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ABSTRACT 
The nano-sized membrane enclosed extracellular vesicles (EVs) transfer macromolecular 
information in the form of proteins, nucleic acids and lipids across cells. They are important 
mediators of cell-to-cell communication, but their relatively small size makes EV isolation and 
down-stream analysis challenging. In this thesis, we ventured through some of the current 
challenges in the EV field touching upon purification, small RNA and protein content profiling 
and ultimately characterization of engineered vesicles at the molecular level. 

The isolation of EVs from the complex fluid they are surrounded by, represents the first 
hindrance in studying these vesicles. Ideally, the purification method should preserve the 
integrity and natural properties of the EVs and simultaneously deplete the vesicular portion 
from unwanted components. In Paper I, we describe a novel liquid chromatography technique 
for EV purification, that combines size separation with bind elution (BE-SEC) entrapping 
molecules smaller than 700 kDa within the matrix core. The BE-SEC isolation method yields 
high particles recovery in a reproducible and time-efficient way, without neither affecting the 
EVs natural surface protein signature nor their physicochemical properties. By adding a prior 
tangential flow filtration step, the BE-SEC could be scaled-up and the EV preparation further 
depleted from unwanted non-vesicular proteins and RNAs. 

Secondly, therapeutically engineered EVs are promising delivery vehicles and linking the 
administered vesicular dose to the molecular cargo concentration is of extreme relevance to 
achieve a desired response. Therefore, analytical methods focused on single vesicles 
quantification rather than ‘bulk’ analysis and improved bioengineered vesicles are of utmost 
importance for therapeutic applications. In Paper II, we extensively characterize a set of 
fluorescently labelled EV-associated proteins, employing several qualitative and quantitative 
methods. Using Fluorescence Correlation Spectroscopy, we quantify the number of fluorescent 
molecules per single loaded vesicle. Different loading efficiencies were observed for the tested 
proteins, with the tetraspanins (CD63, CD9 and CD81) showing the highest loading efficiency 
with an average of 40-60 fluorescent molecules per vesicle. To summarize, we provide a 
reference for selecting EV sorting domains that best fit the desired outcome, as well as an array 
of quantitative and qualitative methodologies to support EV engineering.     

In Paper III, we investigate the native RNA and protein content of EVs, with a focus on small 
RNAs and RNA binding proteins respectively. Across different mouse and human cell-derived 
EVs, a deficiency of miRNA sequences and relative depletion of ‘miRNA-related’ proteins 
were observed. The majority of the RNA sequences detected in EVs was represented by rRNA-
, coding- and tRNA fragments, reflecting the observations in the respective protein portion, 
where ribosomal and translational proteins were predominantly identified.    

In conclusion, this thesis explores and advances some of the challenges encountered in the EV 
field by ameliorating the EV isolation workflow in terms of time and scalability, linking the 
vesicular transcriptome and proteome of EVs derived from various cell lines, and 
systematically comparing and quantifying the sorting efficiency of different proteins into EVs.  
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INTRODUCTION 

1 Synthetic and Natural Nanoparticles as Drug Delivery Vehicles  
Over the past few years, nanotechnology has insinuated into our daily lives in many different 
forms, from electronics to materials, from industrial to medical processes. The application of 
such technology for medical diagnostics and disease treatment purposes, among others, is 
termed nanomedicine1. One of the main objectives in nanomedicine, is the efficient delivery of 
drugs to specific diseased tissues with limited or no side effects for the healthy tissues. To 
achieve such effects, poorly water-soluble drugs and other therapeutical molecules are 
encapsulated into synthetic nanoparticles such as liposomes2, polymer nanoparticles3, micelles4 
and dendrimers5 or natural carriers like viruses (virus-like particles, VLPs)6 and extracellular 
vesicles (EVs)7,8. Synthetic nanosystems have distinct properties in terms of toxicity, 
biocompatibility and pharmacokinetics, which seem to be determined by the nanoparticles’ 
formulation and physiochemical properties1. For therapeutic applications, the nano-delivery 
systems should ideally have beneficial effects over the free drug such as site-specific delivery 
and controlled released of the compounds, avoid recognition by and escape the body’s immune 
system. In the last decades, the features of the nanosystems have been tuned and optimized to 
extend blood circulation and targeted-delivery and many nanomedicines are undergoing pre- 
and clinical trials and some have been clinically approved9. Nevertheless, the translation of 
such therapeutics from bench-to-bed side has been modest due to ineffective delivery to certain 
tissues, rapid clearance, poor understanding of the drug interaction and fate in in vivo settings9. 
To overcome these hurdles, naturally occurring nanosystems have been exploited and studied: 
viruses and EVs.  

Viruses have evolved over the years to evade the immune system and transfer their genetic 
information into cells they infect, making their modified variants suitable for therapeutic gene 
delivery10. For safety concerns, virus-like particles (VLPs) have recently been developed. 
These carriers essentially constitute of virus structural proteins, but are not infectious since they 
lack any viral genetic material11. VLPs present several advantages over other nanoparticles: 
they are biocompatible12, they can intrinsically encapsulate therapeutic material13,14 and their 
surface can be easily functionalized with various biomolecules to provide different features15–

17. Although many studies show the successful application of VLPs as vaccines and drug 
delivery vehicles, challenges in the production line, their immunogenicity and non-suitability 
for repetitive administrations, hinder the advancement of the VLP field towards clinical 
applications18,19. 

EVs are cell-derived biological carriers transporting active biomolecules between cells and 
tissues. They have been shown to play a fundamental role in cell-to-cell communication both 
in physiological and pathological conditions. Thanks to their small size and intrinsic features, 
EVs represent ideal candidates for drug delivery20. Nevertheless, they are not devoid of limiting 
factors that hamper their clinical translation. The characteristics, biological and therapeutical 
roles of the EVs will be extensively discussed in the following sections. 



 

2 

2 Extracellular Vesicles 

2.1 History and Terminology 

The discovery of cell-derived vesicles leads back to the late 1960s when researchers imaged 
vesicle-like material and referred to it as “platelet dust”21. A decade later, active shedding of 
vesicles was observed in lymphoma cells and it was proposed as a mechanism used by tumour 
cells to evade the host immune system22. Meanwhile, two independent groups studying the 
transferrin receptor, demonstrated that this receptor was secreted from reticulocytes in 
vesicles23,24 and subsequently discovered that these vesicles originated from multivesicular 
bodies (MVBs)25,26. These preliminary reports helped to develop the field as we know it now 
and to unravel some aspects of the EV biology and their potential as therapeutics. 

Since the early stages of the EV field up until now, researchers have tried to reach a consensus 
regarding the EV nomenclature. EVs can be catalogued based on their function27 or specific 
cellular origin28,29, but are commonly classified based on their biogenesis and biophysical 
properties. Exosomes are 40-120 nm in size, originate from the inward budding of the MVBs 
and are secreted in the extracellular environment upon fusion of the MVB with the cell 
membrane. Microvesicles (MVs, 50-1000 nm) and apoptotic bodies (500-2000nm) buds 
directly from the plasma membrane of healthy and apoptotic cells, respectively30. Despite this 
classification, there is still a grey zone where the different classes of EVs overlap in terms of 
size, molecular signature and density. To complicate the scenario even further, within the same 
class, different vesicular subpopulation with specific composition and biophysical properties 
have been described31 (Figure 1). 

Figure 1. Heterogeneity of the EV population. Heterogeneous populations of EVs are release by cells through 
different mechanisms. Separating the different EV populations is challenging due to their overlapping sizes and 
characteristics. Exosomes and their subpopulations (indicated as green, pink and orange vesicles) originate from 
the endosomal pathway and are secreted upon fusion of MVBs with the cell plasma membrane. Apoptotic bodies 
(water blue) and microvesicles (light blue) buds directly from the plasma membrane. Figure inspired by32. 

For clarity, in this thesis the term EV will be referring to exosomes and microvesicles, unless 
otherwise stated. 
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2.2 EV Isolation  

EVs are generally purified from conditioned cell culture media and various body fluids such as 
blood plasma33, urine34, saliva35, breast milk36, semen37, amniotic fluid38 and many more. These 
fluids are complex and contain, apart from EVs, cell debris, proteins, lipoproteins and nucleic 
acids among others. Therefore, the isolation of EVs is challenging, not only due to their small 
size, but due to the complexity of the material they are surrounded by. 

2.2.1 Non-technical Related Considerations 

Mammalian cells are commonly cultured in medium supplemented by fetal bovine serum 
(FBS), but the presence of serum-derived vesicles poses a risk of contamination that might 
influence the experimental outcomes. Therefore, to minimise the influence of FBS-derived 
EVs, it is recommended to culture cells in serum-free conditions or using EV-depleted FBS39,40. 
In addition, FBS contains diverse RNA species, either vesicle- or protein-associated, that are 
only partially removed by the common EV-depletion methods and could contaminate and 
interfere with downstream analysis and applications41. Cell culturing conditions such as  
hypoxia42, serum starvation43, three-dimensional culturing44 were also shown to impact the 
secretion, composition and function of the EVs. 

Biological fluids are even more complex than cell culture media due to the presence of free 
components such as proteins, carbohydrates, lipids and nucleic acids that make them relatively 
viscous. For this reason, it is advisable to dilute them in equal volumes of phosphate buffered 
saline (PBS) prior to any purification procedure39 and consider important factors during sample 
collection, handling and EV isolation45,46. These considerations are fundamental to avoid co-
isolation of contaminants that might impact on data interpretation. For instance, high-density 
lipoproteins (HDL) contained in blood plasma, have been shown not only to co-purify with 
EVs owing to density similarity, but to carry a distinct miRNA signature and mediate biological 
effects in recipient cells47,48. Henceforth, in order to correctly interpret EV-mediated effects, it 
is fundamental to acknowledge the existence of such hurdles and tailor the isolation method to 
reduce the contamination to a minimum.        

The loss of EVs due to binding onto the storage vials, vesicular disruption due to repetitive 
freeze-thaw cycles49, or lysis due to the storage buffer of choice50 are all aspects that have an 
impact on the experimental outcomes and should be considered when storing isolated EVs. The 
lack of knowledge on EV preservation prior and after isolation are stalling the progression of 
EVs as therapeutics. Therefore, decrypting the optimal EV storage conditions to preserve the 
EV characteristics is vital for clinical applications.  

In conclusion, all these potential issues during culturing, isolation and storage have to be taken 
into consideration while outlining, performing and interpreting experiments. 

2.2.2 EV Isolation Methods  

There are different aspects that should be taken into consideration while isolating EVs: ideally 
the procedure should result in high particle yields and depletion of any extra-vesicular 
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contaminants while maintaining the integrity and biophysical properties of the vesicles. A 
perfect isolation method does not exist, but progress has been made to develop improved 
isolation techniques.  

