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Abstract

Purpose Although ultrasound (US) images represent the most popular modality for guiding
breast biopsy, malignant regions are often missed by sonography, thus preventing accurate
lesion localization which is essential for a successful procedure. Biomechanical models can
support the localization of suspicious areas identified on a pre-operative image during US
scanning since they are able to account for anatomical deformations resulting from US probe
pressure. We propose a deformation model which relies on position-based dynamics (PBD)
approach to predict the displacement of internal targets induced by probe interaction during
US acquisition.

Methods The PBD implementation available in NVIDIA FleX is exploited to create an
anatomical model capable of deforming online. Simulation parameters are initialized on
a calibration phantom under different levels of probe-induced deformations, then they are
fine-tuned by minimizing the localization error of a US-visible landmark of a realistic breast
phantom. The updated model is used to estimate the displacement of other internal lesions
due to probe-tissue interaction.

Results The localization error obtained when applying the PBD model remains below 11
mm for all the tumors even for input displacements in the order of 30 mm. This proposed
method obtains results aligned with FE models with faster computational performance, suit-
able for real-time applications. In addition, it outperforms rigid model used to track lesion
position in US-guided breast biopsies, at least halving the localization error for all the dis-
placement ranges considered.
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Conclusions Position-based dynamics approach has proved to be successful in modeling
breast tissue deformations during US acquisition. Its stability, accuracy and real-time per-
formance make such model suitable for tracking lesions displacement during US-guided
breast biopsy.

Keywords Biomechanical model · Position-based dynamics · Ultrasound-guided breast
biopsy · Ultrasound tracking

1 Introduction

Image-guided breast biopsy is the standard procedure to evaluate symptomatic and screening-
detected suspicious lesions [1]. Among all types of image-guided breast biopsies that can
be performed, ultrasound (US) guidance is widely preferred since it allows to reach difficult
areas while optimizing procedure time, without exposing the patient to any harmful radi-
ation, thus overcoming the limitations of biopsies performed under Magnetic Resonance
Imaging (MRI) and X-rays guidance. However, besides the fact that procedure outcome
strongly depends on clinicians’ expertise and available equipment, certain malignant lesions
are often challenging to be distinguished in US [2]. Recently, image fusion techniques have
been investigated to create navigable anatomy reconstructions that enable the visualization
of MRI-detected lesions on real-time US images [3]. Both commercial and research plat-
forms that implement this strategy align the two images by computing either rigid or affine
transformation which minimizes the matching error between sets of corresponding land-
marks [4, 5]. The main limitation of this approach is that it does not account for the highly
deformable nature of the breast. Typically, MRI acquisition is performed with the patient in
prone position, whereas the subject lies semi-supine during US scanning. During this repo-
sitioning, the breast undergoes large deformations. In addition, in order to obtain acceptable
image quality, the physician applies compression forces on the breast with the US probe to
guarantee a proper coupling. Ideally, MRI-US fusion should be able to account for these
deformations in order to accurately track the motion of internal targets.

Due to the need of modelling these gross deformations, the development of models able
to realistically describe breast behavior in clinical settings remains an active research field.
Many of these methods focus on the definition of an a-priori deformation model of the struc-
ture of interest. The 3D geometry of the anatomy is extracted from the MRI and initialized
with known elastic properties and/or parameters, and it is later used to predict structures
displacements and deformations, given certain inputs. These models have been employed
for co-registration between MRI and other modalities but never with 2D US [6]. This ap-
proach has the potential to accurately predict the displacement of MRI-detected lesions even
in cases where target areas cannot be identified on US.

