

B-Splines for Sparse Grids:
Algorithms and Application to

Higher-Dimensional Optimization

Vom Stuttgarter Zentrum für Simulationswissenschaften (SC SimTech) und
der Fakultät für Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart zur Erlangung der Würde eines Doktors
der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Julian Valentin
aus Stuttgart

Hauptberichter: Prof. Dr. Dirk Pflüger

Mitberichter: Prof. Dr. Stephen Roberts
Prof. Dr.-Ing. Martin Radetzki

Tag der mündlichen Prüfung: 2. April 2019

Institut für Parallele und Verteilte Systeme der Universität Stuttgart

2019

Submitted to the University of Stuttgart

Involved institutions and departments:

Cluster of Excellence in Simulation Technology

Institute for Parallel and Distributed Systems

Chair of Simulation Software Engineering

Chair of Simulation of Large Systems

Julian Valentin

Simulation Software Engineering

Institute for Parallel and Distributed Systems

University of Stuttgart

Universitätsstr. 38

70569 Stuttgart

Germany

D 93 (dissertation)

Compiled as version v13485 on June 28, 2019 at 7:19pm.

Committed as 9871e837 (published-v1) on June 28, 2019 at 7:13pm.

Typeset using LATEX and cover design by the author.

Copyright © 2019 Julian Valentin.

This work is licensed under the

Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/ or

send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Although this thesis was written with utmost care, it cannot be ruled out that it contains errors.

Please send any corrections and mistakes to thesis@bsplines.org.

https://creativecommons.org/licenses/by-sa/4.0/
mailto:thesis@bsplines.org

3

— Carl de Boor [Boor16]

5

Contents

Lists of Figures, Tables, Algorithms, and Theorems 7

List of Symbols and Acronyms 13

Abstract/Kurzzusammenfassung 17

Preface 19

1 Introduction 21

2 Sparse Grids with Arbitrary Tensor Product Bases 25
2.1 Nodal Basis and Nodal Space . 26
2.2 Hierarchical Basis and Hierarchical Subspace 30
2.3 Sparse Grids . 35
2.4 Boundary Treatment . 40

3 Hierarchical B-Splines 47
3.1 Uniform and Non-Uniform Hierarchical B-Splines 48
3.2 Boundary Behavior of Hierarchical B-Splines 62

4 Algorithms for B-Splines on Sparse Grids 73
4.1 The Hierarchization Problem . 74
4.2 Hierarchization on Full Grids (Unidirectional Principle) 77
4.3 Hierarchization on Dimensionally Adaptive Sparse Grids 80
4.4 Hierarchization on Spatially Adaptive Sparse Grids

with Breadth-First Search . 88
4.5 Hierarchization on Spatially Adaptive Sparse Grids

with the Unidirectional Principle . 105

5 Gradient-Based Optimization with B-Splines on Sparse Grids 119
5.1 Overview of Optimization Algorithms . 120
5.2 Optimization of Surrogates on Sparse Grids 127
5.3 Test Problems . 130
5.4 Numerical Results . 131
5.5 Example Application: Fuzzy Extension Principle 142

6 CONTENTS

6 Application 1: Topology Optimization 151
6.1 Homogenization and the Two-Scale Approach 152
6.2 Approximating Elasticity Tensors . 156
6.3 Micro-Cell Models and Optimization Scenarios 161
6.4 Implementation and Numerical Results . 163

7 Application 2: Musculoskeletal Models 173
7.1 Continuum-Mechanical Model of the Upper Limb 174
7.2 Momentum Equilibrium and Elbow Angle Optimization 177
7.3 Implementation and Numerical Results . 182

8 Application 3: Dynamic Portfolio Choice Models 191
8.1 Solving the Bellman Equation . 192
8.2 Algorithms . 197
8.3 Transaction Costs Problem . 203
8.4 Implementation and Numerical Results . 207

9 Conclusion 217

A Proofs 221
A.1 Proofs for Chapter 2 . 221
A.2 Proofs for Chapter 3 . 224
A.3 Proofs for Chapter 4 . 226

B Test Problems for Optimization 241
B.1 Unconstrained Problems . 241
B.2 Constrained Problems . 243

C Detailed Results for Topology Optimization 245

Bibliography 249

7

Lists of Figures, Tables,
Algorithms, and Theorems

List of Figures

2.1 Univariate nodal hat functions . 28
2.2 Bivariate nodal hat function . 29
2.3 Decomposition of the set of univariate grid points 31
2.4 Univariate hierarchical hat functions . 32
2.5 Regular two-dimensional sparse grid . 37
2.6 Sparse grid combination technique . 38
2.7 Construction of spatially adaptive sparse grids 39
2.8 Decomposition of a sparse grid into lower-dimensional sparse sub-grids 41
2.9 Comparison of regular sparse grids with coarse boundary 45
2.10 Modified hierarchical hat functions . 46

3.1 Properties of cardinal B-splines . 50
3.2 Cardinal B-splines . 51
3.3 Nodal and hierarchical B-splines . 52
3.4 Non-uniform B-splines with knot sequence and interpolation domain 54
3.5 Uniform nodal B-splines and knot sequence . 54
3.6 Modified hierarchical B-splines . 58
3.7 Decomposition of the set of univariate Clenshaw–Curtis grid points 60
3.8 Clenshaw–Curtis B-splines and sparse grids . 61
3.9 Issues when interpolating with uniform hierarchical B-splines 63
3.10 Nodal not-a-knot B-splines and knot sequence 66
3.11 Nodal and hierarchical not-a-knot B-splines . 67
3.12 Comparison of hierarchical not-a-knot B-splines 71
3.13 Hierarchical natural B-splines . 72

4.1 Hierarchization of function values and evaluation of interpolant 75
4.2 Density pattern of hierarchization matrices and of their inverses 76
4.3 Unidirectional principle . 78
4.4 Canceling out function values in the proof of the combination technique . . . 84
4.5 Hierarchization with residual interpolation . 89
4.6 Fundamental property with Lagrange polynomials as fundamental basis . . . 90

8 LISTS OF FIGURES, TABLES, ALGORITHMS, AND THEOREMS

4.7 Sparse grid as directed acyclic graph . 93
4.8 Hierarchical fundamental transformation on hierarchical B-splines 95
4.9 Fundamental splines and their B-spline coefficients 100
4.10 Hierarchical fundamental splines . 101
4.11 Modified fundamental spline and its derivatives 103
4.12 Hierarchical fundamental not-a-knot splines . 104
4.13 Examples for the definition of chains . 109
4.14 Chain points for hierarchical B-splines on a sparse grid 112
4.15 Hierarchical weakly fundamental splines . 114
4.16 Chain points for hierarchical weakly fundamental splines on a sparse grid . . 115
4.17 Hermite hierarchization . 117
4.18 Hierarchical weakly fundamental not-a-knot splines 118

5.1 Ideas of various gradient-free optimization methods 122
5.2 Ideas of various gradient-based optimization methods 124
5.3 Unconstrained test problems . 132
5.4 Constrained test problems . 133
5.5 Relative interpolation error for different test functions 134
5.6 Relative interpolation error for different basis functions 135
5.7 Pointwise interpolation error for the GoP function 136
5.8 Decay of surpluses for different test functions . 137
5.9 Complexity of fundamental splines . 138
5.10 Complexity of weakly fundamental splines . 139
5.11 Optimality gaps for different objective functions (unconstrained) 141
5.12 Optimality gaps for different objective functions (constrained) 142
5.13 Examples of fuzzy sets and α-cuts . 144
5.14 Alternative fuzzy extension principle . 146
5.15 Convergence of fuzzy output intervals . 148
5.16 Fuzzy errors for regular sparse grids . 149
5.17 Fuzzy errors for spatially adaptive sparse grids 150

6.1 Example scenario for topology optimization . 154
6.2 Two-scale approach for topology optimization 155
6.3 Minimal eigenvalue of interpolated elasticity tensors 159
6.4 Types of micro-cell models . 161
6.5 Test scenarios in topology optimization . 163
6.6 Offline and online phase for topology optimization 164
6.7 Pointwise spectral interpolation error for the 2D cross model 167
6.8 Convergence of relative L2 spectral interpolation errors 168
6.9 Optimal structures in the 2D cantilever scenario 170
6.10 Convergence of the optimality-interpolation gap 171

7.1 Human upper limb model geometry as a raising arm movement 176
7.2 Reference triceps and biceps forces . 183
7.3 Reference equilibrium elbow angle . 184
7.4 Absolute error of muscle forces . 186

LIST OF TABLES 9

7.5 Absolute error of the equilibrium elbow angle . 187
7.6 Settings and results of the test scenario . 188
7.7 Errors of muscle forces and equilibrium angle for the spatially adaptive case . 190

8.1 Example of a dynamic portfolio choice model . 194
8.2 Scheme of the generation of value function interpolants 199
8.3 Reference solution for the two-dimensional TCP 210
8.4 Convergence of the weighted Euler equation error 210
8.5 Sparse grid solution for the two-dimensional TCP 211
8.6 Sparse grid solution for the five-dimensional TCP 212
8.7 Pointwise weighted Euler equation error for different grids 213
8.8 Monte Carlo simulation of the TCP . 214
8.9 Computation times and numbers of iterations for the TCP 216

9.1 Extended model of the human upper limb with five muscles 220

C.1 Optimal structures in the 2D L-shape scenario . 246
C.2 Optimal structures in the 3D scenarios . 247

List of Tables

2.1 Comparison of regular sparse grid sizes with coarse boundary (d = 3) 43
2.2 Comparison of regular sparse grid sizes with coarse boundary (d = 10) 43

4.1 Decay rates of fundamental splines . 102

5.1 Selection of optimization methods . 122
5.2 Selection of test problems in optimization . 131

6.1 Glossary for topology optimization . 153
6.2 Optimal compliance values for different micro-cell models 169
6.3 Optimal compliance values for different B-spline degrees 172

7.1 Glossary for musculoskeletal models . 174
7.2 Relative L2 errors of forces and equilibrium elbow angle 185

8.1 Glossary for dynamic portfolio choice models . 193

9.1 Summary of characteristics of the applications 218

A.1 Non-zero matrix values in the proof of linear independence 226

C.1 Details about topology optimization runs . 248
C.2 Details about spatially adaptive sparse grids for topology optimization 248

10 LISTS OF FIGURES, TABLES, ALGORITHMS, AND THEOREMS

List of Algorithms

2.1 Generation of regular sparse grids with coarse boundary 44

4.1 Unidirectional principle . 79
4.2 Hierarchization with the combination technique 85
4.3 Hierarchization with residual interpolation . 87
4.4 Hierarchization with breadth-first search (BFS) 92
4.5 Iterative refinement . 106
4.6 Hermite hierarchization . 116

5.1 Alternative fuzzy extension principle . 146
5.2 Fuzzy Novak–Ritter method . 149

6.1 Generation of spatially adaptive sparse grids for topology optimization 165

8.1 Generation of value function interpolants (solveValueFunction) 198
8.2 Evaluation of the value function (optimize) . 199
8.3 Refinement of the value function (refine) . 202
8.4 Generation of interpolants for optimal policies (solvePolicies) 203

List of Theorems

2.1 Lemma (linear independence of tensor products) 30
2.2 Lemma (univariate hierarchical splitting characterization) 33
2.3 Corollary (univariate hierarchical splitting for hat functions) 33
2.4 Lemma (multivariate hierarchical splitting characterization) 34
2.5 Proposition (from univariate to multivariate splitting) 34
2.6 Corollary (multivariate hierarchical splitting for hat functions) 35
2.7 Lemma (number of regular sparse grid points) 40
2.8 Lemma (number of interior regular sparse grid points) 40
2.9 Definition (regular sparse grid with coarse boundary) 42
2.10 Proposition (number of regular sparse grid points with coarse boundary) . . . 42
2.11 Proposition (invariant of SG generation with coarse boundary) 44
2.12 Corollary (correctness of SG generation with coarse boundary) 44

3.1 Definition (non-uniform B-splines) . 53
3.2 Proposition (spline space) . 53
3.3 Corollary (nodal B-spline space) . 55
3.4 Lemma (hierarchical B-splines in nodal space) 55
3.5 Proposition (hierarchical B-splines are linearly independent) 56
3.6 Corollary (hierarchical splitting for uniform B-splines) 56
3.7 Lemma (Marsden’s identity) . 57
3.8 Proposition (Schoenberg–Whitney conditions) 63

LIST OF THEOREMS 11

3.9 Proposition (univariate hierarchical splitting for not-a-knot B-splines) 68
3.10 Corollary (multivariate hierarchical splitting for not-a-knot B-splines) 68
3.11 Corollary (sparse grid with not-a-knot B-splines contains polynomials) 69

4.1 Proposition (invariant of unidirectional principle for hierarchization) 78
4.2 Corollary (correctness of unidirectional principle for hierarchization) 79
4.3 Theorem (sparse grid combination technique) 80
4.4 Proposition (inclusion-exclusion principle) . 82
4.5 Definition (equivalence relation for the proof of the combination technique) . 83
4.6 Lemma (identical values in equivalence classes) 83
4.7 Lemma (characterization of equivalence classes) 83
4.8 Proposition (function value cancellation) . 84
4.9 Proposition (correctness of combination technique) 85
4.10 Proposition (invariant of residual interpolation) 87
4.11 Corollary (correctness of residual interpolation) 87
4.12 Lemma (forward substitution) . 91
4.13 Proposition (invariant of breadth-first-search hierarchization) 93
4.14 Corollary (correctness of breadth-first-search hierarchization) 93
4.15 Proposition (spanned sparse grid space for the HFT) 95
4.16 Proposition (spanned nodal space for the TIFT) 98
4.17 Theorem (unique existence of fundamental spline coefficients) 99
4.18 Lemma (equivalent convergence for iterative refinement) 106
4.19 Proposition (sufficient condition for the convergence of Alg. 4.5) 106
4.20 Lemma (duality of the unidirectional principle) 108
4.21 Definition (chain) . 109
4.22 Lemma (sufficient condition for chain existence) 110
4.23 Lemma (necessary condition for chain existence) 110
4.24 Proposition (characterization of the correctness of the UP) 110
4.25 Corollary (equivalent statements for correctness of UP for hierarchization) . . 110
4.26 Lemma (higher-order Hermite interpolation) . 115
4.27 Proposition (invariant of Hermite hierarchization) 117
4.28 Corollary (correctness of Hermite hierarchization) 117

6.1 Proposition (Cholesky factorization) . 160

A.1 Definition (binomial coefficient for integer parameters) 226
A.2 Lemma (inclusion-exclusion counting lemma) 226
A.3 Lemma (relation is equivalence relation) . 227

13

List of Symbols and Acronyms

Symbol Meaning Page with first occurrence

0 (0, . . . , 0) ∈ Nd
0 . 27

1 (1, . . . , 1) ∈ Nd . 27

A Interpolation matrix with entries ϕ`′,i ′(x `,i) . 75

bp Cardinal B-spline of degree p . 49

c`,i Full grid interpolation coefficients . 27

d Dimensionality d ∈ N . 27
dim Vector space dimension . 30

e Euler constant exp(1) . 242
e t t-th standard basis vector e t := (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd 111
E[X] Expectation of the random variable X . 194

f Objective function f : [0,1]→ R . 21
f |D Restriction f |D : D→ R, f |D(x) := f (x), onto a sub-domain D 36
f` Full grid interpolant of f in V` . 27
f s Sparse grid interpolant of f in V s (on some grid Ωs) 22
f s
n,d Regular sparse grid interpolant of f in V s

n,d . 36

g Inequality constraint function g : [0,1]→ Rmg (constraint g (x)≤ 0) 21

h` Mesh size h` := 2−` . 26

I Identity matrix . 125
i Hierarchical index i = 0, . . . ,2` . 26
I` Set of odd hierarchical indices of level ` . 31

K Finite set of hierarchical level-index pairs (`, i) or continuous indices k ∈ Nd
0 39

Kpole Pole Kpole ∈ K/∼t in some dimension t (Kpole is a subset of K) 78
k Continuously enumerated index k ∈ Nd

0 of the level-index pairs (`, i) 77
k−t Vector of all entries kt ′ except the t-th . 77
kT Vector of all dimensions that are contained in T ∈ {1, . . . , d} j 77
k−T Vector of all dimensions that are not contained in T ∈ {1, . . . , d} j 77

14 LIST OF SYMBOLS AND ACRONYMS

Symbol Meaning Page with first occurrence

ka:b Vector of all dimensions that are contained in a, a+ 1, . . . , b 77

` Hierarchical level ` ∈ Nd
0 . 26

L Finite subset L ⊆ Nd
0 of levels . 37

L Linear operator L: RN → RN on grid point data 75
L`,i Lagrange polynomial of level `, index i . 66

n Level ∈ N0 of full or sparse grid . 30
N Number of grid points for a finite set Ωs ⊆ [0,1] of grid points 74
N Natural numbers without zero (1,2,3, . . .) . 27
N0 Natural numbers with zero (N∪ {0}) . 26

O (f (x)) Big-O Landau notation . 30

Pp Space of all d-variate polynomials of coordinate degree ≤ p on [0,1] 68

R Real numbers . 21
R>0 Positive real numbers . 99
R≥0 Non-negative real numbers . 102

Sp,[0,1]
`

Spline space of degree p on the grid {x`,i | i = 0, . . . , 2`} of level ` 64
span Linear span (set of all linear combinations) . 27
supp f Support of a function (i.e., the closure of �supp f) 49
�supp f Interior of the support of a continuous function (i.e., {x | f (x) 6= 0}) 72

t Time . 193

u Input of the linear operator L . 75

V` Nodal space of level ` . 27
Vn,d Multivariate nodal space := Vn·1 of level n with dimensionality d 30
V s

n,d Regular sparse grid space of level n with dimensionality d 36
V s Arbitrary sparse grid space (possibly spatially adaptive) 37
V |D Restriction := { f |D | f ∈ V} onto a sub-domain D for a function space V . . . 52

W` Hierarchical subspace of level ` . 31

x `,i Grid point x `,i := i · h` . 26
x cc
`,i Clenshaw–Curtis grid point . 59

x opt Solution of an optimization problem of the form x opt = argmin f (x) 120
x opt,∗ Approximation for x opt = argmin f (x) . 129

y Output of the linear operator L . 75

Z Integer numbers (. . . ,−2,−1,0, 1,2, . . .) . 49

LIST OF SYMBOLS AND ACRONYMS 15

Symbol Meaning Page with first occurrence

α`,i Hierarchical surpluses . 35
δA,B Kronecker delta := 1 if A= B and := 0 otherwise (A, B arbitrary objects) . . . 49
Θ(f (x)) Big-Θ Landau notation . 137
ϕ Parent function ϕ : [0,1]→ R (ϕ`,i is scaled translate of ϕ) 96
ϕ`,i Hierarchical basis function of level `, index i 26
ϕ

p
`,i Hierarchical standard B-spline basis function of level `, index i, degree p . . 27
Ω(f (x)) Big-Ω Landau notation . 76
∂Ω Topological boundary of a set Ω ⊆ Rd . 36
Ω` Set of full grid points of level ` . 29
Ωs Arbitrary sparse grid (possibly spatially adaptive) 37
�Ωs Set := Ωs ∩]0,1[of interior grid points for a finite set Ωs ⊆ [0,1] of grid points 40
Ωs

n,d Set of regular sparse grid points of level n, dimensionality d 36

Ω
s(b)
n,d Set of regular sparse grid points of level n, dim. d, boundary parameter b . . 41

(·)1 Superscript for “Piecewise linear” . 27
(·)cc Superscript for “Clenshaw–Curtis” . 59
(·)fs Superscript for “Fundamental spline” . 99
(·)mod Superscript for “Modified” . 46
(·)nak Superscript for “Not-a-knot” . 65
(·)opt Superscript for “Optimal” . 120
(·)p Superscript for “B-splines of degree p” . 51
(·)s Superscript for “Sparse grid” . 36
(·)s(b) Superscript for “Sparse grid with boundary parameter b” 42
(·)T Transpose of a vector or matrix . 125
(·)wfs Superscript for “Weakly fundamental spline” 113

(·)+ Non-negative part max(·, 0) . 126
[a, b] Closed hyper-rectangle {x ∈ Rd | a ≤ x ≤ b} 24
]a, b[Open hyper-rectangle {x ∈ Rd | a < x < b} . 40
[a, b[Half-open hyper-rectangle {x ∈ Rd | a ≤ x < b} 49
b·c, d·e Floor/ceiling function (greatest/smallest integer ≤/≥ than ·) 65
[·]∼ Equivalence class of · (set of all elements equivalent to ·) with respect to ∼ . 78
·/∼ Set of equivalence classes for an equivalence relation ∼ on a set · 79
≡ Equality of functions everywhere on their domain (i.e., ∀x f1(x) = f2(x)) . . 30
∇x f Gradient of a function f with respect to x (transposed Jacobian) 22
∇2

x f Hessian of a function f with respect to x . 121
‖·‖1 `1 norm ‖x‖1 :=

∑d
t=1 |x t | . 27

‖·‖L2 L2 norm ‖ f ‖L2 :=
q
∫

Ω
f (x)2 dx of a function f : Ω→ R 30

‖·‖L∞ L∞ norm ‖ f ‖L∞ :=maxx∈Ω | f (x)| of a continuous function f : Ω→ R . . . 185
⊕ Internal direct sum of vector spaces . 32
∪̇ Disjoint union of sets . 31

BFS Breadth-first search . 74
CRRA Constant relative risk aversion . 193
DAG Directed acyclic graph . 92

16 LIST OF SYMBOLS AND ACRONYMS

Symbol Meaning Page with first occurrence

FEM Finite element method . 48
HFT Hierarchical fundamental transformation . 95
LHS Left-hand side . 78
PDE Partial differential equation . 38
RHS Right-hand side . 97
SPD Symmetric positive definite . 158
TIFT Translation-invariant fundamental transformation 97
UP Unidirectional principle . 74

17

Abstract/Kurzzusammenfassung

Abstract

In simulation technology, computationally expensive objective functions are often re-

placed by cheap surrogates, which can be obtained by interpolation. Full grid interpola-

tion methods suffer from the so-called curse of dimensionality, rendering them infeasible

if the parameter domain of the function is higher-dimensional (four or more parameters).

Sparse grids constitute a discretization method that drastically eases the curse, while

the approximation quality deteriorates only insignificantly. However, conventional basis

functions such as piecewise linear functions are not smooth (continuously differentiable).

Hence, these basis functions are unsuitable for applications in which gradients are re-

quired. One example for such an application is gradient-based optimization, in which the

availability of gradients greatly improves the speed of convergence and the accuracy of

the results.

This thesis demonstrates that hierarchical B-splines on sparse grids are well-suited

for obtaining smooth interpolants for higher dimensionalities. The thesis is organized in

two main parts: In the first part, we derive new B-spline bases on sparse grids and study

their implications on theory and algorithms. In the second part, we consider three real-

world applications in optimization: topology optimization, biomechanical continuum-

mechanics, and dynamic portfolio choice models in finance. The results reveal that the

optimization problems of these applications can be solved accurately and efficiently with

hierarchical B-splines on sparse grids.

18 ABSTRACT/KURZZUSAMMENFASSUNG

Kurzzusammenfassung

In der Simulationstechnik werden zeitaufwendige Zielfunktionen oft durch einfache Sur-

rogate ersetzt, die durch Interpolation gewonnen werden können. Vollgitter-Interpola-

tionsmethoden leiden unter dem sogenannten Fluch der Dimensionalität, der sie un-

brauchbar macht, falls der Parameterbereich der Funktion höherdimensional ist (vier

oder mehr Parameter). Dünne Gitter sind eine Diskretisierungsmethode, die den Fluch

drastisch lindert und die Approximationsqualität nur leicht verschlechtert. Leider sind

konventionelle Basisfunktionen wie die stückweise linearen Funktionen nicht glatt (ste-

tig differenzierbar). Daher sind sie für Anwendungen ungeeignet, in denen Gradienten

benötigt werden. Ein Beispiel für eine solche Anwendung ist gradientenbasierte Optimie-

rung, in der die Verfügbarkeit von Gradienten die Konvergenzgeschwindigkeit und die

Ergebnisgenauigkeit deutlich verbessert.

Diese Dissertation demonstriert, dass hierarchische B-Splines auf dünnen Gittern

hervorragend geeignet sind, um glatte Interpolierende für höhere Dimensionalitäten zu

erhalten. Die Dissertation ist in zwei Hauptteile gegliedert: Der erste Teil leitet neue B-

Spline-Basen auf dünnen Gittern her und untersucht ihre Implikationen bezüglich Theorie

und Algorithmen. Der zweite Teil behandelt drei Realwelt-Anwendungen aus der Opti-

mierung: Topologieoptimierung, biomechanische Kontinuumsmechanik und Modelle der

dynamischen Portfolio-Wahl in der Finanzmathematik. Die Ergebnisse zeigen, dass die

Optimierungsprobleme dieser Anwendungen durch hierarchische B-Splines auf dünnen

Gittern genau und effizient gelöst werden können.

19

Preface

Before I start, I want to thank my advisor Dirk Pflüger. His ideas and his valuable

input have driven me in my time as PhD student. I also thank Stephen Roberts and Martin

Radetzki for their readiness to examine my thesis.

Similarly, I thank Peter Schober (Prof. Dr. Raimond Maurer, Goethe University Frank-

furt), Daniel Hübner (Prof. Dr. Michael Stingl, FAU Erlangen-Nürnberg), Michael Sprenger

(Prof. Oliver Röhrle, PhD, SimTech/University of Stuttgart), and Stefan Zimmer (Univer-

sity of Stuttgart) for the collaborations and for the enlightening discussions. I am also

grateful for the exciting time with the whole group of SSE (Simulation Software Engineer-

ing) and SGS (Simulation of Large Systems), for which I want to thank all past and current

PhD students and postdocs of Dirk Pflüger and Miriam Mehl. I thank Benjamin, Carolin,

Gregor, Henriette, Malte, Michael, Peter, Ralf, and Theresa for throughly proofreading

parts of drafts of this thesis.

Probably the most important role for the success of my PhD thesis has played my

family. Without their moral support and distraction from the daily work, I doubt that this

thesis would have been possible.

Likewise, I am very grateful for the financial support from the Juniorprofessurenpro-

gramm of the Baden-Württemberg Stiftung. I thank the SimTech Cluster of Excellence

for supporting my three-month research stay in Canberra, Australia.

In addition, I want to thank the open-source community for making it possible to

write this thesis in an aesthetically sophisticated manner. The list of software that was

used to write this thesis includes LATEX, LuaLATEX, BibLATEX, KOMA-Script, TikZ, Python,

Matplotlib, and many more.

Now, I wish that you, dear reader, obtain as much insight as possible while reading

the remaining 241 pages of this thesis.

Enjoy!

Stuttgart, June 2019

21

1
Introduction

“ There is a fine line between wrong and visionary.

Unfortunately, you have to be a visionary to see it. . .

— Sheldon Cooper (The Big Bang Theory)

Before simulation became available as a widespread tool, knowledge in science and

engineering could only advance through theoretical or experimental considerations.

Nowadays, processes can be simulated that would be too complicated or even impossible

to be studied theoretically or experimentally, justifying that simulation is widely viewed

as the “third pillar in knowledge acquisition” besides theory and experiments [Bun14].

However, simulations cannot be performed without constructing a suitable model

beforehand (e.g., based on first principles). Such a model often depends on a number of

uncertain or unknown parameters. Simulations can only represent the real-world circum-

stances well if the parameters are well-chosen. The problem of determining appropriate

values for these parameters, given experimental data, is known as the inverse problem.

Unfortunately, the solution process of such an inverse problem is non-trivial: Inverse

problems are equivalent to optimization problems of the form

(1.1) min f (x), x ∈ Rd s.t. g (x)≤ 0,

where f (x) gives, for instance, a measure for the error between the simulation for the

22 CHAPTER 1: INTRODUCTION

model with the parameter x and experimental real-world data and g constrains the set

of feasible parameters. Since simulations are often time-consuming, exhaustive search

fails if the dimensionality d is already moderately large (d > 4): Full grid approaches

sample each dimension of the domain independently and construct the Cartesian product

of the univariate samples. The number of resulting full grid points grows exponentially

in the dimensionality d, which is known as the curse of dimensionality [Bel61].
Inverse problems are a motivating example for optimization problems of the form

(1.1), which we will consider in this thesis as our main application. The curse affects not

only optimization, but also various tasks such as interpolation, quadrature, and regression,

which play a vital role in numerics and computational science.

Sparse grid surrogates. The surrogate-based approach we pursue in this thesis is simple

and yet powerful: Instead of directly optimizing the expensive objective function f , we

replace it with a surrogate f s that can be evaluated cheaply. We choose interpolation as our

method to construct the surrogates, although other methods such as quasi-interpolation

[Höl13] or regression [Pfl10] exist. Again, conventional full grid interpolation schemes

are afflicted by the curse of dimensionality, which rules them out for our purposes.

This is where sparse grids come into play. In their simplest form, sparse grids give

an a priori selection of full grid points and corresponding basis functions such that the

exponential dependency of the grid size on the dimensionality is removed, while not

deteriorating the L2 interpolation error too much [Bun04]. However, sparse grids can

also be employed spatially adaptively, where grid points are refined a posteriori according

to suitable refinement criteria. This is of particular interest for the scope of this thesis, as

spatial adaptivity enables us to increase the accuracy in regions of interest, simultaneously

keeping the number of grid points at an acceptable level.

B-splines. Conventional basis functions for sparse grids (most common are piecewise

linear functions) are not continuously differentiable. This poses problems for gradient-

based optimization algorithms, which use the gradient∇x f of the objective function f to

update the search direction. Employing finite differences as a remedy is time-consuming

and introduces new error sources.

Previous studies [Pfl10; Sic11; Vale14] suggest that hierarchical B-splines as sparse

grid basis functions may significantly improve results. B-splines of degree p are (p− 1)
times continuously differentiable piecewise polynomials of degree p that form a basis of

the space of splines. As the derivatives of B-splines can be evaluated fast and explicitly,

the convergence of gradient-based optimization techniques is greatly accelerated. Addi-

tionally, the higher order of B-splines increases the accuracy of surrogates obtained by

interpolation when compared to piecewise linear bases.

23

Main goals. So far, there is no work that brings sparse grids and B-splines together,

thoroughly examining the theoretical implications on algorithms and assessing the prac-

tical performance in real-world applications. This thesis addresses this very intersection

of theory and practice of B-splines for sparse grids. The main goals of the thesis are

• to establish a consistent notational and theoretical framework for sparse grids with

general basis functions,

• to construct new algorithmically efficient B-spline-based basis function types for

sparse grids,

• to study the algorithmic properties of the new bases and to formulate suitable new

algorithms, while proving their formal correctness, and

• to apply the new bases and algorithms to different real-world optimization scenarios.

These goals set the agenda for the outline of the rest of the thesis, which is described in

the following.

Outline. We start in Chap. 2 by defining sparse grids for arbitrary tensor product basis

functions. The advantage of introducing the notation independently of the type of basis

functions is that different hierarchical B-spline bases can be substituted easily for the

following chapters. We first define sparse grids with points on the boundary of the domain

and then study options for the boundary treatment (as opposed to some literature [Bun04;

Pfl10]).

In Chap. 3, we define the standard hierarchical B-spline basis for sparse grids. In

addition, we construct various new hierarchical B-spline basis types, such as non-uniform

B-splines (e.g., Clenshaw–Curtis B-splines) and modified B-splines. A mismatch of di-

mensions between the uniform spline space and the hierarchical B-spline space implies

that, surprisingly, polynomials cannot be replicated by the standard hierarchical B-spline

basis. Hence, we have to incorporate specific boundary conditions (not-a-knot conditions)

into the hierarchical B-splines, which we explain in the second half of Chap. 3.

The new hierarchical B-spline bases call for novel algorithmic approaches to solve

numerical tasks such as hierarchization (interpolation) on sparse grids. In Chap. 4, we

show new algorithms for spatially adaptive sparse grids with the example problem of

hierarchization based on existing algorithms, which work for B-splines only in specific

special cases. In the course of Chap. 4, we construct several new hierarchical B-spline

basis types to enable the applicability of the new algorithms. As mentioned above, we

prove the formal correctness of every algorithm that we repeat from the literature or

develop from scratch.

24 CHAPTER 1: INTRODUCTION

Chapter 5 shows how to apply B-splines on sparse grids to gradient-based optimiza-

tion problems. We briefly discuss different optimization scenarios and how to solve them

with various gradient-free and gradient-based optimization techniques. Numerical results

are given for a number of test scenarios as well as for an example application from fuzzy

arithmetic.

