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Abstract

Swift	 assessment	 of	 evaporative	 cooling	 systems	has	become	a	necessity	 in	practical	 engineering	applications	 of	 this	 advanced	 technology.	This	paper	bypasses	details	 of	 the	performance	process	 and	pioneers	 in

developing	a	 statistical	model	 based	on	 the	multiple	 polynomial	 regression	 (MPR)	 to	predict	 the	performance	of	 a	 dew	point	 cooling	 (DPC)	 system.	Thousands	 of	 numerical	 and	experimental	 data	 are	 explored	and	 the

statistical	 model	 is	 produced.	 The	 developed	 statistical	 model	 correlates	 the	 performance	 parameters	 with	 the	 key	 operational	 parameters,	 including	 the	 flow	 and	 geometric	 characteristics.	 The	 selected	 operational

parameters	are,	intake	air	conditions,	including	temperature,	relative	humidity	and	flow	rate	as	well	as	the	working	air	fraction	over	the	intake	air,	while	cooling	capacity,	coefficient	of	performance	(COP),	pressure	drop,	dew

point	and	wet-bulb	effectiveness	are	selected	as	performance	parameters.	The	considered	geometric	characteristics	are	channel	height,	channel	interval	and	number	of	layers	in	heat	and	mass	exchanger.	The	model	with

different	polynomial	degrees	is	assessed	by	R2,	MRE	and	MSE	metrics.	The	8th	degree	polynomial	model	is	selected.	The	maximum	relative	error	of	the	cooling	capacity,	coefficient	of	performance,	pressure	drop,	dew	point

and	wet-bulb	effectiveness	are	6.1%,	7.54%,	0.07%,	3.54%	and	2.53%	respectively.	Finally,	as	examples,	the	model	is	used	to	predict	the	performance	of	the	DPC	system	in	random	operating	conditions	and	in	a	dry	climate	i.e.

Las	Vegas.	Model	developed	in	this	study	would	enable	the	swift	prediction	of	the	DPC	system.
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dp

dew	point

T

temperature,	°C

RH

relative	humidity

U

air	velocity,	(m/s)

Cp

specific	heat	capacity,	kJ/kg°C

Qm

mass	flow	rate,	kg/s

W

electric	power,	kW

Dh

hydraulic	diameter,	m

H

channel	height,	m

Int

channel	interval,	m

L

number	of	layers

X

Dependent	variable

Y

Independent	variable

N

Number	of	operating	conditions

r



residual

R2

The	Coefficient	of	determination

Subscripts

dry,	in

intake	of	the	dry	channel

wb

wet	bulb

dp

dew	point

dry,	out

outlet	the	dry	channel

fan

fan

pump

pump

Greek	symbols
ϕ

working	air	fraction	over	the	intake	air

ϵ

effectiveness

ρ

density,	kg/m3

Δ

difference	between	two	states

λf

coefficient	of	friction	resistance

ξ

coefficient	of	local	resistance

Abbreviations

COP



Coefficient	of	performance

DPC

Dew	point	cooler

IEC

Indirect	evaporative	cooling

MRE

Maximum	relative	error

MSE

Mean	square	error

MPR

Multiple	polynomial	regression

SSE

Sum	square	of	errors

1	Introduction
Indirect	Evaporative	Cooling	 (IEC)	 employs	 the	advantage	of	water	 evaporation	 to	decrease	 the	air	 temperature	without	 increasing	 the	absolute	humidity	 [1].	A	new	generation	of	 the	 IEC,	Dew	Point	Cooling	 (DPC),	 can

decrease	the	temperature	of	the	air	down	to	its	dew	point,	and	thus	achieves	higher	cooling	efficiency	than	the	conventional	IEC.	This	energy	efficient	technology	is	established	on	a	M-cycle	heat	and	mass	exchanger	which	basically

has	the	cross-flow	or	counter-flow	types	[2].	DPC	with	a	well-structured	heat	and	mass	exchanger	(HMX)	pre-cools	the	working	air	(or	secondary	air)	prior	to	its	diversion	into	the	wet	channels;	this	practice	can	decrease	both	dry	bulb

and	dew	point	temperatures	of	the	air	within	the	wet	channels,	thus	achieving	20–30%	higher	cooling	efficiency	compared	to	the	conventional	IECs.	Significant	achievements	have	been	made	in	numerical	simulations	and	experimental

testing	of	the	DPC.

Through	experimental	studies,	performance	comparison	of	a	M-cycle	a	counter-flow	and	cross-flow	heat	exchangers	for	IECs	has	been	progressed	by	Zhan	et	al.	[3].	It	was	found	that	cooling	capacity	of	the	M-cycle	counter-

flow	DPC	is	20%	higher,	dew	point	efficiency	and	wet	bulb	efficiency	were	15%–23%	higher	than	that	of	the	cross	flow	DPC.	Whereas	the	COP	is	10%	lower	than	that	of	the	cross	flow	cooler.	A	test	carried	out	by	Xu	et	al.	[4]	indicated

the	DPC	prototype	achieved	the	wet-bulb	cooling	effectiveness	of	114%	and	dew-point	cooling	effectiveness	of	75%,	yielding	a	significantly	high	COP	value	of	52.5 at	the	optimal	working	air	ratio	of	0.364.	Bruno	[5]	tested	a	prototype

dew	point	cooler	in	both	commercial	and	residential	applications	and	presented	the	performance	characteristics	of	the	system.	B.	Riangvilaikul,	S.	Kumar	[6]	conducted	and	experimental	study	on	a	DPC	where	the	results	showed	that

the	wet	bulb	effectiveness	is	in	the	ranges	of	92	and	114%	and	the	dew	point	effectiveness	is	between	58	and	84%.

