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ABSTRACT

Eigenbeam ESPRIT (EB-ESPRIT) is a method to estimate
multiple directions-of-arrival (DOAs) of sound sources
from the spherical harmonics domain (SHD) coefficients
of a spherical microphone array recording. Recently,
an EB-ESPRIT variant based on three types of recur-
rence relations of complex spherical harmonics was pro-
posed (DOA-vector EB-ESPRIT). However, due to the
signal subspace computation and the joint diagonaliza-
tion procedure, the computational cost might be too large
for many real-time applications. In this work, we pro-
pose a computationally more efficient real-valued DOA-
vector EB-ESPRIT. The signal subspace is estimated by
the deflated projection approximation subspace tracking
(PASTd) method. To avoid the joint diagonalization, we
propose a subspace propagation-vector matching for the
estimation of two DOAs. In the evaluation, we compare
the performance of the complex and real DOA-vector EB-
ESPRIT with an existing robust B-format DOA estimation
method under noisy and reverberant conditions.

1. INTRODUCTION

For parametric time-frequency-domain spatial audio cod-
ing, the directions-of-arrival (DOAs) of sound sources
have to be estimated from the microphone signals for each
time-frame and frequency band. Accurately estimating
these parameters in real-time is a challenging task.

For directional audio coding (DirAC) [1], one DOA has
to be estimated per time-frame and frequency band, which
can be done with low computational cost using the pseu-
dointensity vector (PIV) [2]. The accuracy of the PIV is,
however, quite limited compared to subspace-based DOA
estimators [3]. For high angular resolution plane-wave ex-
pansion (HARPEX) [4], two DOAs are estimated from a
B-format signal per time-frame and frequency band using
properties of plane-wave propagation vectors. In [5], a ro-
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bust version of this DOA estimator is proposed which com-
putes a signal subspace prior to the DOA estimation.

Eigenbeam ESPRIT [6] uses recurrence relations of
spherical harmonics to estimate multiple DOAs from a
spherical harmonics domain signal. In [7–10], robust and
unambiguous EB-ESPRIT variants have been developed.
In [10], the authors proposed the DOA-vector EB-ESPRIT
which can accurately estimate the DOAs. However, the
computational complexity of the DOA-vector EB-ESPRIT
is high due to the signal subspace estimation and the joint
diagonalization procedure. Hence, a computationally more
efficient version of the DOA-vector EB-ESPRIT is needed.

In this work, we propose a new DOA-vector EB-
ESPRIT based on real spherical harmonics recurrence rela-
tions and the computationally efficient deflated projection
approximation subspace tracking (PASTd) algorithm [11].
If only one DOA has to be estimated per time-frame and
frequency band, the EB-ESPRIT equations can be simpli-
fied. For estimating two DOAs, we propose to first esti-
mate the plane-wave propagation vectors using properties
of the real spherical harmonics and then apply the sim-
plified EB-ESPRIT equations for one DOA to both esti-
mated propagation vectors, thereby, avoiding the joint di-
agonalization. This procedure is referred to as subspace
propagation-vector matching in the remainder of this work.

In Sec. 2, spherical harmonic domain signals are in-
troduced. In Sec. 3, the real DOA-vector EB-ESPRIT is
derived. In Sec. 4, simplifications for an efficient online
implementation are discussed. In Sec. 5, the proposed
method is evaluated and compared to [10] and [5].

2. SPHERICAL HARMONICS DOMAIN

Let p(k; r,Ω) denote the sound pressure field on the sur-
face of a spherical microphone array (SMA) with radius
r, where k denotes the wavenumber and Ω = (θ, φ) the
angular position on the sphere specified by the elevation
θ ∈ [0, π] and azimuth φ ∈ [−π, π) angles. The pres-
sure field can be expanded using the spherical harmonics
expansion [12, 13] as

p(k; r,Ω) =

∞∑
l=0

l∑
m=−l

bl(kr)Plm(k)Ylm(Ω) , (1)

where l and m denote the order and mode, respec-
tively. The radial dependencies bl(kr) are denoted as
mode strengths which depend on the SMA properties only,

Herzog, Habets EAA Spatial Audio Sig. Proc. Symp., Paris, Sept. 6-7, 2019

doi:10.25836/sasp.2019.18 19



Plm(k) are the spherical harmonic domain (SHD) coeffi-
cients and Ylm(Ω) the complex spherical harmonic func-
tions [12, 13].