Three real-world applications follow in Chapters 6 to 8. In these chapters, the the-

oretical knowledge gained in the first half of the thesis is applied to the solution of the

three real-world optimization problems:

First, in Chap. 6, we study topology optimization via a homogenized two-scale ap-

proach. For this application, the key ingredient is an interpolation scheme that preserves

both the positive definiteness of the interpolated tensors and their explicit differentiability.

Second, in Chap. 7, we consider a biomechanical application in which the interpo-

lated data values are the result of very expensive continuum-mechanical calculations.

The optimization problems posed in this chapter ask for muscle activation levels such that

a specific joint angle is attained, which is a recurring problem in medicine and robotics.

B-spline surrogates on sparse grids decrease the necessary computing time significantly.

Third, in Chap. 8, we examine dynamic portfolio choice models. This financial

application features some peculiarities that have to be considered when solving the cor-

responding optimization problems. For instance, it is necessary to evaluate interpolants

outside their domain and calculate integrals due to random factors such as stock returns.

Chapter 9 concludes the thesis by summarizing its results and giving an overview of

possible future work. In the appendix, one can find supplementary information such as

technical proofs that are too verbose to be included in the main text.

Original contribution. This thesis is written to be largely self-contained. Therefore, it is

necessary that some introductory definitions and results are repeated from the literature,

which is properly attributed in the respective chapters. In addition, some new results

have already been published. Whenever a publication is co-authored by collaborators,

the original contribution of the author of this thesis is highlighted at the beginning of the

respective chapters or sections.

Notation. The notation of this thesis should be intuitive and suggestive. It is designed

to be as natural as possible (i.e., not distracting) and as unambiguous as necessary. One

example is that vectors are written in bold face, which leads to very similar formulas for

the univariate and the multivariate cases. For instance, [0, 1] and
∑n
`=0 become [0,1] =

[0,1]d and
∑n
`=0 =

∑n1

`1=0 · · ·
∑nd

`d=0, respectively. This and other necessary notation is

introduced in the text when needed. If a symbol or an abbreviation is unclear, it is likely

explained in the glossary at the beginning of the thesis.

25

2
Sparse Grids with Arbitrary

Tensor Product Bases

“ We combine two sparse grid approximations and call it

“deep sparse grids,” because everything is deep today!

— In a talk at the 5th Workshop on

Sparse Grids and Applications

Sparse grids are a versatile tool in numerics and scientific computing. As already

mentioned in Chap. 1, their motivation is to ease the curse of dimensionality, which

states that the number of full grid points grows exponentially in the dimensionality d of

the underlying domain. Their general formulation and the possibility to employ sparse

grids in a regular, dimensionally adaptive, or spatially adaptive fashion opens a broad

field of theoretical and practical applications to sparse grids.

Sparse grids have been known for at least half a century, albeit not under this name.

A paper by Smolyak [Smo63] is usually regarded as the first modern treatment of sparse

grids in the form of the combination technique [Gar13]. Additionally, there are close con-

nections to hyperbolic crosses [Tem82] and to Boolean interpolation operators [Delv82;

Delv89]. The term sparse grids was coined by Zenger in 1991 [Zen91]. Some important

subsequent work for hierarchical bases was done by Bungartz and Griebel [Bun92; Gri92;

Bun98; Bun04]. Since then, sparse grids have been applied to various fields, for instance,

26 CHAPTER 2: SPARSE GRIDS WITH ARBITRARY TENSOR PRODUCT BASES

data mining [Gar01; Pan08; Pfl10], interpolation [Sic11], quadrature [Ger98], density es-

timation [Gri10; Peh14], PDEs [Bal94; Bun98; Nob16], and optimization [Fere05; Don09;

Vale16]. Various software toolboxes for sparse grids have been developed [Kli05; Pfl10;

Stoy18]. For a general introduction to sparse grids, see the tutorial by Garcke [Gar13] or

the more extensive survey by Bungartz and Griebel [Bun04].

This chapter provides a consistent notational framework for the definition of sparse

grids with general basis functions. The reason not to employ specific bases such as the

common hat functions or B-splines of higher degrees is two-fold: First, we will define

various new “flavors” of B-splines, which is easier if the choice of basis is left open. Second,

most of the statements and theorems that we will make in this thesis will hold for general

basis functions (in some cases with additional assumptions) and not just for B-splines.

Besides the derivation of sparse grids with coarser boundary points in Sec. 2.4.1, this

section is mostly a repetition of the definition of sparse grids with general basis functions.

Our notation and presentation will roughly follow [Pfl10] and [Gar13]. A more detailed

introduction to sparse grids can be found in [Bun04]. Original contributions of the

thesis in this chapter are the formalization of the hierarchical splitting for arbitrary basis

functions in Sections 2.1 and 2.2 and the definition of sparse grids with coarse boundary

in Sec. 2.4.1.

2.1 Nodal Basis and Nodal Space

IN THIS SECTION

2.1.1 Univariate Case (p. 26)
2.1.2 Multivariate Case (p. 27)

2.1.1 Univariate Case

Grid and basis functions. In this thesis, we consider uni-

variate functions that are defined on the unit interval [0, 1].
We discretize this domain by splitting it into 2` equally-sized segments, where ` ∈ N0 is

the level. The resulting 2` + 1 grid points x`,i are given by

(2.1) x`,i := i · h`, i = 0, . . . , 2`,

where i is the index and h` := 2−` is the mesh size.1 Every grid point is associated with a

basis function

(2.2) ϕ`,i : [0,1]→ R.

1Note that from a strict formal perspective, this equation defined x`,i only for i = 0, . . . , 2`, but we will
later need x`,i also for i < 0 or i > 2`. The convention in this thesis is that all definitions are implicitly
generalized whenever needed.

2.1 NODAL BASIS AND NODAL SPACE 27

We assume ϕ`,i to be arbitrary, satisfying required assumptions when needed and stated.

However, it helps for both the theory and the intuition to have a specific example of basis

functions in mind. The so-called hat functions (linear B-splines) are the most common

choice for ϕ`,i:

(2.3) ϕ1
`,i(x) :=max(1− | x

h`
− i|, 0).

Here and in the following, the superscript “1” stands for the degree of the linear B-spline

and is not to be read as an exponent. We generalize this notation to B-splines ϕp
`,i of

arbitrary degrees p in Chap. 3.

Nodal space. The nodal space V` of level ` is defined as the linear span of all basis

functions ϕ`,i:

(2.4) V` := span{ϕ`,i | i = 0, . . . , 2`}.

We assume that the functions ϕ`,i form a basis of V`, i.e., they are linearly independent.

Consequently, every linear combination of these functions is unique. This ensures that

for every objective function f : [0, 1]→ R, there is a unique function f` : [0, 1]→ R such

that

(2.5) f` =
2`
∑

i=0

c`,iϕ`,i, ∀i=0,...,2` f`(x`,i) = f (x`,i),

for some c`,i ∈ R. In this case, f` is called interpolant of f in V`. The nodal space V 1
`

is

defined analogously to V` as the span of the hat functions ϕ1
`,i. It is the space of all linear

splines, that is, the space of all continuous functions on [0,1] that are piecewise linear

polynomials on [x`,i, x`,i+1] for i = 0, . . . , 2` − 1 [Höl13]. The nodal hat function basis of

level `= 3 and a linear combination are shown in Fig. 2.1.

2.1.2 Multivariate Case

Cartesian and tensor products. For the multivariate case with d ∈ N dimensions, we

employ a tensor product approach, for which we replace all indices, points, and functions

with multi-indices, Cartesian products, and tensor products, respectively. Therefore, the

domain is now [0,1] := [0,1]d , which can be partitioned into
∏d

t=1 2`t = 2‖`‖1 equally-

sized hyper-rectangles, where `= (`1, . . . ,`d) ∈ Nd
0 is the d-dimensional level and ‖`‖1 :=

28 CHAPTER 2: SPARSE GRIDS WITH ARBITRARY TENSOR PRODUCT BASES

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8
0

1
ϕ1

3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0ϕ1
3,0
ϕ1

3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1ϕ1
3,1
ϕ1

3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2ϕ1
3,2
ϕ1

3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3ϕ1
3,3
ϕ1

3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4ϕ1
3,4
ϕ1

3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5ϕ1
3,5
ϕ1

3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6ϕ1
3,6
ϕ1

3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7ϕ1
3,7
ϕ1

3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8ϕ1
3,8

V 1
3

A Basis functions ϕ1
`,i (i = 0, . . . , 2`) and grid

points x`,i (dots).

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8
0

f3

B Piecewise linear interpolant f` of some func-
tion data f (x`,i) as a weighted sum of the
nodal hat functions.

FIGURE 2.1 Univariate nodal hat functions of level `= 3.

∑d
t=1 |`t | is the level sum. The corners of the hyper-rectangles are given by the grid points

(2.6) x `,i := i · h`, i = 0, . . . ,2`.

Relations and operations with vectors in bold face are to be read coordinate-wise in this

thesis, unless stated otherwise. Bold-faced numbers like 0 are defined to be the vector

(0, . . . , 0) in which every entry is equal to that number. This is to allow a somewhat

intuitive and suggestive notation. For example, (2.6) is equivalent to the much longer

formula

(2.7) x `,i := (i1h`1
, . . . , idh`d

), it = 0, . . . , 2`t , t = 1, . . . , d,

with the d-dimensional mesh size h` := 2−` = (h`1
, . . . , h`d

). Again, every grid point is

associated with a basis function that is defined as the tensor product of the univariate

functions:2

(2.8) ϕ`,i : [0,1]→ R, ϕ`,i(x) :=
d
∏

t=1

ϕ`t ,it
(x t).

Fig. 2.2 shows an example of a bivariate nodal hat function ϕ1
`,i .

2Note that, although Eq. (2.8) does not cover it, one could employ basis functions of different types in
each dimension, for example B-splines of different degrees. All remaining considerations in this thesis
regarding tensor product basis functions are independent of whether we use the same function type or
different types in each dimension.

2.1 NODAL BASIS AND NODAL SPACE 29

0

1 0

1
0

1

x1

x2

FIGURE 2.2
Bivariate nodal hat function of level ` = (2,1) and
index i = (1, 1) as the tensor product of two univariate
nodal hat functions.

Multivariate nodal space. The multivariate nodal space V` is defined analogously to

the univariate case:

(2.9) V` := span{ϕ`,i | i = 0, . . . ,2`}.

In the case of hat functions ϕ1
`,i , the nodal space V 1

` is the d-linear spline space [Höl13],
i.e., the space of all continuous functions on [0,1] that are piecewise d-linear polynomials

on all hyper-rectangles

(2.10) [x `,i , x `,i+1] := [x`1,i1 , x`1,i1+1]× · · · × [x`d ,id , x`d ,id+1], i = 0, . . . ,2` − 1.

Analogously to (2.5), we can interpolate objective functions f : [0,1]→ R in the nodal

space V` with f` : [0,1]→ R satisfying

(2.11) f` =
2`
∑

i=0

c`,iϕ`,i , ∀i=0,...,2` f`(x `,i) = f (x `,i),

where c`,i ∈ R and the sum is over all i = 0, . . . ,2` (i.e., it = 0, . . . , 2`t , t = 1, . . . , d).

To ensure that the coefficients c`,i exist for every objective function f and are uniquely

determined by the values at the grid points

(2.12) Ω` := {x `,i | i = 0, . . . ,2`},

we prove the following statement:

30 CHAPTER 2: SPARSE GRIDS WITH ARBITRARY TENSOR PRODUCT BASES

LEMMA 2.1 (linear independence of tensor products)

The functions ϕ`,i (i = 0, . . . ,2`) form a basis of V`, if the univariate functions ϕ`t ,it

(it = 0, . . . , 2`t) form a basis of the univariate nodal space V`t
for t = 1, . . . , d.

PROOF Assume that c`,i ∈ R are chosen in (2.11) such that f` ≡ 0. Then for all i ′ =
0, . . . ,2`, we can evaluate (2.11) at x `,i ′ to obtain

(2.13)
2`1
∑

i1=0

2`2
∑

i2=0

· · ·

2`d
∑

id=0

c`,iϕ`d ,id (x`d ,i′d
)

!

· · ·ϕ`2,i2(x`2,i′2
)

!

ϕ`1,i1(x`1,i′1
) = 0.

We apply the univariate linear independence (x1 direction) to infer that the sum over i2
must vanish for all i1 = 0, . . . , 2`1 . Repeating this argument for all dimensions, we have

c`,i = 0 for all i = 0, . . . ,2`, implying the linear independence of the functions ϕ`,i . �

A common choice for the level ` is n · 1 for some n ∈ N0. In this case, we replace “`”

in the subscripts with “n,d” (for example, Vn,d := Vn·1). For the hat function basis ϕ1
`,i , it

can be shown that the L2 interpolation error of the interpolant fn,d ∈ Vn,d is given by

(2.14) ‖ f − fn,d‖L2 = O (h2
n),

i.e., the order of the interpolation error is quadratic in the mesh size [Höl13; Bun04].

2.2 Hierarchical Basis and Hierarchical Subspace

IN THIS SECTION

2.2.1 Hierarchical Splitting in
the Univariate Case (p. 31)

2.2.2 Hierarchical Splitting in
the Multivariate Case (p. 33)

The dimension of the nodal space V` is given by

(2.15) dim V` = |Ω`|=
d
∏

t=1

(2`t + 1).

If we choose the same level n ∈ N0 in all dimensions, then

the dimension of Vn,d and the number of grid points grow at least as fast as 2nd = (h−1
n)

d .

This exponential dependency between dim Vn,d and d is known as the curse of dimen-

sionality [Bel61]. The curse makes interpolation on V` computationally infeasible for

dimensionalities d > 4, as we would have to calculate and store dim(V`)-many coeffi-

cients c`,i .

2.2 HIERARCHICAL BASIS AND HIERARCHICAL SUBSPACE 31

`= 4

`′ = 0
x0,0 x0,1

`′ = 1
x1,1

`′ = 2
x2,1 x2,3

`′ = 3
x3,1 x3,3 x3,5 x3,7

`′ = 4
x4,1 x4,3 x4,5 x4,7 x4,9 x4,11 x4,13 x4,15

FIGURE 2.3
The set of grid points Ω` of level
` = 4 (top) decomposes into hierar-
chical grids of level `′ ≤ `, whose grid
points x`′,i′ have odd indices i′ ∈ I`′
(x0,0 being the only exception).

2.2.1 Hierarchical Splitting in the Univariate Case

Hierarchical subspaces. In order to reduce the computational effort, we first split V`
into smaller subspaces and then identify subspaces that we can omit at the cost of a

slightly larger error. In the univariate case, the key observation is that a grid point of a

level ` can be written as a grid point of a higher level `′:

(2.16) x`,i = x`′,i′ , `′ ≥ `, i′ = 2`
′−`i.

Conversely, this implies that every grid point x`,i of level ` ≥ 1 and index i ≥ 1 can be

uniquely written as a grid point of a coarser level `′ (or `′ = `) and an odd index i′:

(2.17) x`,i = x`′,i′ , `′ = `−
�

log2(xor(i, i − 1) + 1)− 1
�

, i′ = 2`
′−`i,

where xor is the bitwise “exclusive or” function. The term in square brackets is the

exponent of the highest power of two that divides i. The two boundary points zero and

one are obtained by inserting an additional level `′ = 0 with indices i′ ∈ {0, 1}. As shown

in Fig. 2.3, this implies that Ω` decomposes into

(2.18) Ω` =
`

˙⋃

`′=0

{x`′,i′ | i′ ∈ I`′}, I`′ :=

(

{i′ = 0, . . . , 2`
′ | i′ odd}, `′ > 0,

{0,1}, `′ = 0,

where ∪̇ indicates the disjoint union. We call the spaces spanned by the basis functions

that correspond to the index sets I`′ hierarchical subspaces W`′:

(2.19) W`′ := span{ϕ`′,i′ | i′ ∈ I`′}.

The corresponding basis functions ϕ`′,i′ , `
′ = 0, . . . ,`, i′ ∈ I`′ , are called hierarchical basis

functions. The hierarchical hat function basis is shown in Fig. 2.4.

32 CHAPTER 2: SPARSE GRIDS WITH ARBITRARY TENSOR PRODUCT BASES

x0,0 x0,1
0

1
ϕ1

0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0ϕ1
0,0

ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1ϕ1
0,1

W 1
0

x1,1
0

1
ϕ1

1,1

W 1
1

x2,1 x2,3
0

1
ϕ1

2,1 ϕ1
2,3

W 1
2

x3,1 x3,3 x3,5 x3,7
0

1
ϕ1

3,1 ϕ1
3,3 ϕ1

3,5 ϕ1
3,7

W 1
3

A Basis functions ϕ1
`′,i′ (`′ ≤ `, i′ ∈ I`′) and grid

points x`′,i′ (dots). The domain is the unit in-
terval [0,1].

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8
0

f3

B Piecewise linear interpolant f` of some func-
tion data f (x `,i) as a linear combination of
hierarchical hat functions (stacked). The two
boundary functions are combined to a single
function (blue) for simplicity.

FIGURE 2.4 Univariate hierarchical hat functions up to level `= 3.

Hierarchical splitting. For the hat function basis ϕ1
`,i and other basis types, we can

prove that the corresponding nodal space decomposes into the direct sum of all hierar-

chical subspaces of coarser levels or the same level, i.e.,

(2.20) V`
?
=
⊕̀

`′=0

W`′ .

We call this relation hierarchical splitting. Here, the direct sum ⊕ is the vector space

sum that additionally indicates that the dimension of the sum
∑`

`′=0 W`′ is the sum of the

dimensions of the summands W`′ (analogously to |Ω`| =
∑`

`′=0 |{x`′,i′ | i′ ∈ I`′}|, where

Ω` is the disjoint union of the sets {x`′,i′ | i′ ∈ I`′}). In general, (2.20) may not be true,

depending on the type of basis functions. The following lemma provides a characterization

that can be used to prove (2.20) for hat functions.

2.2 HIERARCHICAL BASIS AND HIERARCHICAL SUBSPACE 33

LEMMA 2.2 (univariate hierarchical splitting characterization)

Equation (2.20) is equivalent to the satisfaction of both of the following conditions:

• The hierarchical subspaces W`′ (`′ ≤ `) are subspaces of V`.

• The hierarchical functions ϕ`′,i′ (`′ ≤ `, i′ ∈ I`′) are linearly independent.

PROOF The first condition is equivalent to
∑`

`′=0 W`′ ⊆ V`. The second condition is

equivalent to dim
∑`

`′=0 W`′ =
∑`

`′=0 dim W`′ , i.e., to the directness of the sum. Therefore,

the logical conjunction of both is equivalent to
⊕`

`′=0 W`′ ⊆ V`. If the sum is direct, the

dimension of the sum is equal to 2+
∑`

`′=1 2`
′−1 = 2`+1 (due to dim W`′ = |I`′ |= 2`

′−1 for

`′ > 0 and dim W`′ = 2 for `′ = 0), which is also the dimension of V`. The only subspace

of V` that has the same dimension as V` is V` itself, so we infer
⊕`

`′=0 W`′ = V`. �

COROLLARY 2.3 (univariate hierarchical splitting for hat functions)

The hierarchical splitting (2.20) holds for the hat function basis.

PROOF The first condition of Lemma 2.2 is satisfied as piecewise linear splines of level `′

are also piecewise linear splines of higher levels ` ≥ `′. We can prove the linear inde-

pendence for the second condition by induction over `: If a linear combination of ϕ1
`′,i′

(`′ ≤ `, i′ ∈ I`′) vanishes everywhere, then the coefficients of level ` must be zero, as

otherwise the basis functions ϕ1
`,i′ (i′ ∈ I`) would introduce kinks at x`,i′ , which the zero

function does not have. This means that we have a zero linear combination of ϕ1
`′,i′ for

`′ ≤ `−1, i′ ∈ I`′ , and by the induction hypothesis, the other coefficients also vanish. �

2.2.2 Hierarchical Splitting in the Multivariate Case

Multivariate hierarchical subspaces are defined analogously to the univariate case:

(2.21) W` := span{ϕ`,i | i ∈ I`}, I` := I`1
× · · · × I`d

, ` ∈ Nd
0 .

The univariate hierarchical splitting (2.20) can now be generalized to

(2.22) V`
?
=
⊕̀

`′=0

W`′ .

Again, this relation does not hold in general. We use a multivariate counterpart of

Lemma 2.2 (univariate hierarchical splitting characterization) to prove that (2.22) holds

if the corresponding univariate relation (2.20) holds for all dimensions:

34 CHAPTER 2: SPARSE GRIDS WITH ARBITRARY TENSOR PRODUCT BASES

LEMMA 2.4 (multivariate hierarchical splitting characterization)

Equation (2.22) is equivalent to the satisfaction of both of the following conditions:

• The hierarchical subspaces W`′ (`′ ≤ `) are subspaces of V`.

• The basis functions ϕ`′,i ′ (`′ ≤ `, i ′ ∈ I`′) are linearly independent.

PROOF If the sum is direct, then its dimension is given by

(2.23) dim
∑̀

`′=0

W`′ =
`1
∑

`′1=0

· · ·
`d
∑

`′d=0

d
∏

t=1

dim W`′t
=

d
∏

t=1

`t
∑

`′t=0

dim W`′t
=

d
∏

t=1

(2`t + 1) = dim V`

using (2.15). The rest is analogous to the proof of Lemma 2.2. �

PROPOSITION 2.5 (from univariate to multivariate splitting)

If univariate splitting (2.20) holds for every dimension, then the multivariate splitting

(2.22) holds as well.

PROOF We check the two conditions of Lemma 2.4 given the two univariate conditions

of Lemma 2.2:

1. The hierarchical basis functions ϕ`′,i ′ of W`′ (`′ ≤ `, i ′ ∈ I`′) are tensor products

of functions ϕ`′t ,i′t . According to the first condition of Lemma 2.2, each ϕ`′t ,i′t can

be written as a linear combination of the nodal basis ϕ`t ,it
(it = 0, . . . , 2`t). We can

expand the tensor product to a linear combination of tensor products of the univariate

nodal basis functions. Therefore, ϕ`′,i ′ is a linear combination of multivariate nodal

functions, i.e., ϕ`′,i ′ ∈ V`. As this is true for all i ′ ∈ I`′ , we obtain W`′ ⊆ V`.

2. The linear independence of the hierarchical functions ϕ`′,i ′ (`′ ≤ `, i ′ ∈ I`′) can be

shown completely analogously to the proof of Lemma 2.1 (linear independence of

tensor products).

According to Lemma 2.4, the multivariate splitting (2.22) holds. �

A direct consequence of Prop. 2.5 is that the hierarchical splitting holds for the

hierarchical hat function basis.

2.3 SPARSE GRIDS 35

COROLLARY 2.6 (multivariate hierarchical splitting for hat functions)

The multivariate hierarchical splitting (2.22) holds for the hat function basis.

PROOF Follows directly by applying Cor. 2.3 (univariate hierarchical splitting for hat

functions) to Prop. 2.5. �

2.3 Sparse Grids

IN THIS SECTION

2.3.1 Regular Sparse Grids (p. 35)
2.3.2 Dimensionally Adaptive

Sparse Grids (p. 37)
2.3.3 Spatially Adaptive

Sparse Grids (p. 38)

The idea of sparse grids is to use the hierarchical split-

ting (2.22) to keep only the most important hierarchi-

cal subspaces, omitting the remaining ones. There are

three main “flavors” of sparse grids: regular, dimension-

ally adaptive, and spatially adaptive.

2.3.1 Regular Sparse Grids

Hierarchical contributions. To assess the importance of a subspace, we consider again

the interpolant f` ∈ V` of a function f : [0,1]→ R. According to the splitting (2.22), the

interpolant can be written as

(2.24) f` =
∑̀

`′=0

∑

i ′∈I`′

α`′,i ′ϕ`′,i ′ , ∀i=0,...,2` f`(x `,i) = f (x `,i).

The coefficients α`′,i ′ with respect to the hierarchical basis ϕ`′,i ′ are the hierarchical sur-

pluses. When using the hat function basis ϕ1
`,i , one can prove the following representation

for the corresponding surpluses [Bun04; Gar13]:

(2.25) α`′,i ′ = (−1)d2−‖`
′+1‖1

∫ 1

0

ϕ1
`′,i ′(x)

∂ 2d

∂ x2
1 · · ·∂ x2

d

f (x)dx ,

if `≥ 1 and f is twice continuously differentiable in every dimension simultaneously, i.e.,
∂ 2d

∂ x2
1 ···∂ x2

d
f exists and is continuous.3,4 Consequently, the contribution of the summand of

3Again, the notation implies that the integration domain is the unit hyper-cube [0,1] = [0,1]d .
4The statement is even valid for functions in the Sobolev space H2

mix([0,1]) with dominating mixed
derivative, as its proof mainly relies on integration by parts [Bun04; Gar13].

36 CHAPTER 2: SPARSE GRIDS WITH ARBITRARY TENSOR PRODUCT BASES

level ` can be estimated by

(2.26)

∑

i ′∈I`′

α`′,i ′ϕ
1
`′,i ′

L2

≤ 3−d · 2−2‖`‖1 ·

∂ 2d

∂ x2
1 · · ·∂ x2

d

f

L2

for the hat function surpluses α`′,i ′ [Bun04; Gar13].

Definition of regular sparse grids. Equation (2.26) motivates to omit those summands

from the sum (2.24) whose level sum ‖`‖1 exceeds a certain value n ∈ N0, as their con-

tribution can be neglected compared to the summands with coarser level sums. More

formally, the selection of the relevant subspaces can be formulated as a continuous knap-

sack problem [Bun04], assuming homogeneous boundary conditions. This motivates

(2.27) V s
n,d :=

⊕

‖`‖1≤n

W`, Ωs
n,d := ˙⋃

‖`‖1≤n

{x `,i | i ∈ I`}

as the definitions for the regular sparse grid space and regular sparse grid of level n,

respectively. The functions f s
n,d contained in V s

n,d have the form

(2.28) f s
n,d =

∑

‖`‖1≤n

∑

i∈I`

α`,iϕ`,i .

To better distinguish the different grids, we call the grids corresponding to the nodal

spaces full grids. We generalize the definition to arbitrary bases ϕ`,i , although sparse

grids have been motivated using the hat function basis ϕ1
`,i (the estimate (2.26) does not

hold anymore in the general case). Figure 2.5 shows the construction of a regular sparse

grid in two dimensions.

Grid size and interpolation error. One can prove that for homogeneous boundary

conditions f |∂ [0,1] ≡ 0, the number of required inner grid points (x `,i ∈ Ωs
n,d where

`≥ 1) grows like O (h−1
n (log2 h−1

n)
d−1) [Bun04; Gar13], which is much less than the corre-

sponding number O ((h−1
n)

d) in the full grid case (see (2.15)). The L2 error of the sparse

grid interpolant f s
n,d ∈ V s

n,d using hat functions (still assuming homogeneous boundary

conditions) decays like

(2.29) ‖ f − f s
n,d‖L2 = O (h2

n(log2 h−1
n)

d−1),

which is only slightly worse than the full grid error by the factor of (log2 h−1
n)

d−1 [Bun04;

Gar13].

2.3 SPARSE GRIDS 37

W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)

W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)

W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)

W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)

W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)

W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)

W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)

W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)

W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)

W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)

W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)

W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)

W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)

W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)

W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)

W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)

A Hierarchical splitting and subspace selection. The rect-
angles indicate the support of the bivariate hat basis
functions.

B Full grid obtained by adding all sub-
spaces of level `≤ n · 1.

C Regular sparse grid obtained by
adding all subspaces whose level `
satisfies ‖`‖1 ≤ n (blue).

FIGURE 2.5 Regular sparse grid of level n= 3 in two dimensions.

2.3.2 Dimensionally Adaptive Sparse Grids

The idea of dimensional adaptivity is to spend more grid points along specific dimensions

depending on the objective function. Different criteria for the choice of dimensions exist,

for example the maximal absolute value of the linear hierarchical surpluses. To incorpo-

rate dimensional adaptivity into sparse grids, one has to generalize the symmetric choice

of subspaces in the definition of regular sparse grids to allow asymmetric preferences.

Generally, function spaces V s and grid sets Ωs of dimensionally adaptive sparse grids have

the form

(2.30) V s =
⊕

`∈L

W`, Ωs = ˙⋃

`∈L

{x `,i | i ∈ I`},

where L is a downward closed set, i.e., a finite subset L ⊆ Nd
0 for which ∀`∈L∀`′≤` `

′ ∈ L.

Regular sparse grids are a special case by setting L = {` ∈ Nd
0 | ‖`‖1 ≤ n}.

Combination technique. The key advantage of dimensionally adaptive sparse grids

over spatially adaptive approaches is the so-called combination technique. For regular

38 CHAPTER 2: SPARSE GRIDS WITH ARBITRARY TENSOR PRODUCT BASES

FIGURE 2.6
The combination technique combines
nodal subspaces in a weighted sum to
form a regular sparse grid space of level
n= 3 in two dimensions. The red sub-
spaces (q = 1 in (2.31)) are subtracted
from the sum of the green subspaces
(q = 0).

V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)V(0,0)

V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)V(0,1)

V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)

V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)

V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)V(1,0)

V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)

V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)

V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)V(1,3)

V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)

V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)

V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)V(2,2)

V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)V(2,3)

V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)

V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)V(3,1)

V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)V(3,2)

V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)V(3,3)

sparse grids, one can show that the sparse grid interpolant f s
n,d can be written as

(2.31) f s
n,d =

d−1
∑

q=0

(−1)q
�

d − 1
q

�

∑

‖`‖1=n−q

2`
∑

i=0

c`,iϕ`,i ,

where the c`,i ∈ R (i = 0, . . . ,2`) are the interpolation coefficients on the full grid Ω` of

level `, i.e., ∀i ′=0,...,2`
∑2`

i=0 c`,iϕ`,i(x `,i ′) = f (x `,i ′) [Smo63; Zen91]. For general dimen-

sionally adaptive sparse grids, a similar formula exists [Nob16]. The combination formula

(2.31) splits the sparse grid interpolant into a weighted sum of full grid interpolants (see

Fig. 2.6). In applications, each grid can be processed in parallel, drastically speeding

up computations like the solution of partial differential equations (PDEs) [Hee18]. In

addition, existing code working on nodal bases does not have to be rewritten in terms of

implementing hierarchical functions, which means that the combination technique allows

sparse grids to be employed in existing software in a minimally invasive way.

2.3.3 Spatially Adaptive Sparse Grids

Dimensional adaptivity does not suffice to resolve local features of the objective function.

Especially in some applications, it is crucial for the interpolant to be highly accurate in

specific regions of the domain. For instance in optimization, it is not necessary to have a

small global interpolation error. Instead, high accuracy near the optima is important.

2.3 SPARSE GRIDS 39

W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)W(0,0)

W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)W(0,1)

W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)W(0,2)

W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)W(0,3)

W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)W(1,0)

W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)W(1,1)

W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)W(1,2)

W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)W(1,3)

W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)W(2,0)

W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)W(2,1)

W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)W(2,2)

W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)W(2,3)

W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)W(3,0)

W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)W(3,1)

W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)W(3,2)

W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)W(3,3)

A Hierarchical splitting and grid point selection. The rect-
angles indicate again the support of the bivariate hat
basis functions.

B Resulting spatially adaptive sparse
grid.

FIGURE 2.7 Spatially adaptive sparse grid in two dimensions. More grid points were gen-
erated in the top right corner, which can help to resolve fine oscillations of the
objective function.

This can be achieved by spatially adaptive sparse grids, on which this thesis focuses.

Generally, their function spaces V s and grid sets Ωs have the form

(2.32) V s = span{ϕ`,i | (`, i) ∈ K}, Ωs = {x `,i | (`, i) ∈ K},

where K is a finite set of level-index pairs (`, i) with ` ∈ Nd
0 and i ∈ I`. An example for a

spatially adaptive sparse grid is shown in Fig. 2.7.

Algorithms for sparse grids often make specific assumptions about K . If they are not

met, then the algorithms do not produce the correct results. For example when working

with hat functions ϕ1
`,i , the grid should contain the hierarchical ancestors of every grid

point. Otherwise, the so-called unidirectional principle [Bal94], which is used for instance

to efficiently calculate hierarchical surpluses, does not hold in general. However, as we

will see in Chap. 4, the unidirectional principle cannot be applied to B-splines of general

degree, even if the hierarchical ancestors exist. Hence, for most of our considerations,

we will not restrict the choice of K .