The most popular numerical procedure capable of achieving mechanically realistic sim-
ulations of the breast relies on the finite element method (FEM) [6]. FEM describes soft
tissues through a continuum mechanics formulation and determines future positions by solv-
ing physical balance laws. However, high accuracy is obtained at the expense of high com-
plexity, which makes the solution method computationally expensive, thus not generally
compatible with real-time. It can happen that the simplifications introduced in the solving
process are so strict that the results obtained are less accurate than expected and may even
lose their physical meaning [7]. These limitations of FEM can be overcome by geometry-
based approaches, like the position-based dynamics (PBD). Instead of predicting volume
deformations based on time integration of Newton’s second law, as in FEM-based simula-
tions, the PBD approach models objects as an ensemble of particles whose positions are
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directly updated, as a solution of a quasi-static problem subject to geometrical constraints
[8]. This makes it possible both to achieve real-time performances and to avoid 3D mesh-
ing process, since particles are placed in space to fill a surface-delimited volume. Stability,
robustness and simplicity are among the main reasons for the increasing popularity of the
PBD method [8]. Even though the time evolution of the system does not depend on the in-
tegration of physical laws based on real mechanical parameters, some works showed that
different types of properties and behaviours of elastic materials can be simulated with PBD
by appropriately manipulating modelling parameters and constraint functions of the system
[9, 10].

Although the PBD approach has been mainly applied in computer graphic fields, the en-
hanced speed, controllability and unconditional stability of this method are its most appeal-
ing features for its application to medical simulation as well, where interactions between
multiple organs and tools have to be modelled and solved in real-time. The most popular
exploitation of the PBD concept in the medical field has been in the development of train-
ing simulator for surgical procedures involving dissection, since PBD methods are able to
handle topological changes involved in such tasks maintaining real-time interactive perfor-
mance [11, 12]. Some other works have focused on the achievement of particular types of
deformations by coupling the PBD formulation with mass-spring models [13, 14] or for
the simulation of knot tying procedure [15]. Camara et al. employed the PBD scheme to
create a patient-specific biomechanical model of the kidney for the real-time simulation of
intra-operative US images [16]. Differently from the works mentioned above, here the au-
thors tuned the most relevant PBD parameters to obtain an accurate simulation. They started
from the results obtained in their previous work, where PBD parameters were calibrated by
minimizing the distance between real and simulated fiducial positions over a sequence of 3
deformations induced by a US probe pressing on a porcine kidney [17]; then, they refined
such parameters to account for the different material properties of the kidney phantom used.

We propose a method that relies on the position-based dynamics (PBD) concept to ap-
proximate the motion of internal structures during US scanning. To the best of our knowl-
edge, this is the first work where probe-induced deformations are taken into account in real
time. Starting from the work in [17], we initialize PBD parameters with those estimated
on a deformable calibration phantom resembling the scenario of interest, subject to sev-
eral different probe-induced deformations. As a following step, we fine-tune such properties
on the anatomy of interest by tracking the displacement of one US-visible landmark. The
fine-tuning procedure allows to customize model parameters and obtain a patient-specific
deformation model that can predict in real-time the displacement of other internal areas,
even if they are visible only on the initial MRI, thus improving lesion tracking and target-
ing during biopsy procedures. The proposed PBD model makes it possible to achieve an
accurate and stable simulation of large deformations without even requiring a complex 3D
mesh generation procedure (which is needed for FEM), which makes the model easy to be
generalized and applied directly to the clinical scenario.

The rest of this paper is structured as follows. In Section 2 we introduce the main prin-
ciples of the position-based dynamics formulation and we present the setup used for the ex-
periments. Section 3 reports results relative to the calibration and validation phases, which
are discussed in Section 4. Finally, Section 5 presents our conclusions.
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2 Methods

2.1 Position-based dynamics approach

Position-based dynamics is a simulation approach that computes the time evolution of a
dynamic system by directly updating positions, as first described by Müller et al. in [18].
Simulated objects are discretized as sets of particles, described by their positions pi and
velocities vi, subject to a set of positional constraints C j(p1, ...,pn)� 0 (symbol � denotes
either = or≥). In the PBD approach, deformation calculation becomes a constraint-function
optimization problem. The simulation workflow starts with a prediction step in which sim-
plectic Euler integration is performed to guess new particle positions and velocities. Then,
non-linear Gauss-Seidel solver is used to find the correction ∆p to apply to the estimated
positions in an iterative fashion, so that each constraint equation (after linearization) is indi-
vidually satisfied:

C(p+∆p)≈C(p)+∇C(p)∆p� 0 (1)