The real spherical harmonics Rlm(Ω) are related to
Ylm(Ω) as follows [13]:

Rlm(Ω) =


i√
2

(
Ylm(Ω)− (−1)mYl(−m)(Ω)

)
m < 0

Yl0(Ω) m = 0
1√
2

(
Yl(−m)(Ω) + (−1)mYlm(Ω)

)
m > 0

(2)
with i2 = −1. Using the vector notation

y(Ω) := [Y00, Y1−1, Y10, ..., YLL]T (Ω) and

r(Ω) := [R00, R1−1, R10, ..., RLL]T (Ω) , (3)

where (·)T denotes the transpose andL the maximum SHD
order considered, we can write

r(Ω) = ULy(Ω) = U∗Ly∗(Ω) (4)

with the unitary (L + 1)2 × (L + 1)2 matrix UL and (·)∗
denoting the complex conjugate. Let us define:

p(k) := [P00, P1−1, P10, P11, ..., PLL]T (k) and

B(kr) := diag {[b0, b1, b1, b1, ..., bL]} (kr) , (5)

where in B(kr), each mode strength bl(kr) appears 2l +
1 times on the diagonal. The complex and real spherical
harmonics transforms can then be defined as follows:

p(k) = B−1(kr)

∫
S2

p(k; r,Ω)y∗(Ω) dΩ

pR(k) = B−1(kr)

∫
S2

p(k; r,Ω)r(Ω) dΩ . (6)

In practice, the mode-strength compensation B−1(kr)
has to be regularized and the integral has to be approx-
imated by a weighted sum over the microphone direc-
tions Ω1, ...,ΩP of the SMA. Moreover, the sound pressure
at these directions has to be replaced with the respective
microphone signals X1, ..., XP . This yields the discrete
spherical harmonics transform:

x(k) = B−1reg (kr)

P∑
p=1

qpXp(k)y∗(Ωp) (7)

and analogously for the real spherical harmonics trans-
form, where B−1reg denotes the regularized inverse of B and
q1, ..., qP the sampling weights, which depend on the mi-
crophone distribution of the SMA [12, 13]. For uniform
spatial sampling, one yields qp = 4π

P [14].
In the following sections, we assume that all signals

have been transformed to the short-time Fourier transform
(STFT) domain, where time and frequency indices are
omitted for brevity.

3. DOA-VECTOR EB-ESPRIT

3.1 Complex DOA-Vector EB-ESPRIT

Let x = [X00, X1−1, ..., XLL] denote the mode strength
compensated complex SHD coefficients of a SMA record-
ing including J plane-wave sources and additive noise,

which are assumed to be mutually uncorrelated. The power
spectral density (PSD) matrix of x is defined as Φx :=
E{xxH}, where (·)H denotes the conjugate transpose and
E{·} the statistical expectation. It can be shown that the
plane-wave propagation vectors are proportional to y∗(Ωj)
for j = 1, ..., J , where Ωj denotes the DOA of source
j [12]. The signal subspace span{y∗(Ω1), ...,y∗(ΩJ)} can
be estimated from the eigenvectors [u1, ...,uJ ] =: Us cor-
responding to the J largest eigenvalues using the following
relation [6]:

Us = [y∗(Ω1), ...,y∗(ΩJ)] T , (8)

where T is an invertible matrix of size J × J .
EB-ESPRIT uses (8) and recurrence relations of

spherical harmonics to estimate the plane-wave DOAs
Ω1, ...,ΩJ from the signal subspace eigenmatrix Us. The
DOA-vector EB-ESPRIT [10] estimates the DOA-vectors
n(Ω1), ...,n(ΩJ), defined as

n(Ω) =

nx(Ω)
ny(Ω)
nz(Ω)

 =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 (9)

using the following three recurrence relations:

na(Ω)D0y
∗(Ω) = Day

∗(Ω) for a = x, y, z (10)

with

Dx := 1
2 (D− + D+) , Dy := 1

2i (D− −D+) , (11)

and

[Dz(·)]lm =
√

(l−m)(l+m)/(2l−1)(2l+1) [(·)](l−1)m
+
√

(l+1−m)(l+1+m)/(2l+1)(2l+3) [(·)](l+1)m

[D±(·)]lm= ±√(l−1∓m)(l∓m)/(2l−1)(2l+1) [(·)](l−1)(m±1)
∓√(l+1±m)(l+2±m)/(2l+1)(2l+3) [(·)](l+1)(m±1)