The isolation of cell cultured derived-EVs can be achieved via different methodologies, but all 
of them share the same pre-clearance steps. Floating cells and cell debris are depleted at low-
speed centrifugations, 300 x g and 2,000 x g respectively39. The isolation of EVs from 
biological fluids is similar, but the speed and length of the centrifugation steps are usually 
increased due to the viscosity of the sample39. Additional details of the most commonly used 
EV isolation methods are provided below. 

2.2.2.1 Ultracentrifugation 

Ultracentrifugation (UC) is the most utilized EV isolation technique in the field39,51. The low-
speed centrifugation steps described above are most often followed by a 0.22 µm filtration or 
by an optional 10,000-20,000 x g spin to either filter out or pellet bigger vesicles i.e. 
microvesicles (MVs). The supernatant is then spun at 100,000-120,000 x g to enrich for small 
vesicles termed exosomes. The purity of the preparation can be further enhanced by introducing 
a PBS wash39 or by loading the pelleted vesicles on a density gradient to separate the different 
components of the secretome39,52 and EV populations31 based on their buoyant density.  

Despite being extensively used, UC has limitations such as low particle yields, particle 
disruption and aggregation, co-pelleting of non-vesicular biomolecules, operator-dependence, 
long isolation time and poor scalability53,54. Even the additional density gradient step leads to 
particle disruption and loss of EV functionality55, likewise the spinning time and the rotor type 
affects the purity and yield of the final sample56. Therefore, to overcome these hurdles, several 
alternative isolation methods have been developed.  

2.2.2.2 Size exclusion chromatography 

Separating EVs based on their size is becoming a popular alternative to UC, since it does not 
seem to affect the integrity of the EVs53,57 and results in higher yields and purer particles52,53. 
Size exclusion chromatography (SEC) is performed using columns filled with porous polymer 
beads of different sizes. As the solution travels across the column, big molecules pass through 
the pores faster and elute earlier than smaller molecules, which can enter the porous beads and 
thus have a longer retention time. Studies adopting this methodological principal and the proper 
column resin, have described the feasibility of SEC in fine fractionating the secretome53,58 and 
separating different EV subpopulations31. However, the technique in itself is not scalable, a 
fundamental aspect for clinical applications, and is therefore commonly combined with prior 
Ultrafiltration (UF)53,58 or Tangential Flow Filtration (TFF)31,59,60 steps to concentrate large 
media volumes. Both methods use semipermeable membrane with defined molecular weight 
cut-offs (MWCO, typically 100 or 300 kDa), UF being based on dead-end and TFF on cross-
flow filtration. In essence, molecules bigger than the MWCO are retained either in the filter or 
hollow fibres and smaller molecules elute in the permeate.  
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Commercially available columns based on size exclusion have also been adopted to reduce the 
isolation time59 and to allow the purification of EVs from small volumes of biofluids61,62. 

2.2.2.3 Alternative Isolation Methods 

Based on the diverse physiochemical and molecular EV characteristics, several alternative 
isolation procedures have also been developed.  

The heterogeneous physical characteristics of EVs such as hydrodynamic diameter and 
molecular weight drive their separation in asymmetrical-flow field-flow fractionation 
(A4F)63,64. Even though this technique requires substantial optimization, it preserves the native 
EV characteristics and performs a gentle separation of EVs into subpopulations, enabling the 
discovery of a novel small non-membranous particle population termed exomers (~35 nm)65. 
Some other methodologies exploit the expression of certain markers on the EV surface to 
perform immunoaffinity capture66,67; even though multiplexed, these techniques tend to 
preferentially isolate certain EV subtypes based on their surface protein profile or isolate 
unwanted membranous material that expresses similar antigens.  

Commercially available and easy-to-use products have also been developed, such as 
ExoQuickÔ (System Bioscience) and Total Exosomes IsolationÔ (ThermoFisher Scientific). 
Both are polymer-based precipitation techniques and although being facile to use, the low 
purity and the residual polymers represent an issue for downstream applications68,69. Despite 
these disadvantages, polyethylene glycol (PEG)-precipitation has been employed to isolate 
EVs further administered to a patient and seemed to be well tolerated70.  

To conclude, the lack of consensus on the most ideal isolation routine, has an impact on the 
reproducibility and reliability of the findings, making the cross-study comparison more 
challenging. However, efforts towards more standardized experimental reporting to facilitate 
the interpretation and reproducibility of the studies have been made71. 

 

2.3 EV Characterization 

The vesicular characterization following isolation is essential, not only to determine and 
confirm the presence of EVs in the preparation72, but also to acquire information of their cargo 
and its potential implication in biological processes. Therefore, the development of novel 
characterization methods to study the physiochemical and molecular properties of the EVs is 
as important as the advancement of the purification protocols. The technical challenges 
associated with the isolation protocols, are also reflected in the characterization procedures. 
Therefore, features such as size, morphology, density, concentration and molecular content are 
commonly and jointly utilised for EV characterization and will be shortly described below. 
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2.3.1 Physical Characterization 

Transmission electron microscopy (TEM) was firstly used to image what we nowadays refer 
to as EVs26 and it is still widely utilized to visualize and characterize EVs with high resolution. 
However, the specimen preparation and acquisition may damage the sample and introduce 
artefacts that hamper proper characterization. Hence, the visualization of EVs in their native 
state, preventing morphological and ultrastructural changes, has been achieved by embedding 
the sample in vitreous ice and keeping it at low temperatures with cryo-EM73. Additionally, 
both methodologies can be applied to collect molecular information by staining the specimens 
with immunogold conjugated antibodies directed towards specific EV antigens74,75. Recently 
developed microscopy-based techniques such as atomic force microscopy (AFM), have been 
seldomly applied to physically characterize EVs, but shown to be promising76. The AFM 
outputs a 3D-topography of the EVs, immobilized on a flat surface of mica that can be further 
functionalized with monoclonal antibodies to obtain information on the EV surface proteome77.  

Beside the microscopy-based techniques, other methodologies are widely adopted in the EV 
field. For instance, the size and distribution of particles in solution can be determined by the 
particles’ Brownian motions. Dynamic light scattering (DLS) employs this physical 
phenomenon to measure particles ranging from 1 to 6000 nm, however in the presence of an 
heterogenous suspension, the particle distribution tend to be skewed toward the larger particles, 
influencing the results78. The heterogeneity of the population can be more accurately measured 
with nanoparticle tracking analysis (NTA) allowing for the detection of particles as small as 30 
nm51,79. NTA offers quick and easy measurements, but the particle concentration has to be 
within a certain range to achieve accurate results. Fluorescently labelled vesicles can be 
detected either by NTA, even though accuracy can only be achieved with very bright vesicles80, 
or by fluorescence correlation spectroscopy (FCS), a sensitive method able to quantify the 
number of fluorescent molecules per vesicle81 (Paper II). 

EVs can also be characterized and classified based on their density in sucrose or iodixanol 
(OptiPrep™) gradients39. Exosomes have been reported to have a buoyant density ranging from 
1.13 to 1.19 g/ml82, whereas MVs around 1.03-1.08 g/ml83. This procedure has also allowed 
the detection and separation of EV subpopulations characterized by different flotation 
densities31.  

2.3.2 Molecular Characterization 

Physical vesicular features are normally coupled to the characterization of the EV molecular 
content, in particular the EV protein composition. Total protein assays are most frequently used 
to define the purity of the isolated vesicles52 and determine the doses for in vitro and in vivo 
studies. However, they are limited to the purity of the sample as protein contaminants 
compromise the accuracy of the measurements. On the other hand, the detection of specific 
proteins by immunoblotting is widely used to validate the expression of EV-associated proteins 
(e.g. cluster of differentiation (CD)9, CD81, CD63, Alix, Tsg101) and absence of 
contaminating proteins (e.g. GM130, Calnexin, Albumin, Fibronectin)72,84 in the isolated 
samples. Other than being used as a quality control tool, immunoblotting can be applied to 
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detect exogenous or disease-specific proteins. As a complement or substitute for WB, EV 
surface markers detection by flow cytometry and relative protein expression determination, can 
be achieved employing multiplexed beads coated with antibodies directed toward 39 different 
antigens66,67. Nowadays, to overcome some of the flow cytometry limitations85, more sensitive 
flow cytometers have been developed to quantify and characterize EVs as small as 100 nm, 
upon staining with immunofluorescence antibodies86 or coupling with imaging-quantification 
features87–89. High-throughput proteomic studies have also been employed to discover novel 
EV markers90, compare the EV proteome upon different isolation methods91 or discriminate 
between EV subpopulations31.  

Since the discovery of EV-mediated RNA transfer92, the characterization of nucleic acids in 
EVs has expanded. The RNA content is generally investigated by next generation sequencing 
(NGS) or microarrays, with further validation by qPCR or northern blotting. The presence of 
contaminants such as lipoproteins or ribonucleoproteins (RNPs) originating from the cell 
culture media40,93,94 or DNA carry-over from RNA extraction95 might negatively affect the 
downstream analysis. Hence, to reduce the contaminations it is recommended to treat the EV 
preparation with proteinase, RNase or DNase to eliminate any extravesicular component95. 
However, the impact of these treatments on the nucleic acids associated with the EV surface is 
still unknown. An additional challenge is the assessment of the quantity and quality of the RNA 
required prior to the NGS analysis, due to the low RNA content per EV and low sensitivity of 
the currently available assays95.   

Even though neglected for a long time, the lipid content of the EVs is gaining attention. The 
employment of gas liquid chromatography96,97 or mass spectrometry98, has shown the 
enrichment of cholesterol, glycolipids, sphingomyelin and phosphatidylserine in EVs as 
compared to the cells of origin. More recently, the lipid component of the EVs has been adopted 
to develop a lipid quantification assay devoid of the limitations owed to the protein 
aggregates99. 

The small size, the heterogeneity, the presence of contaminants and the poor sensitivity of the 
current technologies, make the EV characterization still relatively challenging.  