40 CHAPTER 2: SPARSE GRIDS WITH ARBITRARY TENSOR PRODUCT BASES

2.4 Boundary Treatment

IN THIS SECTION

2.4.1 Sparse Grids with Coarser
Boundaries (p. 41)

2.4.2 Sparse Grids Without Boundary
Points and Modified Bases (p. 45)

One issue of regular sparse grids Ωs
n,d is that the

number of grid points still grows very fast with

the level n and the dimensionality d [Pfl10]. This

is mainly because the finest mesh size hn on the

boundary of the domain [0,1] is finer than the

finest mesh size hn−d+1 that can be found in the interior. If we define �Ωs
n,d as the set of

interior grid points in Ωs
n,d ,5 i.e.,

(2.33) �Ωs
n,d := Ωs

n,d ∩]0,1[= {x `,i ∈ Ωs
n,d | `≥ 1},

then the following relation about the number of grid points of Ωs
n,d can be shown:

LEMMA 2.7 (number of regular sparse grid points)

(2.34) |Ωs
n,d |=

d
∑

q=0

2q
�

d
q

�

|�Ωs
n,d−q|

PROOF See [Bun04]. �

Here, we define zero-dimensional grids to contain exactly one grid point such that |�Ωs
n,0|=

1. The number of interior grid points can be calculated as follows:

LEMMA 2.8 (number of interior regular sparse grid points)

(2.35) |�Ωs
n,d |=

n−d
∑

q=0

2q
�

d − 1+ q
d − 1

�

PROOF See [Bun04]. �

Intuitively, Lemma 2.7 splits the sparse grid Ωs
n,d into lower-dimensional sparse grids

�Ωs
n,d−q of the same level, but without boundary points. The factor 2q

�d
q

�

is the number of

(d−q)-dimensional faces of the d-dimensional unit hyper-cube. In the three-dimensional

example of Fig. 2.8, the unit cube [0,1]3 decomposes into

• 20
�3

0

�

= 1 interior cube]0,1[3,

• 21
�3

1

�

= 6 sides (two-dimensional faces) like]0,1[2 × {0},

5Note that in the literature (e.g., [Pfl10]), the regular sparse grid space of level n without boundary points
is often defined via ‖`‖1 ≤ n+ d − 1 to ensure that the finest mesh size is given by hn. In our notation,
this corresponds to �Ωs

n+d−1,d .

2.4 BOUNDARY TREATMENT 41

= ∪̇ ∪̇ ∪̇

FIGURE 2.8 Decomposition of the three-dimensional sparse grid Ωs
n,d (n = 4, d = 3) into

lower-dimensional sparse sub-grids. The main axes (axis-parallel lines through
0.5 · 1, dashed) serve as a visual aid.

• 22
�3

2

�

= 12 edges (one-dimensional faces) like]0,1[× {(0,0)}, and

• 23
�3

3

�

= 8 corners (zero-dimensional faces) like (0,0, 0).

On each of these (d − q)-dimensional faces, the sparse grid Ωs
n,d contains the interior of a

sparse grid of level n and dimensionality d − q, the size of which grows like O (2nnd−q−1).
As the number of boundary faces increases exponentially with the dimensionality d, the

size of Ωs
n,d quickly exhausts the available computational memory. To deal with this issue,

there are mainly two solutions, which are described below.

2.4.1 Sparse Grids with Coarser Boundaries

Inserting boundary points at higher levels. The first solution is to insert the boundary

level functions and grid points at a higher level than at level zero. A popular choice is

the insertion at level one, which corresponds to

(2.36) Ω
s(1)
n,d := ˙⋃

`∈Ls(1)
n,d

{x `,i | i ∈ I`}, Ls(1)
n,d := {` ∈ Nd

0 | ‖max(`,1)‖1 ≤ n},

where max is to be read coordinate-wise as usual. This choice is equivalent to treating

zero-level components as level one in the subspace selection. This ensures that the finest

mesh sizes in the interior of [0,1] and on its boundary coincide to be hn−d+1, which

reduces the number of grid points on the boundary significantly.

Another solution that can be found in the literature of sparse grids with hat functions

[Baa15] is to start with the “constant one” function on level zero with corresponding grid

point 0.5, then employ the two boundary functions and points on level one, and finally

proceed as usual for the higher levels ≥ 2. Apart from a constant shift of the resulting

sparse grid levels, this is equivalent to inserting the boundary functions and points at

level two. This solution leads to even less grid points than the previous approach, as now

42 CHAPTER 2: SPARSE GRIDS WITH ARBITRARY TENSOR PRODUCT BASES

the mesh size is finer in the interior of the domain than on the boundary. However, for

very high dimensionalities this might still lead to computationally infeasible sparse grids.

Regular sparse grids with coarse boundary. We generalize these two solutions to the

definition of a sparse grid Ωs(b)
n,d that is equivalent to inserting the boundary functions and

points at an arbitrary level b ∈ N:

DEFINITION 2.9 (regular sparse grid with coarse boundary)

The regular sparse grid of level n ∈ N, dimensionality d ≤ n, and boundary parameter

b ∈ N is defined as

Ω
s(b)
n,d := ˙⋃

`∈Ls(b)
n,d

{x `,i | i ∈ I`},(2.37a)

Ls(b)
n,d := {` ∈ Nd | ‖`‖1 ≤ n}

∪̇
�

{` ∈ Nd
0 \N

d | ‖max(`,1)‖1 ≤ n− b+ 1} ∪ {0}
�

.
(2.37b)

For convenience, we define Ωs(0)
n,d := Ωs

n,d .

The definition is motivated by partitioning the levels ` ∈ Nd
0 into interior levels (` ∈ Nd)

and boundary levels (` ∈ Nd
0 \N

d). By including the levels of the interior grid �Ωs
n,d , the

mesh size in the interior is the same as before (hn−d+1). Like in (2.36), we treat boundary

levels as level one, but we subtract b − 1 from the upper bound to ensure the correct

mesh size hn−d−b+2 on the boundary. We append 0 to the level set to ensure that at least

the 2d corner points are included in the resulting sparse grid. Note that this definition

is consistent with (2.36) as Ls(b)
n,d = {` ∈ N

d
0 | ‖max(`,1)‖1 ≤ n} for b = 1. Examples

of Ωs(b)
n,d are shown in Fig. 2.9. The flip book animation in the bottom right corner of the

odd-numbered pages of this thesis visualizes Ωs(b)
n,d for n= 4, d = 3, and b = 1.

The number of grid points of Ωs(b)
n,d can be calculated as follows:

PROPOSITION 2.10 (number of regular sparse grid points with coarse boundary)

(2.38) |Ωs(b)
n,d |= |�Ω

s
n,d |+

d
∑

q=1

2q
�

d
q

�

|�Ωs
n−q−b+1,d−q|, b ∈ N

PROOF See Appendix A.1.1. �

As can be seen in Tab. 2.1 for three dimensions and in Tab. 2.2 for ten dimensions,

the number of grid points decreases drastically for increasing values of b, especially when

compared with Ωs
n,d = Ω

s(0)
n,d .

2.4 BOUNDARY TREATMENT 43

|Ωs(b)
n,d |/|�Ω

s
n,d |

|�Ωs
n,d | b = 0 b = 1 b = 2 b = 3 b = 4 b = 5

n= 3 1 123.0 27.0 9.00 9.00 9.00 9.00
n= 4 7 42.4 11.6 4.71 2.14 2.14 2.14
n= 5 31 22.7 7.3 3.39 1.84 1.26 1.26
n= 6 111 14.9 5.3 2.75 1.67 1.23 1.07
n= 7 351 10.9 4.3 2.37 1.55 1.21 1.07
n= 8 1023 8.5 3.6 2.13 1.47 1.19 1.07
n= 9 2815 7.0 3.2 1.96 1.41 1.17 1.07
n= 10 7423 6.0 2.9 1.83 1.36 1.16 1.06

TABLE 2.1 For d = 3: Grid size of the interior grid �Ωs
n,d (second column) and ratios

|Ωs(b)
n,d |/|�Ω

s
n,d | (beginning with the third column) of the sizes of the grid Ωs(b)

n,d
with boundary points to the size of the interior grid of the same level. The table
starts with the first level n= 3 for which the interior grid �Ωs

n,d is not empty.

|Ωs(b)
n,d |/|�Ω

s
n,d |

|�Ωs
n,d | b = 0 b = 1 b = 2 b = 3 b = 4 b = 5

n= 10 1 3.3 · 108 59049 1025 1025.0 1025.0 1025.0
n= 11 21 4.3 · 107 21558 2813 49.8 49.8 49.8
n= 12 241 1.0 · 107 10046 1879 246.0 5.2 5.2
n= 13 2001 3.4 · 106 5407 1211 227.2 30.5 1.5
n= 14 13441 1.3 · 106 3213 806 181.1 34.7 5.4
n= 15 77505 6.2 · 105 2054 558 140.6 32.2 6.8
n= 16 397825 3.1 · 105 1390 401 109.5 28.2 7.1
n= 17 1862 145 1.7 · 105 984 298 86.5 24.2 6.8

TABLE 2.2 For d = 10: Grid size of the interior grid �Ωs
n,d (second column) and ratios

|Ωs(b)
n,d |/|�Ω

s
n,d | (beginning with the third column) of the sizes of the grid Ωs(b)

n,d
with boundary points to the size of the interior grid of the same level. The table
starts with the first level n= 10 for which the interior grid �Ωs

n,d is not empty.

44 CHAPTER 2: SPARSE GRIDS WITH ARBITRARY TENSOR PRODUCT BASES

1 function Ls(b)
n,d = computeSGCoarseBoundary(n, d, b)

2 L(1)← {0,1, . . . , n− d + 1} one-dimensional grid
3 for t = 2, . . . , d do
4 L(t)← ; t-dimensional grid
5 for ` ∈ L(t−1) do
6 if ‖max(`,1)‖1 ≤ n− d + t − b or `= 0 then
7 L(t)← L(t) ∪ {(`, 0)} add corners (with (`, 0) := (`1, . . . ,`t−1, 0))
8 if ` ∈ Nt−1 then
9 `∗← n− d + t − ‖`‖1 add interior points
10 else
11 `∗← n− d + t − b+ 1− ‖max(`,1)‖1 add boundary points

12 L(t)← L(t) ∪ {(`,`t) | `t = 1, . . . ,`∗} with (`,`t) := (`1, . . . ,`t−1,`t)
13 Ls(b)

n,d ← L(d)

ALGORITHM 2.1 Generation of the sparse grid Ωs(b)
n,d with coarse boundary. Inputs are the

level n ∈ N, the dimensionality d ≤ n, and the boundary parameter b ∈ N.
Output is the level set Ls(b)

n,d that corresponds to Ωs(b)
n,d .

Algorithm 2.1 shows how to generate the necessary set of hierarchical levels. Its

correctness can be formally proven with the following invariant:

PROPOSITION 2.11 (invariant of SG generation with coarse boundary)

After iteration t of Alg. 2.1 (t = 1, . . . , d), it holds

L(t) = {` ∈ Nt | ‖`‖1 ≤ n− d + t}

∪̇
�

{` ∈ Nt
0 \N

t | ‖max(`,1)‖1 ≤ n− d + t − b+ 1} ∪ {0}
�

.
(2.39)

PROOF See Appendix A.1.2. �

COROLLARY 2.12 Algorithm 2.1 is correct.

PROOF Follows immediately from Prop. 2.11 by setting t = d, as then (2.39) becomes

(2.37b) from Def. 2.9 (regular sparse grid with coarse boundary). �

Hierarchization and other algorithms. An important implication of the regular sparse

grids Ωs(b)
n,d as defined in Def. 2.9 is that, in general, the unidirectional principle cannot

be directly applied anymore. For example, this is relevant when calculating hierarchical

surpluses for the hat function basis. As we mostly deal with B-splines, for which the

unidirectional principle cannot be applied even on regular sparse grids, this issue is not

important in the scope of this thesis.

2.4 BOUNDARY TREATMENT 45

A d = 2, b = 0 B d = 2, b = 1 C d = 2, b = 2 D d = 2, b = 3

E d = 3, b = 0 F d = 3, b = 1 G d = 3, b = 2 H d = 3, b = 3

FIGURE 2.9 Sparse gridsΩs(b)
n,d of level n= 4 in two and three dimensions for different values

of the boundary parameter b. For constant d and n, the points in the interior
of [0,1] (black) are the same, while the points on the boundary of [0,1] (blue)
become coarser for increasing values of b. The main axes (axis-parallel lines
through 0.5 · 1, dashed) serve as a visual aid.

However, it is possible to calculate the hierarchical surpluses of hat functions on

Ω
s(b)
n,d in a three-step algorithm. First, we compute the surpluses of the boundary grid

Ω
s(b)
n,d \�Ω

s
n,d . Second, we subtract the values of the resulting “boundary interpolant” at the

inner grid points �Ωs
n,d . Third, we calculate the surpluses of the inner grid points as usual

with the unidirectional principle. As the corresponding “inner interpolant” vanishes on

the boundary, this does not influence the interpolated values in the first step.

2.4.2 Sparse Grids Without Boundary Points and Modified Bases

Omitting boundary points. The second solution to reduce the number of grid points on

the boundary is to omit the boundary points and the basis functions altogether. For the hat

function basis ϕ1
`,i , this is a feasible option if the objective function f : [0,1]→ R satisfies

homogeneous boundary conditions f |∂ [0,1] ≡ 0, as ϕ1
`,i vanishes on the boundary if and

only if `≥ 1, i.e., if the basis function corresponds to an inner grid point. Consequently,

the surpluses corresponding to boundary points vanish for a grid with boundary points

and homogeneous boundary conditions, implying that these points can be removed from

the grid.

46 CHAPTER 2: SPARSE GRIDS WITH ARBITRARY TENSOR PRODUCT BASES

FIGURE 2.10
Modified hierarchical hat functions ϕ1,mod

`′,i′ (`′ ≤ `, i′ ∈
I`′) up to level `= 3.

x1,1
0

1
ϕ1,mod

1,1

x2,1 x2,3
0

1

2

ϕ1,mod
2,1 ϕ1,mod

2,3

x3,1 x3,3 x3,5 x3,7
0

1

2

ϕ1,mod
3,1

ϕ1,mod
3,3 ϕ1,mod

3,5 ϕ1,mod
3,7

Modified linear basis. Of course, this approach is not viable for functions with non-zero

boundary values or general hierarchical bases, making it necessary to change the basis.

For hat functions, Pflüger modified the leftmost and rightmost univariate basis function

of each level (with indices i = 1 and i = 2` − 1 respectively) such that the modified

functions extrapolate the inner values linearly towards the boundary [Pfl10]. The basis

function on level one is replaced by the “constant one” function. All other basis functions

remain unchanged. The resulting modified hat functions ϕ1,mod
`,i : [0, 1]→ R are shown in

Fig. 2.10 and defined as follows:

(2.40) ϕ1,mod
`,i (x) :=

1, `= 1, i = 1,

max(2− x
h`

, 0), `≥ 2, i = 1,

ϕ1
`,i(x), `≥ 2, i ∈ I` \ {1,2` − 1},

ϕ1,mod
`,1 (1− x), `≥ 2, i = 2` − 1.

The modified linear basis provides “reasonable” boundary values without the need to

insert basis functions and grid points on the boundary. For other bases such as B-splines,

similar modifications are possible, which we will discuss when we introduce the corre-

sponding unmodified functions (see Chapters 3 and 4).

47

3
Hierarchical B-Splines

“ B-splines are not enough!

— In a talk at the 2017 SIAM Conference on

Computational Science and Engineering

Piecewise linear “hat functions” ϕ1
`,i, which served in the previous chapter as the

motivation to define sparse grids for arbitrary tensor product basis functions, are not

continuously differentiable. This has two implications. First, the approximation order of

hat functions is lower than the order of other basis function types such as higher-degree

splines [Sic11] or the piecewise polynomial basis by Bungartz [Bun98]. Second, we

cannot compute globally continuous gradients of the interpolant of a smooth objective

function if we use non-smooth basis functions1. However, the availability of continuous

gradients is crucial in gradient-based optimization, which is highly important in the scope

of simulation technology (see Chap. 1) and which we target in this thesis. In this chapter,

we define the hierarchical and higher-order B-spline basis as a generalization of the

well-known hat functions to obtain both higher-order approximations and continuous

derivatives.

The first to study B-splines was Schoenberg in 1946 [Schoenb46], but he claimed

that they had already been known to Laplace [Boor76]. It was also Schoenberg who

1. . . which include the hat function basis as well as the piecewise polynomials by Bungartz.

48 CHAPTER 3: HIERARCHICAL B-SPLINES

coined the term “B-splines,” which is short for “basis splines” [Schoenb67]. De Boor pio-

neered B-splines, developed basic algorithms, and proved fundamental theoretical results

[Boor72]. Research and industry recognized the possibilities of B-splines when the finite

element method (FEM) emerged in the 1960s. The FEM remains one of the driving forces

behind the research of B-splines [Höl03] as the recent rise of isogeometric analysis (IGA)

shows [Cot09; Höl12]. Researchers have also applied B-splines to geometric modeling

with non-uniform rational B-splines (NURBS) [Coh01; Höl13], financial mathematics

[Pfl10], molecular and atomic physics [Bac01; McC04], and numerous other scientific

and industrial areas [Vale12; Mar17]. Theoretical and practical aspects of B-splines on

sparse grids have also been studied before [Pan08; Pfl10; Sic11; Vale16].

In this chapter, we define hierarchical B-splines on sparse grids. The chapter is

divided into two sections: First, we define hierarchical B-splines for both uniform and

non-uniform knot sequences in Sec. 3.1. Second, we learn in Sec. 3.2 that the boundary

behavior of the standard uniform B-spline basis is problematic. Incorporating not-a-

knot boundary conditions into the B-spline basis mitigates the problems caused by the

boundary behavior.

Section 3.1.1 is a repetition of the definition of nodal B-splines [Höl03; Höl13] and

hierarchical B-splines [Pfl10; Vale14]. Original contributions of the thesis in this chapter

are the proof of the linear independence of hierarchical B-splines in Sec. 3.1.2 (improved

version of [Vale14], published in [Vale16]), the modified hierarchical Clenshaw-Curtis

B-splines in Sec. 3.1.4, and the hierarchical not-a-knot B-spline basis in Sec. 3.2.

3.1 Uniform and Non-Uniform Hierarchical B-Splines

IN THIS SECTION

3.1.1 Uniform Hierarchical B-Splines (p. 49)
3.1.2 Non-Uniform B-Splines and Proof

of the Hierarchical Splitting (p. 52)
3.1.3 Modification (p. 56)
3.1.4 Non-Uniform Hierarchical

B-Splines (p. 59)

In this section, we mainly follow the presenta-

tion of [Pfl10; Vale14; Vale16] to define hierar-

chical B-splines starting from the well-known

nodal B-spline basis [Höl03; Höl13; Qua16].
Note that thanks to the groundwork laid in

Chap. 2, especially Lemma 2.1 (linear indepen-

dence of tensor products) and Prop. 2.5 (from

univariate to multivariate splitting), it suffices to study the univariate case of all bases

that will be defined in the rest of this thesis. The multivariate case is treated canonically

by tensor products.

3.1 UNIFORM AND NON-UNIFORM HIERARCHICAL B-SPLINES 49

3.1.1 Uniform Hierarchical B-Splines

Cardinal B-splines. The cardinal B-spline bp : R→ R of degree p ∈ N0 is defined by

(3.1) bp(x) :=

∫ 1

0

bp−1(x − y)dy, p ≥ 1,

χ[0,1[(x), p = 0,

where χ[0,1[is the characteristic function of the half-open unit interval [0, 1[(see [Höl13]).
The cardinal B-spline bp has the following properties [Höl03], which are shown in Fig. 3.1:

1. Compact support: The support of bp is given by supp bp = [0, p+ 1].

2. Bounds and symmetry: The cardinal B-spline bp is non-negative and bounded from

above by one. It is symmetric with respect to x = p+1
2 , i.e., bp(x) = bp(p+ 1− x).

3. Recursion: The cardinal B-spline bp (p ≥ 1) satisfies the following recurrence relation

(which can be used as an alternative definition):

(3.2) bp(x) =
x
p

bp−1(x) +
p+ 1− x

p
bp−1(x − 1).

4. Spline: On every knot interval [k, k+1[for k = 0, . . . , p, bp is a polynomial of degree p,

i.e., bp is a spline of degree p (piecewise polynomial).

5. Derivative: At the knots k = 0, . . . , p+1, bp is (p−1) times continuously differentiable

(if p ≥ 1). The derivative can be computed by differentiating (3.1):

(3.3)
d

dx
bp(x) = bp−1(x)− bp−1(x − 1), x ∈ R.

6. Integral: The B-spline bp has unit integral, i.e.,
∫

R bp(x)dx = 1.

7. Convolution: The integral in the definition of bp is the convolution bp−1 ∗ b0 of the

B-spline bp−1 of degree p− 1 with the B-spline b0 of degree zero.

8. Generalization: As a special case, b1 is a hat function, interpolating the data {(k,δk,1) |
k ∈ Z}. For p →∞, the normalized cardinal B-splines converge pointwise to the

standard Gaussian function b∞(x) := (2π)−1/2 exp(−x2/2) [Uns92]:2

(3.4) lim
p→∞

cp bp(cp x + p+1
2) = b∞(x), cp :=

√

√p+ 1
12

, x ∈ R.

2This can also be seen as a consequence of the central limit theorem applied to uniformly distributed
random variables. The pointwise convergence of the probability density functions can be proven from
the convergence in distribution using a converse to Scheffé’s theorem [Boos85].

50 CHAPTER 3: HIERARCHICAL B-SPLINES

0 p+ 1
0

1

p+1
2

1

1

bp

1 2

3

4

56

7

8

FIGURE 3.1 Eight properties of cardinal B-splines using the quadratic case p = 2 as an
example.
1. bp is compactly supported on [0, p+ 1].
2. bp is symmetric and 0≤ bp ≤ 1.
3. bp is a weighted combination of bp−1 (blue) and bp−1(· − 1) (red).
4. bp is a piecewise polynomial of degree p.
5. d

dx bp (dashed) is the difference of bp−1 (blue) and bp−1(· − 1) (red).
6. bp has unit integral.
7. bp is the convolution of bp−1 (blue) and b0.
8. Hat function (blue) and Gaussian function (red) are special cases of bp.

3.1 UNIFORM AND NON-UNIFORM HIERARCHICAL B-SPLINES 51

0 1 2 3 4 5 6
0

1
b0

b1
b2

b3
b4

b5

FIGURE 3.2 Cardinal B-splines bp up to quintic degree p = 5.

The cardinal B-splines of the first degrees are shown in Fig. 3.2. Due to the con-

volution property, cardinal B-splines of degree p ≥ 2 are “smoothed versions” of the

hat function. This is shown in the flip book animation in the bottom left corner of the

even-numbered pages of this thesis.

Definition of uniform hierarchical B-splines. As for the hat functions in Chap. 2, we

can use the cardinal B-spline bp as a “parent function” to define the uniform hierarchi-

cal B-spline ϕp
`,i : [0,1] → R of level ` ∈ N0 and index i ∈ I` via an affine parameter

transformation [Pfl10]:

(3.5) ϕ
p
`,i(x) := bp(x

h`
+ p+1

2 − i).

The support ofϕp
`,i is given by suppϕp

`,i = [0, 1]∩[x`,i−(p+1)/2, x`,i+(p+1)/2]. The hat function

basis ϕ1
`,i defined in (2.3) is a special case of (3.5) for p = 1, which allows us to use the

same notation ϕp
`,i for both. Note that due to the translation invariance of ϕp

`,i (i.e., the

basis functions are the same up to scaling and translation), it suffices to precompute and

implement the polynomial pieces of bp to enable evaluations of all hierarchical B-splines

ϕ
p
`,i (` ∈ N0, i ∈ I`).

Odd and even degrees. In this thesis, we will only allow odd degrees p = 1, 3, 5, . . . for

hierarchical B-splines. Many theoretical considerations fail for even degrees. The basic

reason is that for odd degrees, the knots of ϕp
`,i coincide with the grid points [Vale14]

(3.6) x`,i−(p+1)/2, . . . , x`,i, . . . , x`,i+(p+1)/2.

For even degrees p, the knots of ϕp
`,i lie exactly in the middle between two subsequent

grid points:

(3.7) x`,i−p/2 −
h`
2

, . . . , x`,i −
h`
2

, x`,i +
h`
2

, . . . , x`,i+p/2 +
h`
2

.

52 CHAPTER 3: HIERARCHICAL B-SPLINES

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8
0

ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0ϕ
p
3,0
ϕ

p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1ϕ
p
3,1
ϕ

p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2ϕ
p
3,2
ϕ

p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3ϕ
p
3,3
ϕ

p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4ϕ
p
3,4
ϕ

p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5ϕ
p
3,5
ϕ

p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6ϕ
p
3,6
ϕ

p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7ϕ
p
3,7
ϕ

p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8ϕ
p
3,8

V p
3 |Dp

3

A Nodal B-splines ϕp
`,i (i ∈ I`) and grid

points x`,i (dots).

=
⊕

x0,0 x0,1
0

ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0ϕ
p
0,0

ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1ϕ
p
0,1

W p
0 |Dp

3

x1,1
0

ϕ
p
1,1

W p
1 |Dp

3

x2,1 x2,3
0

ϕ
p
2,1 ϕ

p
2,3

W p
2 |Dp

3

x3,1 x3,3 x3,5 x3,7
0

ϕ
p
3,1 ϕ

p
3,3 ϕ

p
3,5 ϕ

p
3,7

W p
3 |Dp

3

B Hierarchical B-splines ϕp
`′,i′ (`′ ≤ `, i′ ∈ I`′)

and grid points x`′,i′ (dots).

FIGURE 3.3 Univariate nodal and hierarchical cubic B-splines (p = 3) up to level ` = 3.
When restricting all functions to Dp

`
(thick black line), the nodal space V p

`
|Dp
`

decomposes into the direct sum of the hierarchical subspaces W p
`′
|Dp
`

(`′ ≤ `).

This fact has many adverse implications on the hierarchical basis. The most crucial

implication is that for even degrees p, the hierarchical splitting (2.20) does not hold.

Furthermore, we would not be able to define non-uniform hierarchical B-splines as simple

as for odd degrees and fundamental splines would not be defined at all (as we will see in

Sec. 4.4.3). Additionally, odd degrees include the hat function case (p = 1) and the most

commonly applied cubic degree (p = 3). Therefore, it is reasonable to restrict ourselves

to odd degrees for the rest of the thesis.

3.1.2 Non-Uniform B-Splines and Proof of the Hierarchical Splitting

Non-uniform B-splines and spline space. With the hierarchical B-splines ϕp
`,i, we can

define the nodal spaces V p
`

and hierarchical subspaces W p
`

as in Chap. 2. However, in order

for the hierarchical splitting (2.20) to be correct, we have to prove that the conditions of

Lemma 2.2 (univariate hierarchical splitting characterization) are satisfied. To investigate

how the nodal space V p
`

looks like, we introduce the notion of non-uniform B-splines.

3.1 UNIFORM AND NON-UNIFORM HIERARCHICAL B-SPLINES 53

DEFINITION 3.1 (non-uniform B-splines)

Let m, p ∈ N0 and ξ = (ξ0, . . . ,ξm+p) be an increasing sequence of real numbers

(knot sequence). For k = 0, . . . , m − 1, the (non-uniform) B-spline bp
k,ξ of degree p

with knots ξ and index k is defined by the Cox–de Boor recurrence [Cox72; Boor72;

Höl13]

(3.8) bp
k,ξ(x) :=

x − ξk

ξk+p − ξk
bp−1

k,ξ (x) +
ξk+p+1 − x

ξk+p+1 − ξk+1
bp−1

k+1,ξ(x), p ≥ 1,

χ[ξk ,ξk+1[(x), p = 0.

Note that when choosing ξ= (0, 1, . . . , p+1) and k = 0, we obtain the cardinal B-spline bp.

Definition 3.1 can be used to characterize the nodal space V p
`

:

PROPOSITION 3.2 (spline space)

Let ξ = (ξ0, . . . ,ξm+p) be a knot sequence. Then, the B-splines bp
k,ξ (k = 0, . . . , m− 1)

form a basis of the spline space

(3.9) Sp
ξ

:= span{bp
k,ξ | k = 0, . . . , m− 1}.

Sp
ξ contains exactly those functions that are continuous on Dp

ξ
:= [ξp,ξm], polynomials

of degree ≤ p on every knot interval [ξk,ξk+1[in Dp
ξ (k = p, . . . , m− 1) and at least

(p − 1) times continuously differentiable at every knot ξk in the interior of Dp
ξ (k =

p+ 1, . . . , m− 1).

PROOF See [Höl13]. �

This proposition gives the reason for the letter “B” in “B-splines,” which stands for

“basis” (of the space of splines) [Schoenb67]. One example of a knot sequence and the

corresponding B-splines is given in Fig. 3.4. The key observation is that B-splines of a

knot sequence ξ do not form a basis of the spline space on the union [ξ0,ξm+p] of the

B-spline supports. Instead, they form a basis of the spline space on a proper sub-interval

Dp
ξ . Intuitively, for every point in Dp

ξ that is not a knot, exactly p + 1 B-splines must

be relevant (i.e., non-zero) to uniquely span the spline space, as on every knot interval,

the spline is a polynomial of degree ≤ p and therefore, there must be p + 1 degrees of

freedom. Outside of Dp
ξ , there are too few relevant B-splines to span the spline space. This

fact, which is shown in Fig. 3.5, forces us to restrict the nodal space and the hierarchical

subspaces to Dp
ξ :

54 CHAPTER 3: HIERARCHICAL B-SPLINES

ξ0 ξp ξm ξm+p

0

bp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξ

bp
0,ξ

bp
0,ξbp
0,ξbp
0,ξbp
0,ξ bp

1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξ

bp
1,ξ

bp
1,ξbp
1,ξbp
1,ξbp
1,ξ bp

2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξ

bp
2,ξ

bp
2,ξbp
2,ξbp
2,ξbp
2,ξ

bp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξ

bp
3,ξ

bp
3,ξbp
3,ξbp
3,ξbp
3,ξ

bp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξ

bp
4,ξ

bp
4,ξbp
4,ξbp
4,ξbp
4,ξ

bp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξ

bp
5,ξ

bp
5,ξbp
5,ξbp
5,ξbp
5,ξ bp

6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξ

bp
6,ξ

bp
6,ξbp
6,ξbp
6,ξbp
6,ξ

s

Dp
ξ

FIGURE 3.4 Knot sequence ξ= (ξ0, . . . ,ξm+p) with the corresponding m= 7 non-uniform

cubic B-splines bp
k,ξ (k = 0, . . . , m− 1, p = 3). On Dp

ξ
(thick line, delimited by

dashed lines), which starts with the last knot interval of the first B-spline bp
0,ξ

and ends with the first knot interval of the last B-spline bp
m−1,ξ, the B-splines

span the spline space Sp
ξ
. Elements of this space are splines s : Dp

ξ
→ R (black

line), which are linear combinations s =
∑m−1

k=0 ck bp
k,ξ of the B-splines.

ξ0 ξp ξm ξm+p

0

bp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξ

bp
0,ξ

bp
0,ξbp
0,ξbp
0,ξbp
0,ξ

bp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξ

bp
1,ξ

bp
1,ξbp
1,ξbp
1,ξbp
1,ξ

bp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξ

bp
2,ξ

bp
2,ξbp
2,ξbp
2,ξbp
2,ξ

bp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξ

bp
3,ξ

bp
3,ξbp
3,ξbp
3,ξbp
3,ξ

bp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξ

bp
4,ξ

bp
4,ξbp
4,ξbp
4,ξbp
4,ξ

bp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξ

bp
5,ξ

bp
5,ξbp
5,ξbp
5,ξbp
5,ξ

bp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξ

bp
6,ξ

bp
6,ξbp
6,ξbp
6,ξbp
6,ξ

bp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξ

bp
7,ξ

bp
7,ξbp
7,ξbp
7,ξbp
7,ξ

bp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξ

bp
8,ξ

bp
8,ξbp
8,ξbp
8,ξbp
8,ξ

Dp
ξ

0 x`,1 · · · · · · x`,2`−1 1
ξ
x

FIGURE 3.5 Uniform knot sequence ξp
`

(ticks on horizontal axis) and corresponding nodal
cubic B-splines (p = 3) of level `= 3. In the domain [0, 1] (delimited by dashed
lines), the grid pointsΩ` (blue dots) coincide with the B-spline knots. The spline
interpolation domain Dp

`
:= Dp

ξ
p
`

(thick line) is only a proper subset of [0,1].