D0(·) = [[(·)]00, ..., [(·)](L−1)(L−1)]T (12)

for l = 0, ..., L − 1 and m = −l, ..., l, where [(·)]lm := 0
if |m| > l. Using relation (8), we get from (10)

(D0Us)Ψa = DaUs (13)

with Ψa = T−1diag{na(Ω1), ..., na(ΩJ)}T for a =
x, y, z. The matrices Ψx, Ψy and Ψz can be estimated
in the least-squares sense by:

Ψ̂a = (D0Us)
+DaUs , (14)

where (·)+ denotes the pseudo-inverse. The DOA-vectors
n(Ω1), ...,n(ΩJ) can then be estimated by jointly diago-
nalizing Ψ̂x, Ψ̂y and Ψ̂z as follows [10]:

[n̂(Ω1), ..., n̂(ΩJ)] = Re
{

[λx,λy,λz]
T
}
, (15)

where λx, λy and λz denote the eigenvalue vectors of Ψ̂x,
Ψ̂y and Ψ̂z , respectively, derived using a joint diagonal-
ization method.
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3.2 Real DOA-Vector EB-ESPRIT

Let xR denote the real SHD signal corresponding to x.
Using xR = U∗Lx and (4), one can show that the plane-
wave propagation vectors are proportional to r(Ωj) for j =
1, ..., J . Note that, although the propagation vectors are
real valued, the signal vectors are still complex valued due
to the complex STFT. Analogously to [5], we split xR into
real and imaginary parts and construct a real valued PSD
matrix thereof:

X := [Re{xR}, Im{xR}] ΦR
X := E{XXH} . (16)

One can show that ΦR
X coincides with the PSD matrix of

xR, if the noise PSD matrix is real valued. Theoretically,
this is the case for diffuse noise and microphone self-noise.

The real signal subspace is constructed from the real
eigenvectors [o1, ...,oJ ] =: Os corresponding to the J
largest eigenvalues of ΦR

X, which is related to the plane-
wave propagation vectors as follows:

Os = [r(Ω1), ..., r(ΩJ)] TR , (17)

where TR is a real-valued invertible J × J matrix. Using
relation (4), the recurrence relations (10) can be formulated
for real spherical harmonics:

na(Ω)D0y
∗(Ω) = Day

∗(Ω)

na(Ω)D0U
T
Lr(Ω) = DaU

T
Lr(Ω)

na(Ω)UT
L−1D0r(Ω) = DaU

T
Lr(Ω) (18)

na(Ω)D0r(Ω) = U∗L−1DaU
T
Lr(Ω) =: DR

a r(Ω) ,

where we defined DR
a := U∗L−1DaU

T
L which must be

real valued for a = x, y, z. Using (17), the EB-ESPRIT
equations become:

(D0Os)Ψ
R
a = DR

a Os . (19)

The DOA-vectors can then be estimated analogously to
(14)-(15). In contrast to the complex DOA-vector EB-
ESPRIT, the matrices involved are real valued reducing the
computational complexity.

4. ONLINE IMPLEMENTATION

In principle, one can use the real or complex DOA-
vector EB-ESPRIT to estimate the source DOAs per time-
frequency bin in an online manner. However, due to the
eigendecompostion of the PSD matrix and the joint diago-
nalization procedure, the computational cost might be too
large for many real-time applications. Therefore, we pro-
pose various modifications in the following sections.

4.1 Recursive Subspace Tracking

Let n and k denote the time-frame and frequency indices,
respectively. The PSD matrix of x(n, k) or X(n, k) can be
estimated recursively as follows:

Φ̂x(n, k) = βΦ̂x(n− 1, k) + (1− β)x(n, k)xH(n, k) or

Φ̂
R

X(n, k) = βΦ̂
R

X(n− 1, k) + (1− β)X(n, k)XH(n, k) ,
(20)

Algorithm 1: PASTd for real DOA-vector EB-ESPRIT
X = X(n, k);
for j = 1, ..., J do

zT = oT
j (n− 1, k)X;

λj(n, k) = β λj(n− 1, k) + ‖z‖2;
E = X− oj(n− 1, k) zT ;
oj(n, k) = oj(n− 1, k) +Ez∗/λj(n, k);
X = X− oj(n, k) z

T ;

where β ∈ [0, 1) is a forgetting factor. The signal sub-
space can be constructed by performing a singular value
decomposition (SVD) to Φ̂x(n, k) or Φ̂

R

X(n, k) and then
selecting the eigenvectors corresponding to the J largest
eigenvalues. However, this involves a SVD of a (L+1)2×
(L+ 1)2 matrix per time-frequency bin.