Since the resulting system is under-determined, the position update ∆p is constrained to
ensure the preservation of linear and angular momenta, which corresponds to forcing ∆p to
lie in the direction of the constraint gradient ∇C. The position update is further weighted by
the inverse of the mass matrix M and multiplied by a parameter k ∈ [0,1] which represents
the stiffness of the constraint:

∆p = kλM−1
∇C(p)T (2)

The Lagrange multiplier λ which solves Equation 1 is thus unique and given by:

λ =
C(p)

∆C(p)M−1
∆C(p)T

(3)

Finally, computed ∆p are used to correct both the positions and the velocities.
From this implementation, it follows that simulation behavior and performance are not

only influenced by the relative position, dimension and number of particles in space, but also
by the constraints acting among particles. For example, large deformations of soft bodies are
usually achieved by defining positional constraints among rigid clusters of adjacent particles.
This kind of constraint is called region-based shape matching. For all the particles which lie
within a cluster, goal positions gi are determined after estimating the optimal transformation
T that matches initial and deformed positions (denoted by p0

i and pi, respectively) in a least-
square fashion:

gi = T
(

p0
i

1

)
(4)

Since clusters can overlap (i.e., particles may belong to multiple clusters) the final goal
position for a particle is obtained by averaging goal positions of the corresponding regions.
Position corrections are then computed as:

∆pi = α(gi−pi) (5)

where α ∈ [0,1] is the stiffness used to enforce the constraint. As a consequence, realistic
elastic behavior is obtained by appropriately selecting cluster parameters. For example, the
higher the number of clusters, the more degrees of freedom the body will have.

Efficient implementations of the PBD approach together with the region-based shape
matching constraint are currently available in several software libraries, such as the NVIDIA
FleX [19].
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2.2 Experimental Setup

The experimental data are acquired from a Freehand Ultrasound System (FUS) based on
a Telemed MicrUs US device (Telemed, Vilnius, Lithuania) equipped with a linear probe
(model L12-5N40) and an optical tracking system MicronTracker Hx40 (ClaronNav, Toronto,
Canada) (Figure 1). We performed all experiments with an acquisition frequency of 5 MHz
and a depth setting of 50 mm, while all the other parameters are kept to default values pro-
vided by manufacturer. The spatial and temporal calibration methods used in the study are
based on the PLUS toolkit, a software and hardware framework for building research FUS
[20]. The overall probe spatial calibration error is below 1 mm (±0.7147), and below 0.5 mm
(±0.334) for the pointer used for fiducial points localization required for the rigid registra-
tion. Thanks to the FUS, we can know in real-time the position and orientation of the US
image plane and therefore extract three-dimensional position of any pixel belonging to the
image.

Data visualization and analysis are performed in 3D Slicer, e.g. landmarks-based rigid
registration between CT-extracted 3D models and FUS reference system or landmark lo-
calization and tracking in US images [21]. The simulation environment was developed in
Unity 2018.3 using NVIDIA FleX on a workstation equipped with an AMD Ryzen 7 1600
processor, 16GB RAM and a Titan Xp GPU donated by NVIDIA Corporation. The commu-
nication between FUS (i.e. US images and tracked objects positions and orientations) and
other software modules is based on OpenIGTLink protocol [22].

Fig. 1 The FUS system allows to map the real positions of the CIRS breast phantom and the US probe to
the 3D Slicer scene (right monitor). Information about probe spatial transformation is communicated to the
simulated environment in Unity (left monitor)

2.2.1 Calibration phantom

Simulation parameters of the developed deformation model are initialized on a handcrafted
box-shaped calibration phantom (155x100x70 mm), made of ballistic gel as described in
[23]. In addition to correctly approximating the consistency of the clinical scenario of inter-
est, ballistic gel also has realistic echogenic properties. The realism of the setup is further
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enhanced with the inclusion of three stiffer beads with a diameter of 18 mm within the
phantom, placed at three different heights (47 mm, 53 mm, 63 mm). The main advantage of
performing an initial calibration on a minimalistic phantom is that it provides a reasonable
starting guess of deformation parameters, common for all the patients. We expect that such
parameters will not be able to model each anatomy, and a subject-specific tuning of their
values will be necessary to account for inter-patient variability. However, having an initial
acceptable guess of the parameters will allow to start the refinement process from a point
closer to the optimum and also to restrict the search space, making the pre-operative opti-
mization more efficient. Figure 2 shows the corresponding simulation environment, where
the virtual US probe is modelled as a rigid body which follows in real-time its physical
tracked counterpart. Probe-tissue interaction is modelled as a contact problem, handled by
the default collision detection and response implementation provided by the Unity engine.
As boundary condition for the simulation, we fixed all the points which belong to the lowest
phantom surface. Despite the presence of stiffer internal parts, the proposed model treats

