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Abstract 

Objective:  Tumor  necrosis  factor-α  (TNF-α)  is  a  pleiotropic  cytokine  that  

plays  an  essential  role  in  inflammation  and  apoptosis.  Our  previous  study  

suggested  that  TNF-α-induced  activation  of  matrix  metalloproteinase-9  

(MMP-9)  resulted  in  the  destruction  of  acinar  tissue  in  the  salivary  glands  

of  patients  with  Sjögren’s  syndrome  (SS)  via  disruption  of  the  acinar  

cell-basement  membrane.  Recently,  a  wide  array  of  biological  agents  has  

been  designed  to  inhibit  TNF,  including  etanercept  and  adalimumab. 

In  this  study,  we  demonstrate  the  suppressive  effect  of  anti-TNF  agents  

on  TNF-α-induced  MMP-9  production  in  NS-AV-AC,  an  immortalized  human  

salivary  gland  acinar  cell  line. 

Materials and Methods:  NS-AV-AC  cells  were  treated  with  etanercept  or  

adalimumab  after  TNF-α  treatment.  MMP-9  production  and  enzymatic  activity 

were,  respectively,  visualized  by  real-time  PCR  and  ELISA  assay,  and   

evaluated  by  gelatin  zymography,  and  apoptosis  was  evaluated  by  DNA  

fragmentation  assay. 

Results:  TNF-α  induced  the  production  of  MMP-9  in  NS-SV-AC  cells.  

However,  this  production  was  greatly  inhibited  by  treatment  with  etanercept  

or  adalimumab.  In  addition,  TNF-α-induced  DNA  fragmentation  was  

prevented  by  treatment  with  etanercept  or  adalimumab. 

Conclusions:  These  results  may  indicate  that  anti-TNF  agents  would  have  

therapeutic  efficacy  for  preventing  destruction  of  the  acinar  structure  in  the  

salivary  glands  of  patients  with  SS. 
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1. Introduction 

Sjögren’s  syndrome  (SS),  one  of  the  most  common  rheumatic  diseases,1  

is  characterized  by  the  eventual  total  replacement  of  the  acinar  structure  

by  marked  lymphocytic  infiltrates  in  the  salivary  and  lacrimal  glands.2  The  

pathogenesis  of  this  selective  and  progressive  destruction  of  the  acinar  

structure  in  salivary  glands  is  not  yet  fully  understood.  However,  

accumulated  evidence  indicates  a  close  relationship  between  cytokine  

expression  in  salivary  gland  tissue  and  the  development  and  progression  of  

this  disease.3,4  The  expression  of  mRNA  for  various  cytokines,  such  as  

tumor  necrosis  factor-α  (TNF-α),  interleukin-1β  (IL-1β),  IL-2,  and  interferon-γ  

(IFNγ),  has  been  detected  in  the  salivary  glands  of  humans  as  well  as  

experimental  animals  during  the  development  of  SS. 

  Establishment  of  the  normal  acinar  structure  in  salivary  glands  is  fully  

dependent  on  the  integrity  of  extracellular  matrices,  including  the  basement  

membrane.5  The  basement  membrane  consists  mainly  of  type  IV  collagen  

and  laminin,  and  its  synthesis  and  degradation  are  tightly  regulated  by  

proteolytic  enzymes  and  their  inhibitors.  However,  disruption  of  acinar  cell–

basement  membrane  interactions  by  excessive  production  of  proteolytic  

enzymes,  such  as  matrix  metalloproteinases  (MMPs),  could  lead  to  the  

disruption  of  the  acinar  tissue.  MMP  expression  is  regulated  by  growth  

factors,  cytokines  and  hormones,  as  well  as  by  interactions  with  

extracellular  matrix  (ECM)  proteins.6  Endogenous  inhibitors,  such  as  tissue  

inhibitors  of  matrix  metalloproteinases  (TIMPs),  also  function  to  

counterbalance  MMP  activity.7  Because  cytokines,  including  TNF-α  and  IL-1β,  

have  been  shown  to  stimulate  the  production  of  collagenases,8,9  it  is 
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conceivable  that  cytokines  contribute  to  destruction  of  the  basement  

membrane,  which  in  turn  leads  to  the  disruption  of  the  acinar  structure  