A computationally more efficient method to recursively
estimate the signal subspace is the deflated projection ap-
proximation subspace tracking (PASTd) algorithm [11].
The PASTd algorithm for real SHD signals is summarized
in Alg. 1. Note, that X(n, k) is a (L+ 1)2 × 2 matrix and
thus the PASTd from [11] has been adjusted accordingly.

Additionally, we othonormalize the estimated eigenvec-
tors using a QR decomposition which can be implemented
with low computational cost using e.g. the modified Gram-
Schmidt algorithm [15].

4.2 Simplifications for J = 1

For J = 1, the signal subspace is one dimensional and
the matrices Ψ̂x, Ψ̂y and Ψ̂z become scalars Ψ̂x, Ψ̂y and
Ψ̂z . Therefore, no joint diagonalization is necessary. The
DOA-vector can be estimated directly via:

n̂(Ω1) = Re{[Ψ̂x, Ψ̂y, Ψ̂z]
T } (21)

= ‖D0u1‖−2Re
{

[Dxu1,Dyu1,Dzu1]T
}
,

where u1 is the dominant eigenvector of Φx. The factor
‖D0u1‖−2 can be replaced by a normalization to ensure
‖n̂(Ω1)‖ = 1. These simplifications can be made for the
real DOA-vector EB-ESPRIT analogously.

4.3 Subspace Propagation-Vector Matching

In [4, 5], general properties of plane-wave propagation
vectors are employed to estimate two DOAs per time-
frequency bin from a B-format signal. In this section, we
develop a similar method to estimate the mixing matrix
C := (TR)−1 for the real DOA-vector EB-ESPRIT with
two sources (J = 2). From (17) we get:

[r(Ω1), r(Ω2)] = OsC . (22)

We use the following properties of real spherical harmon-
ics:

R00(Ω) =
1√
4π

‖r1(Ω)‖2 =
1

π
, (23)

where r1(Ω) is the vector of real spherical harmonics up to
order 1. Note, that the conditions (23) are sufficient to en-
sure that r1(Ω) is a real spherical harmonic vector. To en-
sure that r(Ω) describes a real spherical harmonic vector,
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we would need more conditions. Let us denote with O
(1)
s

the coefficients of Os up to first order and with Q(1)R(1)

the QR decomposition thereof. Using (22), we find

[r1(Ω1), r1(Ω2)] = Q(1)C̃ = Q(1)

[
c̃11 c̃12
c̃21 c̃22

]
, (24)

where C̃ = R(1)C. Inserting (24) into the conditions (23)
and using the orthonormal property of Q(1) yields:

qT c̃j =
1√
4π

and ‖c̃j‖2 =
1

π
(25)

for j = 1, 2, where we defined qT := [Q
(1)
00,1, Q

(1)
00,2] and

c̃j := [c̃1j , c̃2j ]
T . Using the second condition, one can

write c̃j in the following form:

c̃j = 1√
π

[cos(ϕj), sin(ϕj)]
T . (26)

Writing q in terms of magnitude q and phase ϕq:

q = q [cos(ϕq), sin(ϕq)]
T (27)

and inserting (26) into the first condition of (25) one can
derive

1√
4π

= qT c̃j =
q√
π

cos(ϕq − ϕj)

⇒ ϕj = ϕq ∓ acos
(

1

2q

)
. (28)

We, therefore, get two solutions which can be assigned to
ϕ1 and ϕ2. The results are real valued if q ≥ 1

2 . Otherwise,
we estimate one DOA only from the dominant eigenvector
o1. The mixing matrix C can be obtained from ϕ1 and ϕ2

as follows:

C = (R(1))−1C̃ =
1√
π

(R(1))−1
[
cos(ϕ1) cos(ϕ2)
sin(ϕ1) sin(ϕ2)

]
.

(29)
The full higher-order plane-wave propagation vectors
r(Ω1) and r(Ω2) can then be estimated by applying C to
the full signal subspace Os, i.e.,

[r̂(Ω1), r̂(Ω2)] = OsC . (30)

Finally, the simplified DOA-vector EB-ESPRIT equations
discussed in Sec. 4.2 can be used to estimate the DOA-
vectors from r̂(Ω1) and r̂(Ω2) separately. Hence, the joint
diagonalization is avoided by estimating the source propa-
gation vectors before the EB-ESPRIT equations are used.