Fig. 2 Calibration phantom in the simulated scene in Unity

the deformable object as homogeneous and, as a consequence, identifies global parameters.
The reason for this choice resides in the fact that, since PBD simulation parameters do not
have a direct physical meaning, identification of those that describe heterogeneous material
properties would not have been straightforward and would require a thorough study.

In general, PBD simulations are controlled by a high number of parameters, but tuning
all of them is out of the scope of this research. In the calibration procedure, we focus on the
optimization of the parameters defining the clusters of region-based shape matching con-
straint present in Nvidia FleX implementation, which control objects’ deformable behavior:
cluster spacing (i.e., the distance between adjacent clusters), cluster radius (i.e., the radius
of each cluster region) and cluster stiffness (i.e., the extent to which adjacent cluster are
constrained to each other). Although it is well known that other PBD parameters can have
an impact on soft body behavior, we decide to keep their values fixed for all the simulations
and to set them in accordance with previous works (Table 1) [17]. The experimental protocol
followed for parameters optimization consists of five acquisitions for each phantom inclu-
sion. The initial rest condition is obtained by only slightly touching the phantom with the
US probe, without inducing any deformation. Afterwards, four US images are acquired in
correspondence of the center of each bead, by applying downward probe displacements of
5 mm, 10 mm, 15 mm and 20 mm. Estimation of optimal model parameters for the calibra-
tion phantom is performed with the genetic algorithm scheme. By generating a population of
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Table 1 PBD parameters kept constant for all the simulations

Parameter Value

Time step 0.02 s
Simulation substeps 3
Substep iterations 9
Relaxation type Local
Gravity 9.81 m/s2

Volume sampling 7
Particle spacing 5 mm
Shape friction coefficient 0.35
Particle friction coefficient 0.25
Damping factor 12
Collision distance 3 mm
Self-collision True

possible solutions at each iteration in a stochastic way, this methodology eventually evolves
towards an optimal solution. This scheme is known for being able to offer good character-
istics of exploration and exploitation of the search space [24]. In this work, we rely on the
implementation provided in MATLAB (MATLAB R2018b, Mathworks, Natick, MA, USA).
We minimize the prediction error, formulated by the following bound-constrained problem:

p∗gel = argmin
lb<p<ub

N

∑
n=1

L

∑
l=1
||XPBD(p, l,n)−XUS(l,n)|| (6)

where p is the vector of parameters to optimize, XPBD(p, l,n) is the position of the tracked
PBD particle, XUS(l,n) is the reference bead position, both relative to bead n at deformation
level l, and the symbol ||.|| represents the Euclidean distance. XUS(l,n) are selected on US
images as points belonging to bead contours which lie closer to the US probe; this choice is
motivated by the better visibility of interfaces on US, and allows to avoid additional inac-
curacies induced by image segmentation necessary, for example, for centroid computation.
The tracked PBD particle (which gives XPBD(p, l,n)) is chosen as the one with minimum
distance from the point on bead contour closest to the US probe, in the rest configuration.
In order to describe the entire model as deformable, we constrain all the particles to fall
within at least one cluster by imposing cluster radius to be at least half of cluster spacing.
Lower and upper bounds (lb, ub) for cluster spacing parameter are set to [5;35]mm, where
the minimum value is constrained by particle spacing (Table 1), while the maximum value
corresponds to half of the smallest gel dimension. Consequently, cluster radius is restricted
to the range [2.5;15]mm. Instead, cluster stiffness is left free to vary within the entire ac-
ceptable range [0;1].