of  the  salivary  gland.  Moreover,  structural  changes  in  the  basement  

membrane  of  salivary  glands  and  increased  levels  of  latent  and  active  

MMP-9  in  saliva  have  recently  been  demonstrated  in  SS  patients.10,11  

Taken  together,  these  observations  support  the  previous  finding  that  MMP-9  

is  implicated  in  the  pathogenesis  of  SS.12  

  Recently,  we  demonstrated  that  although  NS-SV-AC  cells  (an 

SV40-immortalized  normal  human  acinar  cell  clone)  produced  a  large  

amount  of  MMP-9  in  response  to  TNF-α,  an  NS-SV-AC  clone  transfected 

with  a  super-repressor  form  of  IκBα  (srIκBα) -complementary  DNA  (cDNA)   

lost  its  responsiveness  to  TNF-α  in  terms  of  MMP-9  production.13  In  

addition,  suppression  of  TNF-α-induced  MMP-9  production  restored  the  

normal  in  vitro  morphogenesis  of  acinar  cells  even  when  they  were  

cultured  on  type  IV  collagen-coated  plates  in  the  presence  of  both  TNF-α  

and  plasmin.  Moreover,  an  immunohistochemical  study  using  salivary  gland  

tissue  from  SS  patients  indicated  that  acinar  cells  adjacent  to  the  

lymphocytic  infiltrate  exhibited  enhanced  expression  of  both  MMP-9  and  

NF-κB  compared  with  those  distant  from  infiltrated  lymphocytes  as  well  as  

those  in  normal  salivary  glands.13,14  It  therefore  seems  likely  that  inhibition  

of  TNF-α-induced  MMP-9  production  in  acinar  cells  leads  to  the  restored  

integrity  of  the  acinar  structure  in  SS  salivary  glands. 

  A  wide  array  of  biological  agents  has  been  designed  to  inhibit  TNF,  

such  as  anti-TNF  antibodies,  and  soluble  receptors  that  bind  and  neutralize  

TNF  have  been  developed  for  the  treatment  of  inflammatory  and  
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autoimmune  diseases.15  Anti-TNF  agents  include  infliximab,  etanercept  and  

adalimumab.  Infliximab  is  a  chimeric  mouse/human  anti-TNF-α  monoclonal  

antibody  composed  of  a  murine  variable  region  and  a  human  IgG1  

constant  region.  Etanercept  is  composed  of  the  extracellular  portion  of  the  

2  human  type  Ⅱ  TNF  receptors  linked  to  the  Fc  portion.  Adalimumab  

is  a  fully  humanized  anti-TNF-α  monoclonal  antibody  generated  by  

recombinant  DNA  techniques,  and  its  structure  is  indistinguishable  from  the  

normal  human  IgG1.16 

  In  the  present  study,  we  examined  the  effect  of  etanercept  and  

adalimumab  on  the  TNF-α-induced  MMP-9  production  in  NS-SV-AC  cells.  

Based  on  the  results,  we  anticipate  that  anti-TNF  agents  will  be  effective    

in  terms  of  both  inhibiting  the  release  of  TNF  from  lymphocytes  and  

suppressing  the  TNF-α-induced  MMP-9  production. 

 

2. Materials  and  methods 

2.1.  Cell  culture  

The  characteristics  of  NS-SV-AC  cells  have  been  described  in  detail  

elsewhere.17  This  cell  clone  was  cultured  at  37°C  in  serum-free  

keratinocyte  medium  (Gibco®,  Life Technologies,  Carlsbad,  CA,  USA)  in  an  

incubator  with  an  atmosphere  containing  5% CO2.   

2.2.  Cell  growth  assay   

Cells  (1×104/well)  were  grown  in  96-well  plates  (Falcon,  Oxnard,  CA,  

USA)  in  serum-free  keratinocyte  medium  in  the  presence  of  etanercept  or  

adalimumab  at  concentrations  of  0,  10,  20,  50  or  100 μg/ml  for  72 h.  

After  the  appropriate  incubation  periods,  an  MTT  reagent   (BioAssay  



6 

 

Systems,  Hayward,  CA,  USA)  was  added  to  each  well  and  incubation  

was  continued  for  4 h.  The  cells  were  dissolved  in  Solubilization  Solution  

(BioAssay  Systems)  and  read  at  570 nm  in  a  microtiter  plate  reader.  