3.1 UNIFORM AND NON-UNIFORM HIERARCHICAL B-SPLINES 55

COROLLARY 3.3 (nodal B-spline space)

The restricted nodal B-splines ϕp
`,i|Dp

`
(i = 0, . . . , 2`) of level ` ∈ N0 are a basis of the

spline space Sp
ξ

p
`

, where

ξ
p
`,k := (k− p+1

2)h`, k = 0, . . . , m+ p, m := 2` + 1,(3.10a)

Dp
`

:= [p−1
2 h`, 1− p−1

2 h`],(3.10b)

and consequently

(3.11) V p
`
|Dp
`
= Sp

`
:= Sp

ξ
p
`

.

PROOF We have ϕp
`,i = bp

i,ξp
`

for i = 0, . . . , m− 1, as the B-splines on both sides have the

same knots. The assertions now follow from Prop. 3.2 (spline space). �

Note that Dp
`

might contain only a single point or even be empty, if p is too large or

` is too small. However, the corresponding B-splines ϕp
`,i are still linearly independent

on [0, 1] (see [Höl13]). Similarly, the corollary also implies that the hierarchical functions

ϕ
p
`,i of level ` (i ∈ I`) are linearly independent on [0,1].

Hierarchical splitting for uniform B-splines. We can use Prop. 3.2 and Cor. 3.3 to

prove the hierarchical splitting for the uniform B-spline basis [Vale16].

LEMMA 3.4 (hierarchical B-splines in nodal space)

The restricted hierarchical subspaces W p
`′
|Dp
`

(`′ ≤ `) are subspaces of the restricted nodal

space V p
`
|Dp
`
.

PROOF Every function ϕp
`′,i′ (i′ ∈ I`′) is continuous on Dp

`
, a polynomial of degree ≤ p

on every knot interval of ξp
`

(due to p odd), and at the knots themselves at least (p− 1)
times continuously differentiable. Proposition 3.2 implies ϕp

`′,i′ ∈ Sp
`

and from Cor. 3.3,

it follows ϕp
`′,i′ ∈ V p

`
|Dp
`
. As the functions ϕp

`′,i′ (i′ ∈ I`′) span W p
`′
|Dp
`
, we can conclude

W p
`′
|Dp
`
⊆ V p

`
|Dp
`
. �

It is crucial to note that this lemma does not hold for even p, as the knots of the

B-splines of level ` − 1 are not contained in the knots of level `. This implies that in

general, W p
`−1|Dp

`
is not contained in V p

`
|Dp
`

for even degrees p. Therefore, the hierarchical

splitting equation (2.20) does not hold.

56 CHAPTER 3: HIERARCHICAL B-SPLINES

PROPOSITION 3.5 (hierarchical B-splines are linearly independent)

The hierarchical B-splines ϕp
`′,i′ (`′ ≤ `, i′ ∈ I`′) are linearly independent.

PROOF See Appendix A.2.1. �

Although we have to restrict all functions and spaces to Dp
`
, Lemma 2.2 (univariate

hierarchical splitting characterization) is still applicable to prove that the hierarchical

splitting equation (2.20) is correct for hierarchical B-splines:

COROLLARY 3.6 (hierarchical splitting for uniform B-splines)

The hierarchical splitting (2.20) holds for the hierarchical B-spline basis if restricting

all functions to Dp
`
:

(3.12) Sp
`
= V p

`
|Dp
`
=
⊕̀

`′=0

W p
`′
|Dp
`
.

PROOF Analogously to the proof of Lemma 2.2 (univariate hierarchical splitting char-

acterization) and apply Cor. 3.3 (nodal B-spline space). �

This corollary is also visualized in Fig. 3.3. We can now proceed to define multivariate

nodal spaces V p
` , multivariate hierarchical subspaces W p

` , and sparse grid spaces V s,p
n,d as

in Chap. 2. Note that it is possible to choose different degrees pt for different dimensions

t = 1, . . . , d, since the hierarchical splitting (2.22) does not require the bases in each

dimension to be the same. Consequently, we can define degree-dimension-adaptive (so-

called hp-adaptive) sparse grids V s,p
n,d for arbitrary odd degree vectors p.

In the course of this thesis, we will derive multiple variations of the standard hi-

erarchical B-spline basis. We will not repeat formal proofs of the hierarchical splitting

equation (2.20) (i.e., verifying the two conditions of Lemma 2.2) for each of theses bases

for the sake of brevity. The idea of the proof of Prop. 3.5, which is inductively exploiting

the smoothness conditions given by B-splines of previous levels, can be transferred to

similar B-spline bases.

3.1.3 Modification

Marsden’s identity. Similar to the piecewise linear case in Sec. 2.4.2, Pflüger defined

modified hierarchical B-splines to obtain reasonable values on the boundary without

having to place grid points there [Pfl10]. The main motivation is to define basis functions

3.1 UNIFORM AND NON-UNIFORM HIERARCHICAL B-SPLINES 57

ϕ
p,mod
`,i that satisfy natural boundary conditions, i.e.,

(3.13)
d2

dx2
ϕ

p,mod
`,i (x) = 0, x ∈ ∂ [0,1] = {0,1}.

Originally, this requirement stems from financial problems [Pfl10]. For the left boundary,

(3.13) can be satisfied by modifying the left-most functionϕp
`,1 such thatϕp,mod

`,1 (x) = 2− x
h`

is a linear polynomial when x is “near” the boundary. As in [Pfl10], we append ϕp
`,1 with

B-splines ϕp
`,i with index i ≤ 0 and use Marsden’s identity to compute the corresponding

coefficients. The identity enables us to explicitly compute the B-spline coefficients of

an arbitrary polynomial of degree ≤ p by giving an explicit formula for the B-spline

coefficients of shifted monomials (· − y)p. Interestingly, the coefficients are polynomials

themselves (in y):

LEMMA 3.7 (Marsden’s identity)

Let p ∈ N0 and ξ= (ξ0, . . . ,ξm+p) be a knot sequence. Then, for all x ∈ Dp
ξ and y ∈ R,

(3.14) (x − y)p =
m−1
∑

k=0

�

(ξk+1 − y) · · · (ξk+p − y)
�

bp
k,ξ(x).

PROOF See [Höl13]. �

Modified hierarchical B-splines. By extending the sum in Marsden’s identity to i ∈ Z
and comparing the coefficients of y p and y p−1 of both sides, we obtain representations

for the first two monomials:

(3.15) 1=
∑

i∈Z

ϕ
p
`,i(x), x =

∑

i∈Z

x`,iϕ
p
`,i(x), x ∈ R.

This can be used to derive a definition for ϕp,mod
`,i :

(3.16) 2−
x
h`
= 2

∑

i∈Z

ϕ
p
`,i(x)−

1
h`

∑

i∈Z

x`,iϕ
p
`,i(x) =

∑

i∈Z

(2− i)ϕp
`,i(x), x ∈ R.

Note that only the B-splines with i ≥ 1 − p+1
2 are relevant for the unit interval as all

other B-splines vanish in [0,1]. Pflüger omits summands with i > 1 as he only wants

to modify ϕp
`,1 left of its grid point x`,1 [Pfl10]. The right-most function ϕp,mod

`,2`−1
can be

derived analogously by mirroring ϕp,mod
`,1 at x = 1

2 . For ` = 1, again the “constant one”

58 CHAPTER 3: HIERARCHICAL B-SPLINES

x`′,−3 x`′,−2 x`′,−1 x`′,0 x`′,1 x`′,2 x`′,3
0

1

2
3ϕp
`′,−1

2ϕp
`′,0

1ϕp
`′,1

ϕ
p,mod
`′,1

A Construction of the modified hierarchical cu-
bic B-spline ϕp,mod

`′,1 (dashed, `′ ≥ 2) as a linear
combination of neighboring B-splines ϕp

`′,i′ .

x1,1
0

1
ϕ

p,mod
1,1

x2,1 x2,3
0

1

2

ϕ
p,mod
2,1 ϕ

p,mod
2,3

x3,1 x3,3 x3,5 x3,7
0

1

2

ϕ
p,mod
3,1 ϕ

p,mod
3,3 ϕ

p,mod
3,5

ϕ
p,mod
3,7

B Modified hierarchical cubic B-splines ϕp,mod
`′,i′

(`′ = 1, . . . ,`, i′ ∈ I`′) and grid points x`′,i′
(dots).

FIGURE 3.6 Construction of modified hierarchical cubic B-splines (p = 3) and the resulting
basis up to level `= 3.

function is taken for the definition of modified hierarchical B-splines (see Fig. 3.6):

(3.17) ϕ
p,mod
`,i (x) :=

1, `= 1, i = 1,
1
∑

i′=1−(p+1)/2

(2− i′)ϕp
`,i′(x), `≥ 2, i = 1,

ϕ
p
`,i(x), `≥ 2, i ∈ I` \ {1,2` − 1},

ϕ
p,mod
`,1 (1− x), `≥ 2, i = 2` − 1.

By Prop. 3.2 (spline space), this definition implies that ϕp
`,1(x) = 2− x

h`
(` ≥ 2) is only

valid for x ∈ [0, 5−p
2 h`], i.e., the second derivative at x = 0 vanishes only for p ≤ 5. For

higher degrees, it is non-zero, albeit very small in its absolute value. To enforce natural

boundary conditions for higher than quintic degrees, the upper bound of i′ in the sum in

(3.17) must be extended to p+1
2 . In addition, more than just the left-most and the right-

most inner hierarchical B-spline must be modified for p ≥ 5, as the size of the supports

of ϕp
`,i increases for growing p.

3.1 UNIFORM AND NON-UNIFORM HIERARCHICAL B-SPLINES 59

3.1.4 Non-Uniform Hierarchical B-Splines

Sparse grid spaces and their corresponding grid point sets, as we have defined them

in Chap. 2, are completely independent of the actual location of the grid points x`,i.

Therefore, it is possible to use different distributions for the grid points than the standard

equidistant choice of x`,i = i · h`, if the basis functions are altered accordingly [Vale14].
The so-called Chebyshev points x cc

`,i and the resulting Clenshaw–Curtis grids and B-splines

will serve as an example.

Chebyshev points and Clenshaw–Curtis grids. The Chebyshev points x cc
`,i of level ` ∈

N0 are defined as

(3.18) x cc
`,i :=

1− cos(πx`,i)

2
, i = 0, . . . , 2`,

see [Xu16] for example. Chebyshev points are the locations of the extrema3 of the Cheby-

shev polynomials T2` , defined as T2` : [0,1]→ R, T2`(x) := cos(2` arccos(2x − 1)). They

are geometrically obtained by dividing a semicircle into 2` equally-sized segments and sub-

sequently orthogonally projecting the segment endpoints onto the diameter (see Fig. 3.7).

Analytically, they are determined by minimizing the interpolation error term in polynomial

interpolation. The most practical use of Chebyshev points is in polynomial interpolation

to avoid Runge’s phenomenon and in numerical integration (quadrature), resulting in

the so-called Clenshaw–Curtis quadrature rules.

In some settings, it may be beneficial to use full or sparse grids consisting of Cheby-

shev points, which are then called Clenshaw–Curtis grids, instead of uniform grids. Besides

the already mentioned advantages for polynomials and quadrature, Clenshaw–Curtis grids

can help to reduce interpolation errors in a neighborhood of the boundary of the domain

due to the increased grid point density near the boundary (at the cost of a lower grid

point density in the interior). If we want to use Chebyshev points as grid points for sparse

grids, we have to employ an appropriate basis to ensure that interpolation is still possible.

Hierarchical Clenshaw–Curtis B-splines. The hierarchical Clenshaw–Curtis B-spline

ϕ
p,cc
`,i of level ` ∈ N0 and index i ∈ I` is defined as [Vale14]

(3.19) ϕ
p,cc
`,i := bp

i,ξp,cc
`

,

3The literature sometimes uses the name “Chebyshev points” for the roots of T2` , which are closely
connected with the extrema. One way to distinguish them is to call the extrema “Chebyshev–Lobatto
points” and the roots “Chebyshev–Gauss points” [Xu16].

60 CHAPTER 3: HIERARCHICAL B-SPLINES

FIGURE 3.7
The set of Chebyshev points Ωcc

`
of

level `= 4 (top) decomposes into hi-
erarchical grids of level `′ ≤ ` (com-
pare with Fig. 2.3). The Chebyshev
points are constructed as the orthog-
onal projection of the endpoints of
2` equally-sized segments of a semi-
circle onto its diameter (gray, top).

`= 4

`′ = 0
xcc

0,0 xcc
0,1
`′ = 1

xcc
1,1

`′ = 2
xcc

2,1 xcc
2,3

`′ = 3
xcc

3,1 xcc
3,3 xcc

3,5 xcc
3,7
`′ = 4

xcc
4,1 xcc

4,3 xcc
4,5 xcc

4,7 xcc
4,9 xcc

4,11 xcc
4,13 xcc

4,15

where

ξ
p,cc
`,k :=

(k− p+1
2) · x

cc
`,1, k = 0, . . . , p−1

2 ,

x cc
`,k−(p+1)/2, k = p+1

2 , . . . , 2` + p+1
2 ,

1+ (k− 2` − p+1
2) · x

cc
`,1, k = 2` + p+3

2 , . . . , 2` + p+ 1,

(3.20a)

k = 0, . . . , m+ p, m := 2` + 1.(3.20b)

For the construction of the knot sequence ξp,cc
`

, the Chebyshev points x cc
`,i are equidistantly

extended onto the real line R. As for the standard hierarchical B-spline basis, it is now

straightforward to define nodal spaces V p,cc
`

and hierarchical subspaces W p,cc
`

as well as

sparse grid spaces V s,p,cc
n,d and grid point setsΩs,cc

n,d using tensor products of Clenshaw–Curtis

B-splines and Cartesian products of Chebyshev point sets. The one-dimensional cubic

Clenshaw–Curtis basis and a sparse Clenshaw–Curtis grid are shown in Fig. 3.8.

Note that Clenshaw–Curtis B-splines ϕp,cc
`,i are not translation-invariant, in contrast

to uniform B-splines ϕp
`,i. As a result, both implementation effort and computation time

for evaluation are significantly higher for Clenshaw–Curtis B-splines than for uniform

B-splines, as the Clenshaw–Curtis B-splines cannot be precomputed.

Modification and generalizations. We define modified hierarchical Clenshaw–Curtis B-

splines ϕp,cc,mod
`,i using the same method as in Eq. (3.17). Here, the second derivative of

ϕ
p,cc,mod
`,1 does not vanish at x = 0 even for degrees p ≤ 5, as the formula (3.16) derived

3.1 UNIFORM AND NON-UNIFORM HIERARCHICAL B-SPLINES 61

xcc
0,0 xcc

0,1

0

ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0ϕ
p,cc
0,0

ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1ϕ
p,cc
0,1

xcc
1,1

0

1 ϕ
p,cc
1,1

xcc
2,1 xcc

2,3

0

1

2

ϕ
p,cc
2,1 ϕ

p,cc
2,3

xcc
3,1 xcc

3,3 xcc
3,5 xcc

3,7

0

1

2

ϕ
p,cc
3,1 ϕ

p,cc
3,3 ϕ

p,cc
3,5 ϕ

p,cc
3,7

A Hierarchical cubic Clenshaw–Curtis B-splines
ϕ

p,cc
`′,i′ (`′ ≤ `, i′ ∈ I`′ , p = 3) and modified

Clenshaw–Curtis B-splines ϕp,cc,mod
`′,i′ (dashed).

B Sparse Clenshaw–Curtis grid Ωs,cc
n,d of level n=

4 in d = 2 dimensions.

FIGURE 3.8 Clenshaw–Curtis B-splines and sparse grids.

from Lemma 3.7 (Marsden’s identity) assumes uniform knots. However, since most of

the B-spline knots in the summation formula lie outside [0,1] and are thus uniform

according to Eq. (3.20), the absolute deviation of the second derivative from zero is small.

Again, to enforce natural boundary conditions, we can recompute the coefficients of the

components ϕp,cc
`,i′ dynamically with Marsden’s identity using the correct Chebyshev knots

in Eq. (3.14).

Note that our framework permits arbitrary grid point distributions x∗
`,i, as long as two

requirements are met: First, their number should grow exponentially (i.e., there are 2`+1

points x∗
`,i in each level ` ∈ N0), and second, they should be nested (i.e., Eq. (2.16) holds).

Appropriate non-uniform B-spline bases can be defined analogously to Clenshaw–Curtis

B-splines.

62 CHAPTER 3: HIERARCHICAL B-SPLINES

3.2 Boundary Behavior of Hierarchical B-Splines

IN THIS SECTION

3.2.1 Approximation Quality of Uniform
Hierarchical B-Splines (p. 62)

3.2.2 Hierarchical Not-A-Knot B-Splines (p. 64)
3.2.3 Modified and Non-Uniform

Hierarchical Not-A-Knot B-Splines (p. 69)
3.2.4 Other Approaches to Incorporate

Boundary Conditions (p. 70)

As we have seen in the last section (see

Cor. 3.6), the hierarchical splitting equation

(2.20) only holds when restricting the func-

tion spaces to Dp
`
= [p−1

2 h`, 1− p−1
2 h`], which

is a proper subset of the domain [0, 1] if p > 1.

As we will see, the implications of this fact on

the approximation quality of the hierarchical

B-spline basis are severe. In this section, we

study the underlying reasons of the restriction and we introduce a new hierarchical B-

spline basis that does not suffer from this issue.

3.2.1 Approximation Quality of Uniform Hierarchical B-Splines

Interpolation of polynomials. Splines are a piecewise generalization of polynomials.

Approximation spaces spanned by splines of degree p should at least contain all polyno-

mials of degree ≤ p. Unfortunately, this statement is not true for uniform B-splines ϕp
`,i as

we have defined them in the last section. A counterexample is given in Fig. 3.9, in which

a cubic polynomial f is interpolated with hierarchical cubic B-splines. We can clearly see

deviations of the interpolant from the polynomial near the boundary, where the pointwise

relative error exceeds 10 %. The oscillations are even visible in the interior of the spline

interpolation domain Dp
`
. Obviously, this phenomenon impairs the approximation quality

for other non-polynomial functions as well.

This issue can be explained as follows: According to Cor. 3.6 (hierarchical splitting

for uniform B-splines), we have Sp
`
=
⊕`

`′=0 W p
`′
|Dp
`

with p = 3. Since cubic polynomials

are also cubic splines, it follows f ∈ Sp
`

and hence f ∈
⊕`

`′=0 W p
`′
|Dp
`
. This means that

there is a linear combination of hierarchical B-splines ϕp
`′,i′ (`′ ≤ `, i′ ∈ I`′) that replicates

f on the whole domain Dp
`

(not be confused with f` in Fig. 3.9, which does not replicate

f exactly on Dp
`
). However, in general, this interpolant is not equal f outside of Dp

`
(i.e.,

in [0, 1] \ Dp
`
), as Prop. 3.2 (spline space) only holds for Dp

`
. In particular, the interpolant

evaluated at x ∈ {0, 1} is not equal to f (x). If we now force the additional interpolation

conditions in x`,0 = 0 and x`,2` = 1, the resulting interpolant f` cannot be the same as the

previous interpolant, which is why f and f` differ inside Dp
`
.

Schoenberg–Whitney conditions. Formally, the unique existence of an interpolating

spline is described by the Schoenberg–Whitney conditions:

3.2 BOUNDARY BEHAVIOR OF HIERARCHICAL B-SPLINES 63

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8
0

1

f

f3

Dp
3

A Objective function f (blue), interpolant f`
(red, dashed), grid points (dots), and spline
interpolation domain Dp

`
(thick line).

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8
10−5

10−4

10−3

10−2

10−1

100

B Pointwise relative error |(f − f`)/ f | on a log-
arithmic scale.

FIGURE 3.9 Hierarchical cubic B-splines ϕp
`′,i′ (`′ ≤ `, i′ ∈ I`′ , p = 3) fail to replicate a cubic

polynomial f (here: f (x) := −10.2x3+14.7x2−5x +0.7) when interpolating

on the grid of level `= 3.

PROPOSITION 3.8 (Schoenberg–Whitney conditions)

Let ξ= (ξ0, . . . ,ξm+p) be a knot sequence and t0, . . . , tm−1 a sequence of interpolation

points with t0 < · · · < tm−1 and ξp ≤ t0 < tm−1 ≤ ξm. Then, there exists a unique

interpolating spline s =
∑m−1

k=0 ck bp
k,ξ for arbitrary data if and only if

(3.21) ξk < tk < ξk+p+1, k = 0, . . . , m− 1.

PROOF See [Höl13]. �

The Schoenberg–Whitney conditions require that the interpolation points are con-

tained in Dp
`
, which is not the case for p = 3 (see Fig. 3.9), as Dp

`
does not contain the

points x = 0 and x = 1. For general degree p, the first p−1
2 and the last p−1

2 grid points

of level ` are missing from Dp
`
, thus violating the Schoenberg–Whitney conditions. One

possible remedy would be to move these interpolation points inside Dp
`

without changing

the corresponding basis functions (i.e., the knots stay the same) [Höl13]. For instance in

the cubic case, we could move x = 0 to x = 1.5h` and x = 1 to x = 1− 1.5h`. However,

with this approach, we would not be able to interpolate boundary values. In addition, the

condition of the interpolation problem will most likely worsen if we place interpolation

points near the ends of the supports of the corresponding basis functions.

64 CHAPTER 3: HIERARCHICAL B-SPLINES

Mismatch of dimensions. To find a solution for this issue, let Sp,[0,1]
`

denote the space

of all splines of degree p on the grid of level `, i.e., the space Sp
ξ with

(3.22) ξk := (k− p)h`, k = 0, . . . , m+ p, m := 2` + p.

We have Dp
ξ = [0, 1] for this choice of ξ. Hence, the grid points x`,i (i = 0, . . . , 2`) satisfy

the Schoenberg–Whitney conditions for the uniform B-spline basis. Clearly, the sum
⊕`

`′=0 W p
`′

is a subspace of Sp,[0,1]
`

, but it cannot be equal to Sp,[0,1]
`

due to

(3.23) dim
⊕̀

`′=0

W p
`′
= 2` + 1< 2` + p = m= dim Sp,[0,1]

`
, p > 1,

by Prop. 3.2 (spline space). There are too few nodal (and hierarchical) basis functions to

span the whole spline space Sp,[0,1]
`

.

Restriction to spline subspaces. The key idea is now to impose additional p−1 bound-

ary conditions on the basis functions to restrict Sp,[0,1]
`

to a reasonable subspace with

the correct dimension (2` + p)− (p− 1) = 2` + 1. “Reasonable” means that besides this

dimension constraint, two requirements should be met: First, the Schoenberg-Whitney

conditions should be satisfied for the new subspace and the grid of level `. Second,

the new subspace should contain all polynomials of degree ≤ p, eliminating the issue

discussed in Fig. 3.9.

3.2.2 Hierarchical Not-A-Knot B-Splines

Not-a-knot conditions. A suitable subspace can be obtained by incorporating the so-

called not-a-knot boundary conditions into Sp,[0,1]
`

. For the cubic case p = 3 (for which

we need two conditions), the not-a-knot conditions demand that for all splines s in

the subspace, d3

dx3 s is continuous at the first and at the last interior knot x`,1 = h` and

x`,2`−1 = 1−h` [Höl13]. This means that x`,1 and x`,2`−1 are effectively removed from the

knot sequence, as this is equivalent to requiring that s is a cubic polynomial on [0, x`,2]
and [x`,2`−2, 1] (hence “not-a-knot”). For general degree p (for which we need (p − 1)
conditions), we require that the p-th derivative dp

dx p s is continuous at the first p−1
2 and the

last p−1
2 inner grid points

(3.24) x`,i, i ∈ {1, . . . , p−1
2 } ∪ {2

` − p−1
2 , . . . , 2` − 1}.

This is equivalent to removing these knots from the knot sequence ξ, or, alternatively, to

requiring that s is a polynomial of degree ≤ p on [0, x`,(p+1)/2] and on [x`,2`−(p+1)/2, 1].

3.2 BOUNDARY BEHAVIOR OF HIERARCHICAL B-SPLINES 65

The knot sequence ξp,nak
`

with not-a-knot boundary conditions is defined as follows:

ξ
p,nak
`

:= (ξp,nak
`,0 , . . . ,ξp,nak

`,m+p), m := 2` + 1,(3.25a)

ξ
p,nak
`,k :=

x`,k−p, k = 0, . . . , p,

x`,k−(p+1)/2, k = p+ 1, . . . , 2`,

x`,k−1, k = 2` + 1, . . . , 2` + p+ 1.

(3.25b)

This knot sequence ξp,nak
`

can be obtained by removing the knots given in (3.24) from the

knot sequence (3.22) for the full grid of level `. We show ξp,nak
`

and the corresponding

B-spline functions in Fig. 3.10. The resulting spline space

(3.26) Sp,nak
`

:= Sp

ξ
p,nak
`

is a subspace of Sp,[0,1]
`

with the desired dimensionality:

(3.27) dim
⊕̀

`′=0

W p
`′
= 2` + 1= dim Sp,nak

`
.

The space Sp,nak
`

satisfies our two requirements: First, the spline interpolation domain

Dp

ξ
p,nak
`

= [ξp,nak
`,p ,ξp,nak

`,m] of Sp,nak
`

equals the whole unit interval [0, 1]. This means that the

Schoenberg–Whitney conditions are satisfied for Sp,nak
`

, since all interpolation points (grid

points) are contained in Dp

ξ
p,nak
`

= [0,1]. Second, Sp,nak
`

still contains all polynomials of

degree ≤ p, as we have only removed knots compared to Sp,[0,1]
`

.

However,
⊕`

`′=0 W p
`′

is not a subspace of Sp,nak
`

anymore, since the hierarchical basis

functions ϕp
`′,i′ are not not-a-knot splines (due to the additional knots that we removed

from Sp,nak
`

). For this reason, we have to incorporate the not-a-knot boundary conditions

into the hierarchical basis.

Before defining the new hierarchical basis functions, we make two additional ob-

servations. First, ξp,nak
`

coincides with the uniform knot sequence ξp
`

of Cor. 3.3 (nodal

B-spline space) for the piecewise linear case of p = 1. This is intuitively clear: For this

case, we do not need to remove any knots as the hierarchical splitting already holds for

the full domain by Cor. 2.6. Second, the removal of the knots in (3.24) is only possible

if p + 1 ≤ 2`, which is equivalent to ` ≥ dlog2(p + 1)e. For coarser levels, there are not

enough interior knots that could be removed. Without any special treatment, we would

not be able to obtain enough basis functions to span the spline space.

66 CHAPTER 3: HIERARCHICAL B-SPLINES

ξ0 ξp ξm ξm+p

0

bp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξbp
0,ξ

bp
0,ξ

bp
0,ξbp
0,ξbp
0,ξbp
0,ξ bp

1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξbp
1,ξ

bp
1,ξ

bp
1,ξbp
1,ξbp
1,ξbp
1,ξ

bp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξbp
2,ξ

bp
2,ξ

bp
2,ξbp
2,ξbp
2,ξbp
2,ξ

bp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξbp
3,ξ

bp
3,ξ

bp
3,ξbp
3,ξbp
3,ξbp
3,ξ bp

4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξbp
4,ξ

bp
4,ξ

bp
4,ξbp
4,ξbp
4,ξbp
4,ξ

bp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξbp
5,ξ

bp
5,ξ

bp
5,ξbp
5,ξbp
5,ξbp
5,ξ bp

6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξbp
6,ξ

bp
6,ξ

bp
6,ξbp
6,ξbp
6,ξbp
6,ξ

bp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξbp
7,ξ

bp
7,ξ

bp
7,ξbp
7,ξbp
7,ξbp
7,ξ

bp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξbp
8,ξ

bp
8,ξ

bp
8,ξbp
8,ξbp
8,ξbp
8,ξ

Dp
ξ

0 x`,1 · · · · · · x`,2`−1 1
ξ
x

FIGURE 3.10 Not-a-knot knot sequence ξp,nak
`

(ticks on horizontal axis) and nodal cubic
not-a-knot B-splines (p = 3) of level `= 3. In the domain [0, 1] (delimited by
dashed lines), the first p−1

2 and the last p−1
2 interior grid points of the set of

grid points Ω` (blue dots) have been removed from the set of knots. The spline
interpolation domain Dp

ξ
p,nak
`

(thick line) equals the whole domain [0,1].

Definition of hierarchical not-a-knot B-splines. For the definition of hierarchical not-

a-knot B-splines ϕp,nak
`,i based on Def. 3.1 (non-uniform B-splines), we use global Lagrange

polynomials for the coarser levels:

ϕ
p,nak
`,i :=

L`,i, ` < dlog2(p+ 1)e,

bp

i,ξp,nak
`

, `≥ dlog2(p+ 1)e,
` ∈ N0, i ∈ I`,(3.28a)

L`,i : [0,1]→ R, L`,i(x) :=
∏

i′=0,...,2`

i′ 6=i

x − x`,i′

x`,i − x`,i′
.(3.28b)

The hierarchical not-a-knot B-spline basis is shown for the cubic case p = 3 in Fig. 3.11.

The function L`,i is the i-th Lagrange polynomial of level `, that is, the unique polynomial

of degree ≤ 2` that interpolates the data {(x`,i′ ,δi,i′) | i′ = 0, . . . , 2`}. Since its degree

deg L`,i is bounded by 2`, we have deg L`,i < p + 1, as the Lagrange polynomials are

employed only when ` < dlog2(p+ 1)e. Due to 2` even (when `≥ 1) and p odd, we can

conclude from deg L`,i ≤ 2` ≤ p that actually deg L`,i ≤ 2` < p (for p > 1; for p = 1, the

case `= 0 is the exception).

The motivation for using Lagrange polynomials for coarse levels is that they form a

basis of the polynomial space and that they can be implemented and calculated quickly.

However, the specific choice of basis functions for the levels ` < dlog2(p+ 1)e is arbitrary,

as long as these functions are linearly independent (of each other and of the “true” not-a-

knot B-splines ϕp,nak
`,i , `≥ dlog2(p+ 1)e) and contained in the space Sp,nak

`
.

3.2 BOUNDARY BEHAVIOR OF HIERARCHICAL B-SPLINES 67

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8
0

ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0ϕ
p,nak
3,0

ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1ϕ
p,nak
3,1
ϕ

p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2ϕ
p,nak
3,2
ϕ

p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ
p,nak
3,3ϕ

p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4ϕ
p,nak
3,4
ϕ

p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ
p,nak
3,5ϕ

p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6ϕ
p,nak
3,6
ϕ

p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7ϕ
p,nak
3,7
ϕ

p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8ϕ
p,nak
3,8 V p,nak

3

A Nodal not-a-knot B-splines ϕp,nak
`,i (i ∈ I`)

and grid points x`,i (dots).

=
⊕

x0,0 x0,1
0

1
ϕ

p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0

ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1

W p,nak
0

x1,1
0

1
ϕ

p,nak
1,1

W p,nak
1

x2,1 x2,3
0

ϕ
p,nak
2,1 ϕ

p,nak
2,3

W p,nak
2

x3,1 x3,3 x3,5 x3,7
0

ϕ
p,nak
3,1

ϕ
p,nak
3,3 ϕ

p,nak
3,5 ϕ

p,nak
3,7

W p,nak
3

B Hierarchical not-a-knot B-splines ϕp,nak
`′,i′ (`′ ≤

`, i′ ∈ I`′) and grid points x`′,i′ (dots).

FIGURE 3.11 Univariate nodal and hierarchical cubic not-a-knot B-splines (p = 3) up to
level `= 3. The nodal space V p,nak

`
, which coincides with the not-a-knot spline

space Sp,nak
`

, decomposes into the direct sum of the hierarchical subspaces

W p,nak
`′

(`′ ≤ `). The knots of each level `′ are given by removing the first
p−1

2 and last p−1
2 inner points (crosses) from the set of grid points x`′,i′ (i′ =

0, . . . , 2`
′
).

Implementation. Note that in each level ` ≥ dlog2(p + 1)e, only the first p+1
2 (indices

i = 1, 3, . . . , p) and the last p+1
2 (indices i = 2`− p, 2`− p+2, . . . , 2`−1) hierarchical basis

functions ϕp,nak
`,i differ from ϕ

p
`,i, i.e., we have

(3.29) ϕ
p,nak
`,i = ϕp

`,i, i = p+ 2, p+ 4, . . . , 2` − p− 2.

This means that we can reuse uniform B-spline code for the inner functions. Due to

ϕ
p,nak
`,i (x) = ϕ

p,nak
`,2`−i(1−x) (because of the symmetry of ξp,nak

`
), we only have to reimplement

p+1
2 not-a-knot B-splines per level `. As ϕp,nak

`,i and ϕp,nak
`+1,i use the same knots up to an

affine transformation for ` large enough (` ≥ 3 suffices for p = 3), only a number of

special cases for coarse levels ` must be implemented. In other words, the not-a-knot

approach is “minimally invasive” with respect to an implementation that already uses

uniform B-splines.