 

2.4 EV Composition 

EVs are vesicles composed by a lipid bilayer that encloses proteins and nucleic acids, 
protecting them from degradation. Numerous high-throughput studies on the lipidome, 
proteome and transcriptome of these vesicles have been performed to date and compiled on 
web-based catalogues such as ExoCarta and Vesiclepedia. These studies have revealed that the 
nature of the EV content is highly dependent on the source cell and its physiological or 
pathological state. Nevertheless, common features are shared between the different vesicles 
and their subpopulations100–102. 
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2.4.1 Lipids 

The interest in studying EV lipids has been growing since 2002, when it was demonstrated for 
the first time that lipids of tumour-derived EVs, particularly sphingomyelin, played a key role 
in angiogenesis103. Albeit the differences related to the cell type of origin, EVs are mainly 
composed of phosphatidylserine (PS), phosphatidyl-ethanolamine (PE), sphingomyelin, 
phosphatidylinositol, phosphatidylcholine, cholesterol and ceramides (GM3)96,98,104–106. It is 
well established that the inner and outer leaflets of the EV membrane have an asymmetric 
distribution of lipids that regulate the curvature of the membrane. In this regard, the most 
notable difference as compared to the cell plasma membrane is the presence of PS and PE on 
the outer leaflet of the exosomal membrane that seem to have a role in exosomes biogenesis107. 
The enriched lipids, especially sphingomyelin and GM3, has been shown not only to convey 
stability and structural rigidity to the vesicular membrane108, but also to take part in cellular 
signalling pathways109. 

2.4.2 Protein Composition and Sorting Mechanisms 

Proteins are a major component of the EV cargo and their expression is commonly used for 
characterization purposes. A compilation of 16 proteomic data sets has identified a collection 
of recurring proteins and categorized them as common vesicular markers, accepted across the 
EV community72,84. Many of these EV-associated proteins are regulators of the EV biogenesis. 
Proteins of the tetraspanin family (CD9, CD81 and CD63) are highly enriched on exosomes110–

112, but not exclusive to exosomes as they are also detected on bigger vesicles90. The abundance 
of the tetraspanins on EVs is the result of the formation of clustered microdomains together 
with other partners such as integrins113,114 and syntenin115, that promote the budding of the 
membrane either towards the extracellular environment or toward the lumen of the 
MVBs112,116. Similarly, proteins of the Endosomal Sorting Complex Required for Transport 
(ESCRT) involved in MVB biogenesis, such as Tsg10115 and Alix are frequently found in 
exosomes. The latter was shown to interact with syndecan through syntenin, supporting 
exosome biogenesis and ensuring cargo loading into the vesicles118. Various post-translational 
modifications (PTM) are also known to control protein localization, stability, activation state 
and sorting into EVs119,120. For instance, the recognition of the ubiquitinated epidermal growth 
factor receptor (EGFR) by the ESCRT complex, promotes the invagination of the endosomal 
membrane and thus the recruitment of EGFR into EVs97. On the contrary, the ubiquitination of  
small integral membrane protein of the lysosomes/late endosome (SIMPLE)121 or major 
histocompatibility complex (MHC) class II122 has a negative impact on the secretion of these 
proteins into EVs. The phosphorylation state of certain proteins has been shown to influence 
their sorting in EVs, by protecting them from endosomal degradation, as in the case of Annexin 
A2123. 

Despite the predominance of common proteins, EVs also contain cell-type specific proteins 
like MHC class II, very abundant on antigen presenting cells (APCs)-derived vesicles124–126 
and EGFRvIII only identified in EVs derived from glioma cells127. Additionally, the most 
abundant cellular proteins (e.g. actin, tubulin etc.) have also been detected in EVs and this could 
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be explained by bulk inclusion of cytoplasmic material into EVs or more likely due to 
contaminants and fragments of dying cells carried over during isolation.  

2.4.3 Nucleic Acid Composition and Sorting Mechanisms 

Roughly ten years ago, a series of publications described the EV-mediated functional transfer 
of mRNAs and miRNAs between cells92,128–131. Since then, numerous studies based on 
microarray and next generation sequencing have profiled the RNA content of EVs derived from 
various cells132–136 and biological fluids137,138. Double stranded DNA139,140, mitochondrial 
DNA141 and dsDNA-binding histone proteins142 have been detected in EVs, however their 
association with EVs is disputable as DNA is still considered a contaminant from improper 
isolation95,143. Recently, the secretion of DNA and histones was shown to be an 
autophagy/amphisome-dependent mechanism and no association with exosomes was 
observed143. However, more studies are needed to elucidate the genuine role of DNA in EVs.  

EVs are mainly enriched in transfer RNAs (tRNAs), miRNAs, small nuclear RNAs (snRNAs), 
small nucleolar RNAs (snoRNAs), vault RNAs (VT-RNAs), Y RNAs and fragmented 
RNAs144–146. Overall, the EV RNA content reflects that of the parental cells but certain RNA 
species are more overrepresented than others, indicating a certain degree of sorting specificity. 
In silico studies have identified specific ‘zipcodes’ sequences147,148 and 3’UTR regions144 in 
the mRNA fragments loaded into EVs, supporting an active RNA sorting mechanism. RNA 
binding proteins (RBPs) such as hnRNPA2B1149 and SYNCRIP150 have also been identified as 
RNA sorting machineries leading to the enrichment of miRNAs in EVs, through the 
recognition of specific motifs. Similarly, using a cell-free assay, Shurtleff and colleagues 
demonstrated the role of the protein YBX1 in binding and sorting miRNAs into exosomes151. 
The interaction between Exportin-5, a protein involved in exporting pri-miRNAs from the 
nucleus to the cytoplasm, and ADP-ribosylation factor 6 (ARF6) were reported to have a direct 
role in trafficking pre-miRNAs into tumour-derived MVs152. 

Due to the observed association of miRNAs and RNA-induced silencing complex (RISC) 
proteins with MVBs153, it seems reasonable to foresee an involvement of these proteins in 
miRNA sorting. Some reports, in fact, described the presence of Ago2 and other RISC proteins 
in breast154- and colon155 cancer-derived EVs, further revealing a sorting dependency related 
to Ago2 phosphorylation state155,156. In relation to this, Ago2 knockout was shown to decrease 
the sorting of certain miRNAs into HEK293T-exosomes157. We observed that, despite 
overexpression, the native isoform of Ago2 was not sorted into HEK293T-EVs, unless fused 
to a membranous tag which further resulted in an enhanced vesicular loading of certain 
miRNAs (unpublished data). Despite these observations, the presence of Ago2 in EVs is still 
controversial as some studies have reported little or no Ago2 detection in the vesicles143,158,159. 
Hence, further studies are required to elucidate the mechanisms behind RNA sorting in EVs 
and the potential involvement of RISC proteins. These observed discrepancies could be 
confined to the cell culture conditons93,94 or the isolation methods159 utilised. 
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2.5 EV Biogenesis 

Microvesicles are generated from the outward budding of the plasma membrane and released 
in the extracellular environment160. Exosomes, on the other hand, originate as intraluminal 
vesicles (ILVs) from the inward budding of the MVBs, which then fuse with the cell membrane 
and secrete the enclosed vesicles into the extracellular space161 (Figure 2). Despite these 
traditionally accepted biogenesis processes, evidence of vesicles carrying similarities with 
exosomes, have been described to bud from the plasma membrane of T-cells107. To determine 
whether this is a cell-type specific or a general mechanism that has not yet been explored, 
further investigations are required.  

2.5.1 Biogenesis of Microvesicles 

Microvesicles are directly released in the extracellular milieu by blebbing and scission of the 
plasma membrane162. Several rearrangements of the lipid and protein composition are required 
to perturb the rigidity and curvature of the membrane during the MV formation160. 
Aminophospholipid translocases (flippase and floppase) contribute to the translocation of 
phospholipids between the two membrane leaflets, essential in the first steps of the MV 
formation163,164. Upon lipid redistribution, the fission and release of the MVs from the cell  are 
led by the cytoskeletal rearrangements of actin and myosin, regulated by a signalling cascade 
initiated with ARF6 and RhoA mediators160,165. External factors such as Ca2+ levels166 and 
hypoxia42 have also been shown to activate and influence MV formation. Recently, other types 
of EVs have been described to bud directly from the plasma membrane, termed arrestin-
domain-containing protein 1 (ARRDC1)-mediated MVs (ARMMs), which were shown to lack 
late endosomal markers and contain plasma membrane associated ARRDC1 and Tsg101, 
driving their direct secretion167,168. 
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Figure 2. EV biogenesis. The budding of microvesicles from the plasma membrane is controlled by the proteins 
ARF6 and RhoA, regulators of the cytoskeletal elements. Recently, other types of MVs (ARMMs) were shown to 
directly originate from the plasma membrane by ARRDC1 and Tsg101 intervention. Exosome biogenesis is more 
complicated and involves the endosomal pathway. The cargo directed to the MVB originates from the invagination 
of the cell plasma membrane forming the early sorting endosome. The cargo contained in the early endosome can 
be recycled back to the cell plasma membrane through the recycling endosome or directed to the MVB. The MVBs 
are compartments filled with ILVs formed from the invagination of the MVB membrane through ESCRT-
dependent and -independent mechanisms. MVBs can either degrade their content by fusing with the lysosome, 
fuse with the autophagosome generating a hybrid amphisome directed to the plasma membrane or be transported 
directly to and fuse with the plasma membrane. The docking and fusion to the plasma membrane are regulated by 
actin, Rab and SNARE proteins. Figure inspired by169. ARMMs, arrestin-domain-containing protein 1 (ARRDC1)-
mediated MVs; ESCRT, Endosomal Sorting Complex Required for Transport; ARF6, ADP-rybosilation Factor 6; 
RhoA, Ras Homolog Gene Family Member A. 

 

2.5.2 Biogenesis of Exosomes 

The biogenesis of exosomes is closely related to the endosomal pathway, that has different 
trafficking checkpoints to regulate the recycling of proteins to the cell membrane, to the Golgi 
apparatus or to the ILVs. The first step in the exosomes biogenesis, is the formation of the early 
endosome from the invagination of the plasma membrane that allows the internalization of 
specific proteins localized on the cell surface and the entrapment of extracellular 
components170. Proteins that are destined for recycling are translocated back to the plasma 
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membrane and will therefore not end up in ILVs, unless their endosomal recycling is impaired 
as for the transferrin receptor in reticulocytes171. Syntenin for instance, acts as a recycling and 
intraluminal sorting mediator. In fact, it plays a dual role by recycling syndecan to the plasma 
membrane via the interaction with phosphoinositide PIP2172 or by sorting syndecan into EVs 
via the ESCRT mediator Alix118,173.  

During maturation of the endosomes, the ILVs are formed through the invagination of the 
MVB membrane. This process is regulated by the ESCRT complex composed of four different 
subcomplexes (ESCRT-0, -I, -II, -III) and accessory proteins (Alix, VPS4 and VTA-1)174,175. 
Ubiquitinated proteins seem to recruit ESCRT-0 and ESCRT-I, initiating the clustering and 
clathrin coating of the cargo proteins, leading to invagination of the endosomal membrane. The 
budding and scission of the membrane are finalized by the subcomplexes ESCRT-II and -III, 
along with the protein VPS4176,177. An RNA-interference screening, targeting 23 ESCRT and 
ESCRT-associated proteins, identified 7 proteins that influence exosome biogenesis178. 
Depletion of proteins of ESCRT-0 or -I subcomplexes such as HRS and Tsg101 reduced 
exosome release, whereas knockdown of CHMP4C, VPS4, VTA-1 and Alix resulted in an 
increased exosome secretion. Many other reports have adopted the RNAi strategy to study the 
biogenesis of exosomes, revealing alternative ESCRT-independent biogenesis pathways that 
may act in synergy with the ESCRT complex and are not mutually exclusive. Alternative 
pathways for ILVs formation were shown to require the sphingolipid ceramide97 or the protein 
CD63179. 