Among	the	numerical	studies,	Zhao	et	al.	[7]	found	that	the	performance	of	the	DPC	is	greatly	affected	by	the	dimensions	of	the	airflow	passages,	air	velocity	and	working-to-intake-air	ratio.	Cui	et	al.	[8]	conducted	a	model	on	a

novel	counter	 flow	DPC	and	the	results	 indicated	that	 the	system	achieves	higher	efficiencies	with	 lower	air	velocity,	smaller	channel	height,	 larger	 length-to-height	ratio,	and	 lower	product-to-working	air	 flow	ratio.	Lin	et	al.	 [9]

developed	a	transient	model	for	the	counter-flow	DPC	which	could	predict	the	product	air	temperature	with	maximum	error	of	4.3%.	Xu	et	al.	 [10]	established	a	novel	super	performance	DPC,	by	removing	the	use	of	 the	channel

supporting	guides	and	implemented	the	corrugated	heat	transfer	surface,	to	indicate	that	compared	to	the	existing	flat-plate	HMXs	with	the	same	geometrical	dimensions	and	operational	conditions,	the	new	novel	irregular	exchanger

for	DPC	could	achieve	32.9%–37%	higher	cooling	capacity,	dew-point	and	wet-bulb	effectiveness,	29.7%–33.3%	higher	COP,	and	55.8%–56.2%	lower	pressure	drop.	D.	J.	Lin	et	al.	[11]	presented	an	improved	numerical	model	for	the

DPC	and	revealed	significant	achievements.	B.	Riangvilaikul,	S.	Kumar	[12]	studied	the	performance	of	a	DPC	system	under	various	inlet	air	conditions.	Y.	Wan	et	al.	[13]	compared	two	DPC	with	different	air	flow	configurations	with

maximum	error	of	6.0%.	J.	Lin	et	al.	[14]	developed	an	experimental	and	numerical	study	to	investigate	the	convective	heat	and	mass	transfer	process	of	a	DPC.	In	another	study	J.	Lin	et	al.	[15]	developed	a	model	to	deeply	investigate

the	governing	factors	of	a	DPC	with	maximum	discrepancy	of	8%.



The	review	of	all	studies	for	DPCs	endorses	the	great	achievements	in	numerical	simulation	and	experimental	testing	of	a	super-performance	DPC.	However,	an	apparent	gap	is	still	in	existence	between	the	research	findings

and	engineering	application	of	 this	advanced	technology.	The	current	numerical	and	experimental	data	are	 limited	to	the	narrow	data	scales	and	also	are	expressed	 in	one-to-one	parametrical	correlative	 forms.	This	situation	has

largely	obstructed	the	wide	and	rational	application	of	DPC	technology	in	practical	engineering	in	which	multiple	parameters	vary	simultaneously	across	wide	ranges	of	data	scales.	Furthermore,	cost	of	constructing	the	test	rigs	is	an

outstanding	disadvantageous	in	experimental	study.	Even	though	the	numerical	studies	are	economic,	they	often	include	complicated	and	differential	equations	and	it	is	quite	time	consuming	to	use	them.

Therefore,	to	overcome	the	above-mentioned	problems,	some	studies	have	proposed	statistical	methods	to	evaluate	the	performance	of	evaporative	coolers.	Pandelidis	and	Anisimov	[16]	used	response	surface	methodology

(RSM)	for	the	Maisotsenko	cycle	heat	and	mass	exchanger.	Four	performance	factors	including	outlet	temperature,	specific	cooling	capacity,	dew	point	effectiveness,	and	the	theoretical	COP	were	selected.	Cui	et	al.	[17]	evaluated	the

thermal	performance	of	a	counter-flow	regenerative	IEHX	(indirect	evaporative	heat	exchanger)	by	developing	a	performance	correlation	based	on	the	non-dimensional	forms	of	the	governing	equations.	Sohani	et	al.	pioneered	in

employing	several	statistical	methods	i.e.	artificial	neural	network	(ANN),	group	method	of	data	handling	(GMDH),	genetic	programming	(GP),	multiple	linear	regression	(MLR),	and	stepwise	regression	method	(SRM)	to	optimize	[18]

and	compare	[19]	the	IECs.	Also,	he	analyzed	desiccant	enhanced	evaporative	cooling	systems	[20]	and	cellulose	evaporative	cooling	pad	systems	[21],	and	found	the	best	roadmap	to	improve	the	power	plants	[22]	with	DPCs.	Comino

et	al.	[23]	developed	a	simplified	model	of	cross	flow	IEC	systems	based	on	collected	experimental	data.	H.	Sadighi	Dizaji	et	al.	[24]	developed	an	analytical	model	for	three-stage	regenerative	M-cycle	exchanger.	A.	López-Belchí	et	al.

[25]	used	Artificial	Neural	Networks	(ANN)	coupled	with	Group	of	Method	Data	Handling	(GMDH)	for	the	mini-channels.	A.	Pakari	and	S.	Ghani	[26]	regression	models	are	developed	for	counter	flow	dew	point	evaporative	cooling

systems	using	numerical	simulations	and	response	surface	methodology.

Regression	 is	a	popular	statistical	method	among	the	researchers	since	 it	performs	as	a	predictive	 tool	 to	 investigate	 the	relationship	between	dependent	parameters	and	 independent	parameters.	Additionally,	 regression

method	has	numerous	areas	of	applications	such	as	engineering,	physics	and	chemical	science	[27],	medicine	[28],	etc.

This	research	pioneers	in	bringing	the	multiple	polynomial	regression	(MPR)	to	develop	a	statistical	model	which	performs	as	a	predictive	tool	for	assessing	the	performance	of	the	DPC	with	a	novel	irregular	heat	and	mass

exchanger	in	different	operating	conditions.	The	developed	model	is	presented	in	the	form	of	polynomial	equations	which	directly	correlates	the	main	operational	parameters	(i.e.,	intake	air	temperature,	intake	air	relative	humidity,

intake	air	 flow	rate	and	working	air	 fraction	over	 the	 intake	air)	 to	 the	performance	parameters	of	 the	DPC	(i.e.	cooling	capacity,	coefficient	of	performance,	pressure	drop,	dew	point	effectiveness	and	wet-bulb	effectiveness)	by

considering	the	selected	geometric	parameters	(i.e.	channel	height,	channel	interval	and	number	of	layers).	Additionally,	the	model	is	needless	of	complicated	heat,	mass	and	associated	auxiliary	equations	and	iteration	processes.

The	remaining	part	of	this	paper	is	structured	as	follows;	section	2	provides	a	detailed	statistical	model	description	and	development.	Section	3	describes	the	results	obtained	from	this	study	including	the	model	validation,

assessment	and	application	of	the	model.	Eventually,	section	4	describes	the	conclusion	drawn	from	this	study.

2	Multiple	polynomial	regression	model
MPR	is	one	of	the	numerous	regression	methods	which	some	common	types	i.e.	polynomial,	stepwise	and	logistic	are	summarized	in	Table	1.	Main	focus	of	the	multiple	regression	is	on	analyzing	the	relationship	between	one

dependent	variable	and	more	than	one	 independent	variables	[29].	The	term	 linear	and	nonlinear	describes	 the	 fact	 that	 the	regression	variables	appear	 in	 the	approximated	equation	 linearly	or	nonlinearly	 [30].	Additionally,	 the

regression	model	is	called	polynomial	when	the	relationship	between	the	dependent	and	independent	variables	is	represented	by	a	curve.	In	this	study,	the	MPR	is	selected	to	develop	the	statistical	model	for	multiple	independent

variables.