2.2.2 Breast phantom

The biomechanical model presented aims at predicting the displacement of internal lesions
detected pre-operatively that follows from the pressure applied by the US probe. In this
work, a realistic multi-modality breast phantom (Model 073; CIRS, Norfolk, VA, USA) is
used to evaluate the capability of the PBD model to provide correct estimates of biopsy tar-
gets. The 3D model of the CIRS phantom’s external surface and 10 inner lesions (diameter
of 5-10 mm) is obtained by segmenting the corresponding CT image relying on the active
contour approach implemented in ITK-SNAP framework [25], and they are later simplified
(smoothed and decimated) without affecting the topology, using MeshLab [26] (Figure 3).
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(a) (b)

Fig. 3 External surface and inner lesions of the CIRS breast phantom in two different views

Coherently with the previous setup, we constrain the motion of all the points belonging to
the phantom base. Moreover, gravitational force is not applied in this simulation, since the
geometry model already represents the phantom in a gravity-loaded configuration. The PBD
model of the clinical scenario of interest shares the same fixed parameters of Table 1. A min-
imalistic scene of the simulated environment in Unity is made available1. In order to obtain
a patient-specific simulation, some experiments are conducted to refine the values of cluster
spacing, radius and stiffness parameters before applying the model to predict lesions dis-
placement due to US probe interaction. This process, which we refer to as fine tuning, con-
sists of tracking the position of a single US-visible landmark subject to four probe-induced
deformations (15, 20, 25, 30 mm) in a similar fashion to what has been done for the calibra-
tion phantom (Figure 4). In our case, lesion labelled with number 1 is used as a reference
for this procedure. It is worth stressing out that the choice of a lesion as landmark for the
fine-tuning solely depends on the fact that it is clearly visible on US for the CIRS phantom
we use. Despite its unlikeliness, in case no lesions at all can be detected on US images (one
lesion is enough for this procedure), the fine-tuning process can be performed by tracking
any other internal structure (like ducts or cysts). Likewise the calibration described above,
optimal simulation parameters p∗breast are chosen as those minimizing the prediction error
of our model (Equation 6), where in this case we only consider n = 1 tracked landmark. Due
to the fact that the calibration procedure on the ballistic gel phantom has given us a more
precise idea of the range where optimal parameters lie, we perform the fine-tuning exploit-
ing the direct search strategy implemented in MATLAB, which has proven convergence to
local optimum and is more efficient than genetic algorithm, provided that it starts from a
good initialization [27]. In particular, the starting parameter vector is initialized with opti-
mal values obtained for the ballistic gel phantom (p∗gel) and the range for lower and upper
bounds for each parameters is restricted to 40% of the initial range, centered in the starting
point.

Once optimal parameters are found, the PBD model is updated and used to infer the
displacement of each of the other 9 segmented lesions under four deformations, after the
probe is moved such that the corresponding lesion can be seen on the US image.

1 https://gitlab.com/altairLab/breastsimulationpbd
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(a) (b)

Fig. 4 PBD simulation of the CIRS phantom during the fine-tuning procedure: (a) before and (b) after probe-
induced deformation. Different clusters are shown with different random colors

3 Results

The same convention is followed when reporting the results for both calibration and valida-
tion experiments. Lesion coordinates extracted on US images in the FUS coordinate system
are considered as reference quantities. They are selected on US images as points belonging
to bead/lesion contours. Localization errors are computed as Euclidean distance between
these positions and the 3D coordinates of the PBD particle which, at rest, lies closer to
the same location in the simulation scene. In particular, localization error at deformation l
relative to tumor n is defined by:

ε(l,n) = ||XPBD(l,n)−XUS(l,n)|| (7)

where ||.|| represents the Euclidean distance.

3.1 Calibration

This section reports the results relative to the calibration of simulation parameters on the
ballistic gel phantom, and to their fine-tuning on the breast phantom. Table 2 reports optimal
values for cluster spacing, radius and stiffness parameters estimated through the genetic
algorithm strategy (for the calibration phantom) and the direct search method (for the breast
phantom). The average error and standard deviation over all deformations, obtained when
predicting the position of lesion 1 (the one selected as landmark for the fine-tuning process)
when each set of parameters is used, is also tabulated. The fine-tuning process has allowed
to achieve a reduction of 24% in the overall mean target error.