2.3.  RNA  Isolation  and  real-time  quantitative  PCR 

Cells  were  pretreated  for  24 h  with  TNF-α  (20 ng/ml=1.2×10-9  mol/L)  and  

then  were  treated  with  etanercept  (2.5,  5,  10,  20,  or  50 μg/ml)  (1 

μg/ml=6.67×10-9  mol/L)  or  adalimumab  (2.5,  5,  10,  20,  or  50 μg/ml)  (1 

μg/ml=6.76×10-9  mol/L)  for  48 h.  Total  cellular  RNA  was  isolated  with  

TRIzol  reagent  (Invitrogen®,  Life  Technologies,  Carlsbad,  CA,  USA).  The  

expression  levels  of  mRNAs  for  MMP-9,  TIMP-1  and  GAPDH  were  

quantitatively  analyzed  using  an  ABI  Prism  7000  Sequence  Detection  

System  (Applied  Biosystems  Japan,  Tokyo,  Japan)  by  using  TaqMan®  

Universal  PCR  Master  Mix  (Applied  Biosystems)  and  Assays-on-Demand™  

Gene  Expression  Products  (Applied  Biosystems)  according  to  the  

manufacturer’s  recommendations.  Using  96-well  plates,  50 μl  PCR  reaction  

mixtures  containing  25 μl  of  the  2× TaqMan  Universal  PCR  Master  Mix  

and  2.5 μl  of  the  20× TaqMan  Assays-on-Demand™  Gene  Expression  

Products  were  prepared.  The  thermal  cycler  protocol  consisted  of  95°C  for  

10 min,  followed  by  40  cycles  of  95°C  for  5 s  and  60°C  for  30 s.  An  

analysis  of  the  relative  gene  expression  data  was  performed  using  the  

2−ΔΔCT  method  on  Sequence  Detection  System  Software  (Applied  Biosystems).  

The  fold-change  in  the  studied  gene  expression,  normalized  to  an  

endogenous  control,  was  calculated  using  the  formula  RQ = 2−ΔΔCT.  The  

relative  expression  levels  of  MMP-9  mRNAs  were  expressed  as  a  

fold-increase  in  GAPDH  mRNA  expression. 
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2.4.  Enzyme-linked  immunosorbent  assays  (ELISA) 

Cells  were  pretreated  for  24 h  with  TNF-α  (20 ng/ml)  and  then  were  

treated  with  etanercept  (2.5,  10,  20,  or  50 μg/ml)  or  adalimumab  (2.5,  10,  

20,  or  50 μg/ml)  for  48 h.  The  concentrations  of  MMP-9  were  determined  

with  commercially  available  ELISA  kits  (R&D  Systems,  Minneapolis,  MN,  

USA)  according  to  the  manufacturer’s  instructions.  Optimal  absorbance  was  

read  at  450 nm  in  a  microtiter  plate  reader. 

2.5.  Gelatin  zymography 

Cells  were  pretreated  for  24 h  with  TNF-α  (20 ng/ml)  and  then  were  

treated  with  etanercept  (2.5,  10,  20,  or  50 μg/ml)  or  adalimumab  (2.5,  10,  

20,  or  50 μg/ml)  for  48 h.  Before  the  assay,  conditioned  medium  was  

collected.  MMP-9  activity  was  determined  with  a  commercially  available  

gelatin-zymography  kit  (Cosmo  Bio  Co.,  Tokyo,  Japan)  according  to  the  

manufacturer’s  instructions.  Briefly,  5 μl  of  the  conditioned  medium  samples    

was  diluted  in  sample  buffer  (4% SDS,  125 mM  Tris–HCl;  pH 6.8,  20% 

glycerol,  and  0.001%  bromophenol  blue)  and  subjected  to  electrophoresis  on  

a  7%  SDS-PAGE  gel  copolymerized  with  gelatin  (0.15%)  as  the  substrate.  

After  electrophoresis,  the  gels  were  washed  with  2%  Triton X-100  solution  

for  1 h  and  incubated  for  30 h  on  Tris  CaCl2  pH 7.4  buffer  at  37℃.  