Table	1	Various	classifications	of	regression	analysis.

alt-text:	Table	1

Type	of	Regression Definition

Univariate/Multivariate Only	one/two	or	more	quantitative	dependent	variables

Simple/Multiple Only	one/two	or	more	independent	variables

Linear All	parameters	appear	in	the	equation	linearly

Nonlinear The	relationship	between	the	dependent	variable	and	some	of	the	independent	variables	is	nonlinear

Polynomial	Regression The	relationship	between	the	dependent	variable	and	independent	variable	can	be	expressed	by	a	polynomial	function

Stepwise	regression Builds	a	model	by	adding	or	removing	the	predictor	variables,	generally	via	a	series	of	T-tests	or	F-tests



Logistic	Regression It	is	used	to	predict	the	probability	of	an	event	where	the	result	is	binary	that	is	either	yes	or	no

2.1	Mathematical	development
In	order	to	develop	a	regression	model,	discrete	values	for	independent	variable	and	dependent	variables	are	needed	to	formulate	the	relationship	between	them.	A	real	value	of	dependent	variable	can	be	represented	by	Y	and

independent	variables	are	represented	by	X1,	X2,	X3,	…,	Xp	where	p	represents	the	number	of	independent	variables.	The	fitted	regression	function	can	be	expressed	as:

A	fitting	method	must	be	used	to	fit	a	model	and	calculate	the	estimated	values	by	the	regression	model	based	on	the	collected	data.	The	most	commonly	used	method	of	estimation	is	called	the	least	squares	method.	To	fit	a	set

of	data	base,	the	least-squares	method	minimizes	the	sum	of	squared	residuals	as	presented	in	Equation	(2).	The	residual	or	sum	square	of	errors	(SSE)	is	the	difference	between	the	actual	values	and	the	estimated	regression	values

which	is	denoted	by	ri.

where,	 represents	 the	predicted	value	of	 the	dependent	variable	by	 regression	model	and	N	represents	 the	number	of	predicted	values.	Form	of	 the	equation	 (1)	must	be	 chosen	considering	 the	 selected	data	and	depending

on	their	relationship.	The	selected	MPR	employs	the	polynomial	equations	to	predict	the	dependent	variables.	The	general	form	of	the	linear	polynomial	equation	is:

where,	β1,	β2,	…,	βm	 represent	 the	unknown	regression	coefficients	which	will	 be	calculated	using	 the	 selected	data.	Three	common	metrics	are	used	 to	evaluate	 the	performance	of	 the	polynomial	 regression:	mean	square	error

(MSE),	coefficient	of	determination	(R2)	and	maximum	relative	error	(MRE).	The	MSE	and	R2	are	defined	as:

where	SST	is	sum	square	of	total,	 is	the	mean	of	predicted	value.

2.2	Development	of	multiple	polynomial	regression	model
2.2.1	The	novel	super	performance	dew	point	cooler

In	this	section,	the	explanation	of	a	selected	counter	flow	DPC	is	provided.	A	counter	flow	DPC	is	normally	constituted	of	a	heat	and	mass	exchanger,	product	and	exhaust	air	fans,	water	supply	and	distribution	system	(such	as	water	distributor,

circulating	water	pump,	water	tank	and	tap	water	piping,	etc.).	Among	which,	the	heat	and	mass	exchanger	is	the	key	part	of	a	DPC.	The	schematic	drawing	of	the	heat	and	mass	exchanger	of	the	novel	super	performance	DPC	is	shown	in	Fig.	1.	The	heat

and	mass	exchanger	consists	of	wet	channels	and	dry	channels.	Two	wet	surfaces	build	the	wet	channel	and	the	adjacent	two	dry	surfaces	build	the	dry	channel.	The	corrugated	heat	transfer	surfaces	as	replacement	of	the	traditional	flat-plate	surfaces

leads	to	the	increased	heat	transfer	area	[10].	On	operation,	the	intake	air	enters	the	dry	channel	with	specified	temperature	and	humidity.	While	passing	the	dry	channel	loses	its	heat	to	the	adjacent	wet	channels	which	leads	to	significant	temperature

drop.	At	 the	end	of	 the	dry	channel,	 the	 intake	air	 is	divided	 into	two	parts.	The	 first	one	 leaves	the	channel	as	a	product	air	and	the	second	one	transfers	 to	 the	adjacent	wet	channels	as	a	working	air.	The	working	air	 in	 the	wet	channels	receives

considerable	amount	of	heat	transferred	from	the	dry	channel	and	the	moisture	from	the	surface	of	the	wet	channels	as	well.	Eventually,	after	completing	the	heat	and	moisture	transition,	the	working	air	leaves	the	wet	channel	as	an	exhaust	air	with	high

temperature	and	moisture.

(1)

(2)

		 	

(3)

(4)

(5)

		 	



Compared	to	the	traditional	flat	plate	heat	and	mass	exchanger	used	in	the	DPC,	the	novel	heat	and	mass	exchanger	has	the	following	distinguished	advantages:

• Removal	of	the	channel	supporting	guides	which	leads	to	significantly	reduced	air	flow	resistance.

• Implementation	of	the	corrugated	heat	transfer	surface	as	a	replacement	of	flat-plate	surface	which	leads	to	increased	heat	transfer	area.

• A	super	performance	wet	material	layer,	i.e.,	Coolmax-fabric	generated	a	higher	water	absorption	capacity,	a	higher	diffusion	area	and	better	evaporation	effect.

• The	high	absorption	capacity	of	the	wet	material	layer	created	an	opportunity	to	implement	the	intermittent	water	supply	scheme	that	can	minimize	the	water	usage	and	water	pump	power	consumption.

As	 a	 result,	 under	 the	 standard	 test	 condition,	 i.e.	 dry	 bulb	 temperature	 of	 37.8 °C	 and	 coincident	wet	 bulb	 temperature	 of	 21.1 °C,	 the	 prototype	 cooler	 has	 achieved	 the	wet-bulb	 cooling	 effectiveness	 of	 114%	 and	 the	 dew-point	 cooling

effectiveness	of	75%,	yielding	a	significantly	high	COP	value	of	52.5 at	the	optimal	working	air	ratio	of	0.364,	compared	to	the	commercial	DPC	of	the	same	sizes	(52.5	vs.	18)	[4].