2.5.2.1 Exosome Secretion 

MVBs are primarily destined to fuse with lysosomes in order to degrade their content. 
However, regulatory mechanisms that prevent the degradation and promote ILVs secretion 
exist. Several studies have supported the hypothesis of a balance between degradation and 
secretion to maintain the cellular homeostasis, but the mechanisms are still largely unexplored. 
For instance, the impairment of lysosomal activity via inhibition of the endosomal proton pump 
was shown to increase EV secretion180,181. Similarly, in certain diseases where the lysosomal 
function is compromised leading to the accumulation of proteins or lipids in the endosomal 
system, triggered the secretion of those accumulated components in EVs182. Emerging 
evidences seem to suggest a similar balance between exosomes secretion and autophagy, a 
process where proteins and damaged organelles are captured within the autophagosome and 
degraded by fusing with the lysosome183. Sorting regulators like Tsg101 seem to have a role in 
tuning this balance: when subjected to the PTM ISGylation, Tsg101 inhibited exosome release 
by promoting selective autophagy or otherwise enhanced exosome secretion when the 
ISGylation site was mutated181. 

The transport and fusion of the MVBs towards the plasma membrane is promoted and regulated 
by the association of the cytoskeleton with specific Rab GTPases and SNARE proteins184. 
Several Rab proteins were shown to be involved in the secretion of exosomes from different 
cell types. For instance,  Rab11 is required in the exosome pathway of K562 cells185 and Rab35 
in oligodendroglial cells186. Upon knocking down Rab2b, Rab9a, Rab5a, Rab27a and Rab27b 
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in HeLa cells, Ostrowski and colleagues observed an intracellular accumulation of endosomal 
vesicles and an impairment of exosome secretion, yet no influence on the normal secretory 
pathway of soluble proteins187. Several other studies have confirmed the reduction of exosome 
release upon Rab27a silencing, which has become a common strategy to modulate exosome 
secretion188,189. The final step for exosome secretion involves the docking and fusion of the 
MVBs with the plasma membrane, mediated by SNARE proteins190. The SNARE proteins 
VAMP7191, YKT6192 and SNAP23193 were identified as key players in the secretion of 
exosomes in K562, HEK293 and HeLa cells, respectively. Cytoskeletal proteins also play a 
role in MVB trafficking and docking. For instance,  the actin regulatory protein contractin was 
shown to regulate actin stability and exosome secretion, mediating its effect via the interaction 
with Rab27a and coronin1b194.  

Most of the studies describing the involvement of protein regulators in the exosome secretion 
pathway, are derived from RNA interference analysis that do not take into consideration the 
perturbation caused on the overall cellular level.  

 

2.6 EV Uptake 

Upon secretion into the extracellular milieu, an interaction between the EVs and the 
surrounding cells has to occur, in order to promote the release of vesicular cargo and elicit a 
response in recipient cells. The EV uptake has been linked to a plethora of different endocytic 
mechanisms, including phagocytosis, macropinocytosis, clathrin-dependent endocytosis and 
mere fusion with the plasma membrane. The involvement of several uptake pathways is likely 
to reflect the heterogeneity of the EV population linked to the different molecular surface 
signatures and to the downstream effects prompt by the vesicles.  

The first step for EV internalization is the docking to the recipient cell surface through different 
mediators like integrins and proteoglycans. Integrins on the surface of the EVs have been 
shown to interact with intercellular adhesion molecules (ICAMs) expressed on the surface of 
dendritic cells (DCs)195. The organ tropism of cancer derived EVs in vivo and their ability to 
promote premetastatic niche formation, were described to be dependent on the integrin 
signature of the EVs196. Integrins, in particular α4 and β4	chains, complexed with Tetraspanin8 
on the exosomal surface, resulted in a selective uptake by endothelial and pancreatic cells197. 
Heparan sulfate proteoglycans (HSPGs) expressed on the cell surface, are one of the most 
utilized route of internalization employed by nanoparticles198. They were also shown to 
promote the uptake of cancer cell-derived EVs, inhibited by the addition of heparin, an heparan 
sulfate mimetic competing with HSPGs199. The enrichment of PS on the surface of the EVs 
have also been shown to facilitate macrophage internalization through phagocytosis200,201. 

Upon interaction with the cell membrane, EVs are usually internalized by the energy-dependent 
process of endocytosis199,202–204. The term endocytosis includes a number of different 
internalization mechanisms and all of them have shown some sort of involvement in EV 
uptake205. The inhibition of dynamin2, a protein that promotes the scission of newly formed 
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clathrin-coated vesicles, was shown to prevent EV internalization in phagocytic cells206. 
However, several studies have demonstrated a lack of involvement of clathrin-dependent 
endocytosis203,207. Similar discrepancies were observed with the suppression of caveolin-1 that 
resulted in increased EV uptake in embryonic fibroblast cells207, but had no effect in HeLa 
cells203. Analogously, studies on the macropinocytosis mediated uptake revealed 
positive203,204,208 and negative206 association with EV internalization. A recent study revealed 
that filopodia drive EV uptake at specific endocytic spots. Once internalized, the EVs contained 
in endocytic vesicles were trafficked to the ER before fusing with the lysosomes202. 
Interestingly, the ER has also been described as a site of nucleation for the RISC complex209, 
indicating a potential pathway responsible of the regulatory effects observed in recipient cells, 
upon EV-mediated delivery of miRNAs and siRNAs. Independently of the mechanisms of 
entry, EVs access the endosomal system via early endosomes which are destined to degradation 
in the lysosomes. This pathway would hinder the delivery of the EV cargo, but due to the 
numerous EV mediated functional effects observed in cells, mechanisms that regulate the EV 
endosomal escape are likely to exist. A possible way of avoiding the endosomal system and 
deliver the cargo directly into the cytosol, is via the direct fusion of the EV membrane with the 
cell. However, very little evidences have supported the EV uptake by fusion, a phenomenon 
only observed and described in cancer cells under acidic conditions210.  

2.6.1 Tracking EV Uptake in vitro and in vivo 

The visualization of EVs in vitro and in vivo typically requires the use of fluorescent lipophilic 
dyes that stain the EV membrane. Dyes like PKH-6786,189,211, PKH-26212,213, DiO214, DiD215, 
DiR8,216 and CFSE217,218 are widely used to label EVs post-isolation. However, they do not 
exclusively stain EVs, but all membranes and lipid-rich particles present in the sample219,220. 
Due to their lipophilic nature, these dyes can also be transferred from the EVs to the cell 
membrane, leading to a misinterpretation of the biodistribution and localization of the 
vesicles221,222. Moreover, in the presence of salt-containing buffers, these lipophilic stains can 
form micelles that are difficult to discriminate from the ‘real’ vesicles and provide additional 
artefacts219. Efforts have been made to overcome these issues by fusing EV associated proteins 
with reporter tags within the cells88,202,221,223–225. Nonetheless, both strategies require 
modifications of the natural EVs and whether these changes affect the EV biodistribution or 
uptake, remain to be elucidated.   

 

2.7 Biological and Pathological Roles of EVs 

Despite the vast literature covering the roles of EVs in pathological conditions, there are some 
evidences suggesting the involvement of EVs in the maintenance of normal physiology. 
Studies on the immune system have shown that EVs derived from several immune cells, 
contain molecules typical of the immune system such as MHC-II molecules226, interleukin 15 
receptor α-chain227, CD86 and ICAM-1228. All these molecules have an impact on different 
immunological functions including induction of antigen-specific T cells response228–230, 
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promotion of natural killer (NK) cell proliferation227 and DCs maturation231. EVs also play a 
role in neuronal communication232 and promote axonal regeneration in vitro and in vivo upon 
sciatic nerve injury233. An implication in stem cell plasticity has also been confirmed, indicating 
that stem cell EVs have a role in regenerating injured tissues234,235. Despite these studies, the 
physiological roles of EVs remain elusive owing to the challenges in studying endogenous 
vesicles in vivo. However, efforts towards developing in vivo models to unravel EV physiology 
have been recently made236.    

More clarity has been reached in the context of disease pathogenesis. The implications of EVs 
in tumor biology have been extensively investigated, suggesting a role in tumor progression by 
promoting angiogenesis237, pro-metastatic processes189 and facilitating immune escape238. The 
expression of the apoptotic molecules Fas Ligand239,240 and TNF-related apoptosis-inducing 
ligand (TRAIL)241 on tumor-derived EVs (tEVs), was shown to promote tumor progression by 
inducing T-cell apoptosis238. Epstein-Barr Virus associated tumours release EVs expressing the 
latent membrane protein 1 (LMP-1) allowing the tumor to escape the immune system242. 
Additionally, tumor cells release EVs to prime specific tissues to establish a metastatic niche. 
For instance, pancreatic ductal adenocarcinoma cell-derived EVs were reported to initiate a 
premetastatic niche in the liver243, whereas EVs derived from highly metastatic melanoma cells 
were able to recruit bone marrow derived cells to the pre-metastatic site189. Beyond tumors, 
EVs are found to be involved in the spread of neurodegenerative diseases. In Alzheimer’s 
disease, EVs carrying β-amyloid, the toxic protein responsible for the formation of amyloid 
plaques, promoted its deposition in several areas of the brain244,245. Similarly, EV-associated α-
synuclein, probably enables the progression of Parkinson’s disease246. EVs were also found to 
carry host-encoded prion proteins (abnormally folded proteins) that due to their accumulation 
in neuronal cells cause fatal neurodegenerative disorders247,248.  

Furthermore, biofluid-derived EVs have also been exploited for non-invasive diagnostic and 
prognostic purposes. A number of studies on tumour-derived EVs, have revealed an altered 
RNA signature130,249–254 and protein composition130,196,255 of the vesicles, proposing an 
implication of these molecules in different stages of cancer progression. Therefore, the proteins 
and nucleic acids associated with the EVs, known to reflect the pathophysiological state of the 
source cell, could be employed as potential diagnostic biomarkers for the detection of primary 
tumours, metastasis and cancer progression in response to therapies130,137,253,256,257. 
Additionally, in order to support the advancement of EVs as liquid biomarkers towards the 
clinic, a number of microfluidic devices have been developed to efficiently immune-capture 
EVs expressing certain disease-related proteins and provide an easy-to-use detection tool258–

262.   