Then,  the  gels  were  stained  with  0.05%  Coomassie  Brilliant  Blue  G-250  

and  destained  with  25%  methanol  and  7%  acetic  acid  solution.  

Gelatinolytic  activities  were  detected  as  unstained  bands  against  the  

background  of  the  Coomassie  blue-stained  gelatin.  Images  were  captured  

using  a  UV  transilluminator  (FASⅢ;  Toyobo  Co.,  Ltd.,  Osaka,  Japan). 

2.6.  DNA  Fragmentation  assay 
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Cells  were  pretreated  for  24 h  with  TNF-α  (20 ng/ml)  and  then  treated  

with  etanercept  (10,  50 μg/ml)  or  adalimumab  (10,  50 μg/ml)  for  48 h.  

DNA  Fragmentation  was  determined  with  a  commercially  available  Apoptosis  

Ladder  Detection  Kit  (Wako,  Osaka,  Japan).  1×106 cells  were  collected  and  

then  enzyme  activator  solution,  RNase  solution  and  protein  digestion  enzyme  

solution  were  added.  After  incubating  the  cells  at  50℃  for  30 min,  DNA  

extraction  solution  and  isopropanol  were  added.  The  solution  was  then  left  

at  room  temperature  for  15 min.  After  centrifugation  at  10,000×g  at  room  

temperature  for  10 min,  the  resulting  DNA  was  dissolved  in  TE  Buffer.  

Finally,  the  purified  DNA  was  electrophoretically  separated  on  1.5%  agarose  

gel  and  visualized  by  ethidium  bromide  staining.  

2.7.  Fluorescence-activated  cell  sorting  analysis  of  apoptosis  

  Apoptosis  was  analyzed  using  a  fluorescence-activated  cell  sorting  (FACS)  

MuseTM  Cell  Analyzer  (Merck,  Ltd.,  Tokyo,  Japan)  and  an  Annexin  V  &  

Dead  Cell  Kit  (Merck,  Ltd.). 

2.8.  Statistical  analysis 

The  statistical  analysis  was  performed  by  Mann-Whitney  U-test;  Values  of  

p < 0.05  were  considered  to  be  statistically  significant. 

 

3.  Results 

3.1.  Effects  of  etanercept  or  adalimumab  on  cell  growth 

The  growth  kinetics  of  NS-SV-AC  cells  treated  with  various  

concentrations  of  etanercept  or  adalimumab  were  investigated  by  MTT  assay  

for  up  to  3 days.  As  shown  in  Figure 1,  no  remarkable  cytotoxicity  was  

observed  when  NS-SV-AC  cells  were  treated  with  10~100 μg/ml  of  
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etanercept  or  adalimumab.  

3.2.  Effects  of  etanercept  or  adalimumab  on  the  production  of  TNF-α  

by  NS-SV-AC  cells 

Since  TNF-α  stimulates  the  expression  of  MMP-9,  we  performed  an  

ELISA  to  determine  the  effect  of  etanercept  or  adalimumab  on  the  

production  of  TNF-α  by  NS-SV-AC  cells.  We  found  that  etanercept  and  

adalimumab  had  no  effect  on  the  production  of  TNF-α  by  NS-SV-AC  

cells  (data  not  shown). 

3.3.  Relative  levels  of  TNF-α-induced  MMP-9  and  TIMP-1  mRNA  

expression  in  NS-SV-AC  cells. 

Figure  2  shows  the  expression  of  MMP-9  mRNA  in  NS-SV-AC  cells  

pretreated  for  24 h  with  TNF-α  (20 ng/ml),  followed  by  treatment  for  48 h  

with  TNF-α alone  or  a  combination  of  etanercept  (2.5,  5,  10,  20,  or  

50 μg/ml)  or  adalimumab  (2.5,  5,  10,  20,  or  50 μg/ml)  and  TNF-α.  The  

NS-SV-AC  cells  demonstrated  a  significant  increase  in  the  expression  of  

MMP-9  mRNA  in  response  to  TNF-α.  Both  etanercept  and  adalimumab  

suppressed  the  expression  of  MMP-9  mRNA  when  administered  

simultaneously  with  TNF-α.  The  suppressive  effects  of  etanercept  and  

adalimumab  on  the  MMP-9  mRNA  level  were  not  altered  by  the  use  of  

different  concentrations  of  either  agent. 