The	above	super	performance	DPC	was	developed	through	a	numerical	simulation	using	a	combined	CFD	and	the	finite-element	based	Newton-iteration	model	[10]	and	a	4 kW	lab	prototype	experimentation	work	[4],	a	20 kW	pre-production	system

has	also	been	constructed	and	demonstrated	at	Sinogreen	Ltd	in	China.	Regarding	the	simulation	work,	the	CFD	simulation	was	carried	out	to	determine	the	flow	resistance	(K)	factors	of	various	elements	within	the	dry	and	wet	channels	of	the	exchanger,

while	the	finite-element	based	Newton-iteration	numerical	simulation	was	undertaken	to	investigate	its	cooling	[10].	The	numerical	model	includes:	(1)	energy	balance	equations	within	a	dry	element	of	dry	channel;	(2)	mass	balance	equations	in	a	wet

element	of	wet	channel;	(3)	energy	balance	equations	of	the	airflow	in	the	wet	element;	(4)	Conservation	equations	of	water	mass	between	the	inlet	and	outlet	of	a	wet	element.	(5)	Energy	balance	in	a	coupled	dry	&	wet	elements	and	variation	of	the	air's

humidity	ratio.	According	to	the	formula	provided	by	the	ASHRAE,	standard	performance	of	the	IECs	can	be	evaluated	using	following	equations	[31]:

where	 is	cooling	capacity,	 is	 the	 specific	heat	 capacity,	 is	 the	 intake	air	 temperature	 in	dry	 channel,	 is	 the	outlet	 air	 temperature	 in	 the	dry	 channel,	 is	 the	working	 air	 fraction	 over	 the	 intake	 air	 and	 is	mass

flow	rate	of	intake	air	in	dry	channel.

where	 and	 are	the	electrical	power	consumed	by	the	fan	and	the	pump	respectively.

Fig.	1	Heat	and	mass	exchanger	(a):	heat	and	mass	exchanger	structure	(b):	Air	stream	inside	the	wet	and	dry	channels.

alt-text:	Fig.	1
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where	 is	the	wet	bulb	effectiveness	and	 is	the	wet-bulb	temperature	of	the	intake	air	in	dry	channel.

where	 is	the	dew	point	effectiveness	and	 is	the	dew	point	temperature	of	the	intake	air	in	dry	channel.

where	 is	pressure	drop,	 is	coefficient	of	local	resistance,	 is	coefficient	of	friction	resistance,	 is	hydraulic	diameter,	 is	density	and	 is	the	air	velocity.

2.2.2	Determination	of	the	operating	and	performance	parameters
It	 is	important	to	note	that	in	this	study	the	independent	variables	are	represented	by	operating	parameters	and	dependent	variables	are	represented	by	performance	parameters.	Seven	key	operating	parameters,	as	shown	in	Fig.	2,	and	 five

performance	 parameters	 have	 been	 identified	 to	 trigger	 the	 regression	 analysis	 and	 derive	 the	 statistical	model	 for	 the	 DPC.	 The	 temperature,	 relative	 humidity	 and	 air	 flow	 rate	 of	 intake	 air,	 and	working	 air	 fraction	 over	 the	 intake	 air	 as	 flow

characteristics	and	channel	height,	channel	interval	and	number	of	layers	as	geometric	characteristics	are	taken	as	operating	parameters.	The	reason	for	selecting	these	operating	parameters	lies	in	the	fact	that	they	are	the	main	parameters	which	can	be

changed	continually	during	the	real	DPC	operation.	Thus,	other	minor	flow	and	geometric	characteristics	which	are	impossible	to	change	during	the	DPC	operation	with	less	importance	are	not	considered.	The	schematic	of	the	heat	and	mass	exchange	are

shown	in	Fig.	3.	Five	performance	parameters	to	assess	the	performance	of	the	DPC	are	cooling	capacity,	coefficient	of	performance	(COP),	pressure	drop,	dew-point	effectiveness	and	wet-bulb	effectiveness.

2.2.3	Determination	of	the	proper	ranges	for	operating	parameters
To	conduct	the	MPR,	range	of	each	operating	parameters	should	be	determined.	The	ranges	of	each	independent	variable	are	listed	in	Table	2	which	have	been	determined	referring	to	the	previously	developed	lab	prototype	testing	of	the	DPC	[4]

and	numerical	simulation	[10].	These	ranges	will	contribute	to	produce	a	realistic	data	set	for	the	model.

		εwb	 		Tdry,in,wb	

(9)

		εdp	 		Tdry,in,dp	

(10)

		ΔP	 		ξ	 		λf	 		Dh	 		ρ	 		U	

Fig.	2	Operating	parameters.

alt-text:	Fig.	2

Fig.	3	Schematic	of	heat	and	mass	exchanger.
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Table	2	Range	of	operating	parameters	in	MPR.

alt-text:	Table	2

Type	of	parameters Operating	parameters Range

Flow	characteristics T	(°C) 25–45

RH	(−) 0.125–0.5

U	(m/s) 0.3–3.3

ɸ	(−) 0.1–0.9

Geometric	characteristics H	(m) 1–3

Int	(m) 0.004–0.008

L	(−) 100–200

2.2.4	Dataset	development
The	comprehensive	dataset	is	divided	into	two	sub	sets:	1)	training	set;	2)	validation	set.	80%	of	the	comprehensive	dataset	is	selected	as	the	training	set	and	20%	is	selected	as	the	validation	set.	Training	set	is	used	to	train	and	develop	the	model

and	validation	set	is	used	to	validate	the	developed	model.	Each	set	comprises	two	different	parts:	1)	Operating	parameters;	2)	Performance	parameters.	Discrete	values	for	the	operating	parameters	are	needed	to	construct	the	independent	part	of	the

datasets.	The	discrete	rates	of	the	operating	parameters	are	chosen	according	to	the	accuracy	and	sensitivity	of	the	performance	parameters	[10].	As	it	is	listed	in	Table	3	and	Table	4,	the	number	of	values	for	each	operating	parameters	for	training	set	and

validation	set	are	nine	and	six	respectively.	The	discrete	values	of	training	set	will	be	used	once	to	produce	the	model	only	and	the	model	application	is	not	restricted	to	these	values.