All these observations on the involvement of EVs in physio-pathological processes, suggest 
that EVs could be harnessed as therapeutic carriers for tissue regeneration, immunomodulatory 
therapies, tumour vaccination and exogenous molecules, and as therapeutic targets to hinder 
EV-mediated pathogenesis. 
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2.8 Therapeutic Potential of EVs 

EVs have the inherent ability of transporting different macromolecules over long distances and 
deliver those messages into cells triggering a response92,263, suggesting a potential application 
as therapeutic agents. The EV-mediated effects can be determined by different factors like cell 
source of origin, surface molecules and potential EV manipulations that enhance intrinsic 
features of EVs. All these aspects will be described hereafter.  

2.8.1 Innate Therapeutic Potential of EVs 

Mesenchymal stromal cells (MSCs) isolated from bone marrow and adipose tissue have been 
thoroughly studied due to their immense therapeutic potential264–266. MSCs have been 
employed in tissue regeneration to restore damaged tissues and organs267 or to treat 
immunological diseases due to their immunomodulatory properties268–272. Despite reporting 
beneficial effects, MSCs sparsely engraft in vivo. Hence, it was hypothesised that factors 
secreted by MSCs could be responsible for the observed effects. This hypothesis was 
strengthened when the first studies, employing the MSC secretome, demonstrated beneficial 
effects273–275. The regenerative and immunomodulatory activity of the secretome was attributed 
to the EVs rather than the extravesicular fraction274, opening up a whole new world of potential 
EV therapeutic applications. From that moment onwards, a myriad of studies have pre-
clinically demonstrated the potential of MSC-EVs in treating various pathological disorders 
like acute kidney failure276,277, myocardial infarction273,274,278, liver injury279,280 and perinatal 
asphyxia281. MSC-EVs were also clinically administered to a steroid-refractory graft-versus-
host disease (GvHD) patient, resulting in an improvement of the clinical GvHD symptoms up 
to 4 months after treatment282. Despite the beneficial effects observed upon MSC-EVs 
administration, recent studies have shown a therapeutic immunosuppression in GvHD mouse 
models, mediated by in vivo apoptosis of injected MSCs triggered by cytotoxic T cells283.    

Other MSC sources have also been under investigation for their immunomodulatory effects: 
endothelial colony-forming cells-derived EVs were shown to protect kidneys from ischaemia-
reperfusion injury128,284; human umbilical cord blood MSC-EVs intravenously injected, 
reduced the blood glucose levels and partially reversed insulin resistance in type II diabetes 
mellitus rat models285; human Wharton’s jelly MSC-derived EVs were shown to induce 
regeneration of neuronal cells upon hypoxic ischemia-induced apoptosis in cell culture286; 
intravenously injected EVs derived from human cardiosphere-derived cells, rescued the 
dystrophic phenotype in Duchenne muscular dystrophy mouse models, leading to the ongoing 
clinical trial HOPE2287.  

The regenerative and immunomodulatory effects observed upon treatments with MSCs are 
known to depend on the tissue and donor sources288, aspects that could be reflected on the 
therapeutic effectiveness of the secreted EVs and should be taken into consideration for future 
MSC-based therapeutic applications. In addition, the therapeutic capacities of MSC-derived 
EVs might, depending on the isolation method, vary among EV preparations with the 
possibility of co-purifying molecules that might act in synergy or in contrast to MSC-EVs.  
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2.8.2 EVs in Immunotherapy 

In 1996, EVs derived from murine B lymphocytes were shown to carry MHC class II molecules 
able to induce an antigen specific T-cell response124. In parallel, DC derived exosomes (DEX) 
expressing MHC class I and II, pulsed with tumour specific peptides were found to induce 
tumour regression in mice, through activation of cytotoxic T-cells125. These studies paved the 
way towards the development of EV-based immunotherapies for cancer vaccination and 
infectious diseases. Up to now, four phase I/II clinical trials have been conducted using 
exosomes to elicit an immune response in patients with established cancers29,289–291. A study 
on non-small cell lung cancer patients, using DEX pulsed with different tumour peptides, 
showed a systemic rather than antigen-specific immune response and an increase in NK cells 
lytic activity29. In 2008, patients with advanced colorectal cancer were randomly treated with 
ascites-derived exosomes alone or combined with granulocyte-macrophage colony-stimulating 
factor (GM-CSF) and only the combined treatment induced tumour antigen-specific cytotoxic 
T cell response in two patients289. In both clinical trials, the DEX therapies were considered 
safe and well tolerated.  

EVs are not exclusively secreted by eukaryotic cells, but also by bacteria, fungi and 
protozoa292–294. For instance, EVs of pathogenic non-eukaryotic origin have also been studied 
as vaccines. DEX pulsed with Toxoplasma gondii antigens, were shown to induce an immune 
response and protect mice against future T. gondii infections295–297, whereas outer membrane 
vesicles derived from the bacteria Neisseria meningitidis were tested as vaccine to treat 
serogroup B meningococcal disease in adolescents and have entered the market298.  

These pre-clinical and clinical observations have proven the efficacy, tolerability and safety of 
EV-based vaccines to potentially combat both cancer and infections. 

2.8.3 Bioengineered EVs 

The above-mentioned natural features have been exploited to transform EVs into delivery 
vehicles for desired therapeutic molecules. Loading cargos of interest into EVs usually requires 
modifications of the EVs post-isolation either by co-incubation, sonication or electroporation 
(exogenous loading) or genetic manipulation of the parental cell to express molecules which 
are naturally incorporated into/onto EVs (endogenous loading) (Figure 3). These approaches 
have been used to impart EV specific characteristics for numerous purposes, described in detail 
hereafter. 
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Figure 3. EV loading strategies. Loading EVs with cargos of interest can be achieved by endogenous (A) or 
exogenous loading (B). (A) Cells are transfected or transduced with plasmids expressing, for instance, a targeting 
or therapeutic protein fused to an EV sorting domain to enhance the loading into EVs (endogenous loading). (B) 
Once the endogenously engineered EVs are isolated, they can be further customised by loading small molecule 
drugs, modified therapeutic RNAs or proteins (exogenous loading). Similarly, engineered RNA Binding Proteins 
(RBPs) can also be employed to bind and load therapeutic RNAs into EVs. Figure inspired by299.  

 

2.8.3.1 Engineering EVs to improve biodistribution and tissue targeting 

In order to improve the circulation time and the tissue targeting, the surface of the EVs can be 
functionalized with different components. The hydrophilic PEG - known to increase the 
circulation of nanoparticles300 - conjugated with anti-EGFR nanobodies, was co-incubated with 
mouse neuroblastoma cells (N2a)-derived EVs and intravenously injected. The authors 
reported an increment in circulation time and accumulation of PEGylated/EGFR EVs in 
EGFR-expressing tumour cells compared to unmodified EVs301. Another study reported an 
enhanced retention of fibroblast-like mesenchymal cells-derived EVs in the blood circulation 
upon intraperitoneal injection, due to the reduced phagocytosis of EVs carrying the ‘do not eat 
me’ CD47 molecule on their surface208.  

The functionalization of the EV surfaces with peptides or nanobodies to confer specific tissue 
tropism has also been explored and often performed in combination with therapeutic cargo 
loading to elicit site-specific effects in recipient cells. The first study of such kind endogenously 
loaded the EV associated protein Lamp2b fused to the neuron-specific rabies viral glycoprotein 
(RVG) peptide, into EVs. Post-isolation, the EVs were further electroporated with an siRNA 
directed towards BACE1, a target in Alzheimer’s disease. Systemic injection of Lamp2b-
RVG/siRNA loaded EVs resulted in an increased brain accumulation and a significant 
knockdown of BACE1 at the mRNA and protein level7. A similar study employed another 
peptide (CP05) with high affinity for the extracellular loop of CD63. The delivery of EVs 
loaded with the CP05 peptide conjugated with a muscle targeting peptide and a dystrophin exon 
skipping phosphorodiamidate morpholino oligonucleotide, increased the restoration of 
dystrophin in muscles of dystrophic mice263. Nanobodies were also adopted to impart targeting 
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abilities to the EVs. The abundance of PS on the EV membrane was exploited to display 
antibody mimetics on the EV surface by fusing them to the C1C2 domain of lactadherin, known 
for its affinity to PS. Engineered anti-Her2 single chain variable fragments (scFVs) and anti-
EGFR nanobodies, self-associated with EVs through the PS and once delivered, promoted the 
EV uptake by Her2+ human breast tumour xenograft mice302 or EGFR+ cells303, respectively. 

2.8.3.2 Engineering EVs to encapsulate therapeutic molecules 

EVs have been exploited as vehicles to deliver small molecules and drugs with low 
bioavailability. MSC-EVs conjugated with a targeting peptide via a biorthogonal click-
chemistry and loaded with curcumin, , accumulated in the ischemic region of murine brains 
and suppressed local inflammation upon systemic administration304. These findings led to a 
phase I clinical trial, using curcumin loaded plant-derived EVs to treat colon cancer patients 
(NCT01294072). Bone marrow MSCs exposed to high levels of paclitaxel were shown to 
release EVs loaded with the chemotherapeutic drug which promoted the inhibition of tumour 
cell proliferation in culture305. Electroporation of doxorubicin into DC-EVs loaded with a 
specific αv integrin peptide (iRGD), displayed tumour tissue specificity in culture, further 
inhibiting the tumour growth in mice without any overt toxicity306. As previously mentioned, 
siRNAs have also been loaded into EVs either by electroporation or by hydrophobic 
modifications at the siRNA sequence level. EVs loaded with cholesterol modified siRNAs 
targeting Huntingtin mRNA, exhibit efficient silencing in vitro307. Intraperitoneal injection of 
fibroblast derived-EVs electroporated with KRAS siRNAs (iExosomes), dosed every other 
day, displayed tumour growth suppression and increased survival in various pancreatic ductal 
adenocarcinoma mouse models208. Based on this study, a clinical trial has been recently 
registered to treat metastatic cancer patients using iExosomes (NCT03608631). 