On  the  other  hand,  as  shown  in  Figure 3,  TIMP-1  mRNA  expression  

was  slightly  augmented  by  TNF-α  treatment  (P=0.049),  and  both  etanercept  

and  adalimumab  suppressed  the  expression  of  TIMP-1  mRNA.  The  value  

of  the  MMP-9/TIMP-1  mRNA  ratio  was  increased  when  NS-SV-AC  cells  

were  treated  with  TNF-α,  and  was  decreased  by  treatment  with  etanercept  
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or  adalimumab  (Table 1).  

3.4.  Inhibition  of  MMP-9  protein  expression  by  etanercept  or  

adalimumab 

With  respect  to  MMP-9  expression  at  the  protein  level,  ELISA  analysis  

confirmed  that  etanercept  (2.5,  10,  20,  or  50 μg/ml)  or  adalimumab  (2.5,  

10,  20,  or  50 μg/ml)  inhibited  the  TNF-α-induced  production  of  MMP-9  

protein  in  NS-SV-AC  cells  (Figure 4).  The  NS-SV-AC  cells  demonstrated  a  

significant  increase  in  the  expression  of  MMP-9  protein  in  response  to  

TNF-α.  Etanercept  seemed  to  be  more  effective  than  adalimumab  at  

inhibiting  the  TNF-α-induced  production  of  MMP-9  protein. 

3.5.  Suppression  of  MMP-9  activity  by  etanercept  or  adalimumab 

As  shown  in  Figure 5,  clearance  of  the  gelatin  substrate  was  greatly  

enhanced  in  TNF-α-treated  NS-SV-AC  cells.  Consistent  with  the  results  of  

gelatin  zymography,  both  etanercept  and  adalimumab  prevented  the  ability  of  

TNF-α  to  stimulate  the  production  of  MMP-9. 

3.6.  Suppression  of  TNF-α-induced  apoptosis  by  etanercept  or  

adalimumab 

Figure 6A  shows  the  DNA  fragmentation  in  NS-AV-AC  cells  treated  with  

TNF-α.  No  apoptotic  effect  was  observed  in  cells  treated  with  etanercept  

or  adalimumab  alone.  In  NS-AV-AC  cells,  TNF-α-induced  DNA  fragmentation  

was  prevented  by  treatment  with  etanercept  or  adalimumab.  FACS  analysis 

was  found  to  be  a  sensitive  indicator  of  TNF-α-induced  apoptosis  and  of  

the  efficacy  of  etanercept  or  adalimumab  in  blocking  apoptosis.  It  revealed  

that  30.3%  of  the  total  cells  were  apoptotic  after  incubation  with  TNF-α  

compared  with  approximately  14.8%  of  the  cells  treated  with  TNF-α  plus  
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etanercept  and  approximately  15.4%  of  the  cells  treated  with  TNF-α  plus  

adalimumab  (Figure 6B). 

 

4.  Discussion 

The  etiology  of  SS  has  not  yet  been  elucidated.  Lymphocytic  infiltrates  

are  a  characteristic  histopathologic  finding  in  SS.  The  presence  of  

cytokines  during  the  formation  and  proliferation  of  these  lymphocytic 

infiltrates  has  been  investigated,4,18  and  evidence  suggests  that  

proinflammatory  cytokines,  particularly  TNF-α,  may  play  an  important  role  

in  the  pathogenesis  of  the  disease .19-21  In  addition,  we  examined  the  

proteolytic  activity  in  NS-SV-AC  cells,  and  found  that  the  proteolytic    

activity  estimated  by  the  MMP-2/TIMP-2  ratio  was  elevated  when  

NS-SV-SC  cells  were  treated  with  either  TNF-α  alone  or  a  combination  

of  TNF-α  and  IL-1β.14  

We  have  previously  shown  that  the  expression  of  MMP-9  is  

up-regulated  in  SS  acinar  cells  located  near  infiltrated  lymphocytes,  where  

destruction  of  the  acinar  structure  seems  to  occur,  compared  with  both  

the  expression  in  cells  distant  from  the  infiltrated  lymphocytes  and  the  