As C is estimated using zero- and first-order coeffi-
cients of Os only, OsC is not necessarily close to a set
of plane-wave propagation vectors. Therefore, we perform
a consistency check between the DOA-vectors n̂(Ωj) esti-
mated with the EB-ESPRIT equations and n̂fo(Ωj) derived
from the first order coefficients as follows:

n̂fo(Ωj) :=
√

4π
3 [R̂11(Ωj), R̂1−1(Ωj), R̂10(Ωj)]

T (31)

for J = 1, 2. If their angular distance is ≥ ∆ϕ, we use
n̂fo(Ω) instead of n̂(Ωj) for the DOA-vector estimate. The
proposed method can be summarized as follows:

1. Update real signal subspace matrix (Sec. 4.1)

2. Estimate plane-wave propagation vectors using sub-
space propagation-vector matching (Sec. 4.3)

3. Estimate DOA-vectors with simplified J = 1 real
DOA-vector EB-ESPRIT (Sec. 4.2)

4. Consistency check of DOA-vectors with first or-
der coefficients of estimated propagation vectors
(Sec. 4.3, last paragraph)

5. EVALUATION

5.1 Setup

For the evaluation, third order (L = 3) spherical harmonic
domain signals with one or two plane-wave sources, rever-
beration and diffuse stationary noise were simulated. The
plane-wave source signals consisted of male and female
English speech signals of 3.8 seconds length and sampled
at 16 kHz, taken from [16]. The source DOAs were ran-
domly and uniquely selected from a set of 48 uniformly
distributed directions. For the dual source scenario, the 48
directions were divided into two sectors, from which the
DOAs are selected.

For the non-reverberant scenarios, the plane-wave
sources were transformed to the STFT domain. Each
time-frequency bin was then multiplied with the plane-
wave propagation vector y∗(Ω) at the corresponding DOA
Ω. For the reverberant scenarios, microphone signals of
a rigid spherical microphone array with 32 microphones
and 7 cm radius placed at [4.103 m, 3.471 m, 2.912 m] in
a 8 × 7 × 6 m3 shoebox room were simulated using [17].
The sources were placed at a distance of 2 m from the vir-
tual microphone array. Reverberation times (T60) of 0.3
and 0.6 seconds were used. The microphone signals were
then transformed to the STFT domain. Finally, the SHD
coefficients are derived using the discrete spherical har-
monics transform (7) with uniform sampling weights and
B−1reg = (BHB + λI)−1BH with λ = 10−6.

For all cases, diffuse stationary white noise with signal
plus reverberation-to-noise ratio SNR = 6 dB was added.
The desired source variance, which is needed to determine
the variance of the noise, was computed as the mean en-
ergy of the noiseless signal, excluding time-frames with
energies less than 1% of the maximum frame energy.

For the STFTs, a frame-length of 128 samples (8 ms),
50% overlap, a square-root-Hann window and a discrete
Fourier transform size of 256 was chosen.

For the recursive signal-subspace estimation, β = 0.9
(=̂ 38 ms time-constant) was chosen. An angular distance
∆ϕ = 0.4π was chosen for the consistency check of the
subspace propagation-vector matching. The DOAs were
estimated within the frequency range [100, 2340] Hz, were
the lower bound has been chosen to reduce the effect of
the regularized mode-strength compensation and the upper
bound to avoid spatial aliasing.

For the performance evaluation we computed angular
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Figure 1. Mean angular estimation errors and mean real-
time factors for single source scenario (J = 1)

estimation errors

∆Ωj(n, k) = min
j′

{
acos

(
n(Ωj)

Tn(Ω̂j′(n, k))
)}

,

(32)
where Ωj is the true DOA of source j and Ω̂j′(n, k) the
j′-th estimated DOA at time-frequency bin (n, k). The
mean angular estimation errors within the regions where
the sources are active are defined as

∆Ωj =
∑
n,k

wj(n, k)∆Ωj(n, k) , (33)

where wj(n, k) is one if the narrowband frame energy of
source j, including reverberation, at bin (n, k) is greater
than −30 dB w.r.t. the maximum energy and zero other-
wise. To evaluate the computational complexity we com-
puted realtime factors = Computation time

Signal length . The DOA estima-
tors were implemented with MATLAB [18] in double pre-
cision and executed on a computer with a 3.40 GHz CPU.