2.8.3.3 Designing EV platforms 

Beside the loading of therapeutic molecules, EVs have also been engineered for alternative 
purposes. For instance, in order to understand the biological mechanisms that drive the 
biogenesis, cell tropism and biodistribution of the vesicles, EVs are commonly customised to 
carry fluorescent or luminescent tags for in vitro202,308 and in vivo236,309,310 tracking. Further 
studies have described EV loading strategies that could potentially be adapted as universal 
platforms for different therapeutic applications. EXPLORs (exosomes for protein loading via 
optically reversible protein–protein interactions) is a platform that engineers EV associated 
proteins and soluble proteins of interest to be responsive to light stimuli. Upon light stimulation 
at the cellular level, the optogenetically modified proteins interact with each other during the 
EV biogenesis, leading to encapsulation of the soluble proteins into newly formed vesicles311. 
Kojima et al. developed a device named EXOsomal transfer into cells (EXOtic), composed of 
an exosome production booster, a neuronal targeting domain, an mRNA packaging and cytosol 
delivery tool. Once the producer cells, expressing the EXOtic device, were implanted in living 
mice, a delivery of the mRNA into neuronal cells resulted in decreased neuroinflammation and 
neurotoxicity in Parkinson’s disease mouse models223. 
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All these studies have demonstrated the immense potential of EVs as therapeutics and although 
still in the early stages, the exponential increase of studies unravelling the EV biology and 
optimizing EV production and manipulation, will bring these vesicles a step closer to clinical 
use in the near future. 
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AIMS 
The overall aim of this thesis is to address some of the challenging topics within the EV field 
towards therapeutic development. Firstly, it outlines the development of a novel EV isolation 
method, that allows for high EV recovery yields in a scalable and time-efficient manner. 
Secondly, includes an investigation on the interplay between the EV proteome and 
transcriptome, and thirdly encloses an extensive screening study on EV-associated proteins to 
advance EV engineering for potential therapeutic applications. The individual objectives 
relative to each paper are listed as follows: 

 

3 Paper I 
• To evaluate a novel liquid chromatography-based technique for EV purification, based 

on BE-SEC. 
• To implement the BE-SEC method for isolation of EVs on a large-scale by adding a 

prior concentration and diafiltration step. 
• To validate if the physicochemical properties of the EVs were compromised upon 

isolation. 
 

4 Paper II 
• To extensively characterise EVs endogenously labelled with an array of GFP-tagged 

EV marker proteins at the single molecule-single vesicle level. 
• To compare the sorting efficiency of each protein into EVs using a set of diverse 

quantitative methodologies.  
 

5 Paper III 
• To investigate any differences in the proteome and small RNA transcriptome content 

of EVs derived from different cell lines. 
• To explore, in particular, the relation between RNA/miRNA binding proteins and their 

vesicular RNA counterparts. 
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METHODOLOGIES 

1 Methodological Considerations 
A detailed description of the methods employed in this thesis can be found in the respective 
papers. The following chapter has the sole purpose of giving a brief overview of the most 
important methods.  

1.1 Cell Sources 

In Paper I, to evaluate the TFF/BE-SEC method for EV purification, two different mouse cell 
lines were used: N2a (mouse neuroblastoma cells) and C2C12 (immortalized mouse 
myoblasts). For the cellular uptake, EVs derived from HEK293T (human embryonic kidney 
cells), stably expressing CD63-eGFP, were added to Huh7 (human hepato cellular carcinoma 
cells). In Paper II, to screen the different EV sorting proteins, HEK293T were used and 
transfected with the different protein expressing constructs. To characterize CD63-GFP 
labelled EVs in different cell lines, Huh7 and B16F10 (mouse melanoma cells) were employed. 
In Paper III, the RNA and protein content of EVs were investigated in HEK293T, RD4 (human 
skeletal muscle cells), N2a, C17.2 (immortalized mouse neural progenitor cells), C2C12 cell 
lines. The culturing conditions for each cell line aforementioned are described in the individual 
papers.  

1.2  EV Enrichment Methods 

Regardless of the isolation method employed in each paper, the initial steps were as follows:  
cell culture conditioned medium (CM) was collected and spun at 300 x g for 5 minutes, 
followed by 2000 x g for 10 minutes to remove floating cells and large cell debris. To enrich 
for small vesicles, the pre-cleared medium was filtrated with a 0.22 µm vacuum or syringe 
filter and subjected to different isolation steps. In Paper I, large volumes were diafiltrated and 
concentrated using KR2i TFF system (SpectrumLabs) with 100 or 300 kDa cut-off hollow 
fibers and subsequently run through the BE-SEC (HiScreen CaptoCore 700; GE Healthcare) 
column, connected to an ÄKTAprime plus (GE Healthcare). Small 0.22 µm-filtered media 
volumes were run directly through the BE-SEC column. After the BE-SEC column, the isolated 
material was concentrated using Amicon Ultra-15 10 kDa MWCO spin-filter (Millipore). In 
Paper II, in the experiments designed to screen the different sorting proteins, the processed CM 
was concentrated by UF with Amicon Ultra-15 100 kDa MWCO spin-filter (Millipore) to a 
final volume of 1 ml and loaded into qEVoriginal size exclusion columns (Izon Science). The 
vesicular fractions were collected according to the manufacturer’ instructions and further 
concentrated with Amicon Ultra-0.5 10 kDa MWCO (Millipore) to a final volume of roughly 
100 µl. For experiments where CD63-GFP was taken as candidate, pre-cleared CM was 
concentrated by UF and loaded onto a Superdex200 column (GE Healthcare) connected to an 
ÄKTA prime FPLC (GE Healthcare). Individual fractions were collected and further analysed. 
In Paper III, 0.22 µm -filtered CM was ultracentrifuged (UC) at ∼120.000 x g, resuspended in 
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phosphate buffered saline (PBS), spun again at ∼120.000 x g and the final EV pellet was 
reconstituted in roughly 100 µl of PBS. The UC was also adopted in Paper I and II.  

 

1.3 EV Characterization	

1.3.1  Nanoparticle Tracking Analysis 

In all presented papers, the size distribution and concentration of particles were measured by 
Nanoparticle Tracking Analysis, using the NanoSight NS500 instrument (Malvern Ltd.) 
equipped with a 488 nm laser. Generally, five 30 seconds videos were recorded per sample and 
analysed with NTA 2.3 analytical software. The screen gain, detection threshold and minimum 
track length settings used for the analysis are described in the relative papers. Fluorescent 
particles were quantified on a constant flow to avoid bleaching of the fluorescent signal. 

1.3.2 Western Blot 

The EVs in all papers were evaluated for presence of EV markers by WB and compared with 
their donor cells. Equal number of particles were mixed with sample buffer (0.5 M ditiothreitol, 
0.4 M sodium carbonate, 8% SDS and 10% glycerol) and heated at 65°C for 5 minutes. The 
cells were scraped, counted for viability with Trypan Blue, pelleted at 300 x g for 5 minutes 
and lysed with radioimmunoprecipitation assay (RIPA) buffer, kept on ice and vortexed every 
5 minutes for half an hour. The cell samples were spun at 12.000 x g for 15 minutes at 4˚C, the 
supernatant was collected, mixed with the sample buffer and heated at 65˚C for 5 minutes. The 
mixture was then loaded onto a NuPAGE® Novex® 4-12% Bis-Tris Protein Gel (Invitrogen) 
and run at 120 V in NuPAGE® MES SDS running buffer (Invitrogen) for 2 h. The proteins on 
the gel were transferred to an iBlot nitrocellulose membrane (Invitrogen) using the iBlot 
system. Membranes were blocked with Odyssey blocking buffer (LI-COR) for 60 minutes at 
RT with gentle shaking. After blocking, the membrane was incubated overnight at 4˚C or 1 h 
at RT with primary antibody solution as described in each paper. The membrane was washed 
with PBST 1x (1x PBS with 0.1% Tween-20, Sigma Aldrich) 5 times every 5 minutes and 
incubated with the respective secondary antibodies (IRDye 800CW or 680LT, LI-COR). The 
membrane was washed with PBST 1x 5 times every 5 minutes followed by a final wash with 
1 x PBS before imaging it on the Odyssey Infrared Imaging system using Image Studio Lite 
Version 5.2 (LI-COR). 

1.3.3 Transmission and Cryo Electron Microscopy  

In Paper I and III, TEM was employed to characterize the EVs. In both cases the EV samples 
were spotted on a glow-discharged formvar-carbon type B coated grid (Ted Pella Inc.) and 
stained with 2% uranyl acetate solution (Sigma-Aldrich). The grids were imaged with a FEI 
Tecnai 10 transmission electron microscope at an accelerating voltage of 100 kV. In Paper II, 
EVs were imaged via Cryo-EM. The samples were absorbed on glow-discharged holey carbon 
coated grids (Quantifoil) and vitrified into liquid ethane at -178˚C with a Vitrobot (FEI). The 
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images were recorded on a Philips CM200-FEG electron microscope (FEI) at an accelerating 
voltage of 200 kV, keeping the samples at -175˚C.  

 

1.4 Single Vesicles Imaging 

In Paper II, we screened the vesicular sorting capacity of several EV proteins. EVs derived 
from HEK293T cells transfected with different GFP-tagged EV domains, were characterized 
at the single vesicle level using diverse methods, as briefly described below. 

1.4.1 Imaging Flow Cytometry 

GFP-tagged EVs were analysed with the ImageStreamX MkII Instrument (Amnis), equipped 
with five lasers as described in detail in88. The samples were recorded using a 60x objective 
and a flow rate of 0.38 µl/min. GFP signals, brightfield and side scatter (SSC) were detected 
and the acquired data were analysed using Amnis IDEA software (v 6.2.64.0) and FlowJo).  

1.4.2 Fluorescent Correlation Spectroscopy 

EV samples were measured on a Clarina II Reader (Evotec Technologies) with 488 nm argon 
ion laser excitation, a 40x water immersion 1.15 N.A. objective (UAPO Olympus), 50 µm 
pinhole and a SPCM-AQR-13FC avalanche photodiode (Perkin-Elmer Optoelectronics). For 
each sample, several dilutions were made and measured in a 96-well glass bottom plate 
(Whatman) with 30 repetitive measurements of 10 seconds each. To determine the detergent 
sensitivity and quantification of GFP molecules per vesicle, the vesicles were disrupted with 
NP40s at 1% v/v (Nonidet P40 substitute, G-Biosciences). The fraction of intact vesicles was 
determined based on a two-component fit, setting the translational diffusion time of non-
vesicular GFP to the values determined by a one-component fit in presence of 1 % NP40s. 

1.4.3 Single Spotted Vesicles Imaging 

EVs from single and double transfected HEK293T cells were spotted onto coverslips and 
imaged by confocal fluorescence microscopy (Zeiss LSM700) using 63x magnification or 
widefield with a 60x (API DeltaVision) on Photometrics CoolSNAP HQ2, interline transfer 
CCD. Vesicles were detected as light diffraction limited GFP or mCherry fluorescent spots of 
uniform size corresponding to the point spread function (PSF) of the microscope, confirming 
recovery of single vesicles. Widefield fluorescent images were deconvolved with the 
DeltaVision software fed with a measured 0.2 µm bead PSF for quantification. Co-localization 
was quantified based on overlap of the PSFs in the two fluorescent channels to derive the 
number of GFP, mCherry and GFP/mCherry double positive vesicles. 
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1.5 Flow Cytometry 

Flow cytometry was employed in Paper I. Firstly, to evaluate whether the TFF/BE-SEC 
isolation method had an effect on the natural EV surface signature and secondly, to compare 
the EV uptake in recipient cells, upon different isolations.  