Table	3	Values	of	operating	parameters	in	the	training	set.

alt-text:	Table	3

No.	Of	discreet	values T	(°C) RH	(−) U	(m/s) ɸ	(−)

1 25 0.125 0.3 0.1

2 27.5 0.17 0.7 0.2

3 30 0.22 1.1 0.3

4 32.5 0.26 1.5 0.4

5 35 0.3 1.9 0.5

6 37.5 0.34 2.3 0.6

7 40 0.38 2.7 0.7

8 42.5 0.42 3 0.8

9 45 0.5 3.3 0.9

Table	4	Values	of	operating	parameters	in	the	validation	set.

alt-text:	Table	4

No.	Of	discreet	values T	(°C) RH	(−) U	(m/s) ɸ	(−)

1 26.25 0.14 0.5 0.15

2 28.75 0.19 0.9 0.25



3 31.25 0.24 1.3 0.35

4 33.75 0.28 1.7 0.45

5 36.25 0.32 2.1 0.55

6 38.75 0.36 2.5 0.65

All	possible	combinations	of	the	selected	operating	parameters	which	represent	all	possible	operating	conditions	for	the	selected	discrete	values	are	produced	for	each	set.	All	possible	combinations	take	all	of	the	probable	combinations	of	the

discrete	operating	parameters	into	consideration.	Thus	making	the	model	aware	of	any	random	operating	conditions.	In	this	study,	the	total	number	of	operating	conditions	are	7857	in	which	80%	of	them,	6561	(94),	are	chosen	for	training	set	and	20%,

1296	(64),	are	chosen	for	the	validation	set.	Fig.	4	shows	how	k	discreet	values	of	each	operating	parameters	can	be	combined	which	only	three	combinations	out	of	7857	possible	combinations	are	illustrated	here.

Having	created	the	all	possible	operating	conditions,	the	performance	parameters	are	calculated	for	each	created	operating	conditions	to	construct	the	second	part	of	the	dataset.	The	calculation	is	done	by	the	numerical	model	using	the	created

operating	conditions	and	the	constant	values	in	Table	5.

Table	5	Geometric	parameters	and	water	status	of	the	heat	and	mass	exchanger	in	numerical	model.

alt-text:	Table	5

Parameters Value

Length	(m) 1.2

Width	(m) 0.348

Interval	(m) 0.005

Number	of	layers 200

Water	temperature	(°C) 16

Water	flow	rate	(kg/s) 18

Because	in	real	operating	conditions,	the	geometric	variables	are	not	changed	continually,	thus	the	comprehensive	dataset	is	created	for	twelve	geometric	sets	to	make	the	final	equations	more	sensible	and	organized.	As	can	be	seen	in	Table	6

each	geometric	set	has	constant	geometric	parameters	including	channel	height,	channel	interval	and	number	of	layers.	All	calculations	are	done	by	a	numerical	model	previously	developed	to	investigate	the	novel	super	performance	DPC	by	authors	[10].

Table	6	Discreet	values	of	geometric	characteristics	for	each	geometric	sets.

alt-text:	Table	6

No.	Of	sets 1 2 3 4 5 6 7 8 9 10 11 12

Fig.	4	All	possible	operating	conditions	of	selected	discreet	operating	parameters.

alt-text:	Fig.	4



H(m) 1 1 1 1 2 2 2 2 3 3 3 3

Int(m) 0.004 0.004 0.008 0.008 0.004 0.004 0.008 0.008 0.004 0.004 0.008 0.008

L 100 200 100 200 100 200 100 200 100 200 100 200

2.2.5	Regression	model	set	up
Fig.	5	reveals	the	behavior	of	the	operating	conditions	versus	each	performance	parameters.	 It	 is	evident	that	the	MPR	is	a	proper	type	of	regression	for	DPC	data	as	the	relationship	between	the	operating	conditions	and	the	corresponding

performance	parameters	can	be	demonstrated	using	a	curve.

The	MPR	method	was	carried	out	in	R	software.	The	general	mathematical	expression	includes	the	regression	coefficients	and	flow	characteristics.	The	regression	coefficients	which	are	derived	from	the	fitting	function	varies	for	each	geometry

sets	and	thus	considers	the	impact	of	geometric	characteristics.	Equation	(11)	is	the	general	form	of	the	statistical	model	which	is	based	on	the	MPR.

where	Y	 represents	 the	performance	parameters,	 T,	RH,	U	and	ϕ	 represent	 the	 intake	 air	 temperature,	 relative	humidity,	 air	 flow	velocity	 and	working	 air	 fraction	 over	 the	 intake	 air	 respectively,	 β1,	β2,	…,	 βm	 represent	 the	 regression	 coefficients.

Power	of	each	independent	variable	is	represented	by	n	in	which	n1	is	for	intake	air	temperature,	n2	is	for	intake	air	relative	humidity,	n3	is	for	the	air	flow	velocity,	n4	is	for	the	working	air	fraction	over	the	intake	air	and	the	second	subscript	for	n	which	is

shown	by	m	is	the	number	of	the	coefficients.	It	is	important	to	note	that	because	the	operating	parameters	appear	linearly	in	the	equation,	thus	the	regression	model	is	linear.

3	Results	and	discussion
3.1	Model	assessment

In	this	section,	nine	MPR	models	with	different	degrees,	i.e.,	1st,	2nd,	…,	9th	have	been	considered	and	compared	in	order	to	choose	the	optimum	one,	in	terms	of	complexity	and	accuracy,	for	performance	analysis	and	design

of	the	DPC	system.	Accuracy	of	the	MPR	model	is	investigated	in	two	general	ways:	1)	Changing	degree	of	the	polynomial	model;	2)	Assessing	the	model	performance	by	different	metrics	[32].	Model	complexity	in	MPR	is	controlled	by

polynomial	degrees.	Larger	degrees	allows	more	complex	prediction	functions	and	better	fit	to	training	data.	However,	it	does	not	necessarily	lead	to	better	performance	of	the	model.	Thus,	three	common	metrics	[33],	MSE,	R2	and

MRE,	are	selected	to	evaluate	the	performance	of	several	models	with	different	 level	of	complexities.	Five	predicted	performance	parameters	are	compared	with	those	from	the	numerical	simulation.	Firstly,	 the	model	results	are

assessed	by	R2	to	investigate	the	level	of	correlation	fitting.	As	can	be	seen	from	Fig.	6(a),	the	R2	value	has	sharply	increased	by	increasing	the	polynomial	degrees	and	has	reached	1	for	all	of	the	variables	from	5th	degree	afterwards.

Fig.	5	Relationships	between	the	operating	conditions	and	the	corresponding	performance	parameters.

alt-text:	Fig.	5

(11)



Although	R2	of	1	indicates	the	good	level	of	fitting,	but	it	does	not	always	lead	to	a	good	model.	This	is	because	R2	gets	higher	values	by	covering	more	operating	parameters	so	that	other	metrics	are	considered	in	model	assessment.

As	can	be	seen	from	Fig.	6(b),	the	maximum	relative	errors	(MRE)	decrease	for	all	variables	by	increasing	the	model	complexity.	The	sharp	declines	show	the	contribution	of	the	model	complexity	in	enhancement	of	model	accuracy.