68 CHAPTER 3: HIERARCHICAL B-SPLINES

Hierarchical splitting. The main benefit of the hierarchical not-a-knot B-spline basis

is the validity of the hierarchical splitting. As usual, we define V p,nak
`

and W p,nak
`

as the

nodal and the hierarchical not-a-knot subspace of level `, respectively.

PROPOSITION 3.9 (univariate hierarchical splitting for not-a-knot B-splines)

The hierarchical splitting (2.20) holds for the hierarchical not-a-knot B-spline basis:

(3.30) Sp,nak
`

= V p,nak
`

=
⊕̀

`′=0

W p,nak
`′

,

where for ` < dlog2(p+ 1)e, Sp,nak
`

is defined as the space P2` of polynomials of degree

≤ 2` on [0,1]. (For `≥ dlog2(p+ 1)e, Sp,nak
`

is the not-a-knot spline space.)

PROOF For ` < dlog2(p+ 1)e, all three spaces coincide with P2` and nothing is to prove.

For ` ≥ dlog2(p + 1)e, we check the two conditions of Lemma 2.2 (univariate hi-

erarchical splitting characterization). First, the hierarchical subspace W p,nak
`′

(`′ ≤ `) is

a subspace of Sp,nak
`

= V p,nak
`

. This is a conclusion of Prop. 3.2 (spline space), as every

function ϕp,nak
`′,i′ (i′ ∈ I`′) is continuous on [0,1], a polynomial on every knot interval of

ξ
p,nak
`

, and at the knots themselves at least (p− 1) times continuously differentiable.

Second, the hierarchical functions ϕp,nak
`′,i′ (`′ ≤ `, i′ ∈ I`′) are linearly independent.

This can be shown similarly to the proof of Prop. 3.5 (hierarchical B-splines are linearly

independent). The linear independence of the Lagrange polynomials can be checked by

inserting grid points into a zero linear combination. The linear combination collapses

and only one term remains, the coefficient corresponding to the grid point. Hence, all

coefficients must vanish. �

COROLLARY 3.10 (multivariate hierarchical splitting for not-a-knot B-splines)

It holds

(3.31) Sp,nak
` = V p,nak

` =
⊕̀

`′=0

W p,nak
`′

,

where Sp,nak
` is the tensor product space of Spt ,nak

`t
(t = 1, . . . , d) as defined in Prop. 3.9.

PROOF Follows directly from Prop. 2.5 (from univariate to multivariate splitting). �

3.2 BOUNDARY BEHAVIOR OF HIERARCHICAL B-SPLINES 69

Sparse grids with not-a-knot B-splines. Regular sparse grid spaces using the new

hierarchical not-a-knot basis are defined analogously to the uniform case, i.e.,

(3.32) V s,p,nak
n,d :=

⊕

‖`‖1≤n

W p,nak
` .

If the level n is large enough, then V s,p,nak
n,d contains the space Pp of all d-variate poly-

nomials of coordinate degree ≤ p on [0,1] (i.e., functions f : [0,1] → R of the form

f (x) :=
∑p

q=0 cq

∏d
t=1 xqt

t with cq ∈ R). This means that in contrast to the uniform B-

spline basis, hierarchical not-a-knot B-splines on sparse grids are able to replicate global

polynomials on [0,1]:

COROLLARY 3.11 If n≥ ‖dlog2(p + 1)e‖1, then Pp ⊆ V s,p,nak
n,d .

PROOF Let ` := dlog2(p+1)e and n≥ ‖`‖1. By Cor. 3.10, we have
⊕`
`′=0 W p,nak

`′
= Sp,nak

` .

In addition, all `′ ∈ Nd
0 with `′ ≤ ` satisfy ‖`′‖1 ≤ n and thus,

⊕`
`′=0 W p,nak

`′
⊆ V s,p,nak

n,d by

(3.32). We conclude Pp ⊆ Sp,nak
` ⊆ V s,p,nak

n,d , which is the asserted claim. �

3.2.3 Modified and Non-Uniform Hierarchical Not-A-Knot B-Splines

Modified hierarchical not-a-knot B-splines. As for uniform and Clenshaw–Curtis B-

splines (Sec. 3.1), it is possible to define a modified version of the hierarchical not-a-knot

B-spline basis to obtain “reasonable” boundary values without boundary points. However,

we cannot use Lemma 3.7 (Marsden’s identity) similarly to (3.16): Due to the removal of

knots, there is only a single not-a-knot B-spline ϕp,nak
`,0 left of ϕp,nak

`,1 . B-splines ϕp,nak
`,i with

index i < 0 would vanish on [0,1].
While we are therefore not able to construct modified functions whose second deriva-

tive vanishes in a neighborhood of x = 0, we can use ϕp,nak
`,0 to let the second derivative

vanish in x = 0 itself:

(3.33) ϕp,nak,mod
`,i (x) :=

1, `= 1, i = 1,

ϕ
p,nak
`,1 (x)−

d2

dx2ϕ
p,nak
`,1 (0)

d2

dx2ϕ
p,nak
`,0 (0)

ϕ
p,nak
`,0 (x), `≥ 2, i = 1,

ϕ
p,nak
`,i (x), `≥ 2, i ∈ I` \ {1,2` − 1},

ϕ
p,nak,mod
`,1 (1− x), `≥ 2, i = 2` − 1.

The resulting modified hierarchical not-a-knot B-spline basis ϕp,nak,mod
`,i is shown with

dashed lines in Fig. 3.12A. As before, we have to implement ϕp,nak,mod
`,1 only for a single

70 CHAPTER 3: HIERARCHICAL B-SPLINES

level `, as modified functions of higher levels are the same up to an affine parameter

transformation. Note again that for p ≥ 5, we would have to modify additional interior

B-splines as the interior of their support then extends to the boundary of [0, 1]. We refrain

from doing so to keep the definition (3.33) simple.

Non-uniform hierarchical not-a-knot B-splines. The not-a-knot construction is com-

pletely independent from the distribution of the grid points at hand. Consequently, we

can define hierarchical not-a-knot B-splines for non-uniform distributions. For instance,

to define not-a-knot B-splines for Chebyshev points (see Sec. 3.1.4), we first specify the

knot sequence as

ξ
p,cc,nak
`

:= (ξp,cc,nak
`,0 , . . . ,ξp,cc,nak

`,m+p), m := 2` + 1,(3.34a)

ξ
p,cc,nak
`,k :=

x cc
`,k−p, k = 0, . . . , p,

x cc
`,k−(p+1)/2, k = p+ 1, . . . , 2`,

x cc
`,k−1, k = 2` + 1, . . . , 2` + p+ 1,

(3.34b)

and then define hierarchical not-a-knot Clenshaw–Curtis B-splines as

ϕ
p,cc,nak
`,i :=

Lcc
`,i, ` < dlog2(p+ 1)e,

bp

i,ξp,cc,nak
`

, `≥ dlog2(p+ 1)e,
` ∈ N0, i ∈ I`,(3.35a)

Lcc
`,i : [0,1]→ R, Lcc

`,i(x) :=
∏

i′=0,...,2`

i′ 6=i

x − x cc
`,i′

x cc
`,i − x cc

`,i′
.(3.35b)

This definition can even be combined with the modification of hierarchical not-a-

knot B-splines as discussed above. We can use exactly the same approach as in (3.33), if

we replace the not-a-knot basis functions with their non-uniform not-a-knot counterparts

(not-a-knot Clenshaw–Curtis B-splines in the above example). The hierarchical not-a-knot

Clenshaw–Curtis B-spline basis of cubic degree and the corresponding modified functions

are shown in Fig. 3.12B.

3.2.4 Other Approaches to Incorporate Boundary Conditions

Not-a-knot boundary conditions are not the only approach to obtain a subspace of Sp,[0,1]
`

with the right dimension 2` − 1. Another possibility, which we want to discuss briefly,

are natural boundary conditions. In the cubic case, for which they are usually formulated

[Höl13], these boundary conditions require that the second derivatives d2

dx2ϕ`,i of the

3.2 BOUNDARY BEHAVIOR OF HIERARCHICAL B-SPLINES 71

x0,0 x0,1

0

1
ϕ

p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0ϕ
p,nak
0,0

ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1ϕ
p,nak
0,1

x1,1

0

1
ϕ

p,nak
1,1

x2,1 x2,3

0

1 ϕ
p,nak
2,1 ϕ

p,nak
2,3

x3,1 x3,3 x3,5 x3,7

0

1ϕp,nak
3,1

ϕ
p,nak
3,3 ϕ

p,nak
3,5 ϕ

p,nak
3,7

A ϕ
p,nak
`′,i′ , ϕp,nak,mod

`′,i′ (dashed), and x`′,i′ (dots).

xcc
0,0 xcc

0,1

0

1
ϕ

p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0ϕ
p,cc,nak
0,0

ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1ϕ
p,cc,nak
0,1

xcc
1,1

0

1
ϕ

p,cc,nak
1,1

xcc
2,1 xcc

2,3

0

1 ϕ
p,cc,nak
2,1 ϕ

p,cc,nak
2,3

xcc
3,1 xcc

3,3 xcc
3,5 xcc

3,7

0

1ϕp,cc,nak
3,1 ϕ

p,cc,nak
3,3 ϕ

p,cc,nak
3,5 ϕ

p,cc,nak
3,7

B ϕ
p,cc,nak
`′,i′ , ϕp,cc,nak,mod

`′,i′ (dashed), and xcc
`′,i′ (dots).

FIGURE 3.12 Comparison of uniform (left) and Clenshaw–Curtis (right) hierarchical cubic
not-a-knot B-splines ϕp,nak

`′,i′ and ϕp,cc,nak
`′,i′ (`′ ≤ `, i′ ∈ I`′ , p = 3) up to level `=

3 together with the respective modified versions ϕp,nak,mod
`′,i′ and ϕp,cc,nak,mod

`′,i′

(dashed). The knots of each level `′ are given by removing the first p−1
2

and last p−1
2 inner points (crosses) from the set of grid points x`′,i′ or xcc

`′,i′

(i′ = 0, . . . , 2`
′
), respectively.

basis functions vanish at the boundary x ∈ {0,1}. To obtain the necessary number of

p−1 constraints also for higher degrees p, we require that all derivatives dq

dxqϕ`,i of order

q = 2, . . . , p+1
2 vanish at x ∈ {0,1}.

Consequently, we can define hierarchical natural B-splines as

ϕ
p,nat
`,i (x) :=

(

L0,i(x), `= 0,

ϕ
p
`,i +

∑

j∈J p,nat
i

c`,i, jϕ
p
`, j, `≥ 1,

` ∈ N0, i ∈ I`,(3.36a)

J p,nat
i := {i − p−1

2 , . . . , i − 1} ∪ {i + 1, . . . , i + p−1
2 },(3.36b)

where the coefficients c`,i, j ∈ R are chosen such that the natural boundary conditions are

72 CHAPTER 3: HIERARCHICAL B-SPLINES

FIGURE 3.13
Hierarchical cubic natural B-splines ϕp,nat

`′,i′

(`′ ≤ `, i′ ∈ I`′ , p = 3) and grid points x`′,i′
(dots) up to level `= 3.

x0,0 x0,1
0

1
ϕ

p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0ϕ
p,nat
0,0

ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1ϕ
p,nat
0,1

x1,1
0

ϕ
p,nat
1,1

x2,1 x2,3
0

ϕ
p,nat
2,1 ϕ

p,nat
2,3

x3,1 x3,3 x3,5 x3,7
0

ϕ
p,nat
3,1 ϕ

p,nat
3,3 ϕ

p,nat
3,5

ϕ
p,nat
3,7

satisfied:

(3.37)
dq

dxq
ϕ

p,nat
`,i (x) = 0, `≥ 1, i ∈ I`, q = 2, . . . , p+1

2 , x ∈ {0,1}.

The first half of the coefficients c`,i, j ∈ R (j < i) vanishes if the interior of the support

of ϕp
`,i does not contain x = 0 (i.e., i ≥ p+1

2). The second half of the coefficients (j > i)

vanishes analogously if 1 /∈ �suppϕp
`,i ⇐⇒ i ≤ 2` − p+1

2 . This means that only the first

b p+1
4 c and the last b p+1

4 c hierarchical functions have to be altered in each level.

Figure 3.13 shows the hierarchical natural spline basis. The main disadvantage of

natural boundary conditions is that we are not able to replicate arbitrary polynomials

exactly on [0,1] with this approach. Only polynomials that satisfy natural boundary

conditions themselves (linear polynomials for example) can be replicated exactly. For this

reason, we do not further consider this basis in the rest of the thesis.

73

4
Algorithms for B-Splines on

Sparse Grids

“ Who are you? How did you get in my house?

— Donald E. Knuth about one-based array indices in

algorithms (according to xkcd1)

Little is known about the algorithmic challenges that hierarchical bases of B-spline

type (or even of general type) pose on sparse grids. In general, we are not able to

directly apply the sparse grid algorithms that were designed for hat functions ϕ1
`,i. Hence,

we have to generalize these algorithms to higher-order B-splines ϕp
`,i or even to arbitrary

tensor product basis functions. The main problem is the larger support of higher-order B-

splines when compared to degree p = 1. The larger support introduces new dependencies

between values of grid points that cannot be resolved with conventional algorithms.

This chapter gives an overview of six algorithms for B-splines on sparse grids. Two

of these algorithms are already known [Gri92; Bal94], while the remaining four are

new. Correctness results are given for every algorithm. We use hierarchization as the

exemplary problem for our algorithms, but the ideas of the algorithms can be generalized

to any linear operator. Furthermore, most algorithms are not tailored to B-splines ϕp
`,i,

1https://xkcd.com/163/

https://xkcd.com/163/

74 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

but applicable to general tensor product basis functions ϕ`,i. Whether an algorithmic

approach is feasible for the sparse grid at hand or not depends on the grid’s type: full

grid, dimensionally adaptive sparse grid, or spatially adaptive sparse grid. The more

assumptions the grid satisfies, the faster and easier the corresponding algorithms will be.

Section 4.1 explains hierarchization as our example problem and defines the notation

used in this chapter. The remaining four sections treat the three different types of grids:

First, Sec. 4.2 deals with full grids to formalize and repeat the well-known unidirectional

principle (UP). Second, Sec. 4.3 focuses on algorithms for dimensionally adaptive sparse

grids. Third, Sec. 4.4 and Sec. 4.5 treat arbitrary (spatially adaptive) sparse grids, which

is the most interesting case for us. Section 4.4 employs breadth-first search (BFS) for

hierarchization, while Sec. 4.5 uses the UP.

This original chapter is the main theoretical contribution of this thesis. Although the

unidirectional principle in Sec. 4.2 and the combination technique in Sec. 4.3 are well-

known, the presentation with formal proofs of correctness is new. Parts of the chapter

have already been published in scientific papers, namely Sec. 4.4 [Vale18a]. The weakly

fundamental splines (Sec. 4.5.4) and the Hermite hierarchization method (Sec. 4.5.5)

are based on an idea by Dr. Stefan Zimmer (University of Stuttgart, Germany).

4.1 The Hierarchization Problem

Let Ωs ⊆ [0, 1]d be a general (sparse) grid that may be spatially adaptive, i.e., of the form

Ωs = {x `,i | (`, i) ∈ K}, where K is a set of level-index pairs (`, i) with ` ∈ Nd
0 and i ∈ I`

such that N := |Ωs| = |K | <∞ (see Sec. 2.3.3). The hierarchization problem is finding

hierarchical surpluses (α`′,i ′)(`′,i ′)∈K ∈ RN such that

(4.1)
∑

(`′,i ′)∈K

α`′,i ′ϕ`′,i ′(x `,i) = f (x `,i) for all (`, i) ∈ K ,

where ϕ`′,i ′ are arbitrary tensor product basis functions and (f (x `,i))(`,i)∈K ∈ RN is a set

of function values f (x `,i) at the grid points x `,i . This then defines the interpolant f s as

(4.2) f s : [0,1]→ R, f s :=
∑

(`′,i ′)∈K

α`′,i ′ϕ`′,i ′ ,

which interpolates f at the grid points x `,i of Ωs. Figure 4.1 shows the process of hierar-

chizing given function values and evaluating the resulting interpolant.

We explicitly allow ϕ`′,i ′ to be nodal basis functions, in which case `′ is constant and

Ωs is a full grid. Strictly speaking, the problem is then an interpolation problem and the

4.1 THE HIERARCHIZATION PROBLEM 75

0 x`,i ∈ Ωs 1
0

1

f (x`,i)

A The objective function f is
sampled at the grid points
x`,i ∈ Ωs to obtain function
values f (x`,i), which form
the input vector u for the
linear operator L= A−1.

0 x`,i ∈ Ωs 1
0

1

α`,i

B The linear operator L is ap-
plied to u to obtain the out-
put vector y , which con-
tains the hierarchical sur-
pluses α`,i ((`, i) ∈ K).

0 x`,i ∈ Ωs x 1
0

1

f s f s(x)

C The interpolant f s (black
dashed line) is evaluated at
x ∈ [0,1] by adding contri-
butions (black dotted lines)
of weighted basis functions
α`,iϕ`,i (colored), obtaining
f s(x) (cross).

FIGURE 4.1 Hierarchization of function values f (x`,i) (left) to obtain hierarchical surpluses
α`,i (center) and evaluation of the resulting interpolant f s (right), using a
univariate grid and the piecewise linear basis as an example.

α`′,i ′ are interpolation coefficients. However, we still apply the terms “hierarchization” and

“hierarchical surpluses” in this case to keep the terminology consistent.

Hierarchization as a linear operator. The example of hierarchization can be general-

ized to arbitrary linear operators

(4.3) L: RN → RN , u 7→ y = L[u],

where L depends on the grid Ωs at hand. Input u and output y are scalar-valued data

(4.4) u = (u`,i)(`,i)∈K ∈ RN , y = (y`,i)(`,i)∈K ∈ RN ,

which give one scalar per grid point x `,i ∈ Ωs. For the case of hierarchization, L is the

inverse of the interpolation matrix A ∈ RN×N :

(4.5a) L= A−1, A= (ϕ`′,i ′(x `,i))(`,i),(`′,i ′)∈K , u = (f (x `,i))(`,i)∈K , y = (α`′,i ′)(`′,i ′)∈K .

This means that we can determine the α`′,i ′ by solving the N×N system of linear equations

(4.5b) y = L[u] ⇐⇒ A · (α`′,i ′)(`′,i ′)∈K = (f (x `,i))(`,i)∈K .

76 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

FIGURE 4.2
Density pattern of the hier-
archization matrix A (middle
row, blue) and of its inverse
A−1 (bottom row, red) for the
regular sparse grid Ωs(1)

n,d with
n= 4 and d = 2 (top row) and
uniform hierarchical B-splines
ϕ

p
`,i for degrees p ∈ {1,3,5}.

The blue areas in the top row
show the extent of the sup-
port of one specific basis func-
tion ϕp

`′,i ′
with `′ = (2, 2) and

i ′ = (1,1) (cross: correspond-
ing grid point x `′,i ′). The blue
points are the grid points at
which ϕp

`′,i ′
is non-zero.

p = 1 p = 3 p = 5

A

A−1

Complexity of B-spline hierarchization. As noted in [Vale18a], hierarchization on

sparse grids with hierarchical B-splines ϕp
`,i of degree p as basis functions ϕ`,i is a tedious

task. The corresponding linear system (4.5) is in general non-symmetric (i.e.,ϕp
`′,i ′
(x `,i) 6=

ϕ
p
`,i(x `′,i ′)) and densely populated. This is because the matrix entry in the (`, i)-th row

and (`′, i ′)-th column vanishes if and only if

(4.6) x `,i /∈ �suppϕp
`′,i ′
⇐⇒ ∃t=1,...,d x`t ,it

/∈
�

x`′t ,i′t −
pt+1

2 h`′t , x`′t ,i′t +
pt+1

2 h`′t
�

,

where �supp is the interior of the support [Vale18a]. For coarse levels `′, the mesh size

h`′t is large in every dimension t, which implies that �suppϕp
`′,i ′

contains most of the grid

points. In contrast to the hat function case (p = 1), the value of α`′,i ′ depends not only on

f (x `,i) and the data of the 3d − 1 neighboring grid points on the boundary of suppϕ1
`′,i ′

,

but potentially on the data of the whole grid. This is shown in Fig. 4.2: There are at most

3d = 9 non-zero entries in each row of A−1 for p = 1 and d = 2. As soon as the B-spline

degree is increased, both A and A−1 become significantly denser.

This prohibits the use of the UP, which we will discuss in the next section, on sparse

grids with hierarchical B-splines. Consequently, we have to solve the linear system (4.5),

which is significantly more time-consuming, as it takes betweenΩ(N 2d) and O (N 2(N+d))
time via Gaussian elimination.2 In addition, if we use an explicit solver for the linear

2Ω(N2d) for assembling A and O (N3) for solving the system.

4.2 HIERARCHIZATION ON FULL GRIDS (UNIDIRECTIONAL PRINCIPLE) 77

system, we additionally have to store an N × N matrix in memory. However, a grid of

size N = 116000 already exceeds the memory of a 128 GiB supercomputer node, if we

explicitly store the full matrix in double precision. In comparison, for the hat function

basis, the UP only requires O (Nd) time and O (N) memory.

Notation. We do not need the hierarchical level-index information (`, i) inΩs, K , u, and

y for most of the considerations in this chapter. In these cases, we assume that in each

dimension t, the level-index pairs (`t , it) (`t ∈ N0, it ∈ I`t
) are continuously enumerated

by a single index kt = kt(`t , it) ∈ N0. We identify (`, i) with a single index k, whose t-th

component is given by kt(`t , it). Hence, we regard K as a subset K := {k | x k ∈ Ωs} of

Nd
0 . We will switch between the notations whenever appropriate. All statements that are

formulated in the k notation are valid for both the nodal and the hierarchical basis.

In the following, kt denotes the t-th component of a d-vector k as usual. With k−t ,

we denote the (d−1)-vector that is obtained from k by omitting the t-th component, i.e.,

k−t := (k1, . . . , kt−1, kt+1, . . . , kd). For a j-tuple T = (t1, . . . , t j) ∈ {1, . . . , d} j, we define

kT to be the j-vector (kt1
, . . . , kt j

) that only contains the entries of the dimensions listed

in T . Accordingly, k−T is defined as the (d − j)-vector that contains the entries of the

remaining dimensions (sorted by the dimension t). We define ka:b := (ka, ka+1, . . . , kb) as

an indexing shortcut (a ≤ b).

4.2 Hierarchization on Full Grids (Unidirectional
Principle)

IfΩs is a full gridΩ` (see Sec. 2.1), the well-known UP can be used to apply L to input data

u. As shown in Fig. 4.3 for a sparse grid, the idea of the UP is to apply the corresponding

one-dimensional operators on the one-dimensional subgrids (the poles) of Ωs, which is

repeated for all dimensions. In this section, we first formulate the UP for general linear

operators L and then prove its correctness for the case L = A−1 of hierarchization. The

correctness for arbitrary tensor product operators will follow from Sec. 4.5.

Unidirectional principle and its correctness. We state the UP in Alg. 4.1. The algo-

rithm is given a permutation (t1, . . . , td) of (1, . . . , d) that specifies the order of dimensions

in which the UP should be applied. We denote with L(t j),Kpole the one-dimensional ver-

sion of L applied in dimension t j (j = 1, . . . , d) on the pole Kpole. Formally, a pole is an

equivalence class of the pole equivalence relation ∼t j
on K:

(4.7) k ′ ∼t j
k ′′ ⇐⇒ k ′−t j

= k ′′−t j
, k ′, k ′′ ∈ K .

78 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

u = y (0) y (1) y (2) = y
L(1),Kpole L(2),Kpole

L

FIGURE 4.3 Application of a linear operator L on two-dimensional sparse grid data with
the unidirectional principle. Left: The univariate operator L(1),Kpole is applied
on the input data u along poles Kpole of the first dimension x1. Center: The
univariate operator L(2),Kpole is applied on the resulting intermediate data y (1)

along poles Kpole of the second dimension x2. Right: Final values y = L[u]
after the application on both dimensions. All grid points of the same color are
part of the same pole Kpole (equivalence classes of ∼t in Alg. 4.1).

We prove the correctness of the UP with the following invariant:

PROPOSITION 4.1 (invariant of unidirectional principle for hierarchization)

Let L be the hierarchization operator on a full grid, i.e., L= A−1, u = (f (x k))k∈K , y =
(αk)k∈K , L(t j),Kpole is the univariate interpolation operator (A(t j))−1, and K = {0, . . . ,2`}
corresponds to a full grid Ω` of level `. After iteration j of Alg. 4.1 (j = 1, . . . , d), it

holds for T := (t1, . . . , t j)

(4.8)
2`T
∑

kT=0

y (j)
(kT ,k ′−T)

ϕkT
(x k ′T

) = f (x k ′), k ′ = 0, . . . ,2`,

where (kT , k ′−T) is shorthand for k ′′ with k′′t := kt if t ∈ T and k′′t := k′t if t /∈ T.

PROOF We prove the assertion by induction over j = 1, . . . , d. We set T ′ := (t1, . . . , t j−1),
T := (t1, . . . , t j−1, t j), and we exploit the tensor product structure of the basis to write the

left-hand side (LHS) of the assertion for j and arbitrary k ′ = 0, . . . ,2` as

(4.9)
2`T
∑

kT=0

y (j)
(kT ,k ′−T)

ϕkT
(x k ′T

) =
2`T ′
∑

kT ′=0

ϕkT ′
(x k ′

T ′
)

2
`t j
∑

kt j
=0

y (j)
(kT ,k ′−T)

ϕkt j
(xk′t j

).

If we choose the equivalence class Kpole := [(kT , k ′−T)]∼t j
(kT arbitrary), then the inner

4.2 HIERARCHIZATION ON FULL GRIDS (UNIDIRECTIONAL PRINCIPLE) 79

1 function y = unidirectionalPrinciple(u, K, (t1, . . . , td))
2 y (0)← u
3 for j = 1, . . . , d do
4 for Kpole ∈ K/∼t j

do

5 (y(j)k)k∈Kpole
← L(t j),Kpole

�

(y(j−1)
k)k∈Kpole

�

 apply univariate operator on pole

6 y ← y (d)

ALGORITHM 4.1 Application of a tensor product operator L with the unidirectional prin-
ciple. Inputs are the vector u = (uk)k∈K of input data, the set K of grid
indices, and the permutation (t1, . . . , td) specifying the order in which
the one-dimensional operators L(t j),Kpole should be applied. The output is
the vector y = (yk)k∈K of output data.

sum over kt j
equals

(4.10)
∑

k ′′∈Kpole

y (j)
k ′′
ϕk′′t j
(xk′t j

) =
�

(L(t j),Kpole)−1
�

(y (j)
k ′′
)k ′′∈Kpole

��

k′t j

= y (j−1)
(kT ′ ,k

′
−T ′)

by line 5 of Alg. 4.1. We can conclude that the LHS Eq. (4.9) equals

(4.11)
2`T ′
∑

kT ′=0

y (j−1)
(kT ′ ,k

′
−T ′)
ϕkT ′
(x k ′

T ′
),

which, by the induction hypothesis, equals f (x k ′) as desired (if j > 1). The same reason-

ing for (4.10) can be used to establish the base case for j = 1. �

COROLLARY 4.2 Algorithm 4.1 is correct for hierarchization on full grids.

PROOF We apply Prop. 4.1 for j = d to obtain
∑2`

k=0 y (j)k ϕk(x k ′) = f (x k ′) for all k ′ =
0, . . . ,2`, i.e., the y (j)k are the correct interpolation coefficients according to (4.1). �

Complexity. We compare the complexity of the UP for hierarchization with the direct

solution of the system (4.5) of linear equations. If we assume that d is constant and that L

and L(t j),Kpole apply Gaussian elimination to solve the multivariate and univariate systems,

respectively, then directly solving (4.5) takes O (N 2(N + d)) time and O (N 2) memory. In

contrast, the UP only requires O (N
∑

t N 2
t) time3 and O (max{N 2

1 , . . . , N 2
d , N}) memory,

where Nt is the grid size |{kt | k ∈ K}| in dimension t = 1, . . . , d. The dependency from

the univariate grid sizes Nt instead of N makes the UP significantly less computationally

3There are N/Nt poles in the t-th iteration of Alg. 4.1. Each pole requires the solution of an Nt ×Nt linear
system, which takes O (N3

t) time.

80 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

expensive. As already mentioned, the UP is even more efficient in the piecewise linear

case, where the univariate interpolation operators can be applied in-place. Hence, it only

needs O (Nd) time and O (N) memory in this case.

4.3 Hierarchization on Dimensionally Adaptive Sparse
Grids

IN THIS SECTION

4.3.1 The Combination Technique
and Its Combinatorial Proof (p. 80)

4.3.2 Hierarchization with the
Combination Technique (p. 85)

4.3.3 Hierarchization with Residual
Interpolation (p. 86)

Dimensionally adaptive sparse grids, which are

sums of different hierarchical subspaces as de-

scribed in Sec. 2.3.2, have the advantage over gen-

eral spatially adaptive sparse grids that algorithms

can be formulated and applied more easily. In this

section, we describe two methods: first, the well-

known combination technique, which was already

mentioned in Sec. 2.3.2, and second, a new algorithm based on residual interpolation.

4.3.1 The Combination Technique and Its Combinatorial Proof

The combination technique was one of the first methods that were developed by Griebel et

al. in [Gri92] (for two and three dimensions) after the term “sparse grids” was coined in

1991 [Zen91]. However, the combination technique predates the development of sparse

grids by decades, as it was already mentioned by Smolyak in 1963 [Smo63; Heg07].
Delvos developed and proved the standard combination formula in the framework of

Boolean interpolation operators in 1982 [Delv82; Delv89].

Formal description and outline of a combinatorial proof. In the following, we give

a formal description of the sparse grid combination technique and we outline a new

combinatorial proof of its correctness. While we discuss a high-level explanation of the

proofs in this section, the proofs themselves can be found in Appendix A.3.1, since most

of them are rather technical. For simplicity, we formulate the combination technique and

its proof for regular sparse grids (see Sec. 2.3.1). However, the main ideas of the chain

of proofs are also applicable to dimensionally adaptive sparse grids (see Sec. 2.3.2).

THEOREM 4.3 (sparse grid combination technique)

Let K := {(`, i) | ‖`‖1 ≤ n, i ∈ I`} correspond to the regular sparse grid Ωs
n,d and let

(f (x `,i))(`,i)∈K be given function values on Ωs
n,d . If we define

4.3 HIERARCHIZATION ON DIMENSIONALLY ADAPTIVE SPARSE GRIDS 81

• the combined sparse grid interpolant f s,ct
n,d via (2.31), i.e.,

(4.12) f s,ct
n,d =

d−1
∑

q=0

(−1)q
�

d − 1
q

�

∑

‖`′‖1=n−q

f`′ ,

where f`′ ∈ V`′ is the full grid interpolant of f with level `′, and

• the hierarchical sparse grid interpolant f s
n,d via (4.1) and (4.2)

and if we assume that the hierarchical splitting equation (2.22) holds, then the combined

and the hierarchical sparse grid interpolants coincide:

(4.13) f s,ct
n,d = f s

n,d .

PROOF (SKETCH) Let x `,i ∈ Ωs
n,d be an arbitrary point of the regular sparse grid. First,

we split the inner sum of f s,ct
n,d (x `,i) into levels `′ whose full grid sets Ω`′ contain x `,i and

levels whose full grid sets do not contain x `,i:

(4.14) f s,ct
n,d (x `,i) =

d−1
∑

q=0

(−1)q
�

d − 1
q

�

·

∑

‖`′‖1=n−q
Ω`′3x `,i

f`′(x `,i) +
∑

‖`′‖1=n−q
Ω`′ 63x `,i

f`′(x `,i)

.