1.5.1 EV Surface Protein Profiling 

HEK293T derived EVs were isolated with UC and BE-SEC and diluted to the original particles 
concentration detected in the CM. EV staining with the MACSPlex Exosome kit, human 
(Miltenyi Biotec) was performed at 4˚C overnight according to the manufacturer’s instructions. 
The MACSPlex Exosomes Kit is composed of capturing-beads coated with antibodies, directed 
against 37 different epitopes found on EVs. Once captured, the bead-bound EVs were stained 
with a mix of fluorophore-labelled antibodies directed towards CD9, CD81 and CD63 and 
analysed with a Cytoflex S flow cytometer (Beckman Coulter) with at least 10,000 recorded 
events per sample. Data were analysed with FlowJo software (version 10.0.7). The mean 
fluorescence values plotted in the graph were background corrected and normalized on 
CD63/81/9 mean signal intensity as previously described66,312. Negative values were excluded 
from the plot. 

1.5.2 EV Uptake  

For comparison, HEK293T:CD63-eGFP derived EVs were isolated by UC and TFF/BE-SEC. 
A fixed number of particles were added (1x1010 and 5x109 particles based on NTA scatter and 
fluorescence mode) to Huh-7 seeded the day before at a density of 7.5x104 cells per well in a 
24-well plate. Cells were incubated for 2 h at 37˚C, 5% CO2 atmosphere. After incubation, the 
cells were washed twice with PBS, collected, spun down at 300 x g for 5 minutes and 
resuspended in 100 µl of Dulbecco’s PBS (Invitrogen), 1 mM EDTA and 2% FBS. Dead cells 
were excluded from analysis via 4’,6-diamidino-2-phenylindole (DAPI) staining and doublets 
were excluded by forward/side scatter area versus height gating. Samples were kept on ice and 
measured with the Cytoflex S flow cytometer (Beckman Coulter). Data was analysed with the 
FlowJo software (version 10.0.7). Mean fluorescence intensity was normalized over the 
control/untreated cell sample (ΔMFI). Statistical significance was determined using GraphPad 
Prism (version 7.0b).  

 

1.6 Next Generation Sequencing of Small RNAs 

1.6.1 Sample Preparation and Sequencing 
 

In Paper III, small RNA sequencing was performed on cells and their secreted vesicles. The 
RNA was isolated using Trizol or Trizol LS (Thermo Fisher Scientific) respectively, following 
the standard phenol-chloroform extraction protocol with a modified precipitation step that 
included the addition of 2 µl of PolyAcryl Carrier PC 152 polymer (Molecular Research Center 
Inc.) to enhance the recovery of small amounts of RNAs. The RNA concentrations were 
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measured using Qubit 2.0 Fluorometer with the Qubit RNA HS Assay Kit (Thermo Fisher 
Scientific), whereas the RNA integrity for the cell samples was verified on the Bioanalyzer 
RNA 6000 Pico Total RNA Kit (Agilent Technologies). Small RNA libraries were prepared 
with 250 ng of total RNA, using the NEBNext Multiplex Small RNA Library Prep for Illumina 
(NEB) kit according to the manufacturer’s instructions. The barcoded samples were size 
selected on a 6 % Novex TBE PAGE gel (Thermo Fisher Scientific), the fragments 
corresponding to microRNA range were cut out and subjected to purification with the 
NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel). Thereafter, the products were 
quantified by using the KAPA Library Quantification Kit (Kapa Biosystems) and pooled at 
equimolar ratio. Two libraries (technical replicates) were generated in parallel, each eventually 
containing a pool of 12 barcoded samples. In both cases, the readymade libraries were checked 
on the High Sensitivity D1000 ScreenTape (Agilent Technologies) and further quantified using 
the KAPA Library Quantification Kit (Kapa Biosystems) to enable precise loading of the flow 
cell. The clusters were generated by using the cBot and sequenced one replicate per lane on 
either flow cells on the HiSeq2500 (Illumina Inc) with a 1x51 setup in RapidRun mode. 

1.6.2 Data Analysis 

In Paper III, raw sequencing reads were quality controlled by FastQC313 analysis and 
subjected to adapter removal by Cutadapt/1.9.1314. All reads with an adapter and a length of 
17-35 bases (filtering with BBMap release 35.40315) were subjected to subsequent mapping 
on the Ensembl 38.85 releases of the mouse and the human genome by using Bowtie1 (release 
0.12.6)316 in -v1 alignment mode and best alignment stratum reporting option. Annotation 
was performed in a stepwise manner with HTSeq (release 0.6.1)317 in stranded mode by 
following a stepwise annotation procedure allowing the discrimination of ‘small RNAs’, 
followed by ‘ribosomal RNA’ and ‘other RNAs’. Gene biotype classification followed the 
classification details in Vega Genome Browser release 68. The annotations of different RNA 
biotypes were retrieved from miRBase release 21318, Ensembl 38.85319, piRNAbank320 and 
UCSC Table Browser hg38/mm10 entries321. For data visualization, MultiQC v1.3322 and the 
online analysis software Morpheus (available from the Broad Institute; 
https://software.broadinstitute.org/morpheus) as well as Multiple Experiment Viewer 
(Version 4.9.0)323 were used. Differential expression analysis of miRNAs was performed by 
using the R package DESeq2324. All statistical analyses (except for differential expression 
statistics) were performed using GraphPad Prism Version 7 (GraphPad Software). 

 

1.7 Proteomic Analysis 

The proteomic analysis of EVs in Paper II and Paper III exploited liquid chromatography-
tandem mass spectrometry, as described previously53. The analysis covering Gene Ontology 
(GO) term enrichment and -overrepresentation was performed by using the Protein ANalysis 
THrough Evolutionary Relationships (PANTHER) software325. In addition, the study included 
an in-depth analysis of the ‘RNA binding’ proteins (GO:0003723), obtained via the QuickGO 
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browser (http://www.ebi.ac.uk/QuickGO/) and Vesiclepedia326 database. The list of ‘miRNA 
related’ proteins was created by manual curation of the ‘RNA binding’ proteins. All proteomic 
analysis was based on unique protein identifiers, thereby considering different protein 
isoforms.  

In Paper II, we compared the proteomic content of CD63-GFP versus native EVs. The samples 
were analysed by SDS-PAGE on a NuPAGE 4-12 % (Life Technologies) gel and stained with 
a Colloidal Coomassie stain (Sigma). Sixteen equal sized slices were excised from each of the 
gel lanes. In-gel digestion and subsequent identification by liquid chromatography coupled 
with tandem mass spectrometry was performed as previously described327, with the exception 
that a mix of Trypsin and Endopeptidase Lys-C (Promega) was used instead of trypsin alone. 
Database searches were done with Mascot (version 2.4, Matrix Science) against the UniProt 
database (release of April 2013) concatenated with a reversed version and supplemented with 
known contaminants (such as trypsin, BSA and commonly used tags). Protein identifications 
were validated and summarized in Scaffold (version 4.0.3, Proteome Software Inc.), setting the 
protein identification threshold at a 1 % false discovery rate (FDR) in the reversed database. 
At these settings, peptide FDR was 0.05 %. Keratin contaminants were removed and are listed 
separately. Trypsin and Lys-C were also removed from the list. Total spectral count is provided 
as a semi-quantitative measure, as well as the number of unique peptides for each protein.
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RESULTS AND DISCUSSION 

2 Paper I 
EVs are isolated from cell cultures or biological fluids but due to their small size, their 
purification is a challenging endeavour. UC is still one of the most utilised EV isolation 
methods in the field51, although it has its limitations54,328. For this reason, many alternative 
techniques have been described to date70,91,329. In this work, we evaluated a novel EV 
purification technique that combines size exclusion with bind-elute chromatography.  

Firstly, we assessed the feasibility of isolating EVs with the BE-SEC column, using pre-cleared 
CM from two mouse cell lines (N2a and C2C12). The eluted volume was further concentrated 
and the retentate was analysed for the presence of vesicles. At first, similar particle size 
distribution and concentration were observed across six different replicates and once compared 
to the input material, a particle recovery rate ranging from 70 to 80 % was achieved. The 
particles were further characterized by immunoblotting and the classical vesicular markers 
Alix, CD81 and Tsg101 were detected among different replicates, denoting the presence of 
EVs in the BE-SEC eluate. In addition, the size and morphology of the vesicles were evaluated 
by TEM, showing non-fused intact vesicles of expected sizes. All these data suggested a 
successful EV isolation using the BE-SEC column.  

For the purification of EVs in clinal settings, scalability is one of the requirements. Therefore, 
we coupled the BE-SEC column with a Tangential Flow Filtration (TFF) device, combined 
called TFF/BE-SEC, to process larger volumes of CM, by concentrating and diafiltrating the 
sample. The TFF system consists of hollow fibres through which the sample flows tangentially 
along the semipermeable membrane decorated with pores of different sizes. Herein, we tested 
100 and 300 kDa hollow fibre cut-offs prior to the BE-SEC column isolation. The EV 
characterization of the isolated material, showed analogous results to what described above in 
terms of markers expression and morphology. As expected, we detected more proteins being 
retained in the 100 kDa cut-off TFF filters compared to the 300 kDa ones, and considerably 
less impurities were observed upon BE-SEC isolation, regardless of the TFF cut-off filter used. 
Furthermore, the content of both isolated samples (TFF or TFF/BE-SEC) was subjected to 
analytical SEC, enabling the size fractionation and discrimination between vesicular and non-
vesicular material. Both protein and RNA concentrations were measured in each eluted fraction 
and upon BE-SEC isolation, the non-vesicular components were undetectable indicating a 
successful removal of the extra-vesicular material.  

As previously reported, the EV surface protein composition determines the EV 
biodistribution330 and cellular uptake196,331, therefore the surface protein profile of EVs isolated 
by UC and TFF/BE-SEC was assessed by flow cytometry multiplex beads-based assay66,67. 
The analysis revealed that the surface protein profile of both isolated EV samples were similar, 
reflecting the composition of vesicles contained in the unprocessed starting material. Hence, 
based on this assay, the TFF/BE-SEC purification method did not seem to alter the EV surface 
protein composition. Any changes in the cell uptake were also investigated, employing 
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HEK293T:CD63-GFP EVs isolated by UC and TFF/BE-SEC. The CD63-GFP EVs 
internalization in Huh7 cells, evaluated by flow cytometry, showed higher MFI values for the 
UC isolated samples, reflecting a 20% higher amount of GFP positive particles detected by the 
NTA. These discrepancies were evened out once the same number of GFP positive particles 
were given to cells. No other significant differences were detected upon isolation between the 
methods.  

