be difficult for subjects.

3Stops are excluded in onset position because of the marked dif-
ferences between English and French VOT.

model training can be parallelized (Chang & Fisher III, 2013),
making training on a reasonable amount of speech data pos-
sible. The resulting trained model (learned set of Gaussian
distributions) can then be applied to any new speech exam-
ple, yielding a sequence of probability vectors that can be
seen as the model’s perceptual representation of the exam-
ple. In this way, the model can be seen as learning the or-
ganization of a perceptual space. Chen et al. (2015) applied
parallel DPGMM training and achieved the best performance
in the 2015 ZeroSpeech Challenge, a machine learning chal-
lenge seeking state-of-the-art unsupervised acoustic models
(Versteegh, Anguera, Jansen, & Dupoux, 2016).

The representations we extract from the DPGMM model
are posteriorgrams. A speech signal consists of a sequence of
audio frames: for a sequence of k audio frames, a posterior-
gram is a sequence of k vectors. The vector xi = (x1,x2, ...xN)
gives the probabilities of the ith frame having been generated
by each of the model’s N learned Gaussian distributions.

Performing ABX evaluation of an encoding learned by
an acoustic model relies on extracting the representations of
triplets of stimuli (A, B, and X), and computing the distance
d(A,X), between A and X, and d(B,X), between B and X.
X is of the same category as either A or B. Taking A to be
the correct answer, we compute δ = d(B,X)− d(A,X). If
δ > 0, we can consider the model to have chosen A; if δ < 0,
we consider it to have chosen B. In previous work evaluat-
ing acoustic models with this method (Versteegh et al., 2015;
Dunbar et al., 2017), the percentage of correct responses for
each pair of categories is tabulated, and these averages are
combined into a global ABX discriminability score.

Because it relies only on computing distances, the model
ABX evaluation is applicable to a broad variety of learned
representations. It can be applied to posteriorgrams, but also
to Mel-frequency cepstral coefficients (MFCCs), a compact
representation of acoustic cues derived from the spectrum,
commonly used to train ASR models. We train our models
here on MFCC inputs, and MFCCs also serve as our low-
level acoustic baseline (each audio frame is a MFCC vector).

The distance function most appropriate for the comparison
may vary as a function of the type of representation. Because
the representations we evaluate contain one vector per audio
frame, differing-length stimuli will have different-length rep-
resentations. To deal with those differences, we follow pre-
vious literature in the domain and use dynamic time warping
(DTW) to align the sequences (see Senin, 2008 for a review).
This algorithm computes an optimal match between two se-
quences based on a secondary distance function used for com-
paring individual elements across the two sequences (individ-
ual vectors in the speech representations). Every frame in
each of the two representations is matched with at least one
frame in the other representation, following the order of each
sequence. The final distance between the two sequences is
the mean of the distance between the matched frames.

As secondary distance functions, we use the same frame-
level distances as in previous evaluations of DPGMM acous-

https://github.com/geomphon/CogSci-2019-Unsupervised-speech-and-human-perception.git
https://github.com/geomphon/CogSci-2019-Unsupervised-speech-and-human-perception.git


tic models. For MFCC representations, we use the cosine
distance. For N-dimensional vectors x and y, it is defined as:
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For comparing the posteriorgrams of our trained models,

we use the symmetrized Kullback–Leibler (KL) divergence.
For positive4 N-dimensional vectors x and y, the symmetrized
KL-divergence between x and y is:
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Although this model ABX task is inspired by a speech per-
ception task, the test is different from a typical speech dis-
crimination experiment in an important way. By tabulating
the proportion of triplets with δ > 0 (correct), gradient infor-
mation about individual stimuli triplets is lost. Such a test
cannot measure how well separated or “discriminable” indi-
vidual speech stimuli are, but only the separation of a pair
of categories A and B. Rather than directly using model ABX
discriminability scores, we relate human discrimination of in-
dividual stimuli to δ; see below, and see also Schatz, 2016.