5.2 Single source scenario

For the single source scenario, 20 SHD signals with one
plane-wave source were generated. The source signals
consisted of 10 female and 10 male English speech signals.

In Fig. 1, the mean angular estimation errors and re-
altime factors for the complex DOA-vector EB-ESPRIT
with SVD-based subspace estimation and the real DOA-
vector EB-ESPRIT with SVD-based subspace estimation
or PASTd are shown for different reverberation times. The
angular errors have been averaged over the 20 experiments
and the corresponding standard deviations are represented
with red errorbars.

One can see that the real-valued formulation and the
PASTd reduce the computational cost by ∼ 75% without a
significant loss of DOA estimation accuracy.

For T60 = 0.6 seconds, the proposed real DOA-vector
EB-ESPRIT yields less estimation errors than the complex
DOA-vector EB-ESPRIT. Recall that ΦR

X = Re{ΦxR}.
The PSD matrices of the direct-path plane-wave sources
and the diffuse noise are real-valued in the real SHD. Only
the early and late reflections may contribute to Im{ΦxR}.
Therefore, it is plausible that it is more robust to use
ΦR

X instead of ΦxR for the subspace estimation under
reverberant conditions. Using the PASTd instead of the
SVD further improves the estimation accuracy for T60 =
0.6 seconds, which can be explained by the fact that
PASTd can be more robust than the SVD for low signal
to noise/reverberation ratios [11].
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Figure 2. Mean angular estimation errors and mean real-
time factors for dual sources scenario (J = 2)

5.3 Dual sources scenario

For the dual sources scenario, the real DOA vector EB-
ESPRIT with PASTd and joint diagonalization (joint diag.)
or subspace propagation-vector matching (SP-match) were
compared with a robust B-format DOA estimator [5]. Ten
different SHD signals with one female and one male plane-
wave source were generated.

The mean angular errors and realtime factors are shown
in Fig. 1. The results are averaged over the 10 configura-
tions and the two DOAs. The respective standard devia-
tions are represented with red errorbars. The EB-ESPRIT-
based methods yield lower estimation errors compared to
the robust B-format method, which is expected as the latter
does not incorporate higher-order SHD coefficients. The
real DOA-vector EB-ESPRIT with SP-matching is less ac-
curate than the joint diagonalization based method. How-
ever, the computational cost is reduced by ∼ 40%.

So far only mean angular estimation errors have been
analysed. In what follows, we analyse a dual source sce-
nario with DOAs Ω1 = [90◦, 60◦], Ω2 = [130◦,−80◦] and
T60 = 0.3 seconds in more detail.

In Fig. 3, the spectrogram of the source signals (a), the
source activity per time-frequency bin (b) and angular esti-
mation errors for both source DOAs (c-h) are shown. One
can see that the EB-ESPRIT-based methods yield less es-
timation errors than the robust B-format method, except at
time-frequency bins where the number of active sources
changes from one to two are two to one. For the robust
B-format method, these regions are less critical, however,
the overall angular estimation errors are larger.

In Fig. 4, distributions of the estimated azimuth and el-
evation angles are shown for the three methods. One can
see that, for the EB-ESPRIT-based methods, the estimated
azimuth and elevation are mostly concentrated around the
true DOAs (Ω1 = [90◦, 60◦], Ω2 = [130◦,−80◦]), while
for the robust B-format method, the estimates are more
scattered across the angular space.

6. CONCLUSION

We proposed the real DOA-vector EB-ESPRIT which re-
duces the computational complexity of the DOA-vector
EB-ESPRIT [10] by working with real-valued quantities
and by efficiently estimating the signal subspace using the
PASTd algorithm [11]. To futher reduce the computational
complexity, we replaced the joint diagonalization with a
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Figure 3. a) Spectrogram of source signals (sum), b) active
time-frequency bins with 0: no source active, 1: source 1
active, 2: source 2 active, 3: both sources active, c) - h):
Angular estimation errors at active bins for Ω1 and Ω2, c)
and d) Real, joint diag., e) and f) Real, SP-match, g) and
h) Thiergart and Habets [5]
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Figure 4. Distributions of elevation and azimuth estimates

subspace propagation-vector matching method for estimat-
ing two DOAs. In the evaluation, we showed that the com-
putational cost of the proposed method is significantly re-
duced compared to the complex DOA-vector EB-ESPRIT
and that the method can estimate the source DOAs more
accuratly compared to [5].
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