MSE	of	10%	are	specified	as	an	acceptable	margin	in	this	study	and	the	accepted	values	are	colored	in	green	as	listed	in	Table	7.	Thus,	in	terms	of	MSE,	7th	degree	for	cooling	capacity,	8th	degree	for	COP,	3rd	degree	for	pressure	drop,

6th	degree	for	dew	point	effectiveness	and	5th	degree	for	wet-bulb	effectiveness	can	be	selected.	Therefore,	in	terms	of	MSE,	increasing	the	model	complexity	from	aforementioned	acceptable	degrees	leads	to	more	complex	model	and

does	not	contribute	to	model	accuracy.	The	trend	is	exactly	the	same	for	the	MSE	values.	As	can	be	seen	from	Fig.	6(c),	MSE	for	all	variables	has	declined	by	increasing	the	model	degrees.	For	dew	point	and	wet-bulb	effectiveness,	all

of	the	studied	models	are	in	favor	as	the	MSE	values	are	close	to	zero.	However,	the	appropriate	models	for	cooling	capacity,	COP	and	pressure	drop	are	8th	degree,	6th	degree	and	2nd	degree	respectively	as	the	MSE	values	have

approached	zero.



Table	7	Maximum	relative	errors	of	the	MPR	models.

alt-text:	Table	7

Performance	parameters MRE	(%)

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Fig.	6	Influence	of	degrees	on	Metrics:	(a):	R2;	(b):	MRE;	(c):	MSE.

alt-text:	Fig.	6



Cooling	capacity	(W) 3197.36 1684.56 660.96 239.65 68.85 39.33 8.39 6.1 2.59

COP	(−) 4421.66 2814.83 1038.02 623.98 180.78 85.83 46.46 7.54 2.9

Pressure	drop	(Pa) 241.04 14.34 2.42 0.6 0.21 0.12 0.086 0.07 0.07

Dew	point	effectiveness	(%) 129.6 76.55 35.69 23.76 13.86 9.78 5.67 3.54 2.1

Wet	bulb	effectiveness	(%) 135.71 53.53 27.98 15.18 8.95 6.43 4.30 2.53 1.16

Consequently,	having	done	all	of	the	aforementioned	analyses,	the	accepted	models	for	cooling	capacity,	COP,	pressure	drop,	dew	point	and	wet-bulb	effectiveness	are	8th,	8th,	5th,	6th	and	5th	respectively.	All	other	model	with

higher	degrees	than	the	abovementioned	accepted	degrees	are	valid	and	more	accurate.	Therefore,	in	order	to	have	a	solid	single	model	for	all	of	the	five	performance	parameters,	the	8th	degree	MPR	model	is	taken	in	next	sections	to

carry	out	the	validation	and	test	parts.	Therefore,	r-squared	values	and	average	relative	error	values	for	the	selected	8th	degree	model	are	given	in	Table	8.	Both	r-squared	values	(0.99–1)	and	average	errors	(less	than	1.22%)	indicate

the	quality	and	accuracy	of	the	8th	degree	model.

Table	8	Average	errors	and	r-squared	values	of	8th	degree	MPR.

alt-text:	Table	8

Dependent	variables R-squared Average	error	(%)

Cooling	capacity	(W) 1 0.09

COP	(−) 1 1.22

Pressure	drop	(Pa) 1 0.01

Dew	point	effectiveness	(%) 1 0.12

Wet	bulb	effectiveness	(%) 0.99 0.11

3.2	Cross	validation
In	this	section,	cross	validation	is	performed,	firstly	to	validate	the	selected	model	and,	secondly	to	check	the	model	overfitting.	The	model	has	been	generalized	through	the	cross	verification.	It	means	that	cross	verification

shows	the	validity	of	the	proposed	model	for	any	new	operating	condition	within	the	defined	ranges.	Comparison	of	the	predicted	values	by	8th	degree	MPR	for	each	performance	parameter	with	corresponding	values	derived	by

numerical	model	[10]	are	shown	in	Fig.	7.	The	validation	is	carried	out	using	the	validation	set	and	values	in	Table	5.	Channel	width,	water	temperature	and	water	flow	rate	which	have	less	importance	in	operation	of	standard	DPC	are

used	to	operate	the	numerical	model	only.	Due	to	the	numerous	operating	conditions	of	the	validation	set,	only	20	operating	conditions	(out	of	1296	operating	conditions)	are	illustrated	in	the	Fig.	7.

As	can	be	seen,	predicted	values	by	MPR	are	overlapped	with	the	numerical	simulation	values	whereas	the	maximum	relative	errors	for	cooling	capacity,	COP,	pressure	drop,	dew	point	and	wet-bulb	effectiveness	are	1.73%,

3.31%,	0.05%,	3.53%	and	3.48%	respectively.	This	indicates	that	MPR	model	has	the	satisfactory	accuracy	and	is	not	over-fitted.	Therefore	this	regression	model	can	be	used	to	replace	the	previous	numerical	and	experimental	models

to	predict	the	performance	of	the	DPC.

3.3	Polynomial	equations
The	comprehensive	MPR	model	obtained	for	the	DPC	is	presented	in	Equation	(12),	which	is	the	generalized	form	of	Equation	(11).	The	matrix	on	the	left	of	equal	sign	represents	the	performance	parameters	and	on	the	two

first	matrices	on	right	side	of	equal	sign,	represent	the	regression	coefficients	and	third	matrix	represents	the	operating	parameters.	Power	of	each	independent	variable	is	denoted	by	n	in	which	n1	is	for	intake	air	temperature,	n2	is

for	intake	air	relative	humidity,	n3	is	for	the	air	flow	velocity,	n4	is	for	the	working	air	fraction	over	the	intake	air	and	the	second	subscript	for	n	which	is	shown	by	m	indicates	the	number	of	coefficients.	The	number	of	coefficients	for

Nth	degree	polynomial	with	k	variables	is	 ,	which	is	494	for	8th	degree	model	with	four	operating	parameters.	It	is	important	to	mention	that	the	corresponding	powers	for	each	coefficient	in	general	8th	degree	polynomial

are	listed	in	Table	9.

		 	



Table	9	Powers	of	general	8th	degree	polynomial	equations.

alt-text:	Table	9

m T RH U ɸ

n1,m n2,m n3,m n4,m

1 1 0 0 0

2 2 0 0 0

3 3 0 0 0

494 0 0 0 8

The	equation	varies	for	different	operating	conditions	and	for	different	geometric	sets.	Table	10	gives	all	the	regression	coefficients	to	construct	the	8th	degree	polynomial	equations	for	different	geometric	sets.	The	equations

for	five	performance	parameters	can	be	used	by	substituting	the	proper	coefficients	in	Equation	(12)	and	thus	the	performance	analysis	of	the	DPC	is	possible	for	any	operating	conditions	by	considering	the	provided	ranges	in	Table	2.