The summands f`′(x `,i) of the first inner sum each equal f (x `,i) due to the full grid

interpolation property (2.11). Therefore, the first inner sum is equal to the product of

f (x `,i) with the number of summands:

f s,ct
n,d (x `,i) = f (x `,i) ·

d−1
∑

q=0

(−1)q
�

d − 1
q

�

· |{`′ | ‖`′‖1 = n− q, Ω`′ 3 x `,i}|

+
d−1
∑

q=0

(−1)q
�

d − 1
q

�

·
∑

‖`′‖1=n−q
Ω`′ 63x `,i

f`′(x `,i).
(4.15)

After this sketch of proof, we will prove that the first of the two summands in Eq. (4.15)

equals one (see Prop. 4.4) and that the second of the two summands equals zero (see

Prop. 4.8). Consequently, we infer

(4.16) f s,ct
n,d (x `,i) = f (x `,i),

i.e., f s,ct
n,d interpolates f at Ωs

n,d . Note that f s,ct
n,d is contained in V s

n,d , if the hierarchical

82 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

splitting equation (2.22) holds, as

(4.17) f`′ ∈ V`′ =
`′
⊕

`′′=0

W`′′ ⊆ V s
n,d , ‖`′‖1 ≤ n,

due to ‖`′′‖1 ≤ ‖`
′‖1 ≤ n for `′′ ≤ `′, i.e., W`′′ ⊆ V s

n,d for `′′ = 0, . . . ,`′.4 As both f s,ct
n,d and

f s
n,d are contained in V s

n,d and interpolate f on Ωs
n,d , they coincide due to the uniqueness

of sparse grid interpolation (linear independence of the hierarchical basis). �

Inclusion-exclusion principle. It remains to prove that the first sum in (4.15) is indeed

one and that the second sum vanishes. The first statement is a direct consequence of the

inclusion-exclusion principle [Heg07]. In its simplest form, the idea of the principle is that

the cardinality of the union of two finite subsets A and B of some set is given by

(4.18) |A∪ B|= |A|+ |B| − |A∩ B|,

i.e., we first count (include) the elements in A and then in B, but as we have counted the

elements of A∩ B twice, we have to subtract (exclude) its cardinality again.

The setting is similar for the combination technique. If we add all grids in Fig. 2.6 on

the green diagonal, then every point whose index is not odd will be counted multiple times.

By subtracting the number of occurrences of the points on the red diagonal, the result of

the “weighted counting” is exactly one for every point. The following proposition, whose

proof is of purely combinatorial nature, generalizes this argument to higher dimensions:

PROPOSITION 4.4 (inclusion-exclusion principle)

For every x `,i ∈ Ωs
n,d , we have

(4.19)
d−1
∑

q=0

(−1)q
�

d − 1
q

�

· |{`′ | ‖`′‖1 = n− q, Ω`′ 3 x `,i}|= 1.

PROOF See Appendix A.3.1. �

Canceling out function values. The second statement about the vanishing second sum

in (4.15) is much harder to prove. It says that at every grid point x `,i , the contributions

f`′ of levels `′ that do not contain that point cancel out, which may seem quite surprising.

The key observation is as follows: The values of f`′ , f`′′ for two levels `′,`′′ are the same

at x `,i , if all non-equal entries `′t ,`
′′
t of the levels are each greater or equal to `t .

4This argumentation can be straightforwardly adapted for general dimensionally adaptive sparse grids
with downward closed level sets as mentioned in Sec. 2.3.2.

4.3 HIERARCHIZATION ON DIMENSIONALLY ADAPTIVE SPARSE GRIDS 83

For a higher-level explanation, note that the statement `′t ≥ `t is equivalent to

Ω`′t 3 x`t ,it
. Both f`′ , f`′′ interpolate at x `,i when projected onto the t-th dimension,

so their contribution to f`′(x `,i) and f`′′(x `,i) must be the same. Although there may be

dimensions t for which Ω`′t 63 x`t ,it
, these dimensions do not matter if `′t = `

′′
t , as the

univariate restrictions of f`′ , f`′′ interpolate the same data and they are evaluated at the

same point x`t ,it
.

One can formalize these considerations by defining an equivalence relation on the

set of levels such that the values of f`′ at x `,i are constant on the equivalence classes.

DEFINITION 4.5 (equivalence relation for the proof of the combination technique)

Let x `,i ∈ Ωs
n,d be fixed and

(4.20) L := {`′ | ∃q=0,...,d−1 ‖`
′‖1 = n− q, Ω`′ 63 x `,i}

be the set of levels that do not contain x `,i . We define a relation ∼ on L as follows:

For `′,`′′ ∈ L, we set `′ ∼ `′′ if and only if

(4.21) ∀t /∈T`′ ,`′′
min{`′t ,`

′′
t } ≥ `t , T`′,`′′ := {t | `′t = `

′′
t < `t}.

LEMMA 4.6 Let `′,`′′ ∈ L with `′ ∼ `′′. Then, f`′(x `,i) = f`′′(x `,i).

PROOF See Appendix A.3.1. �

By exploiting the tensor product structure of the basis functions, the proof shows an

even stronger version, which is shown in Fig. 4.4: The components f`′ and f`′′ are equal

on the m-dimensional affine subspace through x `,i parallel to the m coordinates in T`′,`′′

(where m := |T`′,`′′ |). The lemma allows to group summands in the second sum of (4.15)

by function values. Hence, it remains to count the number of levels in each equivalence

class of ∼. Therefore, we need a characterization of the equivalence classes:

LEMMA 4.7 (characterization of equivalence classes)

Let L0 ∈ L/∼ be an equivalence class of ∼. If we define

(4.22) TL0
:= {t | ∃`∗t<`t

∀`′∈L0
`′t = `

∗
t}

as the set of dimensions t in which all levels in L0 have the same entry `∗t < `t , then

(4.23) L0 = {`
′ ∈ L | ∀t∈TL0

`′t = `
∗
t , ∀t /∈TL0

`′t ≥ `t}.

84 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

FIGURE 4.4
Nodal subspaces V` contributing
to the combination technique so-
lution for the two-dimensional
regular sparse grid V s

n,d of level
n= 3 (bottom right). After pick-
ing a point x `,i ∈ Ωs

n,d (cross,
here ` = (2,1), i = (1,1)),
the set L of levels whose grids
do not contain x `,i (colored sub-
spaces) decompose into three
disjoint equivalence classes (col-
ors) given by the relation ∼. In
every equivalence class L0 ∈
L/∼, the interpolants f`′ (`′ ∈
L0) equal on an affine subspace
(dark lines), which contains x `,i .
Due to the combination coeffi-
cients, the contribution to the
combined solution vanishes per
equivalence class. V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)V(0,3)

V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)V(1,2)

V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)V(2,1)

V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)V(3,0)

V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)V(0,2)

V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)V(1,1)

V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)V(2,0)

V s
n,d

PROOF See Appendix A.3.1. �

The lemma states that every equivalence class L0 is exactly the set of the levels whose

entries are equal and smaller than `t in some dimensions (which are contained in TL0
) and

whose entries are greater or equal than `t in all other dimensions. While this statement

may seem intuitively correct, the proof is rather technical. Finally, we are now able to

show that the second sum in (4.15) vanishes:

PROPOSITION 4.8 (function value cancellation)

For every x `,i ∈ Ωs
n,d , we have

(4.24)
d−1
∑

q=0

(−1)q
�

d − 1
q

�

·
∑

‖`′‖1=n−q
Ω`′ 63x `,i

f`′(x `,i) = 0.

PROOF See Appendix A.3.1. �

The proof essentially first counts the number of possible levels in an equivalence

class and then applies known combinatorial identities to prove that the sum must vanish.

This proves Thm. 4.3 (sparse grid combination technique).

4.3 HIERARCHIZATION ON DIMENSIONALLY ADAPTIVE SPARSE GRIDS 85

1 function y = combinationTechnique(u, n, d)
2 for q = 0, . . . , d − 1 do
3 for `′ ∈ Nd

0 with ‖`′‖1 = n− q do
4 Let (α(`

′)
`,i)`=0,...,`′, i∈I` be such that

∑`′

`=0

∑

i∈I`
α
(`′)
`,i ϕ`,i ≡ f`′

5 α
(`′)
`,i ← 0 for all (`, i) ∈ K with ¬(`≤ `′) extend surpluses

6 y`,i =
∑d−1

q=0(−1)q
�d−1

q

�∑

‖`′‖1=n−q α
(`′)
`,i for all (`, i) ∈ K combine surpluses

ALGORITHM 4.2 Application of the hierarchization operator L= A−1 with the combination
technique. For simplicity, the algorithm is described for regular sparse
grids, but it can be generalized to arbitrary dimensionally adaptive sparse
grids. Inputs are the vector u = (u`,i)(`,i)∈K of input data (function values
f (x `,i) at the grid points), the level n, and the dimensionality d of the
regular sparse grid, where K is the set of all feasible level-index pairs
(`, i), i.e., ‖`‖1 ≤ n, i ∈ I`. The output is the vector y = (y`,i)(`,i)∈K of
output data (hierarchical surpluses α`,i).

4.3.2 Hierarchization with the Combination Technique

It is straightforward to hierarchize function values f (x `,i) on dimensionally adaptive

sparse grids with the combination technique. The resulting hierarchization algorithm

is given as Alg. 4.2. In line 4, the hierarchical surpluses corresponding to the full grid

interpolant f`′ ∈ V`′ have to be computed (see (2.11)). As shown in Sec. 4.2, we can easily

calculate these surpluses with the unidirectional principle in Alg. 4.1. The surpluses are

then combined with the same combination formula as in Thm. 4.3 (sparse grid combina-

tion technique). Note that it is imperative to employ the hierarchical basis functions ϕ`,i
with `= 0, . . . ,`′ and i ∈ I` and not the nodal basis, i.e., ϕ`′,i ′ with i ′ = 0, . . . ,2`

′
.

Correctness. Of course, the proof of the correctness of Alg. 4.2 relies on the correctness

of the combination technique (see Thm. 4.3). If determining the combination coefficients

correctly [Nob16], the algorithm can even be applied to all dimensionally adaptive sparse

grids. The proof of the following proposition can be generalized accordingly.

PROPOSITION 4.9 (correctness of combination technique)

Algorithm 4.2 is correct for hierarchization on regular sparse grids.

PROOF According to line 4 of Alg. 4.2, the full grid interpolants f`′ can be written as

(4.25) f`′ =
∑

‖`‖1≤n

∑

i∈I`

α
(`′)
`,i ϕ`,i

where the surpluses have been extended from `= 0, . . . ,`′ to all ` with ‖`‖1 ≤ n by zero

86 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

in line 5. Theorem 4.3 now allows to write the hierarchical interpolant f s
n,d in terms of

the full grid components:

f s
n,d = f s,ct

n,d =
d−1
∑

q=0

(−1)q
�

d − 1
q

�

∑

‖`′‖1=n−q

f`′(4.26a)

=
d−1
∑

q=0

(−1)q
�

d − 1
q

�

∑

‖`′‖1=n−q

∑

‖`‖1≤n

∑

i∈I`

α
(`′)
`,i ϕ`,i .(4.26b)

=
∑

‖`‖1≤n

∑

i∈I`

d−1
∑

q=0

(−1)q
�

d − 1
q

�

∑

‖`′‖1=n−q

α
(`′)
`,i

!

︸ ︷︷ ︸

=y`,i

ϕ`,i ,(4.26c)

where y`,i is the (`, i)-th entry of the output vector of Alg. 4.2. Note that the hierarchical

interpolant f s
n,d can be written as f s

n,d =
∑

‖`‖1≤n

∑

i∈I`
α`,iϕ`,i (see (2.28)), where the

surpluses α`,i are unique due to the linear independence of the hierarchical basis. As

(4.26c) equals f s
n,d and has the same form, the coefficients y`,i must coincide with the

surpluses α`,i . �

4.3.3 Hierarchization with Residual Interpolation

Another method to hierarchize function values on dimensionally adaptive sparse grids is

the method of residual interpolation. The advantage over the combination technique is

that it only needs to operate on so-called active nodal spaces. In contrast, the combination

technique needs to perform computations on additional non-active nodal subspaces (for

the regular sparse grid case: summands with q ≥ 1 in (2.31)).

Active nodal spaces. Algorithm 4.3 describes the procedure of the method of residual

interpolation, given the function values u corresponding to the grid points and the levels

L contained in the sparse grid (see (2.30)). The list `(1), . . . ,`(m) of active nodal spaces

in line 3 is determined by the condition

(4.27)
m
⋃

j=1

{` ∈ Nd
0 | `≤ `

(j)}= L, ∀ j1 6= j2 ¬(`
(j1) ≤ `(j2)).

This means that the corresponding sparse grid Ωs is the (non-disjoint) union of the full

grid sets Ω`(j) (j = 1, . . . , m) and no full grid set is contained in another, i.e., no full grid

set can be omitted without removing points from the union Ωs.

4.3 HIERARCHIZATION ON DIMENSIONALLY ADAPTIVE SPARSE GRIDS 87

1 function y = residualInterpolation(u, L)
2 r(0)(x `,i)← f (x `,i) for all (`, i) ∈ K
3 Compute list `(1), . . . ,`(m) of active nodal spaces from L (see (4.27))
4 Sort `(1), . . . ,`(m) by decreasing level sum
5 for j = 1, . . . , m do
6 Let r(j−1)

`(j)
∈ V`(j) be the interpolant of r(j−1) on Ω`(j)

7 Let (α(j)
`,i)(`,i)∈K be such that

∑`(j)

`=0

∑

i∈I`
α
(j)
`,iϕ`,i ≡ r(j−1)

`(j)
 interpolation

8 r(j)(x `,i)← r(j−1)(x `,i)− r(j−1)
`(j)

(x `,i) for all (`, i) ∈ K new residuals

9 y ←
∑m

j=1α
(j) (where α(j)

`,i = 0, (`, i) ∈ K, if ¬(`≤ `(j))) combine surpluses

ALGORITHM 4.3 Application of the hierarchization operator L = A−1 with residual inter-
polation for dimensionally adaptive sparse grids. Inputs are the vector
u = (u`,i)(`,i)∈K of input data (function values f (x `,i) at the grid points)
and the set L of levels that are part of the sparse grid (see (2.30)), where
K is the set of all feasible level-index pairs (`, i), i.e., ` ∈ L, i ∈ I`. The
output is the vector y = (y`,i)(`,i)∈K of output data (hierarchical surpluses
α`,i).

Correctness. The principle of Algorithm 4.3 is maintaining a vector (r(j)(x `,i))(`,i)∈K of

residuals and interpolating the residual data subsequently on the active nodal spaces.

Again, note that it is necessary to compute the coefficients α(j)`,i in the hierarchical basis,

despite interpolating on the full grid Ω`(j) . In Appendix A, we prove that the algorithm

satisfies the following invariant, which can be used to show its correctness:

PROPOSITION 4.10 (invariant of residual interpolation)

For j = 1, . . . , m, it holds

r(j−1)

`(j)
(x `,i) = 0, `≤ `(j

′), i ∈ I`, j′ = 1, . . . , j − 1,(4.28a)

r(j)(x `,i) = 0, `≤ `(j
′), i ∈ I`, j′ = 1, . . . , j,(4.28b)

r(j)(x `,i) = f (x `,i)− f s,(j)(x `,i), ` ∈ L, i ∈ I`,(4.28c)

(4.29) where f s,(j) :=
∑

`′∈L

∑

i ′∈I`′

j
∑

j′=1

α
(j′)
`′,i ′

!

ϕ`′,i ′ .

PROOF See Appendix A.3.2. �

COROLLARY 4.11 (correctness of residual interpolation)

Algorithm 4.3 is correct for hierarchization on dimensionally adaptive sparse grids.

88 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

PROOF Let ` ∈ L and i ∈ I`. By construction of the active nodal spaces, there exists

some j′ ∈ {1, . . . , m} such that `≤ `(j
′). By Prop. 4.10, we obtain for j = m

∑

`′∈L

∑

i ′∈I`′

m
∑

j′′=1

α
(j′′)
`′,i ′

!

︸ ︷︷ ︸

=y`′ ,i′

ϕ`′,i ′(x `,i)
(4.29)
= f s,(m)(x `,i)

(4.28c)
= f (x `,i)− r(m)(x `,i)(4.30a)

(4.28b)
= f (x `,i).(4.30b)

As the hierarchical interpolant f s (see (4.2)) has the same form
∑

`′∈L

∑

i ′∈I`′
α`′,i ′ϕ`′,i ′ as

the LHS of (4.30) with unique surplusesα`′,i ′ such that the function values are interpolated

(see (4.1)), the coefficients y`′,i ′ (output of Alg. 4.3) coincide with the surpluses α`′,i ′ . �

Proposition 4.10 shows that r(j)(x `,i) is the residual of the interpolant f s,(j) of itera-

tion j to the objective function f at the grid points x `,i (Eq. (4.28c)). After interpolating

r(j−1) on the grid Ω`(j) to obtain the function r(j−1)

`(j)
and subtracting the resulting values

from the old residual values, the new residual values r(j)(x `,i) vanish not only on the grid

{(`(j), i) | i ∈ I`(j)}, but also on all previous grids {(`(j
′), i) | i ∈ I`(j′)}, j′ ≤ j (Eq. (4.28b)).

The proof of Prop. 4.10 shows this by exploiting the auxiliary statement of Eq. (4.28a)

and the tensor product structure of the hierarchical basis.

An example for the application of Alg. 4.3 on a two-dimensional sparse grid can be

seen in Fig. 4.5. Note that α(j)`,i 6= 0 can only be true if ` ≤ `(j). Therefore, if (`, i) is

not contained in one of the grids that are processed in one of the remaining iterations

j+1, . . . , m, then y (j)`,i is already equal to the correct surplus α`,i , where y (j)`,i :=
∑ j

j′=1α
(j′)
`,i

denotes the intermediate result obtained after j iterations.

4.4 Hierarchization on Spatially Adaptive Sparse Grids
with Breadth-First Search

IN THIS SECTION

4.4.1 Hierarchization with Breadth-First
Search on Fundamental Bases (p. 89)

4.4.2 Constructing Fundamental Bases (p. 94)
4.4.3 Hierarchical Fundamental Splines (p. 98)
4.4.4 Modified Hierarchical Fundamental

Splines (p. 101)
4.4.5 Fundamental Not-A-Knot Splines (p. 103)

Unfortunately, we cannot apply the algo-

rithms presented in the last sections to spa-

tially adaptive sparse grids with hierarchical

B-splines. The reason is that the algorithms re-

lied on the final interpolant f s being a linear

combination of full grid solutions f`, which

is only possible for dimensionally adaptive

sparse grids. Consequently, the problem of

hierarchization becomes significantly harder if we operate on spatially adaptive sparse

grids. An exception is the case of piecewise linear basis functions (p = 1), where we are

4.4 HIERARCHIZATION WITH BREADTH-FIRST SEARCH 89

V(0,3)

y (0)`,i = 0,

r(0)(x `,i)
= f (x `,i)

y (1)`,i , r(1)(x `,i)

V(1,2)

y (2)`,i , r(2)(x `,i)

V(2,1)

y (3)`,i , r(3)(x `,i)

V(3,0)

y (4)`,i = α`,i ,

r(4)(x `,i) = 0

V s
n,d

FIGURE 4.5
Hierarchization of function value
data on the two-dimensional reg-
ular sparse grid V s

n,d of level n=
3 (top left) using the method of
residual interpolation. In this fig-
ure, we use y(j)

`,i :=
∑ j

j′=1α
(j′)
`,i as

an abbreviation. The order of the
nodal spaces (here: bottom left
to top right) does not matter. The
data y(j)

`,i corresponding to blue
grid points will not be modified
in the remaining iterations and,
therefore, already equals the cor-
rect surpluses α`,i . The data cor-
responding to red grid points will
be modified as the grid points
appear in one of the remaining
nodal grids.

still able to apply the UP, as we will show in Sec. 4.5. In this section, we study one approach

to hierarchize on spatially adaptive sparse grids, namely transforming the hierarchical

basis to so-called fundamental bases to enable a BFS algorithm for hierarchization.

The approach in this section has already been published [Vale18a]. Again, note that

while B-splines are our target application, the considerations in this chapter are fully

independent of the choice of basis functions ϕ`,i , as long as they have tensor product

structure. Although we do not state it explicitly, it is possible to employ different types

of basis functions ϕ`t ,it
in different dimensions, e.g., B-splines of different degrees pt to

enable p-adaptivity.

4.4.1 Hierarchization with Breadth-First Search on Fundamental
Bases

Fundamental property. As already discussed in Sec. 4.1, the main cause of the difficulty

of the hierarchization with B-splines ϕp
`,i is their overlapping support (which they need

for their approximation order). Thus, high-level B-splines ϕp
`′,i ′

do not vanish at all coarse-

level grid points x `,i , `< `
′. In the univariate case, the idea is to transform the B-spline

90 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

FIGURE 4.6
Fundamental property with La-
grange polynomials.
Left: Univariate Lagrange poly-
nomials up to level `= 2.
Top right: Regular sparse grid
Ω

s(1)
n,d (n = 4, d = 2). The fun-

damental basis function ϕf
`′,i ′

corresponding to the marked
grid point (cross) does not
vanish at the blue points x `,i
(which satisfy (4.32)).
Bottom right: Corresponding
density pattern of A when sort-
ing rows and columns by in-
creasing level sum ‖`‖1 =
0, . . . , n (black bars).

x0,0 x0,1
0

1
L0,0L0,0L0,0L0,0L0,0L0,0L0,0L0,0L0,0L0,0L0,0L0,0L0,0L0,0L0,0L0,0L0,0 L0,1L0,1L0,1L0,1L0,1L0,1L0,1L0,1L0,1L0,1L0,1L0,1L0,1L0,1L0,1L0,1L0,1

x1,1
0

1
L1,1

x2,1 x2,3
0

1

L2,1 L2,3

basis to obtain new basis functions ϕf
`′,i′ : [0,1]→ R (`′ ∈ N0, i′ ∈ I`′) that satisfy

ϕf
`′,i′(x`,i) = 0, ` < `′, i ∈ I`,(4.31a)

ϕf
`′,i′(x`′,i) = δi,i′ , i ∈ I`′ .(4.31b)

We call (4.31) fundamental property and functions ϕf
`′,i′ that fulfill this property funda-

mental basis functions. The first Eq. (4.31a) ensures that basis functions of level `′ vanish

at grid points of coarser levels ` < `′. The second Eq. (4.31b) requires the basis functions

ϕf
`′,i′ to additionally vanish at all grid points of the same level `′ with different index i 6= i′.

An example for fundamental basis functions are the piecewise linear B-splines ϕ1
`′,i′ or

the Lagrange polynomials L`′,i′ (see Fig. 4.6, left). The statement that ϕf
`′,i′(x`′,i′) should

equal one is not an additional restriction, if the value ϕf
`′,i′(x`′,i′) is non-zero, since we

can just replace ϕf
`′,i′ with ϕf

`′,i′/ϕ
f
`′,i′(x`′,i′) to obtain ϕf

`′,i′(x`′,i′) = 1.

Multivariate case. For the multivariate case of d ∈ N dimensions, we define as usual

tensor product versions ϕf
`′,i ′

of the univariate fundamental bases ϕf
`′t ,i

′
t

(t = 1, . . . , d).

Equation (4.31) then implies

(4.32) ϕf
`′,i ′(x `,i) 6= 0 =⇒ ∀t=1,...,d

�

(`′t < `t)∨ ((`′t , i′t) = (`t , it))
�

, (`, i), (`′, i ′) ∈ K .

This means that every basis function ϕf
`′,i ′

can only be non-zero at the grid points x `,i that,

in every dimension t, have a strictly higher level `t or the same level-index pair (`t , it) as

4.4 HIERARCHIZATION WITH BREADTH-FIRST SEARCH 91

the basis function. We show an example for this relation in Fig. 4.6 (top right).

Triangular interpolation matrix. The main motivation for enforcing the fundamental

property is the fact that it results in the hierarchization matrix A being triangular, if the

rows and columns are arranged in the order of monotonously increasing level sum: We

assume that k = k(`, i) ∈ {1, . . . , N} is a single continuously enumerated index of the

level-index pairs (`, i) ∈ K (where N = |K |) such that

(4.33) k(`, i)≤ k(`′, i ′) =⇒ ‖`‖1 ≤ ‖`
′‖1, (`, i), (`′, i ′) ∈ K ,

i.e., we sort the row indices k = k(`, i) and the column indices k′ = k(`′, i ′) of A by level

sum ‖·‖1. Consequently, A= (Ak,k′)k=1,...,N , k′=1,...,N is in lower block-triangular form:

Ak,k′ = ϕ
f
k′(x k) = 0, ‖`‖1 < ‖`

′‖1,(4.34a)

as ‖`‖1 < ‖`
′‖1 =⇒ ∃t `t < `

′
t and using (4.31a). Additionally, the diagonal blocks are

unit matrices due to

Ak,k′ = ϕ
f
k′(x k)

(∗)
= δ(`,i),(`′,i ′), ‖`‖1 = ‖`

′‖1,(4.34b)

since ‖`‖1 = ‖`
′‖1 implies that either

�

∃t `t < `
′
t

�

or ` = `′.5 In the former case, both

sides of (∗) vanish (according to (4.31a)), and in the latter case, both sides equal δi,i ′

(according to (4.31b)). Hence, A is a lower-triangular matrix. This is visualized for a

two-dimensional example in Fig. 4.6 (bottom right).

Forward substitution. The triangular structure of A implies that we can determine the

surpluses α`,i via forward substitution:

LEMMA 4.12 (forward substitution)

The hierarchical surpluses α`,i , which are determined by (4.5) with respect toϕf
`,i , satisfy

(4.35) α`,i = f (x `,i)−
∑

(`′,i ′)∈K
‖`′‖1<‖`‖1

α`′,i ′ϕ
f
`′,i ′(x `,i), (`, i) ∈ K .

PROOF The linear system (4.5) is given by

f (x `,i) =
∑

(`′,i ′)∈K

α`′,i ′ϕ
f
`′,i ′(x `,i), (`, i) ∈ K .(4.36a)

5Note that as specified in the list of symbols at the beginning of this thesis, the Kronecker delta δX ,Y is
defined for arbitrary objects X and Y that can be compared with “=.”

92 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

1 function y = breadthFirstSearch(u, K)
2 y ← u
3 Kp← {0} × {0,1}d set of processed points
4 Q← FIFO queue initialized with contents of Kp points to be processed
5 while Q 6= ; do
6 (`′, i ′)←Q.pop() obtain next point
7 for {(`, i) ∈ K \ {(`′, i ′)} | ∀t=1,...,d (`′t < `t)∨ ((`′t , i′t) = (`t , it))} do
8 y`,i ← y`,i − y`′,i ′ϕ

f
`′,i ′
(x `,i) update surpluses according to Lemma 4.12

9 for {(`, i) ∈ K \ Kp | (`, i) direct child of (`′, i ′)} do
10 Q.push((`, i)) add children to queue
11 Kp← Kp ∪ {(`, i)} mark as processed

ALGORITHM 4.4 Hierarchization with breadth-first search on spatially adaptive sparse grids
with fundamental bases. Inputs are the vector u = (u`,i)(`,i)∈K of input
data (function values f (x `,i) at the grid points) and the set K of level-
index pairs of the sparse grid (see (2.32)). The output is the vector y =
(y`,i)(`,i)∈K of output data (hierarchical surpluses α`,i).

According to (4.34), all summands with ‖`′‖1 > ‖`‖1 vanish and from the summands

with ‖`′‖1 = ‖`‖1, only the (`, i)-th summand remains with ϕf
`,i(x `,i) = 1:

· · ·= α`,i +
∑

(`′,i ′)∈K
‖`′‖1<‖`‖1

α`′,i ′ϕ
f
`′,i ′(x `,i).(4.36b) �

Breadth-first search. Exploiting this lemma, we formulate a hierarchization algorithm

(see Alg. 4.4) that applies forward substitution by BFS in the directed acyclic graph (DAG)

of the spatially adaptive sparse grid Ωs. The nodes of the DAG are the level-index pairs

(`, i) ∈ K . An edge connects (`, i) to (`′, i ′), if (`, i) is a direct ancestor of (`′, i ′), i.e., if

(4.37) ∃t=1,...,d `
′
−t = `−t , i ′−t = i−t , `

′
t = `t + 1, i′t ∈

(

{1}, `t = 0,

{2it − 1,2it + 1}, `t > 0.

An example for the resulting DAG for a regular sparse grid in two dimensions is shown

in Fig. 4.7. We make two assumptions for Alg. 4.4. First, K should contain at least all 2d

corners of the domain [0,1]:

(4.38a) K ⊇ {0} × {0,1}d = {(0, i) | i ∈ {0,1}d}.

Second, all grid points should be reachable from the corners:

∀(`′,i ′)∈K∃m∈N0
∃(`(0),i(0)),...,(`(m),i(m))∈K

�

(`(0), i(0))→ · · · → (`(m), i(m)),

`(0) = 0, (`(m), i(m)) = (`′, i ′)
�

,
(4.38b)

4.4 HIERARCHIZATION WITH BREADTH-FIRST SEARCH 93

0

1

2

3

4

‖`‖1

FIGURE 4.7
Ancestor relationships (ar-
rows) in a regular sparse grid
Ω

s(1)
n,d (points) of level n =

4 and dimensionality d =
2. The color indicates the
level sum ‖`‖1. Breadth-first
search, as implemented in
Alg. 4.4, visits all grid points
x `,i with level sum ‖`‖1 = 0
first, then those with ‖`‖1 =
1, and so on.

where “→” is the direct ancestor relation (4.37). One can also use a different initial set

than the corners of [0,1], e.g., when working with sparse grids without boundary points.

In general, there are three requirements on the initial set: First, all grid points should

be reachable from this set. Second, the grid points in the set are sorted by increasing

level sum (if the set contains grid points with different level sums). Third, the surpluses

corresponding to the initial grid points need to be pre-calculated correctly before the

while loop in Alg. 4.4.

Correctness. The correctness of Alg. 4.4 can be shown with the following invariant:

PROPOSITION 4.13 (invariant of breadth-first-search hierarchization)

Under the assumption (4.38), it holds after pop ping all grid points with level sum < q

from the queue Q in Alg. 4.4:

(4.39) y`,i = f (x `,i)−
∑

(`′,i ′)∈K
‖`′‖1<q

y`′,i ′ϕ
f
`′,i ′(x `,i), (`, i) ∈ K , ‖`‖1 = q.

PROOF See Appendix A.3.3. �

COROLLARY 4.14 Algorithm 4.4 is correct.

94 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

PROOF As noted in the proof of Prop. 4.13, the result y`,i after popping all grid points

with level sum q as stated in Prop. 4.13 is also the final result of the algorithm:

(4.40) y`,i = f (x `,i)−
∑

(`′,i ′)∈K
‖`′‖1<‖`‖1

y`′,i ′ϕ
f
`′,i ′(x `,i), (`, i) ∈ K .

By Lemma 4.12, the correct hierarchical surpluses α`,i satisfy the same relation. Induc-

tively, y`,i and α`,i must coincide. �

Complexity. The BFS algorithm in Alg. 4.4 is not as efficient as the UP: It still needs

to perform O (N 2d) many univariate basis evaluations (compared to O (Nd) for the UP).

However, it only needs linear space O (N) similar to the UP. This is a significant advantage

over directly solving the system (4.5) of linear equations, which typically needs quadratic

space O (N 2).

4.4.2 Constructing Fundamental Bases

Unfortunately, the hierarchical B-splines ϕp
`′,i′ do not satisfy the fundamental property

(4.31). We now focus on the construction of univariate fundamental bases ϕf
`′,i′ starting

from an arbitrary hierarchical basis ϕ`′,i′ . To this end, we study two transformations

ϕ`′,i′ 7→ ϕf
`′,i′ . As usual, the multivariate case is treated with the tensor product approach.

Hierarchical fundamental transformation (HFT). The canonical way to find a funda-

mental basis ϕf
`′,i′ is to use a linear combination ϕhft

`′,i′ of coarser basis functions ϕ`′′,i′′ as

an ansatz and require that the fundamental property (4.31) is fulfilled:

(4.41) ϕhft
`′,i′ :=

`′
∑

`′′=0

∑

i′′∈I`′′

c`
′,i′

`′′,i′′ϕ`′′,i′′ such that ∀`=0,...,`′∀i∈I` ϕ
hft
`′,i′(x`,i) = δ(`,i),(`′,i′).

This means that ϕhft
`′,i′ (`′ ∈ N0, i′ = 0, . . . , 2`

′
) interpolates the data {(x`′,i,δi,i′) | i =

0, . . . , 2`
′}. The coefficients c`

′,i′

`′′,i′′ ∈ R are, in general, different for each basis function

ϕhft
`′,i′ . This complicates precomputation and storage of the 2`

′
+ 1 coefficients, as they

have to be determined by solving a system of linear equations. In addition, the transfor-

mation ϕ`′,i′ 7→ ϕhft
`′,i′ does not preserve the locality of the support of the basis functions.

Consequently, ϕhft
`′,i′ may be globally supported, which means that we have to evaluate

up to 2`
′
+ 1 basis functions ϕ`′′,i′′ when evaluating ϕhft

`′,i′ at a single point x ∈ [0,1].
The global support of the resulting transformed basis for uniform hierarchical B-splines

(which are locally supported) can be seen in Fig. 4.8.