Experiments: Humans
The stimuli were recorded in a carrier phrase. Six speakers
read the stimuli in an anechoic chamber. Two were early
bilinguals of American English and Hexagonal French, both
female, and read both the English and the French vowel stim-
uli. Both had extensive exposure to both languages through-
out most of their early and adult lives, and regularly used
both languages. These stimuli were used for A and B. The
other four speakers were male: two North American En-
glish natives, who read the English stimuli, and two Hexag-
onal French natives, who read the French stimuli. Their pro-
ductions were used as X. Phonetically trained listeners (one
French and one English native), listened to the stimuli in iso-
lation and verified that they were native-like in the target lan-
guage and corresponded to the intended vowel.

All A and B pairs were cross-language comparisons. If A
was a French stimulus, B was English, and vice versa. The A
and B speakers always differed. The experiment used 500 ms
silence for both the A–B and B–X intervals.

The final set of stimuli consisted of 112 triplets, matched to
the same intensity, downsampled to 16000 Hz. The list was
a subset of the complete set of possible triplets, optimized
to balance combinations of speaker, vowel pair, consonantal
context, and whether A or B was the correct answer. Each
vowel pair appeared four times, factorially combining which

4We replace zero elements with a very small constant to avoid
division by zero.

of the two vowels was the correct answer, and whether the
correct answer was presented first (A) or second (B).

The task was performed on Amazon Mechanical Turk
with the LMEDS software (Mahrt, 2016), with participants
from the United States and France. Listeners were paid
for participation. Previous research shows that Mechanical
Turk can successfully be used for speech perception tasks,
and that results are comparable to a lab setup (for example,
Kleinschmidt & Jaeger, 2015). We asked the participants to
use headphones, to do the task in a quiet environment, and to
check the sound volume before the experiment began.

A total of 144 participants were tested, 72 in France and 72
in the United States. We filter out those who did not finish the
task, did not report English or French as their first language,
had previously taken a linguistics class, failed two out of three
catch trials5 or reported hearing or vision problems. In the
end, there were 63 English and 55 French participants.6

Experiments: Models
To build the models for comparison with the human experi-
ment, we train the DPGMM on the same LibriVox audio book
source corpora used to construct the English and French data
sets in the 2017 ZeroSpeech Challenge (Dunbar et al., 2017).
We use a different subset of the corpora than the one used pre-
viously, to construct two data sets of comparable size. Our
English data set is made of 34 hours and 8 minutes of read
speech, and our French dataset contains 33 hours and 42 min-
utes of read speech. Recordings were sampled at 16000Hz.

We use Kaldi (Povey et al., 2011) to pre-process the data:
we extract 13-dimensional MFCCs (25 ms analysis window,
10 ms window shift), to which we apply a vocal tract length
normalization (VTLN). We add the ∆ and ∆∆ for a total of 39
dimensions, and apply centered windowed mean normaliza-
tion (with a window size of 300 frames).

For each corpus, we use 90% of the data for training and
10% as a validation set. We obtain two models, one for each
dataset (English-DP, French-DP). Model training is stopped
after 1500 iterations, as in Chen et al., 2015. We obtain 611
clusters for English-DP, and 1565 for French-DP.

The English-DP and French-DP models are applied to
the one-second and ten-second test stimuli from the across-
speaker condition of the 2017 ZeroSpeech Challenge (also
drawn from the LibriVox corpora) and subjected to the corre-
sponding ABX evaluation. We test the French model on the
French stimuli and the English model on the English stimuli.
The ABX triplets are each made up of a sequence of three ex-
tracts of speech from the stimuli, where each extract consists
of a sequence of three phones, and A and B differ only in the

5Catch trials played a tone and gave an audio instruction as to
which response to give.

6Not all participants used headphones, in spite of our instruc-
tions, and a few reported distractions; here we do not exclude these
participants. Following a reviewer suggestion, we examined the re-
sults of such an exclusion, which leaves 50 English and 26 French
participants. All qualitative results remain as reported. The results
of this alternate analysis can be found in the online repository.



centre phone, while the context phones are held constant. All
triplets constructible from the test stimuli are tested. This test
serves to ensure that the models are performing as expected.