expression  in  cells  from  normal  salivary  glands.13  We  also  found  evidence  

that  although  NS-SV-AC  cells  entered  apoptosis  when  cultured  on  type  IV  

collagen–coated  dishes  in  the  presence  of  TNF-α  and  plasmin,  suppression  

of  TNF-α-induced  MMP-9  production  by  the  introduction  of  srIκBα  cDNA  

corrected  the  aberrant  in  vitro  morphogenesis  of  these  cells.13  The  

importance  of  interactions  between  the  cell  and  the  basement  membrane  to  

the  survival  of  cells  has  also  been  reported  in  normal  endothelial  and  
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prostate  cancer  cells.22,23  Our  previous  results  therefore  indicate  that  MMP-9  

would  be  one  of  the  causal  molecules  in  the  destruction  of  the  acinar  

structure  in  the  salivary  glands  of  SS  patients  and  that  suppression  of  

MMP-9  activity  in  acinar  cells  may  provide  a  therapeutic  strategy  for  

clinical  improvement  in  SS  salivary  glands. 

Recently,  novel  anti-TNF  agents  have  been  reported  to  be  effective  for 

the  treatment  of  rheumatoid  arthritis  (RA).  This  fact  strongly  suggests  that  

TNF  is  involved  in  the  pathogenesis  of  RA.24  The  anti-TNF  agents  

include  infliximab,  etanercept  and  adalimumab.  Infliximab  is  a  chimeric  

mouse/human  anti-TNF  monoclonal  antibody  composed  of  a  murine  variable  

region  and  a  human  IgG1  constant  region.  Etanercept  is  composed  of  the  

extracellular  portion  of  the  2  human  type  Ⅱ  TNF  receptors  linked  to  

the  Fc  portion.  Adalimumab  is  a  fully  humanized  anti-TNF-α  monoclonal  

antibody  generated  by  recombinant  DNA  techniques,  and  its  structure  is  

indistinguishable  from  that  of  the  normal  human  IgG1.  All  3  of  these  

agents  are  able  to  bind  to  a  soluble  form  of  TNF  and  exert  potent  

clinical  effects  on  RA.25-27  In  contrast,  infliximab  and  etanercept  did  not  

show  such  an  effect  on  primary  SS.28,29 

In  this  study,  we  used  cultures  of  an  SV40-immortalized  normal  human  

acinar  cell  clone  for  our  analysis.  We  hypothesized  that  anti-TNF  agents  

may  play  an  important  role  in  the  regulation  of  MMP-9  following  TNF-α  

treatment  in  NS-SV-AC  cells.  In  our  previous  study,  MMP-9  expression  

was  significantly  increased  by  TNF-α  in  NS-SV-AC  cells  at  the  mRNA  

and  protein  levels.  In  the  present  study,  it  was  of  particular  interest  that 

the  TIMP-1  expression  was  slightly  increased  by  TNF-α  at  the  mRNA  
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level.  However,  because  the  degree  of  increase  in  TIMP-1  was  slight 

compared  with  the  level  of  MMP-9,  the  MMP-9/TIMP-1  ratio  was  much  

higher  in  the  presence  of  TNF-α.  Recent  studies  have  demonstrated  

increased  MMP-9/TIMP-1  ratios  in  whole  mixed  saliva  from  patients  with  

primary  SS.30,31  In  the  present  work,  we  showed  that  the  TNF-α-induced  

MMP-9  expression  was  inhibited  by  anti-TNF  agents,  and  MMP-9/TIMP-1  

ratios  were  reduced  approximately  10-fold. 

We  also  examined  MMP-9  activity  by  gelatin  zymography.  The  clearance  

of  the  gelatin  substrate  was  greatly  enhanced  in  TNF-α-treated  NS-SV-AC  

cells.  Both  etanercept  and  adalimumab  were  able  to  prevent  TNF-α  from  

stimulating  the  production  of  pro-MMP-9.  MMP-9  is  secreted  as  a  

proenzyme  and  is  subsequently  activated  by  multiple  enzymes,  including  

cathepsin G,  trypsin,  stromelysin  1,  and  plasmin.32-35  The  activation  of   

pro-MMP-9  is  an  inevitable  step  in  acquiring  the  properties  necessary  for  