4.4 HIERARCHIZATION WITH BREADTH-FIRST SEARCH 95

x0,0 x0,1
0

1
ϕ

p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0ϕ
p,hft
0,0

ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1ϕ
p,hft
0,1

x1,1
0

1
ϕ

p,hft
1,1

x2,1 x2,3
0

1
ϕ

p,hft
2,1 ϕ

p,hft
2,3

x3,1 x3,3 x3,5 x3,7
0

1
ϕ

p,hft
3,1 ϕ

p,hft
3,3 ϕ

p,hft
3,5 ϕ

p,hft
3,7 FIGURE 4.8

Resulting basis functions ϕp,hft
`′,i′ (`′ ≤ `, i′ ∈ I`′) after

applying the hierarchical fundamental transformation
to hierarchical cubic B-splines (p = 3) and grid points
x`′,i′ (dots) up to level `= 3.

We call the transformation ϕ`′,i′ 7→ ϕhft
`′,i′ hierarchical fundamental transformation

(HFT). The following proposition shows that this is only a change of basis, as the spanned

sparse grid space remains unchanged. While the proposition is formulated for regular

sparse grids, a similar statement can be proven for the dimensionally adaptive case.

PROPOSITION 4.15 (spanned sparse grid space for the HFT)

If K := {(`, i) | ‖`′‖1 ≤ n, i ′ ∈ I`′} is the set of level-index pairs for the regular sparse

grid of level n and dimensionality d, then

(4.42) V s
n,d = V s,hft

n,d := span{ϕhft
`′,i ′ | (`

′, i ′) ∈ K}.

PROOF We have V s
n,d ⊇ V s,hft

n,d as ϕhft
`′,i ′
∈ V s

n,d for all (`′, i ′) ∈ K:

(4.43) ϕhft
`′,i ′ =

d
∏

t=1

`′t
∑

`′′t =0

∑

i′′t ∈I`′′t

c
`′t ,i

′
t

`′′t ,i′′t
ϕ`′′t ,i′′t

=
`′
∑

`′′=0

∑

i ′′∈I`′′

c`
′,i ′

`′′,i ′′
ϕ`′′,i ′′ ∈ V s

n,d , c`
′,i ′

`′′,i ′′
:=

d
∏

t=1

c
`′t ,i

′
t

`′′t ,i′′t
.

To prove that V s
n,d ⊆ V s,hft

n,d , we show that the dimension of V s,hft
n,d matches dim V s

n,d = |K |.
It suffices to show that the functions ϕhft

`′,i ′
((`′, i ′) ∈ K), are linearly independent. Let

96 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

α`′,i ′ ∈ R be with
∑

(`′,i ′)∈K α`′,i ′ϕ
hft
`′,i ′
≡ 0. By evaluating at x `,i ((`, i) ∈ K), we obtain

(4.44)
∑

(`′,i ′)∈K

α`′,i ′ϕ
hft
`′,i ′(x `,i) = 0, (`, i) ∈ K .

This is a lower triangular system according to (4.34), which implies α`′,i ′ = 0 for all

(`, i) ∈ K . Hence, the functions ϕhft
`′,i ′

((`′, i ′) ∈ K) are linearly independent. �

Translation-invariant fundamental transformation (TIFT). Another disadvantage of

the HFT is that it does not preserve the so-called translation invariance of the original

basis. A basis ϕ`,i (` ∈ N0, i = 0, . . . , 2`) is translation-invariant, if there is a parent

function ϕ : R→ R such that

(4.45) ϕ`,i(x) = ϕ(
x
h`
− i), ` ∈ N0, i = 0, . . . , 2`, x ∈ [0,1].

The fact that the HFT does not preserve translation invariance means that for each basis

function ϕhft
`′,i′ , we have to calculate its individual 2`

′
+ 1 coefficients c`

′,i′

`′′,i′′ .

To solve this problem, we use a similar ansatz as for the HFT, but we replace the

hierarchical basis functions ϕ`′′,i′′ (`′′ = 0, . . . ,`′, i′′ ∈ I`′′) with nodal basis functions ϕ`′,i′′
and allow general integer indices i′′ ∈ Z:

(4.46) ϕtift
`′,i′ :=

∑

i′′∈Z

c`
′,i′

i′′ ϕ`′,i′′ such that ∀i∈I`′ ϕ
tift
`′,i′(x`′,i) = δi,i′ ,

where `′ ∈ N0, i′ = 0, . . . , 2`
′
, and c`

′,i′

i′′ ∈ R. We have to make three assumptions for (4.46)

to make sense:

• The functions ϕ`′,i′′ have to be defined for integer indices i′′ ∈ Z, i.e., the functions

ϕ`′,i′′ : [0, 1]→ Rmust also exist for i′′ < 0 or i′′ > 2`
′
. This is the case for translation-

invariant bases ϕ`′,i′′ (such as B-splines ϕp
`′,i′′), as they can be generalized to i′′ ∈ Z

via Eq. (4.45).

• The set

(4.47) J`′ :=
�

i′′ ∈ Z
�

� ϕ`′,i′′ |[0,1] 6≡ 0
	

, `′ ∈ N0,

of relevant indices should be finite, so that in each point x ∈ [0,1] only a finite

number of basis functions ϕ`′,i′′ of level `′ is non-zero. This means that the series

in (4.46) collapses to a finite sum over i′′ ∈ J`′ . The condition is met for compactly

supported and translation-invariant basis functions such as B-splines ϕp
`′,i′′ . For d ∈ N

dimensions and `′ ∈ Nd
0 , we define J`′ := J`′1 × · · · × J`′d .

4.4 HIERARCHIZATION WITH BREADTH-FIRST SEARCH 97

• The coefficients c`
′,i′

i′′ , such that (4.46) holds, exist and are uniquely determined.

Let ϕ`′,i′′ be translation-invariant and let `′ ∈ N0 and i′ = 0, . . . , 2`
′
be arbitrary. Then we

have

(4.48) ϕtift
`′,i′(x) =

∑

i′′∈Z

c`
′,i′

i′′ ϕ`′,i′′(x)
(4.45)
=

∑

i′′∈Z

c`
′,i′

i′′ ϕ(
x

h`′
− i′′) =

∑

i′′∈Z

c`
′,i′

i′+i′′ϕ((
x

h`′
− i′)− i′′),

where the function defined by
∑

i′′∈Z c`
′,i′

i′+i′′ϕ(· − i′′) satisfies

∑

i′′∈Z

c`
′,i′

i′+i′′ϕ(i − i′′) =
∑

i′′∈Z

c`
′,i′

i′+i′′ϕ((
x`′ ,i+i′

h`′
− i′)− i′′)

(4.48)
= ϕtift

`′,i′(x`′,i+i′)
(4.46)
= δi′,i+i′(4.49a)

= δi,0, i ∈ Z.(4.49b)

Due to the translation invariance and the third assumption in the list above, there is only

a single set of coefficients of ϕ(· − i′′) such that (4.49) holds. This means that c`
′,i′

i′+i′′ does

not depend on `′ or i′, if ϕ`′,i′ is translation-invariant. Consequently, if we set ci′′ := c`
′,i′

i′+i′′

for some arbitrary `′ ∈ N0 and i′ = 0, . . . , 2`
′
, then ϕtift : R→ R defined by

(4.50) ϕtift(x) :=
∑

i′′∈Z

ci′′ϕ(x − i′′), x ∈ [0,1],

is a parent function of ϕtift
`′,i′ that satisfies

(4.51) ∀i∈Z ϕ
tift(i) = δi,0.

The fact that ϕtift is the parent function of ϕtift
`′,i′ easily follows from (4.48) as the right-

hand side (RHS) is exactly ϕtift(x
h`′
− i′), as required by (4.45). This shows that the

transformation ϕ`′,i′ 7→ ϕtift
`′,i′ preserves translation-invariance. Therefore, we call the

transformation ϕ`′,i′ 7→ ϕtift
`′,i′ translation-invariant fundamental transformation (TIFT).

In contrast to the HFT, the TIFT is only a change of basis if we consider the extended

nodal spaces that also include basis functions with indices outside of {0, . . . , 2`
′}. This

is the statement of the following proposition (generalized to the d-variate case). Note

that although the proposition involves basis functions ϕ`′,i ′ and ϕtift
`′,i ′

outside the domain

[0,1] (in the sense that x `′,i ′ /∈ [0,1]), we still restrict all functions to [0,1]. We cannot

formulate an equivalent version of Prop. 4.15 (spanned sparse grid space for the HFT),

as it might be that, in one dimension, ϕ`′,i′′ (i′′ < 0 or i′′ > 2`
′
) is not contained in the

nodal space V`′ .

98 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

PROPOSITION 4.16 (spanned nodal space for the TIFT)

We have

(4.52) span{ϕ`′,i ′ | i ′ ∈ J`′}=: V ext
`′
= V tift,ext

`′
:= span{ϕtift

`′,i ′ | i
′ ∈ J`′}, `′ ∈ Nd

0 .

PROOF We have V ext
`′
⊇ V tift,ext

`′
as ϕtift

`′,i ′
∈ V ext

`′
for all i ′ ∈ J`′:

(4.53) ϕtift
`′,i ′ =

d
∏

t=1

∑

i′′t ∈J`′t

c
`′t ,i

′
t

i′′t
ϕ`′t ,i′′t =

∑

i ′′∈J`′

c`
′,i ′

i ′′
ϕ`′,i ′′ ∈ V ext

`′
, c`

′,i ′

i ′′
:=

d
∏

t=1

c
`′t ,i

′
t

i′′t
.

To prove that V ext
`′
⊆ V tift,ext

`′
, we show that the dimensions of the two spaces match.

As before, it suffices to show that the functions ϕtift
`′,i ′

(i ′ ∈ J`′) are linearly independent.

Let α`′,i ′ ∈ R be with
∑

i ′∈J`′
α`′,i ′ϕ

tift
`′,i ′
≡ 0. By evaluating at x `′,i (i ∈ J`′), we obtain

(4.54) 0=
∑

i ′∈J`′

α`′,i ′ ϕ
tift
`′,i ′(x `′,i)
︸ ︷︷ ︸

=δi,i′

= α`′,i , i ∈ J`′ ,

i.e., all coefficients α`′,i ′ must vanish.6 Hence, the functions ϕtift
`′,i ′

(i ′ ∈ J`′) are linearly

independent. �

4.4.3 Hierarchical Fundamental Splines

Definition. We now apply the translation-invariant fundamental transformation to hi-

erarchical B-splines ϕp
`,i of degree p. The parent function ϕp : R→ R of B-splines and the

set J p
`

of relevant indices for level ` ∈ N0 are given by

(4.55) ϕp(x) := bp(x + p+1
2), J p

`
:= {− p−1

2 , − p−1
2 + 1, . . . , 2` + p−1

2 },

respectively. According to (4.51), the coefficients ck,p ∈ R of the transformed parent

function ϕp,tift in Eq. (4.50) are determined by a bi-infinite-dimensional system of linear

6Note that we have to allow evaluations outside the domain [0,1] for this step. However, this is feasible
for proving the linear independence of ϕtift

`′,i ′
, since we can just restrict the functions after showing that

the extended nodal spaces equal.

4.4 HIERARCHIZATION WITH BREADTH-FIRST SEARCH 99

equations:

(4.56)

.

. . . bp(p+1
2) bp(p+1

2 − 1) bp(p+1
2 − 2)

. . . bp(p+1
2 + 1) bp(p+1

2) bp(p+1
2 − 1) . . .

bp(p+1
2 + 2) bp(p+1

2 + 1) bp(p+1
2)

. . .

.

·

...

c−1,p

c0,p

c1,p

...

=

...

0

1

0
...

.

As in each row only p entries are non-zero, the system matrix is a symmetric banded

Toeplitz matrix7. One can show that the linear system (4.56) is uniquely solvable:

THEOREM 4.17 (unique existence of fundamental spline coefficients)

The system (4.56) has a unique solution (ck,p)k∈Z and the corresponding parent function

ϕp,fs : R→ R defined by ϕp,fs(x) :=
∑

k∈Z ck,pϕ
p(x − k) satisfies

(4.57) ∃βp ,γp∈R>0
∀x∈R |ϕp,fs(x)| ≤ βp · (γp)

−|x |.

PROOF See Theorems 1 and 2 in [Schoenb72]. �

The functionϕp,fs from Thm. 4.17 is well-known as the fundamental spline of degree p

[Schoenb72; Schoenb73]. Applications of fundamental splines are interpolation and the

definition of spline wavelets [Chu92]. The fundamental splines ϕp,fs of low degrees p

and their bounding functions βp · (γp)−|x | are plotted in Fig. 4.9.

Definition of hierarchical fundamental splines. The fundamental spline ϕp,fs defines

hierarchical fundamental spline functions ϕp,fs
`,i : [0,1]→ R via Eq. (4.45), i.e.,

(4.58) ϕ
p,fs
`,i (x) := ϕp,fs(x

h`
− i), ` ∈ N0, i = 0, . . . , 2`, x ∈ [0,1].

The hierarchical cubic fundamental spline basis is depicted in Fig. 4.10. As usual, we

define d-variate hierarchical fundamental splines as tensor products of their univariate

counterparts. According to Prop. 3.2 (spline space) and Prop. 4.16 (spanned nodal space

for the TIFT), the common extended nodal space V p,ext
` = V p,fs,ext

` is equal to the spline

space Sp,[0,1]
` defined by the Cartesian product of knot sequences of the form (3.22), i.e.,

the space of all splines of degree p on the full grid of level `.

The B-spline coefficients (ck,p)k∈Z of the fundamental spline ϕp,fs decay with the same

7The entries ak, j of a Toeplitz matrix A solely depend on k− j, i.e., ak, j = ck− j for some vector c.

100 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

−4 −2 0 2 4
0

1

ϕp,fs(x),ϕp(x − k)
±βp · (γp)

−|x |
ck,p

±β ′p · (γp)
−|k|

x or k

0

1

A p = 1

−4 −2 0 2 4
0

1

ϕp,fs(x),ϕp(x − k)
±βp · (γp)

−|x |
ck,p

±β ′p · (γp)
−|k|

x or k

0

1

B p = 3

−4 −2 0 2 4
0

1

ϕp,fs(x),ϕp(x − k)
±βp · (γp)

−|x |
ck,p

±β ′p · (γp)
−|k|

x or k

0

3

C p = 5

−4 −2 0 2 4
0

1

ϕp,fs(x),ϕp(x − k)
±βp · (γp)

−|x |
ck,p

±β ′p · (γp)
−|k|

x or k

0

7

D p = 7

FIGURE 4.9 The fundamental splineϕp,fs (blue) is a linear combination of cardinal B-splines
bp(· − k), k ∈ Z (light blue), with coefficients ck,p (red points). The absolute
values of the fundamental spline ϕp,fs and its coefficients are bounded by a
multiple of (γp)−|k| (blue-red-dashed line). The axis for ck,p (on the right side)
is scaled such that both bounding functions are on top of each other.

rate as the fundamental spline itself due to the stability of the B-spline basis [Höl13], i.e.,

(4.59) |ck,p| ≤ β ′p · (γp)
−|k|, k ∈ Z,

for some β ′p > 0 independent of k, which is also shown in Fig. 4.9. For p > 1, there

is a surprising relationship between the optimal (i.e., largest) decay rate γp and the

polynomial
∑p

k=1 bp(k)x k−1, whose coefficients are the values of the cardinal B-spline bp

at its inner knots: The decay rate is given by the absolute value of the largest root smaller

than −1 of said polynomial (see [Chu92; Schoenb73]).

Due to (4.59), we may solve the system (4.56) of linear equations approximatively, if

we symmetrically truncate the linear system to 2np−1 rows and columns and set ck,p := 0

4.4 HIERARCHIZATION WITH BREADTH-FIRST SEARCH 101

x0,0 x0,1
0

1
ϕ

p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0ϕ
p,fs
0,0

ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1ϕ
p,fs
0,1

x1,1
0

1
ϕ

p,fs
1,1

x2,1 x2,3
0

1

2
ϕ

p,fs
2,1 ϕ

p,fs
2,3

x3,1 x3,3 x3,5 x3,7
0

1

2
ϕ

p,fs
3,1 ϕ

p,fs
3,3 ϕ

p,fs
3,5 ϕ

p,fs
3,7

FIGURE 4.10
Hierarchical cubic fundamental splines ϕp,fs

`′,i′

(`′ ≤ `, i′ ∈ I`′ , p = 3), their modified versions
ϕ

p,fs,mod
`′,i′ (dashed), and grid points x`′,i′ (dots)

up to level `= 3.

for all |k| ≥ np, where np ∈ N is a truncation index. Note that we only have to perform

p+ 1 cardinal B-spline evaluations to evaluate ϕp,fs once. In Tab. 4.1, we list the decay

rates γp, the factors βp and β ′p, and the truncation indices np for different p.

4.4.4 Modified Hierarchical Fundamental Splines

Similar to the B-spline bases introduced in Chap. 3, it is possible to define a modified

version of the hierarchical fundamental spline basis to obtain reasonable boundary values

when working with sparse grids without boundary points. The definition of the modified

fundamental spline ϕp,fs,mod
`,i : [0,1] → R of level ` ∈ N, index i ∈ I`, and degree p is

defined as follows:

(4.60) ϕ
p,fs,mod
`,i (x) :=

1, `= 1, i = 1,

ϕp,fs,mod(x
h`
), `≥ 2, i = 1,

ϕ
p,fs
`,i (x), `≥ 2, i ∈ I` \ {1,2` − 1},

ϕ
p,fs,mod
`,1 (1− x), `≥ 2, i = 2` − 1,

102 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

p 1 3 5 7 9 11 13 15

γp 2.718 3.732 2.322 1.868 1.645 1.512 1.425 1.363
βp 1 1.241 1.104 1.058 1.037 1.026 1.019 1.014
β ′p 1 1.732 3.095 6.016 12.27 25.82 55.56 121.6

np 1 18 29 40 52 64 77 90

TABLE 4.1 Optimal decay rates γp and corresponding factors βp and β ′p for the bound

functions of the fundamental spline ϕp,fs and its coefficients ck,p, i.e.,
∀x∈R |ϕp,fs(x)| ≤ βp(γp)−|x | and ∀k∈Z |ck,p| ≤ β ′p(γp)−|k| (approximated values).
The truncation indices np are the smallest numbers such that ∀|k|≥np

|ck,p| <
10−10.

where ϕp,fs,mod is a linear combination

(4.61) ϕp,fs,mod : R≥0→ R, ϕp,fs,mod(x) :=
∞
∑

k=1−(p+1)/2

cmod
k,p ϕ

p(x − k),

whose coefficients cmod
k,p ∈ R are chosen such that

ϕp,fs,mod(i) = δi,1, i ∈ N,(4.62a)
d2

dx2ϕ
p,fs,mod(1) = 0,(4.62b)

dq

dxqϕ
p,fs,mod(0) = 0, q = 2,3, . . . , p+1

2 ,(4.62c)

if p > 1. For p = 1, we define ϕp,fs,mod := ϕp,mod
2,1 (·4). Since the modification coefficients

cmod
k,p experience the same decay as the coefficients ck,p of the fundamental spline, we can

also approximate cmod
k,p by solving a truncated system of linear equations. The resulting

function ϕp,fs,mod is shown in Fig. 4.11. The corresponding hierarchical basis ϕp,fs,mod
`,i is

included in Fig. 4.10 (dashed lines).

The conditions stated in (4.62) are motivated by the case p = 3 of cubic fundamental

splines. The first relevant cardinal B-spline is the one with index k = 1− p+1
2 (k = −1

in the cubic case), as the B-splines with indices ≤ − p+1
2 vanish on R≥0. The modified

function ϕp,fs,mod should satisfy the fundamental property (4.46) at all positive integer

points k ∈ N. In contrast to the standard fundamental spline ϕp,fs, we do not enforce

the fundamental property at k = 0, as our aim is to obtain non-zero boundary values.

This leaves us exactly two degrees of freedom in the cubic case, namely k = −1 and

k = 0. We use these to let ϕp,fs,mod extrapolate linearly on [0,1], as we did for uniform

hierarchical B-splines (see Sec. 3.1.3). Therefore, in the cubic case, we set the second

4.4 HIERARCHIZATION WITH BREADTH-FIRST SEARCH 103

1 2 3 4
−1

0

1

2 ϕp,fs,mod

d
dxϕ

p,fs,mod

d2

dx2ϕ
p,fs,mod

A p = 3

1 2 3 4
−1

0

1

2 ϕp,fs,mod

d
dxϕ

p,fs,mod

d2

dx2ϕ
p,fs,mod

B p = 5

1 2 3 4
−1

0

1

2 ϕp,fs,mod

d
dxϕ

p,fs,mod

d2

dx2ϕ
p,fs,mod

C p = 7

FIGURE 4.11 Modified fundamental spline ϕp,fs,mod (blue) together with its first (red) and
second (brown) derivatives and the function value interpolation conditions
from Eq. (4.62) (blue dots). For p = 3, the second derivative vanishes on
[0, 1]. For higher degrees p > 3, the second derivative is close to zero on this
interval, vanishing at x = 0.

derivative d2

dx2ϕ
p,fs,mod to zero at x = 0 and at x = 1. This suffices since d2

dx2ϕ
p,fs,mod is

piecewise linear for p = 3. For higher degrees p > 3, we use the additional degrees

of freedom (in total p+1
2) to increase the multiplicity of the root of d2

dx2ϕ
p,fs,mod at x = 0.

This ensures that ϕp,fs,mod is “as linear as possible” near x = 0. Note that we cannot

maintain d2

dx2ϕ
p,fs,mod ≡ 0 on [0, 1] for higher degrees p > 3, since this would require p−1

conditions and we only have p+1
2 degrees of freedom left, after taking the fundamental

conditions into account.

4.4.5 Fundamental Not-A-Knot Splines

The hierarchical fundamental spline basis suffers from the same problem as the uniform

hierarchical B-spline basis. As explained in Sec. 3.2.1, there is a mismatch of dimensions

of the nodal B-spline space V p
`

of level ` when compared with the spline space Sp,[0,1]
`

on the grid {x`,i | i = 0, . . . , 2`} of level `. This issue also affects the fundamental spline

basis.

Definition of fundamental not-a-knot splines. It is possible to combine the idea of

fundamental splines with the not-a-knot approach from Sec. 3.2. We define hierarchi-

cal fundamental not-a-knot splines ϕp,fs,nak
`′,i′ : [0,1]→ R as linear combinations of nodal

not-a-knot B-splines of the same level, where the coefficients are chosen such that the

fundamental property (4.31) is satisfied:

(4.63) ϕ
p,fs,nak
`′,i′ :=

2`
′

∑

i′′=0

c`
′,i′,fs

i′′,p ϕ
p,nak
`′,i′′ such that ∀i=0,...,2`′ ϕ

p,fs,nak
`′,i′ (x`′,i) = δi,i′ ,

104 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

FIGURE 4.12
Hierarchical cubic fundamental not-a-knot
splines ϕp,fs,nak

`′,i′ (`′ ≤ `, i′ ∈ I`′ , p = 3),
grid points x`′,i′ (dots), and removed knots
(crosses) up to level `= 3.

x0,0 x0,1
0

1
ϕ

p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0ϕ
p,fs,nak
0,0

ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1ϕ
p,fs,nak
0,1

x1,1
0

1
ϕ

p,fs,nak
1,1

x2,1 x2,3
0

1
ϕ

p,fs,nak
2,1 ϕ

p,fs,nak
2,3

x3,1 x3,3 x3,5 x3,7
0

1
ϕ

p,fs,nak
3,1 ϕ

p,fs,nak
3,3 ϕ

p,fs,nak
3,5

ϕ
p,fs,nak
3,7

where `′ ∈ N0, i′ = 0, . . . , 2`
′
, and c`

′,i′,fs
i′′,p ∈ R. This approach is similar to the HFT in

Sec. 4.4.2, see Eq. (4.41). We show the hierarchical fundamental not-a-knot spline basis

of cubic degree in Fig. 4.12.

The fundamental not-a-knot splines ϕp,fs,nak
`′,i′ of level `′ < dlog2(p + 1)e equal the

Lagrange polynomials L`′,i′ (i′ = 0, . . . , 2`
′
), This is because the i′-th summand ϕp,nak

`′,i′ of

(4.63) equals L`′,i′ and as L`′,i′ already fulfills the fundamental interpolation conditions

given in (4.63) (see Eq. (3.28)), we obtain c`
′,i′,fs

i′′,p = δi′,i′′ , i.e., ϕp,fs,nak
`′,i′ = L`′,i′ .

Implementation. We make two remarks with respect to the efficient implementation

of hierarchical fundamental not-a-knot splines. First, Eq. (4.63) requires the solution of

a system of linear equations with dimension 2`
′
+ 1, which grows exponentially in the

level `′. However, as the coefficients decay roughly in the same order as the fundamental

spline coefficients ck,p in Eq. (4.59), we can solve a truncated system of linear equations

instead.

Second, the fundamental not-a-knot spline basis ϕp,fs,nak
`′,i′ is not translation-invariant

anymore. This means that theoretically, we have to compute the c`
′,i′,fs

i′′,p individually for

each basis function ϕp,fs,nak
`′,i′ . Nevertheless, when truncating the linear system for a fixed

4.5 HIERARCHIZATION WITH THE UNIDIRECTIONAL PRINCIPLE 105

level `′, almost all the inner basis functions ϕp,fs,nak
`′,i′ will be identical to hierarchical fun-

damental splines ϕp,fs
`′,i′ , if the distance of the region with the removed knots to the grid

point x`′,i′ is large enough (if the removed knots are outside of the truncated support of

ϕ
p,fs,nak
`′,i′). For different levels `′, the fundamental not-a-knot splines ϕp,fs,nak

`′,i′ are the same

up to scaling (if the level `′ is high enough).

Consequently, an efficient implementation only has to implement ϕp,fs,nak
`′,i′ for some

special cases for coarse levels. The other basis functions can then be derived via an affine

parameter transformation.

4.5 Hierarchization on Spatially Adaptive Sparse Grids
with the Unidirectional Principle

IN THIS SECTION

4.5.1 Iteratively Applying the Unidirectional
Principle with Iterative Refinement (p. 105)

4.5.2 Duality of the Unidirectional
Principle (p. 107)

4.5.3 Chains and Equivalent Correctness
Conditions (p. 109)

4.5.4 Hierarchical Weakly Fundamental
Splines (p. 112)

4.5.5 Hermite Hierarchization (p. 115)
4.5.6 Hierarchical Weakly Fundamental

Not-A-Knot Splines (p. 118)

In this final section of the chapter, we fur-

ther decrease the computational complex-

ity for the application of the linear opera-

tor L on spatially adaptive sparse grids from

quadratic to linear time with two algorithms

based on the UP.

4.5.1 Iteratively Applying
the Unidirectional Principle with
Iterative Refinement

The first algorithm can be applied if two requirements are met:

• The inverse L−1 is known and can be efficiently applied.

• There is an operator L′ that is “sufficiently close” to L and can be efficiently applied.

For hierarchization with B-splines on sparse grids, we choose L to be the hierarchization

operator given in Eq. (4.5) and L′ to be the UP directly applied on the sparse grid. Both

of the assumptions are then satisfied, as L−1 is known (interpolation matrix A of basis

function evaluations) and L−1 and L′ can be applied fast. The UP L′ generally produces

wrong results for hierarchical B-splines due to missing coupling points. However, espe-

cially for low B-spline degrees, L′ does not deviate too much from the true operator L.

Below, we will specify a sufficient criterion for the “closeness.”

106 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

1 function y = iterativeRefinement(u, y (0))
2 r (0)← u −L−1y (0) initial residual
3 for m= 0,1,2, . . . do
4 y (m+1)← y (m) +L′r (m) update solution
5 r (m+1)← r (m) −L−1L′r (m) update residual
6 y ← last computed y (m)

ALGORITHM 4.5 Application of a tensor product operator L on spatially adaptive sparse
grids with iterative refinement, where L′ is an approximation of L. Inputs
are the vector u = (u`,i)(`,i)∈K of input data (function values f (x `,i) at
the grid points) and an initial solution y (0). The output is the vector
y = (y`,i)(`,i)∈K of output data (hierarchical surpluses α`,i).

Iterative refinement. Under the two assumptions above, we can apply the procedure

given in Alg. 4.5. The algorithm is equivalent to the well-known method of iterative

refinement, which has been developed to stabilize the numerical solution of a linear

system influenced by rounding errors [Hig02]. The operator L′ acts like a preconditioner,

which is why it is required to be close to L. Note that the algorithm is similar to the

repeated application of the method of residual interpolation (see Sec. 4.3.3) on the whole

sparse grid.

The loop in Alg. 4.5 has to be terminated after some iterations. The following simple

lemma allows to use a stopping criterion based on the size of the residual r (m) to the true

solution, which we denote with y∗ := Lu.

LEMMA 4.18 In Alg. 4.5, we have y (m)→ y∗ ⇐⇒ r (m)→ 0 for m→∞.

PROOF It suffices to prove Lr (m) = y∗−y (m) for m ∈ N by induction. For m= 0, we have

Lr (0) = Lu−LL−1y (0) = y∗−y (0). For m→ m+1, it holds Lr (m+1) = Lr (m)−LL−1L′r (m) =
(y∗ − y (m))−L′r (m) = y∗ − y (m+1). �

Next, we give a sufficient condition for the convergence of Alg. 4.5 to the true solution.

PROPOSITION 4.19 (sufficient condition for the convergence of Alg. 4.5)

If we have limsupm→∞
m
p

‖(id−L−1L′)m‖< 1 with an arbitrary operator matrix norm

‖·‖ and the identity operator id, then y (m)→ y∗ for m→∞ in Alg. 4.5 for every initial

solution y (0).

PROOF A short proof by induction shows that

(4.64) y (m) = y (0) +L′
m−1
∑

m′=0

(id−L−1L′)m
′
r (0),

4.5 HIERARCHIZATION WITH THE UNIDIRECTIONAL PRINCIPLE 107

where (id−L−1L′)m
′
r (0) = r (m

′). For m→∞ and with the assumption on ‖(id−L−1L′)m‖,
the sum converges to the Neumann series

∑∞
m′=0(id−L−1L′)m

′
= (id− (id−L−1L′))−1 =

(L′)−1L (see, e.g., [Wer11]). In this case, we infer that the limit of y (m) is given by

(4.65) y (0) +L′(L′)−1Lr (0) = y (0) +Lu −LL−1y (0) = Lu = y∗,

as claimed. �
The sufficient condition given in Prop. 4.19 is quite strong, as it can be shown that

limsupm→∞
m
p

‖(id−L−1L′)m‖ ≤ 1 is necessary for convergence. Unfortunately, in the

case of hierarchization with B-splines, numerical experiments show that this condition is

only met for low dimensionalities d and low B-spline degrees p. Algorithm 4.5 generally

diverges for higher dimensionalities or higher degrees.

4.5.2 Duality of the Unidirectional Principle

To motivate the second algorithm that we present in this section, we study why we cannot

directly apply the UP (as introduced in Alg. 4.1) on spatially adaptive sparse grids. As

before, we denote with K the level-index set of the spatially adaptive sparse grid (see

Sec. 4.1).

The UP, as stated in Alg. 4.1 for full grids, subsequently applies one-dimensional

operators L(t j),Kpole : R|Kpole|→ R|Kpole| on the poles Kpole of the sparse grid at hand, iterating

over a permutation t1, . . . , td of the dimensions 1, . . . , d. We recall the pole equivalence

relation ∼t j
from Eq. (4.7): Two points k ′, k ′′ ∈ K are ∼t j

-equivalent, if k ′ is contained

in the pole through k ′′ with respect to the t j-th dimension, i.e.,

(4.66) k ′ ∼t j
k ′′ ⇐⇒ k ′−t j

= k ′′−t j
, k ′, k ′′ ∈ K .

Operators for the unidirectional principle. The combined application of all one-di-

mensional operators L(t j),Kpole (Kpole ∈ K/∼t j
) of the j-th iteration of Alg. 4.1 is equivalent

to a single application of the following operator L(t j) : R|K |→ R|K |:

(4.67) (L(t j))k ′′,k ′ :=

(L(t j),Kpole)k′′t j
,k′t j

, ∃Kpole∈K/∼t j
k ′, k ′′ ∈ Kpole,

0, k ′ 6∼t j
k ′′,

where (L(t j))k ′′,k ′ denotes the entry of row k ′′ and column k ′ of the matrix corresponding

to L(t j) (similar for (L(t j),Kpole)k′′t j
,k′t j

). The reason for this equivalence is that the poles Kpole

are pairwise disjoint equivalence classes. Consequently, every point k is only acted upon

108 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

by a single one-dimensional operator L(t j),Kpole , namely the one with Kpole = [k]∼t j
. This

leads to the block-diagonal structure of L(t j) given in (4.67), if the rows of the matrix of

L(t j) are grouped by poles Kpole and the columns are arranged accordingly.