We apply each of the two models, separately, to the ex-
perimental stimuli (see Methodology: Human ABX evalu-
ation), to simulate English and French native listeners. We
apply the same pre-processing steps as were applied to the
training corpora, transform the files into DPGMM posterior-
grams from the trained models, and obtain only the frames
corresponding to the stimuli.7 We calculate δ for each triplet,
for each of the models, and for the MFCC representations.

Results: Humans
The overall ABX discrimination accuracy across all stimuli,
across all participants, is 72%. The English listeners obtain a
score of 69%, and the French listeners 75%. Figure 1 shows
the average accuracy across vowel pairs.8

Figure 1: Human accuracy (English and French listeners) av-
eraged by vowel pair. Lighter indicates higher accuracy.

Before comparing the accuracies across native language
group, we apply a correction to make the groups’ scores com-
parable. We numerically remove effects of response bias, po-
tential bias to respond A or B, and overall group-level base-
line accuracy. We quantify these nuisance effects using a gen-
eralized linear model. We fit a probit regression because of its
interpretation as a d-prime analysis (DeCarlo, 1998; Macmil-
lan & Creelman, 2004) using the lme4 package for R (Bates

7This was done on the longer source files, rather than directly
using the short audio files used in the experiment to avoid window
problems, since frames at the beginning and end of files are dropped
during preprocessing. Processing the longer source files also gives
the vocal-tract length normalization transformation an advantage,
leading to an improvement in speaker normalization.

8This was a repeated average, similar to that done for the model
ABX scores below: first, the accuracy across subjects for a given
stimulus was calculated; then, these scores were averaged across
contexts; then, across speakers. This was done for consistency with
the ABX model evaluation literature (Versteegh et al., 2016; Dunbar
et al., 2017).

et al., 2015). We code responses as 1 (accurate) or 0 (inaccu-
rate). The model contains an intercept and a random intercept
by subject, modelling response bias; a main effect of subject
group (English: −1, French: 1), modelling group-level dif-
ferences; an effect of A/B presentation order (A correct: −1,
B correct: 1), modelling tendencies to respond A or B; and an
interaction of these last two. We correct each observation by
subtracting the predicted probability of correct response. We
average the corrected responses within each stimulus triplet,
and average these corrected accuracies down to the vowel pair
level as before, obtaining corrected accuracies by vowel pair.
Correlation between the two groups’ corrected accuracy at
the stimulus triplet level is 0.63. After averaging to the vowel
pair level, the correlation is higher, at 0.79, indicating that
many group differences are due to effects of individual stim-
uli, rather than the vowel contrasts we intended to test. The
vowel pairs are compared in Figure 2.

Figure 2: Discriminability of vowel pairs compared between
the two language groups. The dotted line is y = x; pairs above
the line are better discriminated by French listeners, while
pairs below show better discrimination for English speakers.

Figure 2 shows that most vowel pairs were relatively well
discriminated (upper right), but some were poorly discrimi-
nated by both groups (lower left). [2]–[a], [2]–[O], and [I]–[E],
are all perceived better by English listeners. This is consistent
with Peperkamp (2015), who reports tests of French listeners
on identification of English vowels, similarly indicating that,
for example, [2] was identified as [a], [œ], or [O].

Results: Models
The scores that English-DP and French-DP obtain on the
ZeroSpeech 2017 stimuli are presented in Table 1. Re-
peated averaging is done as for the human data, across con-
text (flanking phones), across speakers, and then across all
centre phones, to obtain a single score. We observe that the
DPGMM model obtains better scores than the MFCCs, con-
sistent with previous results. Results are reported as accura-
cies. English-DP shows 88.4% ABX accuracy on the experi-
mental stimuli we design, and French-DP 86.6%, both better
than MFCC (81.2%). Thus, the models continue to do better,
globally, at discriminating speech contrasts, than the acoustic
baseline, on novel recordings, from novel speakers.



French English
Model 1s 10s 1s 10s
MFCC 74.8% 74.5% 76.6% 76.6%

French-DP 83.7 % 84.4 % – –
English-DP – – 88.8% 89.3%

Table 1: ABX accuracy for the trained models and low-level
acoustic baseline on the 2017 ZeroSpeech benchmark.