Since	the	total	number	of	the	coefficients	for	each	performance	parameter	are	494,	thus	the	table	is	summarized.

Table	10	Coefficients	of	8th	degree	MPR	model.

alt-text:	Table	10

Geometric	set Performance	parameters m = 0 m = 1 m = 2 M = 494

Y β0 β1 β2 Βm β494

1 Qcooling 3.807e+04 −9.006e+03 9.193e+02 −5.059e+04

COP −2.354e+03 5.113e+0 −4.893e+01 −3.128e+03

1.298e+03 −2.627e+02 2.284e+01 −1.718e+02

3.483e+02 −8.201e+01 8.251e+00 −1.368e+01

−4.996e+01 1.133e+0 −1.124e+00 −9.738e+00

2 Qcooling 3.118e+03 1.048e+03 1.092e+02 −6.689e+04

COP −2.287e+03 5.186e+02 −5.254e+01 −4.727e+03

−1.661e+02 1.046e+02 −1.708e+0 5.501e+01

3.661e+02 −8.634e+01 8.701e+00 −7.692e+00

(12)
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		…

		…
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		ΔP 		…

		εdp 		…

		εwb 		…

		…

		…

		ΔP 		…

		…



−3.839e+01 8.032e+00 −7.435e-01 −4.384e+00

3 Qcooling −4.378e+03 1.075e+03 −1.065e+02 −1.151e+05

COP −1.016e+03 2.057e+02 −1.946e+01 −7.906e+03

2.590e+02 −6.177e+01 6.359e+00 4.164e+01

2.652e+02 −6.249e+01 6.297e+00 −1.895e+01

−1.707e+01 3.785e+00 −3.788e-01 −2.939e+01

4 Qcooling −3.821e+02 −2.462e+02 8.092e+01 −2.372e+05

COP 2.903e+03 −6.294e+02 6.052e+01 −7.800e+03

3.051e+03 −7.324e+02 7.660e+01 2.071e+02

2.387e+02 −5.608e+01 5.630e+00 −1.610e+01

−1.453e+01 3.461e+00 −3.493e-01 −2.125e+01

5 Qcooling 1.351e+04 −3.454e+03 3.597e+02 8.692e+03

COP −6.549e+02 1.348e+02 −1.280e+01 −1.162e+03

1.026e+03 −2.475e+02 2.590e+01 3.402e+01

3.906e+02 −9.235e+01 9.328e+00 9.135e+00

2.461e+00 −7.326e-01 7.598e-02 2.712e+01

6 Qcooling −1.248e+04 1.512e+03 −9.795e+01 1.076e+05

COP −1.485e+02 1.117e+01 −4.411e-01 −2.809e+03

−2.296e+03 4.556e+02 −3.865e+01 9.069e+01

1.017e+02 −2.411e+01 2.298e+00 2.107e+01

−8.642e+00 1.014e+00 −4.549e-02 4.398e+01

7 Qcooling −1.278e+04 3.001e+03 −3.134e+02 −1.183e+05

COP 3.071e+03 −6.890e+02 6.563e+01 −6.401e+03
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−4.816e+03 1.144e+03 −1.172e+02 −8.053e+01

3.157e+02 −7.450e+01 7.516e+00 −1.827e+01

−5.186e+00 1.160e+00 −1.229e-01 −2.137e+01

8 Qcooling −1.401e+04 3.315e+03 −3.284e+02 −2.136e+05

COP 1.377e+03 −2.511e+02 2.489e+01 −1.714e+03

2.640e+02 −3.346e+01 5.031e-01 7.573e+01

3.337e+02 −7.868e+01 7.944e+00 −2.812e+00

−1.621e+01 3.606e+00 −3.269e-01 2.961e+00

9 Qcooling 1.596e+04 −4.310e+03 4.504e+02 7.089e+04

COP 1.765e+02 −7.621e+01 1.014e+01 −3.743e+02

7.107e+03 −1.897e+03 2.157e+02 −6.753e+02

4.144e+02 −9.783e+01 9.872e+00 2.994e+01

2.766e+01 −7.527e+00 8.420e-01 6.029e+01

10 Qcooling −1.251e+04 8.453e+02 −3.641e+01 2.437e+05

COP −6.748e+02 1.053e+02 −6.987e+00 −1.935e+03

−6.303e+03 1.287e+03 −1.089e+02 −7.345e+02

4.235e+02 −1.009e+02 1.025e+01 4.747e+01

−3.157e+0 5.909e+00 −5.084e-0 8.068e+01

11 Qcooling −3.305e+04 8.131e+03 −8.888e+02 −9.191e+04

COP 5.614e+0 −1.372e+02 1.327e+01 −4.929e+03

6.201e+02 −1.663e+02 1.865e+01 −2.395e+01

3.404e+02 −8.030e+01 8.090e+00 −1.138e+01

2.566e+01 −5.993e+00 6.013e-0 −1.016e+01

12 Qcooling −1.920e+04 3.678e+03 −3.309e+02 −1.104e+05
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COP −1.318e+0 1.283e+02 −1.574e+01 1.845e+03

7.786e+03 −1.816e+03 1.850e+02 −1.772e+02

3.655e+02 −8.615e+01 8.692e+00 1.182e+01

−1.285e+01 3.215e+00 −3.287e-01 1.825e+01

3.4	Applications	of	the	developed	model
In	this	section,	two	applications	of	the	developed	MPR	model	are	presented.	In	the	first	case,	the	performance	of	the	DPC	is	predicted	and	discussed	under	random	operating	conditions.	Then,	the	average	monthly	weather

conditions	of	a	dry	climate	is	taken	as	the	second	case	to	present	another	application	of	the	MPR	model.	The	geometric	set	2	is	selected	as	dimensions	of	the	system.	The	DPC	system	performance	will	be	predicted	for	aforementioned

cases	by	Equation	(13)	which	is	achieved	through	substituting	the	coefficients	of	geometric	set	2,	from	Table	10,	in	Equation	(12)	and	by	applying	the	listed	powers	in	Table	9.	Values	of	operating	parameters	will	be	substituted	according

to	the	operating	conditions	in	each	application.