Table 2 Optimal values of cluster spacing, radius and stiffness parameters estimated with the proposed opti-
mization strategies for the calibration and breast phantoms. Last columns report the mean error and standard
deviation over all the deformations in mm, when each set of parameters is used to predict the position of the
landmark used for the fine-tuning process

Cluster spacing Cluster radius Cluster stiffness Mean Error STD

Calibration phantom 9.6001 9.1674 0.452390 6.64 2.00

Breast phantom 11.1626 8.5424 0.464890 5.07 1.62



10 Eleonora Tagliabue et al.

3.2 Validation

The PBD model initialized with the values estimated during the fine-tuning process is used
to predict the displacement of all segmented inner lesions of the CIRS breast phantom,
under four different input deformations. Model-predicted lesion positions can be projected
onto US images in real-time, making it possible to track even those lesions which cannot be
easily detected on US (Figure 5).

Fig. 5 The PBD model in the Unity scene (on the left) is used to predict lesion position due to US probe
pressure. Updated lesion position is projected on the acquired US image in real-time as a red circular overlay.
Circle dimension approximates the average lesion size

The performances of the proposed PBD approach are evaluated with respect to FE
implementation of Neo-Hookean hyperelasticity provided by SOFA framework [28]. The
choice of hyperelastic formulation is motivated by its popularity in breast biomechanical
modelling and the fact that linear elasticity would not have been able to cope with the large
input deformations applied. Young’s modulus and Poisson’s ratio are set in accordance with
the values provided by Visentin et al., which are estimated on the same multimodal phantom
we use in this work [29]. FE simulation is performed on a mesh of 26,220 linear tetrahedral
elements, with the same boundary conditions used for the PBD model. The dynamic evolu-
tion of the system is obtained with an Euler implicit integration scheme, along with Pardiso
solver to efficiently solve the large system of equations [30]. The only difference between
the two scenarios follows from the way in which the input deformation is applied. Mod-
elling probe-tissue interaction in a FE scenario as a contact problem introduces kinematic
nonlinearities, which would make the nonlinear system of equilibrium equations even more
demanding to solve. Therefore, instead of modeling the contacts explicitly, we prescribe the
displacement of mesh nodes below the US probe to follow probe motion via penalty method.
Coherently with the approach followed for the PBD model, localization errors are computed
as Euclidean distance between reference landmarks extracted on US images and the closest
node of the 3D FE mesh.

Table 3 shows the errors obtained for each phantom lesion as a function of the applied
deformation, and the average error per tumor and per deformation. Input deformations are
grouped in five ranges based on the displacements of US probe. In the Table, displacement
ranges indicated with D15, D20 and D25 have fixed width of 5 mm and are centered in 15,
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20 and 25 mm respectively. The two extreme ranges reported (D10 and D30) collect all the
remaining values, i.e. D10 contains all the displacements < 12.5 mm while D30 contains all
the values > 27.5 mm. Data which are not acquired for some specific lesions are reported
in Table 3 as missing values (–). The average time needed for the PBD model to predict
anatomical deformations following the 4 input displacements is 6.99 s (±0.36), which ap-
proximately corresponds to 1.75 s for simulating each input deformation. On the other hand,
the FE model takes 16.37 s (±0.73) on average, which corresponds to nearly 4.09 s for each
input deformation. Real-time performances of the proposed method in predicting lesion po-
sition can be appreciated in the accompanying video (Online Resource 1).

Table 3 Mean localization error in mm for different tumors considering different deformations ranges in the
breast phantom. The first table is for the proposed method, while the second table reports results obtained
with the FE model

PBD method
TumorID D10 D15 D20 D25 D30 Mean STD

1 – 3.259 3.724 5.307 6.214 4.626 1.190
2 1.467 4.475 6.700 – 8.347 5.247 2.579
3 3.689 – 5.590 7.831 11.930 7.260 3.069
4 5.141 6.011 5.396 5.684 – 5.558 0.325
5 2.190 2.018 4.501 – 6.694 3.851 1.912
6 5.644 4.319 3.735 – 3.982 4.420 0.737
7 2.810 3.961 6.374 10.636 – 5.945 2.998
8 5.581 5.659 6.120 6.683 – 6.011 0.440
9 – 4.506 3.833 4.007 4.511 4.214 0.301
10 4.606 2.990 3.193 3.774 – 3.641 0.627