Results: Model–human comparison
To compare the models as models of human perception, we
ask how well the continuous machine discriminability score δ

for each of the models (distance to incorrect minus distance to
correct answer: see Methodology: Model ABX evaluation)
predicts the human results. As each stimulus is associated
with a δ value for a given model, good models are those for
which the probability that human subjects respond correctly
increases monotonically in the δ value. We compare the three
δ values: English-DP, French-DP, and MFCC.

We begin by pooling English and French participants, to
assess whether either or both DPGMM models are globally
more human-like than the low-level acoustic baseline. We
again use probit regression including δ as a predictor. The
dependent variable is whether the subject responded correctly
(1: accurate, 0: inaccurate). We fit three separate probit re-
gressions, one per δ. Since the model includes a coefficient
for δ, this can be seen as taking δ to quantify the subjects’
perceived degree of distinctness for a given triplet, up to some
scaling factor. We rescale the δ scores for numerical stabil-
ity and for cross-model interpretability by dividing by the
root mean square.9 We again include both an overall and a
(random) by-subject intercept to account for response bias, a
coefficient for whether the correct answer was A or B, na-
tive language of the participants, and an interaction between
these last two, plus a random intercept for individual stimulus
triplet (experimental item).10 We do not include an interac-
tion between subject language and δ: we test for a native lan-
guage effect separately below. We compare the three models
using AIC (Akaike, 1974). Results are in Table 2 (smaller
AIC is better). Both DPGMM models predict the human re-
sponses better than the MFCC baseline.

If the DPGMM model is really capturing adult perception,
we should also expect a “native language effect”: the English-

9We keep zero in place for interpretability, as it is the decision
threshold for the model ABX. Note, however, that zero is not guar-
anteed to be the optimal decision threshhold, either for predicting
the correct answer in the task, or for predicting human behaviour.
The inclusion of an overall intercept allows for the model to adjust
to the best decision threshhold for predicting human responses.

10We include a stimulus-triplet level random intercept here, but
not for the purpose of removing extraneous variability from the ac-
curacy scores in generating Figure 2 above, or Figure 3 below. Those
graphs are comparisons of behaviour on different items, and so item-
level variability is not a nuisance factor. In contrast, here we are try-
ing to explain away item-level variability, using δ as a predictor. It
does not diminish the value of this model comparison to include a
predictor capturing additional item-level variability.

Models French-DP English-DP MFCC
Coefficient for δ 0.2682 0.2790 0.1804

AIC 12675.83 12672.91 12684.15

Table 2: Regressions of human responses against machine
representations, compared over the whole experiment (coef-
ficient of δ and AIC). Lower AIC indicates better fit.

Predictor Native δ Non-native δ

Coefficient for δ 0.2693 0.1452
AIC 12667.98 12689.1

Table 3: Regressions of human responses against native
(French-DP for French listeners, English-DP for English lis-
teners) versus non-native (switched) trained DPGMM models
(coefficient of δ and AIC). Lower AIC indicates better fit.

trained DPGMM should show results which more closely
resemble those of the English listeners than the French lis-
teners, and the French-trained DPGMM should show results
which more closely resemble those of the French listeners
than the English listeners (see Results: Humans). We assess
this as follows: we associate each human observation with
the appropriate “native language” δ (English-DP for trials
by English listeners, French-DP for French listeners), and
with the “non-native language” δ (French-DP for English
listeners, English-DP for French listeners). We construct
two alternative probit regression models with the same nui-
sance predictors as above. In one, the independent variable
of interest is the native δ score; in the alternative, the non-
native δ. If the representations are equally good at predicting
both groups, neither of these models should be better than the
other. Results (Table 3) indicate a better fit in AIC for the
native-language δ predictor (−21.12 in favour).

To verify that −21.12 is a reasonable model comparison
criterion, we examine 9999 instances of the same model com-
parison over a randomized baseline. Each sample modifies
the original data only in that the δ value considered “native”
or “non-native” (English-DP/French-DP) is determined by
a random permutation of the original native language indica-
tor.11 The random baseline does not yield similar improve-
ments in AIC scores: in the baseline sample, the add-one
smoothed left tail probability of −21.12 is 0.0089.