degradation  of  the  basement  membrane  components.  We  have  recently  found  

that  the  latent  form  of  pro-MMP-9  (92 kD)  secreted  from  TNF-α-induced  

NS-SV-AC  cells  was  actually  converted  to  the  active  form  (82 kD)  in  the  

presence  of  plasmin.11 

These  findings  indicated  that  anti-TNF  agents  may  prove  useful  to  

prevent  destruction  of  the  acinar  structure.  Our  results  also  suggest  that  

etanercept  and  adalimumab  would  be  promising  agents  for  use  in  the  

treatment  of  salivary  gland  involvement  in  patients  with  SS.  However,  in  

previous  studies  infliximab  and  etanercept  did  not  show  such  an  effect  on  

primary  SS.29,30  It  is  worth  noting  that  these  prior  investigations  were  

performed  using  local  administration  of  the  anti-TNF  agents  into  salivary  



14 

 

glands  from  the  Stensen’s  duct  and  Wharton’s  duct  in  order  to  allow  

sialography.  Considering  that  SS  is  characterized  by  the  eventual  total  

replacement  of  the  acinar  structure  by  marked  lymphocytic  infiltrates  in  

salivary  and  lacrimal  glands,  it  may  be  more  efficient  to  administer  the  

anti-TNF  agents  directly  under  the  salivary  and  lacrimal  glands. 
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Figure  Legends 

Figure 1 

The  growth  properties  of  NS-SV-AC  cells  treated  with  various  

concentrations  of  etanercept  or  adalimumab.   

Cells  (1×104/well)  were  grown  in  96-well  plates  in  medium  supplemented  

with  etanercept  or  adalimumab  (10~100 μg/ml)  for  72 h.  Viable  cells  were  

estimated  by  MTT  assay.  A  significant  suppression  of  cell  growth  was  

not  detected  in  NS-SV-AC  cells.  
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Figure 2 

Effects  of  anti-TNF  agents  on  the  production  of  TNF-α-induced  MMP-9  

mRNA  in  NS-SV-AC  cells.   

Cells  were  pretreated  for  24 h  with  TNF-α  (20 ng/ml)  and  then  were  

treated  with  etanercept   (2.5,  5,  10,  20,  or  50 μg/ml)  or  adalimumab   

(2.5,  5,  10,  20,  or  50 μg/ml)  for  48 h.  Expression  levels  of  mRNA  for  

MMP-9  were  determined  by  real-time  quantitative  PCR.  The  NS-SV-AC  

cells  demonstrated  a  significant  increase  in  the  expression  of  MMP-9  

mRNA  in  response  to  TNF-α.  Both  etanercept  (A)  and  adalimumab  (B)  

suppressed  the  expression  of  MMP-9  mRNA  after  pretreatment  with  TNF-α.  

The  statistical  analysis  was  performed  with  Mann-Whitney  U-test.  *P<0.05. 

Figure 3 

Effects  of  anti-TNF  agents  on  the  production  of  TNF-α-induced  TIMP-1  

mRNA  in  NS-SV-AC  cells. 

Cells  were  pretreated  for  24 h  with  TNF-α  (20 ng/ml)  and  then  were  

treated  with  etanercept   (2.5,  10,  or  50 μg/ml)  or  adalimumab   (2.5,  10,  

or  50 μg/ml)  for  48 h.  Expression  levels  of  mRNA  for  MMP-9  were 

determined  by  real-time  quantitative  PCR.  The  NS-SV-AC  cells  demonstrated  

a  slightly  but  significant  increase  in  the  expression  of  TIMP-1  mRNA  in  

response  to  TNF-α.  Both  etanercept  (A)  and  adalimumab  (B)  suppressed  

the  expression  of  TIMP-1  mRNA  after  pretreatment  with  TNF-α.  The  

statistical  analysis  was  performed  with  Mann-Whitney  U-test.  *P<0.05. 