In conclusion, we describe an isolation method that combines size exclusion with tangential 
flow filtration and can perform EV purification in a scalable, time-efficient fashion providing 
high vesicular yields.  

 

3 Paper II 
Due to the EV heterogeneity and the recent discoveries describing the existence of various 
vesicle subpopulations, there is a pressing need for the development of straightforward 
methodologies to quantitatively characterise extracellular vesicles at the single vesicle – single 
molecule level. In addition, linking vesicular doses to the molecular concentrations of EV cargo 
is a question of utmost importance for the development of EV based therapeutics and 
understanding the basic vesicle biology alike. Hence, in this study, we provide a systematic 
comparison of several EV sorting domains and describe a set of relatively straightforward 
methodologies for single molecule – single vesicle quantification, that could represent a 
valuable resource for researchers in the EV field.  

To start with, we characterized EVs derived from HEK293T transfected with CD63-GFP (N-
terminus), one of the first tetraspanin proteins to be described in exosomes110. EVs were 
fractionated by UF-SEC91, individual fractions were pooled and analysed by immunoblotting. 
The EV markers Alix and Tsg101 eluted in the expected EV fractions, similarly to Lamp2b 
that in addition showed a broader elution profile, indicating the possibility of being associated 
with a different vesicle population. CD63-GFP fusion protein also eluted in the EV fractions, 
but a truncated GFP was observed to elute in later fractions, according to WB and FCS. We 
then set up a workflow to characterize single GFP labelled vesicles via FCS. To resolve and 
quantify the association and the number of CD63-GFP molecules per EV, we tested different 
conditions to disrupt the vesicles and allow protein solubilization. Among all the different 
chemical and physical treatments, NP40s showed, at the lowest concentration, the highest 
levels of disruption resulting in a homogeneous population of molecules with brightness similar 
to free GFP. Based on these observations, we were able to quantify 10 to 30 GFP molecules 
per single vesicle and determine that the GFP eluting in later fraction was consistent in size and 
brightness to monomeric GFP, hence mainly non-vesicular.  

Next, we tested different transmembrane, membrane-associated, soluble proteins and their 
potential EV sorting capacity. For this scope, we screened 12 different proteins spanning from 
EV markers90,97,118,332 to proteins involved in the EV biogenesis333, proteins previously 
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engineered for tissue-targeting334 or sorting moieties335–337 and tags used to anchor soluble 
proteins to the membrane338–340. All protein coding sequences were fused to GFP as readout 
and untagged GFP was used as reference. The constructs were then transiently transfected into 
HEK293T cells using polyethylenimine and 48h later EVs were isolated by a simplified SEC 
protocol (UF-qEV) consisting of a 100 kDa ultrafiltration step followed by a qEV size 
exclusion column to separate the vesicular and non-vesicular components. The size and particle 
concentration of the isolated EVs were analysed by NTA and the expression of the EV markers 
and GFP was validated by immunoblotting, revealing a truncated form of GFP in most of the 
samples as previously observed for CD63-GFP. Most of the transmembrane proteins were 
detected in EVs with the exception for CD63 (2nd loop), whereas for the soluble and membrane 
associated proteins the highest levels were observed for Syntenin, SIMPLE and Myristoylation 
tag. These data were additionally confirmed by single vesicles confocal imaging and imaging 
flow cytometry88. The expression was also compared to the donor cells: when immunoprobed 
for GFP the predicted molecular weight for each protein was confirmed by WB and the 
transfection efficiency ranged from 20 to 40% according to flow cytometry.  

As with CD63-GFP EVs, we characterized all the differently tagged EVs with FCS. Based on 
this method, the GFP-tagged tetraspanins exhibited 25-35 fluorescent molecules per vesicle on 
average, with CD63 (N) showing the highest number per vesicle and CD63 (2nd loop) the 
lowest, indicating how the sorting of CD63 is sensitive to the GFP tagging in specific regions. 
The Myr tag resulted in efficient GFP loading, with similar number of molecules per vesicles 
to the tetraspanins. The other tested proteins such as Lamp2b, Syndecan, MFGE8 (C1C2), Alix, 
SIMPLE and Flotillin-2, displayed very dim and little fluorescent molecules per particle. 

Based on recent papers addressing the existence of different EV subpopulations with unique 
content signatures32,90,341, we investigated the vesicular heterogeneity in relation to sorting 
different proteins into EVs by exploiting the GFP-tagged proteins in combination with 
mCherry-CD63. All GFP-tagged proteins previously adopted were transiently co-transfected 
with mCherry-CD63 in HEK293T cells, the secreted EVs were isolated and characterized as 
previously described. To evaluate the GFP and mCherry co-localization on dual labelled 
vesicles, we imaged EVs spotted on coverslips using confocal and widefield fluorescent 
microscopy and quantify the number of GFP, mCherry or double positive dots. For most of the 
tested construct, we observed that 50% of the GFP-vesicles carried mCherry-CD63, regardless 
of the GFP-protein expression levels in the EVs, exception for Lamp2b that was predominantly 
detected in EVs negative for mCherry-CD63, suggesting a potential diverging vesicular 
trafficking biogenesis. 

In summary, we describe a set of analytical techniques used to quantify and characterize single 
vesicles at the molecular level. Moreover, we adopt these methods to provide a systematic 
comparison of several EV associated proteins and evaluated their EV sorting capability with 
the potential to replace the fluorescent tag with relevant therapeutic cargos.  
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4 Paper III 
The innate biological effects mediated by EVs are attributed to their cargo, in particular to 
proteins and RNAs, that are vastly adopted to engineer EVs for therapeutic approaches and 
therefore require thorough investigation. In this paper, we examined the small RNA and protein 
content of EVs across different human and mouse cell lines. 

At first, small RNA sequencing on UC-purified EVs and their source cells (human HEK293T, 
RD4 and mouse C2C12, N2a and C17.2) was performed. The libraries and the data analysis 
were size-selected and restricted to sequences of 17-35 nucleotides in length and indeed, 80% 
of the cellular RNA was represented by ‘small RNA’ sequences, of which 73-93% were 
miRNAs. On the other hand, EVs had considerably less miRNAs and more piwi-like RNA 
(piRNA) sequences than the cells of origin and was observed regardless of the cell type. 
Hierarchical clustering analysis of the miRNAs, rather clustered EVs with their parental cells 
as opposed to EVs-derived from other cell sources. Similarly, the number and relative 
expression of miRNA sequences in EVs were correlating with the cells of origin; conversely, 
piRNA sequences did not show clear correlation between the expression level in cells and 
vesicles. Considering this, together with the lack of evidence of typical piRNA features (e.g. 
27-35 nucleotides in length, 5’ uracil bias), these RNA sequences are more likely to be derived 
from piRNA loci rather than genuine piRNAs. Even though the majority of the cellular 
sequences were represented by ‘small RNAs’, the EV ‘small RNA’ content was highly variable 
across cell lines, with an average of ∼ 22% sequences derived from ‘small RNA’ loci whereas 
the 36-94% of all annotations in EVs were mapping to rRNA loci. A large number of tRNA 
and Y RNA sequences were found in both cells and EVs, supporting previous EV ‘small RNA’ 
sequencing studies145,342–344. 

Next, we explored the correlation between the transcriptome and proteome, with a focus on the 
RNA-binding proteins, in HEK293T and C2C12 EVs given their diverse ‘small RNA’ content. 
In both proteomes, ~2000 proteins were detected, of which ~200 covered the bulk content 
(75%) of both proteomes, similarly to what was observed in the transcriptomics data. In line 
with the sequencing results, where ribosomal, coding and tRNA fragments were highly 
abundant, high levels of rRNA-, poly(A)- and tRNA binding proteins were identified in both 
EV proteomes. The GO analysis revealed that ~20-30% of the proteins identified in the EVs 
were classified as ‘RNA binding’ (GO:003723), correlating to what reported (21%) in the 
Vesiclepedia database326; of these ‘RNA binding’ proteins, the majority was represented by 
poly(A)-, rRNA-, double- and single- stranded RNA binding proteins and translational related 
protein sets. To further understand which classes of RNA-binding proteins are represented in 
our data set and how they could be related to the ‘small RNA’ transcriptome, we generated a 
custom curated GO list of the ’miRNA associated’ proteins. Based on this GO annotation, only 
~1% of the HEK293T and C2C12 EV proteins were relevant to the miRNAs molecular and 
biological processes. Even though C2C12 contained higher miRNA levels than HEK293T 
EVs, no differences related to the miRNA proteome were observed, therefore we could not link 
the presence of certain proteins to an active sorting of miRNAs into EVs. Similarly, no ‘piRNA 



 

 33 

binding’ proteins were detected in the EV proteome, corroborating the hypothesis that the 
sequences annotated as piRNAs were rather reads mapping to the piRNA loci.  

In summary, we explored the link between the EV transcriptome and proteome across different 
human and mouse cell types. Moreover, this study paves the way for future work that could 
unravel the biological mechanisms underlying the active RNA sorting into EVs and exploit the 
obtained data sets to engineer vesicles for RNA-based therapeutic applications. 

 

CONCLUSIONS  
In the last decades, much progress has been made in understanding the biology of EVs. Owing 
to their ability of transferring bioactive molecules across cells, EVs have an impact on several 
physiological and pathological processes such as stem cell plasticity, neuronal communication, 
inflammation, tumorigenesis and neurodegenerative diseases. Recently, the possibility of 
harnessing the EV content to monitor the progression or state of certain diseases, has proven 
the feasibility of using EVs as liquid biomarkers. Moreover, exploiting EVs as carriers to 
deliver defined therapeutic molecules in vitro and in vivo have shown promising results. 
Analogously, several ongoing pre-clinical and clinical trials have proven the safety and 
tolerability of these vesicles. Therefore, EVs hold great potential as prognostic, diagnostic and 
therapeutic vectors. There are, however, challenges that hinder the clinical use of EVs on a 
large scale. Most of these hurdles are technical obstacles such as culturing conditions, optimal 
isolation, improved manipulation and proper storage, and the lack of sensitive methodologies 
for tracking the fate of single EVs within cells and organisms, in studying their biological 
function.  

Efforts have been made to advance the field and, in this thesis, we have also tackled some of 
the current challenges. We addressed standing gaps in the large-scale isolation of EVs; in EV 
bioengineering, quantifying the molecular cargo at a single vesicle level, and in dissecting the 
molecular content of EVs across several cell lines. Even though the EV field is still in its 
infancy and much more as yet to be discovered, we are confident that these small progresses 
will advance these vesicles one step closer to their large-scale clinical applications. 
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