3.4.1	Prediction	of	the	DPC	performance	in	random	conditions
Random	operating	conditions	are	created	using	Table	11.	The	performance	results	of	the	DPC	system	are	given	in	Fig.	8.	As	can	be	seen,	the	cooling	capacity,	COP,	pressure	drop,	dew	point	and	wet-bulb	effectiveness	of	the	system	are	predicted

for	the	selected	conditions.	The	cooling	capacity	varies	from	1857	(W)	to	4693	(W)	in	which	the	minimum	and	maximum	cooling	capacity	values	are	predicted	to	occur	at	21st	and	61st	operating	conditions.	Similarly,	COP	is	predicted	to	change	from	18.7	in

27th	condition	 to	65.91	 in	55th	condition,	pressure	drop	 is	predicted	 to	change	 from	139.5	 (Pa)	 in	1st	condition	 to	242.6	 (Pa)	 in	81st	condition,	dew	point	effectiveness	 is	predicted	 to	change	 from	0.73	 in	7th	condition	 to	0.94	 in	75th	condition	and

eventually	the	wet-bulb	effectiveness	is	predicted	to	vary	from	1.14	in	7th	condition	to	1.35	in	3rd	condition.

Table	11	Random	operating	parameters.

alt-text:	Table	11

No.	Of	discreet	values T	(°C) RH	(−) U	(m/s) ɸ	(−)

1 33.75 0.28 1.7 0.45

2 36.25 0.32 2.1 0.55

3 38.75 0.36 2.5 0.65

		…

		ΔP 		…

		εdp 		…

		εwb 		…

(13)



Fig.	7	Cross	verifications:	(a):	Cooling	capacity;	(b):	Pressure	drop;	(c):	COP;	(d):	Dew-point	effectiveness;	(e):	Wet-bulb	effectiveness.

alt-text:	Fig.	7



3.4.2	Prediction	of	the	DPC	performance	in	a	dry	climate
The	model	is	used	to	predict	the	performance	of	the	DPC	in	a	city	with	a	dry	and	hot	climate	i.e.	Las	Vegas.	Seven	months	with	relatively	low	average	humidity	levels	[34]	are	selected	in	which	the	DPC	can	perform	without	any	pretreatment	as

listed	in	Table	12.	Intake	air	flow	rate	and	the	working	air	fraction	over	the	intake	air	are	selected	to	be	1.5	(m/s)	and	0.4	respectively.

Table	12	Average	weather	information	in	Las	Vegas.

alt-text:	Table	12

Month T	(°C) RH	(−)

April 25 0.25

Fig.	8	DPC	performance	in	the	random	operating	conditions:	(a):	Cooling	capacity;	(b):	Pressure	drop;	(c):	COP;	(d):	Dew-point	effectiveness;	(e):	Wet-bulb	effectiveness.

alt-text:	Fig.	8



May 30 0.21

June 37 0.18

July 40 0.2

August 39 0.27

September 33 0.26

October 27 0.3

The	prediction	of	the	DPC	performance	for	the	Las	Vegas	is	given	in	Fig.	9.	As	can	be	seen,	the	DPC	has	the	best	performance	in	terms	of	cooling	capacity	and	COP	in	June,	July	and	August.	The	maximum	cooling	capacity	and	maximum	COP	are

predicted	to	obtain	in	July	which	are	4065	(W)	and	101	respectively.	This	is	mainly	because	of	the	high	temperature	of	July	when	it	is	around	40 °C.	The	pressure	drop	is	relatively	same	during	the	operation	and	has	reached	the	maximum	level	of	118	(Pa)	in

August.	The	maximum	dew	point	effectiveness	is	occurred	in	August	which	is	0.88	(88%)	and	the	maximum	wet-bulb	effectiveness	is	predicted	to	happen	in	July	which	is	1.28	(1.28%).	On	the	other	hand	the	DPC	has	the	worst	performance	in	April	and

October	where	all	of	the	performance	parameters	have	reached	their	minimum	levels.

Fig.	9	Predicted	performance	of	the	DPC	in	Las	Vegas:	(a):	Cooling	capacity;	(b):	Pressure	drop;	(c):	COP;	(d):	Dew-point	effectiveness;	(e):	Wet-bulb	effectiveness.



4	Conclusions
A	statistical	model	based	on	multiple	polynomial	regression	(MPR)	method	was	presented	to	predict	the	performance	of	a	DPC	with	a	novel	irregular	heat	and	mass	exchanger.	Such	kind	of	effort	in	bringing	the	MPR	into	the

DPC	technology	adds	important	scientific	values	to	characterization	of	the	engineering	process	of	the	DPC.	The	model	is	first	trained	and	developed	by	a	training	set	and	then	validated	with	a	previously	developed	numerical	model	by	a

validation	set.	The	multiple	polynomial	regression	approach	has	explored	lots	of	numerical	and	experimental	data	and	produced	the	statistical	model,	and	directly	correlated	the	selected	parameters.	The	selected	operating	parameters

were	intake	air	conditions,	including	temperature,	relative	humidity	and	flow	rate	as	well	as	the	working	air	fraction	over	the	intake	air.	The	performance	parameters	were	cooling	capacity,	coefficient	of	performance	(COP),	pressure

drop,	dew	point	effectiveness	and	wet-bulb	effectiveness.	Additionally,	model	was	classified	in	different	geometric	sets	by	considering	the	channel	height,	channel	interval	and	number	of	layers	in	heat	and	mass	exchanger	as	geometric

characteristics.	The	model	is	also	assessed	by	three	common	metrics	i.e.	R2,	MSE	and	MRE	for	different	polynomial	degrees	and	the	8th	degree	polynomial	was	selected	to	perform	in	this	study.	The	selected	8th	degree	model	can

predict	the	performance	of	the	DPC	with	6.1%,	7.54%,	0.07%,	3.53%	and	2.53%	discrepancies	for	cooling	capacity,	COP,	pressure	drop,	dew	point	and	wet-bulb	effectiveness	respectively.	The	presented	regression	model	is	swift	in

operation	and	can	be	used	in	prediction,	optimization	and	design	of	the	DPC	to	commercialize	this	technology.

This	study	has	focused	on	prediction	of	the	DPC	performance	under	different	operating	conditions.	In	the	future	studies,	the	model	can	be	employed	to	find	the	optimum	geometric	and	flow	characteristics	of	the	DPC	system	in

different	climates	and	operating	conditions.
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Highlights

• A	multiple	polynomial	regression	model	for	a	dew	point	cooler	is	developed.

• The	statistical	model	explores	lots	of	numerical	and	experimental	data.

• Model	is	assessed	by	three	metrics	and	a	cross	validation.

• The	average	error	of	outputs	by	the	model	is	less	than	1.22%.
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