Figure 4 

Effects  of  anti-TNF  agents  on  the  production  of  TNF-α-induced  MMP-9  

protein  in  NS-SV-AC  cells.   
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Cells  were  pretreated  for  24 h  with  TNF-α  (20 ng/ml)  and  then  were  

treated  with  etanercept  (2.5,  10,  20,  or  50 μg/ml)  or  adalimumab  (2.5,  10,  

20,  or  50 μg/ml)  for  48 h.  Concentrations  of  MMP-9  were  determined  with  

enzyme-linked  immunosorbent  assays  (ELISA).  Both  etanercept  (A)  and  

adalimumab  (B)  suppressed  the  expression  of  MMP-9  protein  after  

pretreatment  with  TNF-α.  Etanercept  appeared  to  be  more  effective  than  

adalimumab  at  inhibiting  the  TNF-α-induced  production  of  MMP-9  protein.  

The  statistical  analysis  was  performed  with  Mann-Whitney  U-test.  *P<0.05. 

Figure 5 

Effects  of  anti- TNF  agents  on  the  production  of  TNFα-induced  MMP-9  

activity  in  NS-SV-AC  cells.   

Cells  were  pretreated  for  24 h  with  TNFα  (20 ng/ml)  and  then  were  

treated  with  etanercept  (2.5,  10,  20,  or  50 μg/ml)  or  adalimumab  (2.5,  10,  

20,  or  50 μg/ml)  for  48 h.  The  MMP-9  activity  was  determined  by  using  

gelatin  zymography.  The  clearance  of  the  gelatin  substrate  was  greatly  

enhanced  in  response  to  TNFα.  Both  etanercept  and  adalimumab  blocked  

the  stimulation  of  MMP-9  activity  by  TNF-α.  

Figure 6 

Effects  of  anti-TNF  agents  on  TNF-α-induced  apoptosis  in  NS-SV-AC  

cells.   

(A)  Cells  were  pretreated  for  24 h  with  TNF-α  (20 ng/ml)  and  then  were  

treated  with  etanercept  (10,  50 μg/ml)  or  adalimumab  (10,  50 μg/ml)  for  48 

h.  No  apoptotic  effect  was  observed  in  cells  treated  with  etanercept  or  

adalimumab  alone.  In  NS-AV-AC  cells,  TNF-α-induced  DNA  fragmentation  

was  prevented  by  treatment  with  etanercept  or  adalimumab. 
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(B)  Cells  were  pretreated  for  24 h  with  TNF-α  (20 ng/ml)  and  then  were  

treated  with  etanercept  (50 μg/ml)  or  adalimumab  (50 μg/ml)  for  48 h.  FACS  

analysis   revealed  that 30.3%  of  the total cells were apoptotic  after  incubation  

with  TNF-α  compared  with  approximately  14.8%  of  the  cells  treated  with  

TNF-α  plus  etanercept  and  approximately  15.4%  of  the  cells  treated  with  

TNF-α  plus  adalimumab. 

Table 1 

Quantitative  determination  of  the  MMP-9  and  TIMP-1  mRNA  expression  

ratio. 

The  value  of  the  MMP-9/TIMP-1  ratio  was  increased  when  NS-SV-AC  

cells  were  treated  with  TNF-α,  and  was  decreased  by  treatment  with  

etanercept  or  adalimumab. 



Table 1.  Quantitative determination of MMP-9 and TIMP-1 mRNA expression ratio 

A. Etanercept 

 
MMP-9/ 

GAPDH 

TIMP-1/ 

GAPDH 
MMP-9/TIMP-1 

Control 1 1 1 

Etanercept   0.73   0.99   0.74 

TNFα 746.16   1.77 421.56 

TNFα＋Etanercept 

(2.5 μg/ml) 
 65.48   1.57  41.71 

TNFα＋Etanercept 

(10 μg/ml) 
 47.28   1.43  33.06 

TNFα＋Etanercept 

(50 μg/ml) 
 34.19   1.23  27.80 

 

B. Adalimumab 

 
MMP-9/ 

GAPDH 

TIMP-1/ 

GAPDH 
MMP-9/TIMP-1 

Control 1 1 1 

Adalimumab   1.01   0.90   1.12 

TNFα  517.84   1.71 302.83 

TNFα＋Adalimumab 

(2.5 μg/ml) 
 64.96   2.04  31.84 

TNFα＋Adalimumab 

(10 μg/ml) 
 56.87   1.33  42.76 

TNFα＋Adalimumab 

(50 μg/ml) 
 54.49   1.30  41.92 
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