Discussion
Overall, the DPGMM shows itself to be a passably human-
like acoustic model. Furthermore, when it is trained on sub-
jects’ native language, it predicts their responses better.

To better understand this effect, we calculate a “degree of
native language effect” score for each stimulus triplet in the

11By permuting across the data set, we keep the unbalanced pro-
portions of French- and English-native responses. The coefficients
for subject language are still fit to the true native language of the
subjects.



Figure 3: (a) Native language effect (French minus English), plotted for human accuracy against probabilities predicted from
δ. Each point is one stimulus triplet. (b) The same points, averaged by vowel pair. (c) The same points, averaged by flanking
consonant context. Dotted lines are linear regressions. Graphics do not show the same part of the plane, but all are on the same
aspect ratio (13:7), meaning that slopes are visually comparable.

experiment, as the difference between French and English lis-
teners’ mean corrected percent accuracy (see Methodology:
Humans). We calculate an equivalent score for the models, a
predicted correct-response probability. Because the mapping
between the δ values and response probabilities is indetermi-
nate, we select an optimal mapping: we use a probit regres-
sion fit to the human data including the native-language δ as a
predictor, and extract the predicted probability for each obser-
vation.12 To isolate the part of the resulting score due to the
DPGMM model itself, we subtract from each predicted prob-
ability the probability predicted by the regression if δ were
zero for the given observation, obtaining a corrected proba-
bility analogous to the corrected accuracies derived for the
humans above. For each stimulus triplet, we take the aver-
age corrected probability across all observations. The native
language effect for the DPGMM model, for a given stimulus
triplet, is the subtraction of the French and the English mod-
els’ average corrected probabilities on this triplet.

These quantities are plotted against each other in Figure
3a. The slight trend towards a positive relation is consis-
tent with the results of the model comparison, although most
of the variance is unexplained. However, when averaged by
vowel contrast, as in Figure 3b, it becomes clear that the na-
tive language effect in vowel confusions is not human-like:
the trend in the graph is toward a negative relation. Inter-
estingly, in Figure 3c, in which items are instead grouped
by consonant frame, shows a slight positive trend, indicat-
ing human-like behaviour. But the behaviour the model cap-
tures is the fact that the impact of the flanking consonants on
performance differs across listener groups. This is clearly not
the behaviour we expected it it to capture: the flanking conso-

12We use a modified version of the “native language” regression
model described in Results: Model–human comparison, with all
nuisance predictors included, except the random effect of stimulus
triplet. We exclude this for reasons discussed already: we are seek-
ing here to examine residual differences between items.

nants were not intended to have an impact on performance at
all. The fact that they contain information that facilitates the
task is an artefact of the imperfectly controlled stimuli. It is
also not this behaviour that makes the biggest contribution to
the native language effect in humans: Figure 3 shows greater
variance across vowel pairs than across consonant frames.

This unexpected effect may be due to the nature of the
DPGMM model. The large number of categories it learns
likely discriminate contextual variants and temporal sub-
components of individual phonemes. The participants in our
experiment presumably detect coarser distinctions, beyond
this sub-phonemic variability. Vowels, in particular, consist
of a long steady state. The DPGMM’s representation may
fluctuate too much to maintain coarser-grained information.
Whatever the explanation, the trained DPGMM models do
not match the stimulus-by-stimulus profile of human subjects.

Conclusion
We tested human listeners, English and French native speak-
ers, and an unsupervised acoustic model (trained once on En-
glish, once on French) on the same cross-linguistic ABX dis-
crimination task, comparing the model with human perfor-
mance on a stimulus-by-stimulus level. Our results show that
the acoustic model predicts human results better than a low-
level acoustic baseline, and predicts certain effects of native
language on perception, while missing critical features.

We take this detailed and direct comparison to be an impor-
tant step in improving the evaluation of quantitative models of
human speech perception. Given that the DPGMM shows a
limited, but incomplete, correlation with human speech per-
ception, it may also prove useful as a measure of acoustic dis-
tance which is adapted to a particular language. Our approach
permits detailed investigation of the differences between hu-
mans and computational models on speech perception tasks,
which will be essential to using these models to gain insight
into the underlying cognitive processes.
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