Mean 3.891 4.133 4.917 6.274 6.946
STD 1.499 1.189 1.207 2.213 2.649

FE method
TumorID D10 D15 D20 D25 D30 Mean STD

1 – 2.686 2.495 3.626 5.175 3.495 1.060
2 3.621 5.964 5.804 – 7.087 5.619 1.255
3 3.793 – 6.952 8.136 9.646 7.132 2.151
4 4.142 3.886 4.954 4.822 – 4.451 0.449
5 1.255 1.275 1.590 – 3.758 1.970 1.041
6 6.581 5.871 6.410 – 6.671 6.383 0.310
7 5.462 5.614 6.414 10.768 – 7.065 2.169
8 6.983 4.835 4.874 5.418 – 5.527 0.871
9 – 5.032 5.277 5.047 6.503 5.465 0.607

10 2.682 2.831 3.341 2.966 – 2.955 0.245

Mean 4.315 4.222 4.811 5.826 6.473
STD 1.816 1.557 1.698 2.523 1.805

Figures 6 and 7 compare the performances of the proposed deformation model with the
FE model and a rigid one. Since deformations are not accounted for in the rigid scenario,
errors relative to the rigid case are computed as difference between the lesion position at
rest (which always corresponds to the predicted position) and the real lesion position, both
identified on US images.
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Fig. 6 Average lesions localization errors in mm at different levels of applied deformations (in mm), for rigid
(red), PBD (green) and FE (blue) models.
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Fig. 7 Mean localization error in mm obtained for each tumor for rigid (red), PBD (green) and FE (blue)
models. Horizontal dashed lines represent the corresponding average error

4 Discussion

This paper presents a biomechanical model able to account for the dynamic behavior of the
breast during US scanning. The preliminary calibration of the main deformation parameters
on a distinct geometry serves to find reasonable initialization values and can be performed
offline once for all. Before applying the deformation model, simulation parameters are re-
fined with a fine-tuning procedure on the final structure of interest, in order to improve
parameter values to describe patient-specific features. Even though the fine-tuning process
is able to further optimize the parameters, Table 2 shows that errors obtained with the ini-
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tial set can be considered already acceptable. We expect that once the model is applied to
the true clinical context, where the high inter-patient variability in geometries and boundary
conditions is unlikely to be described by a single phantom, the role of the fine-tuning will
emerge more clearly.

The performance of the PBD model in the prediction of the displacement of internal
lesions is also tested. From Table 3 it is possible to evince that for all the inner masses, the
average prediction error over all the deformations (second to last column in the Table 3)
remains below 7.26 mm, which is comparable to the maximum average error made by the
FE model (7.13 mm). If we consider the average error per deformation level, it emerges that
while PBD model performs better for smaller input displacements (D10 and D15), FEM has
improved performances with larger displacements (D20 to D30). It is well-known that accu-
racy of FE results would benefit from using a higher mesh resolution, but this would come
at the expense of a degradation in computation time [7]. Due to the fact that the main aim
of this work is to update lesion position on ultrasounds in real-time for tracking purposes,
comparison with a highly refined FE mesh has not been considered in this work. In general,
Table 3 clearly shows that there are no significant differences in the errors made by the two
models, thus suggesting that the prediction accuracy obtained with PBD model is compa-
rable to that achieved with classical FEM, which is typically used to simulate soft tissue
biomechanics. If we consider the trend of the error at different deformation levels (Figure
6), it is possible to immediately notice that performances of the PBD and FE models are
highly comparable. In particular, they are both able to keep the prediction error limited even
at larger deformations, where the rigid case considerably fails. Instead, for small deforma-
tions, all the three models perform in a similar way. Figure 7 allows to analyze the prediction
performance of the deformation model over all the tumors. It is immediate to notice that both
PBD and FE models outperform the rigid case by at least halvening the prediction error on
all the tumors. No remarkable differences between results obtained for the two deformable
models can be noticed, with the PBD model performing better than FEM on 6 out of 10
lesions, on average. The biggest average error is obtained for both models for tumor 3, the
closest to the phantom base, possibly due to an inaccuracy of the models in tackling lesions
in that position (i.e. very close to the boundaries).

Analyzing the computational performances, FE model takes more than twice the time
needed by the proposed PBD model to perform the simulation, and even without any sig-
nificant improvement in prediction accuracy. Although a wide variety of techniques have
been proposed to simplify the computational complexity of FEM to meet real-time per-
formances [7], we compare our method with the implementation provided by the SOFA
framework, which is the state-of-the-art physics engine for interactive medical applications
and it is freely available. In addition, SOFA has been already employed to model probe-
induced deformation of soft tissues [31]. An extensive comparison with more advanced FE
implementations will be considered in future work. However, apart from the computational
performace, the proposed PBD model has several advantages over FEM. First of all, the
mesh-free PBD approach allows to avoid the time-consuming generation of high quality
mesh, which represents the major bottleneck in FE simulations (especially in those inolving
large deformations) [7]. Since we are targeting a patient-specific context, this represents an
enormous advantage because the mesh would have to be constructed everytime, for each
patient. Furthermore, thanks to its direct manipulation of positions, the PBD approach can
easily handle collisions constraints. Probe-tissue interaction can thus be effectively treated
as a collision problem, thus allowing to deal with any input probe position without requiring
the explicit definition of the contacting surface. The same does not apply to FE simulations,
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where the enforcement of contact constraints would introduce a degradation of the perfor-
mances and stability issues.

The proposed approach relies on the region-based shape matching constraint to model
large deformations of soft tissues. The main drawbacks of this implementation are the de-
pendence of the deformable behavior on time step size and iteration count, and the fact that
PBD parameters do not have a direct physical meaning. Some advanced approaches that
overcome these limitations have been proposed but they are not yet incorporated in Nvidia
FleX framework and not even publicly available. In addition, they have never demonstrated
to be significantly faster than the shape matching method even in its CPU version, so we can
reasonably assume that the optimized GPU-based implementation of Nvidia FleX outper-
forms both approaches from a computational time point of view [32, 9]. In future works, we
plan to compare the performances of the proposed method with these extensions and also
with other approaches such as mass-spring models, ChainMail and smooth particle hydro-
dynamics (SPH).

The most innovative aspect of the proposed model relies in its ability to compensate in
real-time for the large deformations the breast is subject to due to probe pressure during
freehand US acquisitions, thus enabling a precise tracking of biopsy targets. However, this
method still has some margin of improvement. First of all, a more controllable and repeat-
able strategy for the application of deformations should be envisioned, for example by using
a probe holder or by performing robotic-assisted acquisition. To further reduce inaccuracies,
a more precise selection of corresponding fiducials in real and simulated environments has to
be made. For instance, an automatic routine for fiducials identification on US images would
allow to avoid human errors involved in the landmarks placement. Regarding the simulated
environment, it would be optimal either to increment the total number of particles (thus in-
creasing the degrees of freedom) or to force a particle to lie at the same exact location of the
real fiducial. However, both particle amount and their placement in space are handled by the
current Unity implementation (optimized for gaming applications) and cannot be controlled
by the user. As a further extension, we will provide a complete tool for guiding biopsies by
including needle insertion simulation. Despite the advantages provided by a meshless ap-
proach in handling topology changes, we expect some major challenges in the modelling of
needle-tissue interaction. Afterwards, we envision to apply the same method to improve the
effectiveness of US-guidance in other percutaneous procedures, such as prostate biopsy.

5 Conclusion

Exploiting position-based dynamics formulation for modelling breast deformations has pro-
ved successful to online predict probe-induced displacement of internal lesions during ul-
trasound scanning. By accounting for the deformable nature of the anatomy, the proposed
approach achieves accuracy which is comparable with FE models, but with faster compu-
tational performance and without even requiring 3D mesh generation. Furthermore, it out-
performs rigid models usually employed for lesion tracking in biopsy procedures, and paves
the way to a wider range of applications, such as planning of optimal transducer trajectories
in robotic-assisted US scanning and realistic ultrasound simulation for training purposes.
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