Correctness and duality of the unidirectional principle. For the remaining considera-

tions, we assume that the operators L and L(t j),Kpole are invertible. In this case, L(t j) is also

invertible and (L(t j))−1 is given by the block-diagonal matrix composed of the inverses of

the blocks L(t j),Kpole of L(t j). This is satisfied by dehierarchization operators A due to the

linear independence of the hierarchical basis functions.

We are now able to describe the whole UP of Alg. 4.1 as the operator L(t1,...,td) : R|K |→
R|K | given by

(4.68) L(t1,...,td) := L(td) · · ·L(t1).

The right-most operator is L(t1), since it is applied first. We say that the UP is correct for

L and (t1, . . . , td), if

(4.69) L(t1,...,td) ?
= L.

This relation is not satisfied in general, especially for B-spline hierarchization with the

operator L = A−1. However, for operators like these, whose inverse L−1 = A can be

described and applied much easier, we can make use of the so-called duality of the UP:

LEMMA 4.20 (duality of the unidirectional principle)

Let the operators L and L(t j),Kpole be invertible for all poles Kpole in K. Then the UP is

correct for L and (t1, . . . , td) if and only if the UP is correct for L−1 and (td , . . . , t1).

PROOF The correctness of the UP for L and (t1, . . . , td) is by definition equivalent to

(4.70) L(td) · · ·L(t1) = L.

By inverting both sides, we obtain the definition of the correctness of the UP for L−1 and

(td , . . . , t1). �
This duality means that in order to establish the correctness of L for some arbitrary

permutation (t1, . . . , td) of 1, . . . , d, it suffices to establish the UP’s correctness for the

inverse operator L−1 and the reverse permutation (td , . . . , t1). This is especially of interest

for our main application, the hierarchization operator L= A−1 for B-splines.

4.5 HIERARCHIZATION WITH THE UNIDIRECTIONAL PRINCIPLE 109

k(0)

k(1) k(2)

x1

x2

A d = 2, (t1, t2) = (2,1)

k(0)

k(2)
x1

x2

B d = 2, (t1, t2) = (1,2)

k(0)

k(1)

k(2)

k(3)

x1

x2

x3

C d = 3, (t1, t2, t3) = (2,3, 1)

FIGURE 4.13 Examples for chains in two and three dimensions. Left: A chain from k(0) to
k(2) with respect to (t1, t2) = (2, 1) in a two-dimensional sparse grid. Center:
With respect to the reverse permutation (t1, t2) = (1,2) of the dimensions,
there is no chain from k(0) to k(2), because the corresponding chain point k(1)

is missing in the grid. Right: A chain in three dimensions.

4.5.3 Chains and Equivalent Correctness Conditions

We first define the notion of a chain between two grid points k ′ and k ′′.

DEFINITION 4.21 (chain)

Let k ′, k ′′ ∈ K and (t1, . . . , t j) be a permutation of j of the dimensions 1, . . . , d. We de-

fine the chain from k ′ to k ′′ with respect to (t1, . . . , t j) as the sequence (k(0), . . . , k(j)),
where

(4.71) k(j
′)

T j′
:= k ′′T j′

, k(j
′)
−T j′

:= k ′−T j′
, T j′ := (t1, . . . , t j′), j′ = 0, . . . , j,

if k(j) = k ′′ and k(j
′) ∈ K for all j′ = 0, . . . , j.

This definition is equivalent to k(j
′−1) ∼t j′

k(j
′) for j′ = 1, . . . , j. Figure 4.13 shows

examples of chains in two and three dimensions. As it is shown in Fig. 4.13B, the order

(t1, . . . , t j) of the dimensions is important for whether the grid contains the chain from

k ′ to k ′′. The grid must contain all intermediate points, otherwise it is not a chain.

We now show two lemmas. First, we prove that (L(t1,...,t j))k ′′,k ′ 6= 0 is sufficient for

the existence of a chain from k ′ to k ′′:

110 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

LEMMA 4.22 (sufficient condition for chain existence)

If (L(t1,...,t j))k ′′,k ′ 6= 0 for some j = 0, . . . , d, then the grid K contains the chain from k ′

to k ′′ with respect to (t1, . . . , t j).

PROOF See Appendix A.3.4. �

Second, we show that the equality of (L(t1,...,t j))k(j),k ′ and the product of the one-

dimensional operators is necessary for the existence of a chain from k ′ to k ′′:

LEMMA 4.23 (necessary condition for chain existence)

If the grid K contains the chain (k(0), . . . , k(j)) from k ′ to k ′′ with respect to (t1, . . . , t j)
for some j = 0, . . . , d, then

(4.72) (L(t1,...,t j))k(j),k ′ = (L
(t1),[k

(1)]∼t1)k′′t1 ,k′t1
· · · (L(t j),[k

(j)]∼t j)k′′t j
,k′t j

.

PROOF See Appendix A.3.4. �

These two lemmas can be used to prove the following characterization of the correct-

ness of the UP. Here, we need an additional assumption on the structure of the operator

L, which we call tensor product structure:

PROPOSITION 4.24 (characterization of the correctness of the UP)

Let L have tensor product structure: For all k ′, k ′′ ∈ K with the chain (k(0), . . . , k(d))
from k ′ to k ′′ with respect to (t1, . . . , td), we assume that

(4.73) (L)k ′′,k ′ =
d
∏

j=1

(L
(t j),[k

(j)]∼t j)k′′t j
,k′t j

.

Then the UP is correct for L and (t1, . . . , td) if and only if the grid K contains the chain

from k ′ to k ′′ with respect to (t1, . . . , td) for all k ′, k ′′ ∈ K for which (L)k ′′,k ′ 6= 0.

PROOF See Appendix A.3.4. �

When applied to the hierarchization operator, the combination of Prop. 4.24 with

Lemma 4.20 (duality of the unidirectional principle) can be summarized in the following

corollary:

COROLLARY 4.25 (equivalent statements for correctness of UP for hierarchization)

The following statements are equivalent:

• The UP is correct for A−1 and (t1, . . . , td).

4.5 HIERARCHIZATION WITH THE UNIDIRECTIONAL PRINCIPLE 111

• The UP is correct for A and (td , . . . , t1).

• The grid K contains the chain from k ′ to k ′′ with respect to (td , . . . , t1) for all

k ′, k ′′ ∈ K for which ϕk ′(x k ′′) 6= 0.

PROOF The corollary is a direct consequence of Lemma 4.20 and Prop. 4.24, applied to

the dehierarchization operator L= A.

The assumption of Lemma 4.20 is satisfied: The operators L(t j),Kpole are invertible for

all poles Kpole in K due to the uniqueness of univariate interpolants (linear independence

of the basis functions). Similarly, L is invertible due to the uniqueness of multivariate

interpolants. In addition, the assumption of Prop. 4.24 is satisfied, since

(4.74) (L)k ′′,k ′ = (A)k ′′,k ′ =
d
∏

j=1

ϕk′t j
(xk′′t j

) =
d
∏

j=1

(L
(t j),[k

(j)]∼t j)k′′t j
,k′t j

due to the tensor product basis functions. �

Inserting chain points. This means that we can establish the correctness of the UP

for the hierarchization operator L = A−1, if we insert all missing chain points that are

specified by Prop. 4.24 into the grid.

We take the case p = 1 of piecewise linear standard B-splines ϕ1
`,i as an example.

We assume that we iteratively generated a spatially adaptive sparse grid such that all

grid points are reachable from the corners of [0,1] in the sense of Eq. (4.38b). If we

want to ensure the correctness of the UP for all possible permutations (t1, . . . , td) of the

dimensions (1, . . . , d), then the existence of the necessary chains in Cor. 4.25 is equivalent

to the requirement that the grid should contain the hierarchical ancestors of every grid

point in every direction:

∀(`′,i ′)∈K∀{t=1,...,d|`′t>1} (`, i) ∈ K , ` := `′ − e t , it := 2b i′t
4 c+ 1, i−t = i ′−t ,(4.75a)

∀(`′,i ′)∈K∀{t=1,...,d|`′t=1} (`, i) ∈ K , ` := `′ − e t , it := 0, i−t = i ′−t ,(4.75b)

where e t is the t-th standard basis vector. This is a standard assumption on spatially

adaptive sparse grids with piecewise linear basis functions [Pfl10]. However, we only

have to satisfy the conditions of Cor. 4.25 for a single permutation (t1, . . . , td) of the

dimensions in order to hierarchize with the UP. Figure 4.14 shows the necessary ancestor

chain points (colored points in Fig. 4.14B) for an example of a two-dimensional spatially

adaptive sparse grid (Fig. 4.14A).

Unfortunately, we have to insert these points recursively, e.g., the inserted points

may generate new chains, for which other missing points have to be inserted and so on

112 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

x1

x2

A Original grid (N = 85) B Chain points for p = 1
(N = 121)

C Chain points for p = 3
(N = 289= 17× 17)

FIGURE 4.14 Necessary chain points for the correctness of the unidirectional principle with
respect to (t1, t2) = (1, 2) for hierarchical B-splines ϕp

`,i on a two-dimensional
spatially adaptive sparse grid. The colors indicate the recursion depth in
which the chain points have been inserted. Black points are contained in the
original grid (“zero-order points”). Blue points are part of chains between
original grid points (“first-order chain points”). Red points are second-order
chain points, i.e., they are part of chains from k ′ to k ′′ where k ′ and k ′′

are original grid points or first-order chain points and at least one of them
is a first-order chain point. Analogously, brown points are third-order chain
points. N is the number of points in the final grid.

(“higher-order chain points” in Fig. 4.14). Therefore, the number of points to be inserted

may be large. The worst case is that the final grid is a full grid, i.e., the Cartesian product

of the union of the poles in the different dimensions:

(4.76)

�

⋃

k∈K

[k]∼1

�

× · · · ×
�

⋃

k∈K

[k]∼d

�

,

i.e., we fully lose the advantage of sparse grids, whose purpose is to ease the curse of

dimensionality. For the standard hierarchical B-spline basis ϕp
`,i, this worst case often

occurs as there are many non-zero entries in the corresponding interpolation matrices A

(see Sec. 4.1 and Fig. 4.14C).

4.5.4 Hierarchical Weakly Fundamental Splines

Motivation. In order to reduce the number of chain points to be inserted, we have to

use other spline bases such that the resulting interpolation matrices A have more zero

entries. The hierarchical fundamental splines as introduced in Sec. 4.4.3 are one possi-

4.5 HIERARCHIZATION WITH THE UNIDIRECTIONAL PRINCIPLE 113

bility. However, they are globally supported, which implies a number of disadvantages

concerning the algorithms and the implementations. The most significant disadvantage

is that although we can use BFS for the univariate hierarchization operators, the time

complexity for the univariate hierarchization is still quadratic. We search for a locally

supported spline basis for which the univariate hierarchization can be done in linear time.

To meet these goals, we have to relax the fundamental property to a weaker version,

which results in the so-called weakly fundamental property. A univariate hierarchical basis

ϕwf
`′,i′ : [0,1]→ R is called weakly fundamental, if

(4.77) ϕwf
`′,i′(x`,i) = 0, ` < `′, i ∈ I`.

This is exactly the first condition (4.31a) of the fundamental property (4.31). We drop

the requirement that the basis functions should vanish at the other grid points of the

same level. The relation (4.32) from the fundamental case becomes

(4.78) ϕwf
`′,i ′(x `,i) 6= 0 =⇒ `′ ≤ `,

i.e., every basis function ϕwf
`′,i ′

can only be non-zero at grid points x `,i with higher or equal

level `.

Definition of hierarchical weakly fundamental splines. We construct the weakly fun-

damental spline parent function ϕp,wfs : R→ R by forming a linear combination of as few

neighboring uniform B-splines as possible such that ϕp,wfs satisfies the weakly fundamen-

tal property (4.77):

ϕp,wfs(x) :=
(p−1)/2
∑

k=−(p−1)/2

ck,pϕ
p(x − k) such that(4.79a)

c0,p = 1, ϕp,wfs(k′) = 0, k′ = −p+ 2, −p+ 4, . . . , p− 2.(4.79b)

Hierarchical weakly fundamental splines ϕp,wfs
`,i : [0,1]→ R are now defined canonically

via an affine parameter transformation:

(4.80) ϕ
p,wfs
`,i (x) := ϕp,wfs(x

h`
− i), `≥ 1.

For `= 0, we define ϕp,wfs
`,i to be the linear Lagrange polynomial of level zero:8

(4.81) ϕ
p,wfs
0,i := L0,i, i = 0,1.

8This will simplify the description of the Hermite hierarchization algorithm in Sec. 4.5.5.

114 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

FIGURE 4.15
Hierarchical cubic weakly fundamental
splines ϕp,wfs

`′,i′ (`′ ≤ `, i′ ∈ I`′ , p = 3) and
grid points x`′,i′ (dots) up to level `= 3.

x0,0 x0,1
0

1
ϕ

p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0ϕ
p,wfs
0,0

ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1ϕ
p,wfs
0,1

x1,1
0

ϕ
p,wfs
1,1

x2,1 x2,3
0

ϕ
p,wfs
2,1 ϕ

p,wfs
2,3

x3,1 x3,3 x3,5 x3,7
0

ϕ
p,wfs
3,1 ϕ

p,wfs
3,3 ϕ

p,wfs
3,5 ϕ

p,wfs
3,7

The hierarchical weakly fundamental spline basis is shown in Fig. 4.15. Note that these

basis functions are translation-invariant by construction (starting with level ` ≥ 1). As

the weakly fundamental parent spline ϕp,wfs vanishes at all odd integers and as the sup-

port of ϕp,wfs
`,i is local (suppϕp,wfs

`,i = [x`,i−p, x`,i+p] ∩ [0,1]), this implies that the weakly

fundamental property (4.77) is fulfilled.

Chain points for weakly fundamental splines. The first advantage of the weakly fun-

damental spline basis ϕp,wfs
`,i over standard uniform B-splines ϕp

`,i is that the condition

ϕk ′(x k ′′) 6= 0 in Cor. 4.25 is satisfied much more rarely. Consequently, fewer chain grid

points have to be inserted to ensure the correctness of the UP for hierarchization. Fig-

ure 4.16 shows the inserted points for the same grid as in Fig. 4.14.

In the special case of regular sparse grids Ωs
n,d , we do not have to insert any grid

points for the correctness of the UP. We can verify this statement with Cor. 4.25 (equiv-

alent statements for correctness of UP for hierarchization): Let (`′, i ′) and (`′′, i ′′) with

‖`′‖1,‖`′′‖1 ≤ n and i ′ ∈ I`′ , i ′′ ∈ I`′′ , such that ϕp,wfs
`′,i ′
(x `′′,i ′′) 6= 0. Furthermore, let

(`(0), i(0)), . . . , (`(d), i(d)) be the chain from k ′ to k ′′ with respect to t1, . . . , td . Note that

`(j) ≤max{`′,`′′} due to the definition of chain points (Def. 4.21). Therefore, we have

4.5 HIERARCHIZATION WITH THE UNIDIRECTIONAL PRINCIPLE 115

x1

x2

FIGURE 4.16
Necessary chain points for the correctness of the unidirectional
principle with respect to (t1, t2) = (1, 2) for hierarchical cubic
weakly fundamental splines ϕp,wfs

`,i (p = 3) on the same two-
dimensional spatially adaptive sparse grid as in Fig. 4.14A. The
colors indicate the recursion depth in which the chain points
have been inserted (see caption of Fig. 4.14). The number of
points in the final grid is N = 157.

for j = 0, . . . , d by (4.78):

(4.82) `′ ≤ `′′ =⇒ `(j) ≤max{`′,`′′} ≤ `′′ =⇒ ‖`(j)‖1 ≤ ‖`
′′‖1 ≤ n.

Hence, Ωs
n,d contains the grid points corresponding to (`(j), i(j)) for all j = 0, . . . , d. Con-

sequently, the conditions of Cor. 4.25 are satisfied without inserting any additional chain

points. This statement is even valid for arbitrary dimensionally adaptive sparse grids.

4.5.5 Hermite Hierarchization

Hermite interpolation. The second advantage of the weakly fundamental spline basis is

that due to the reduced coupling, the univariate hierarchization operators can be applied

easier than for standard uniform B-splines. This results in the formulation of the so-called

Hermite hierarchization algorithm. We first recall higher-order Hermite interpolation:

LEMMA 4.26 (higher-order Hermite interpolation)

Let p ∈ N be odd and a, b ∈ R with a < b. Furthermore, let dq

dxq f (a) ∈ R and dq

dxq f (b) ∈
R be given data for q = 0, . . . , p−1

2 . Then there is a unique polynomial s ∈ P p such that

(4.83)
dq

dxq
f (a) =

dq

dxq
s(a),

dq

dxq
f (b) =

dq

dxq
s(b), q = 0, . . . ,

p− 1
2

.

PROOF See [Fre07]. �

Hermite hierarchization algorithm. The interpolating polynomial s and its derivatives

can be efficiently evaluated using Hermite basis functions (generalized Lagrange polyno-

mials [Fre07]). With Hermite interpolation, we formulate Alg. 4.6 for the hierarchization

with hierarchical weakly fundamental splines. While we formulate Alg. 4.6 only for regu-

lar univariate grids and weakly fundamental splines, a slightly reformulated version of the

116 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

1 function y = hermiteHierarchization1D(u, n)
2 for i = 0,1 do set values for level 0
3 y0,i ← f (x0,i)
4 dq

dxq f0(x0,i)← δq,0 · f (x0,i) +δq,1 · (f (x0,1)− f (x0,0)) for all q = 0, . . . , p−1
2

5 for `= 1, . . . , n do
6 for i ∈ I` do
7 f`−1(x`,i)← Hermite interpolation of dq

dxq f`−1(x`,i±1) (q = 0, . . . , p−1
2)

8 r(`)(x`,i)← f (x`,i)− f`−1(x`,i) residual to be interpolated

9 Let r(`)
`

be of the form
∑

i′∈I`
y`,i′ϕ

p,wfs
`,i′ contribution of level `

10 Choose (y`,i′)i′∈I` such that r(`)
`
(x`,i) = r(`)(x`,i) for all i ∈ I`

11 for i = 0, . . . , 2` do for all points (current level and ancestors)
12 for q = 0, . . . , p−1

2 do
13 dq

dxq f`(x`,i)←
dq

dxq f`−1(x`,i) +
dq

dxq r(`)
`
(x`,i) update values

ALGORITHM 4.6 Hermite hierarchization on one-dimensional regular grids. Inputs are
the vector u = (u`,i)(`,i)∈K of input data (function values f (x`,i) at the
grid points) and the level n of the regular grid, where K = {(`, i) | ` =
0, . . . , n, i ∈ I`}. The output is the vector y = (y`,i)(`,i)∈K of output data
(hierarchical surpluses α`,i).

algorithm also correctly operates on spatially adaptive univariate grids (with the assump-

tion that the grids contain the parents of their grid points) and other weakly fundamental

bases that are piecewise polynomials of degree ≤ p.

The idea of Alg. 4.6, which is also illustrated in Fig. 4.17, is to hierarchize the function

value data level by level, which is only possible because of the weakly fundamental

property (4.77). For each level `, we calculate surpluses α`,i = y`,i, while keeping track

of the values and derivatives dq

dxq f`(x`,i) of the “current” interpolant f` (up to level `).

Hermite interpolation is used to determine the “delta” to the interpolant of the next level.

Note that in line 13, we have to evaluate the derivatives of dq

dxq f`−1(x`,i) of the Hermite

interpolant determined in line 7. This is not an issue since in an implementation one

would typically simultaneously evaluate the Hermite interpolant and its derivatives.

For hierarchical weakly fundamental splines, the complexity of the `-th iteration of

Alg. 4.6 is linear in the number of grid points of level `, i.e., O (2`). The reason for this is

the bandedness (with bandwidth O (p)) of the system of linear equations corresponding to

the interpolation problem of lines 9 and 10, which means that the interpolation problem

can be solved in linear time and memory. In total, the complexity of Alg. 4.6 is given by

O (
∑n
`=0 2`) = O (2n), i.e., the time and memory required by Alg. 4.6 is only linear in the

number of grid points.

4.5 HIERARCHIZATION WITH THE UNIDIRECTIONAL PRINCIPLE 117

x0,0 x0,1
0

2 `= 0

f0

f

x1,0 x1,1 x1,2
0

2 `= 1
f1

f

x2,0 x2,1 x2,2 x2,3 x2,4
0

2 `= 2

f2

f

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8
0

2 `= 3

f3

f

FIGURE 4.17
Hermite hierarchization on a regular grid in
one dimension with cubic weakly fundamental
splines ϕp,wfs

`,i (p = 3). The interpolants f` (red)
of the objective function (blue) are computed
level by level. For each level `, the values f`(x`,i)
and the derivatives d

dx f`(x`,i) of the current in-
terpolant f` at the grid points x`,i (i = 0, . . . , 2`)
are saved (black dots and bars). The values and
derivatives are used for the Hermite interpola-
tion of the residual f − f`. The interpolated resid-
ual is then added to the current interpolant such
that the sum vanishes in the grid points of the
next level `+ 1 (black dashed lines between red
and blue dots). Due to the weakly fundamental
property, the previously interpolated values of f
remain unchanged.

Correctness. We prove the correctness of Hermite hierarchization with the following

invariant.

PROPOSITION 4.27 (invariant of Hermite hierarchization)

In Alg. 4.6, it holds for `= 0, . . . , n and i = 0, . . . , 2`

(4.84)
dq

dxq
f`(x`,i) =

∑̀

`′=0

∑

i′∈I`′

y`′,i′
dq

dxq
ϕ

p,wfs
`′,i′ (x`,i), q = 0, . . . ,

p− 1
2

.

PROOF See Appendix A.3.5. �

COROLLARY 4.28 Algorithm 4.6 is correct.

PROOF See Appendix A.3.5. �

118 CHAPTER 4: ALGORITHMS FOR B-SPLINES ON SPARSE GRIDS

FIGURE 4.18
Hierarchical cubic weakly fundamental
not-a-knot splines ϕp,wfs,nak

`′,i′ (`′ ≤ `, i′ ∈
I`′ , p = 3), grid points x`′,i′ (dots), and
removed knots (crosses) up to level `= 3.

x0,0 x0,1
0

1
ϕ

p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0ϕ
p,wfs,nak
0,0

ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1ϕ
p,wfs,nak
0,1

x1,1
0

1
ϕ

p,wfs,nak
1,1

x2,1 x2,3
0

ϕ
p,wfs,nak
2,1 ϕ

p,wfs,nak
2,3

x3,1 x3,3 x3,5 x3,7
0

ϕ
p,wfs,nak
3,1

ϕ
p,wfs,nak
3,3 ϕ

p,wfs,nak
3,5

ϕ
p,wfs,nak
3,7

4.5.6 Hierarchical Weakly Fundamental Not-A-Knot Splines

Finally, as for fundamental splines, it is possible to combine the weakly fundamental

basis with the not-a-knot idea from Sec. 3.2 to construct hierarchical weakly fundamental

not-a-knot spline functions ϕp,wfs,nak
`′,i′ . The approach is similar to the fundamental not-a-

knot splines in Sec. 4.4.5 (see Eq. (4.63)): Instead of combining uniform B-splines as in

(4.79a), we combine not-a-knot B-splines such that the weakly fundamental property is

satisfied.

However, the exact construction is somewhat complicated, as one has to carefully

consider which conditions to enforce with which basis functions. There are some special

cases, if the index of the basis function ϕp,wfs,nak
`′,i′ is near the boundary (near i′ = 0 or near

i′ = 2`
′
). Nevertheless, there are only finitely many special cases; for higher levels `′, one

can just scale the basis functions of coarser levels. In the scope of this thesis, it suffices

to show the resulting basis functions for the cubic case (p = 3) in Fig. 4.18, instead of

rigorously stating the technical formulas.

119

5
Gradient-Based Optimization with

B-Splines on Sparse Grids

“ Premature optimization is the root of all evil.

— Donald E. Knuth [Knu74]

In this chapter, we apply the hierarchical B-spline bases derived in Chapters 3 and 4 to

optimization, which is a major task in simulation technology, for instance in inverse

problems (see Chap. 1). We pursue a three-step surrogate-based optimization approach:

First, we sample the objective function at specific sparse grid points to retrieve objective

function values. Second, by interpolating these values with hierarchical bases, we obtain

a surrogate for the objective function. Third and finally, we discard the original objective

function and apply already existing optimization methods to the surrogate.

One of the key advantages of hierarchical B-splines over common hierarchical bases

for sparse grids is their continuous differentiability. The derivatives of B-spline surrogates

on sparse grids are not only continuous, but also explicitly known, and they can be

evaluated fast. This gives the opportunity to employ gradient-based optimization methods,

which usually converge significantly faster than gradient-free alternatives.

The outline of this chapter is as follows: We start in Sec. 5.1 with a compact overview

of textbook optimization algorithms, which comprises gradient-free and gradient-based

120 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

optimization algorithms for unconstrained problems as well as algorithms for constrained

problems. In Sec. 5.2, we present the main method that conflates the various optimization

algorithms and the generation of spatially adaptive sparse grids with the Novak–Ritter

criterion to create a single method for the optimization of sparse grid surrogates. Sec-

tion 5.3 continues with a small array of test problems for unconstrained and constrained

optimization. In Sec. 5.4, we apply the presented method to the test problems, studying

the influence of the different hierarchical B-splines on optimality gaps and conducting

numerical experiments. Finally, in Sec. 5.5, we examine the fuzzy extension principle as

an example application of the optimization of hierarchical B-spline surrogates on sparse

grids.

Parts of this chapter have already been published in previous work [Vale14], es-

pecially the overview of optimization algorithms (Sec. 5.1) and the methodology of the

optimization of sparse grid surrogates (Sec. 5.2). However, as the previous work included

other basis functions as well, this chapter represents the first comprehensive study that

focuses on the application of hierarchical B-splines to optimization.

5.1 Overview of Optimization Algorithms

IN THIS SECTION

5.1.1 Gradient-Free Unconstrained
Optimization Methods (p. 121)

5.1.2 Gradient-Based Unconstrained
Optimization Methods (p. 124)

5.1.3 Constrained Optimization
Methods (p. 126)

Problem setting. Generally, unconstrained opti-

mization problems have the form

(5.1) x opt = argmin f (x), x ∈ Rd ,

where f : Rd → R is the objective function. Con-

strained optimization problems are given by

(5.2) x opt = argmin f (x), x ∈ Rd s.t. g (x)≤ 0,

where g : Rd → Rmg (mg ∈ N) is the (inequality) constraint function. This formulation

also contains optimization problems with equality constraints h(x) = 0 by setting g (x) :=
(h(x),−h(x)). Equality constraints can also be solved by incorporating them into the

unconstrained solver (e.g., see [Boy04] for an equality-constrained Newton method).

As sparse grid surrogates f = f s are only defined on the unit hyper-cube, the choice

of x has to be restricted to [0,1]. In the case of (5.1), this results in a box-constrained op-

timization problem. A simple method for applying unconstrained optimization algorithms

to box-constrained problems is extending f s to Rd by f s(x) := +∞ for all x ∈ Rd \ [0,1].
However, more sophisticated approaches are also available [Mor87].

5.1 OVERVIEW OF OPTIMIZATION ALGORITHMS 121

Black-box optimization methods. Problems of the form (5.1) or (5.2) are black-box op-

timization problems, where we cannot gain any insight into the structure or algebraic prop-

erties of f . Black-box optimization methods perform a series of evaluations f (x k), choos-

ing the next evaluation point x k+1 based on the previous function values f (x 0), . . . , f (x k).
Gradient-based methods differ from gradient-free approaches in such a way that they also

take values of the gradient ∇x f (x k), of the Hessian ∇2
x f (x k), or of even higher-order

derivatives into account.

A vast range of optimization methods exists in literature. Some methods are better

suited for specific optimization problems than others. However, according to the “no-free-

lunch theorem” and under some assumptions [Wol97], all methods perform equally well

(or equally badly) in the mean of all possible optimization problems.

Local and global optima. Most optimization methods depend on an initial point x 0

and only find local optima, where (5.1) or (5.2) only holds for x in a neighborhood

of x opt. One can globalize local methods to increase the probability of finding a global

optimum with a Monte Carlo multi-start approach: The local method is repeated with

different pseudo-random initial points and the best local optimum is chosen as the result.

In the following, we give a brief survey of a small selection of optimization methods

(see Tab. 5.1, Fig. 5.1, and Fig. 5.2), highlighting the key ingredients for each method.

5.1.1 Gradient-Free Unconstrained Optimization Methods

Nelder–Mead. The Nelder–Mead method [Nel65; Gao12; Vale14]maintains a list of d+1

vertices of a d-dimensional simplex, sorted by ascending function value. In each iteration,

the method performs one of the operations reflection, expansion, outer contraction, inner

contraction, and shrinking on the vertices. Typically, convergence can be detected by

checking the size of the simplex, as the simplex tends to contract around local minima.

However, there are counterexamples where the method converges to a non-critical point

for an only bivariate objective function that is strictly convex and twice continuously

differentiable [McK98].

Differential evolution. The method of differential evolution [Stor97; Zie09; Vale14] is

an evolutionary meta-heuristic algorithm. Being similar to genetic algorithms, the method

maintains a population of m points that is iteratively updated according to pseudo-random

mutations, which are weighted sums of the points of the previous generation. The mutated

vector is crossed over with the original vector entry by entry. The resulting offsprings are

only accepted if they lead to an improvement in terms of objective function value.

122 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

Method Type C D S I

Nelder–Mead Simplex heuristic 0
Differential evolution Evolutionary 0
CMA-ES Evolutionary 0
Simulated annealing Temperature heuristic 0
PSO Swarm heuristic 0
GP-LCB Bayesian 0

Gradient descent Descent 1
NLCG Descent 1
Newton Newton 2
BFGS Quasi-Newton 1
Rprop Heuristic 1
Levenberg–Marquardt Least sq., trust-region 1

Log-barrier Interior-point 0+ –
Squared penalty Penalty 0+ –
Augmented Lagrangian Penalty 0+ –
SQP Quadratic subproblems 2 –

TABLE 5.1 Selection of optimization methods. The columns show if constrained problems
are supported (C), the order of required derivatives (D), if the algorithm is
stochastic (S), and if the algorithm has been implemented in SG++ (I).

Nelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–MeadNelder–Mead Differential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolutionDifferential evolution

Original Mutation Crossover

t = 1

t = d

Old/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distributionOld/new distribution

CMA-ESCMA-ESCMA-ESCMA-ESCMA-ESCMA-ESCMA-ESCMA-ESCMA-ESCMA-ESCMA-ESCMA-ESCMA-ESCMA-ESCMA-ESCMA-ESCMA-ES

High tem-
perature

Low temperature

Simulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealingSimulated annealing

x k

x k+1

v k

PSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSO
GP-LCBGP-LCBGP-LCBGP-LCBGP-LCBGP-LCBGP-LCBGP-LCBGP-LCBGP-LCBGP-LCBGP-LCBGP-LCBGP-LCBGP-LCBGP-LCBGP-LCB

FIGURE 5.1 Sketch of the ideas of gradient-free optimization methods.

5.1 OVERVIEW OF OPTIMIZATION ALGORITHMS 123

CMA-ES. CMA-ES (covariance matrix adaption, evolution strategy) [Hanse03] is an evo-

lutionary algorithm that addresses the issue that simple evolution strategies do not prefer

a search direction due to the lack of gradients [Tou15]. The name of the algorithm stems

from the fact that it keeps track of the covariance matrix of the Gaussian search distri-

bution. After m points have been sampled from the current distribution, the mean of

the distribution for the next iteration is calculated as the weighted mean of the k best

samples and the covariance matrix is adapted accordingly. An advantage of the method

is that if the population is large enough, local minima are smoothed out [Tou15].

Simulated annealing. Simulated annealing [Laa87; Pre07; Kir14] imitates the cooling

of a solid by randomly drawing samples from a proposal distribution and calculating

an acceptance probability that depends on the function value improvement as well as on

a temperature T . This temperature is slowly decreased in the course of the algorithm.

Simulated annealing is closely connected to the Metropolis–Hastings algorithm for draw-

ing random samples of arbitrary probability distributions. If run long enough, simulated

annealing is guaranteed to find the global optimum [Tou15].

Particle swarm optimization (PSO). The method of particle swarm optimization (PSO)

[Ken95; Zie09; Kir14] can be seen as another evolutionary algorithm that stems from

swarm intelligence. For each particle of the population, not only the position x k is stored,

but also the current velocity v k, the best known position in a neighborhood of x k (which

may be the whole swarm), and the best known position of the k-th particle. The next

velocity v k+1 is computed as a pseudo-randomly weighted sum of v k, the vector from x k

to the best neighborhood position, and the vector from x k to the best own position.

GP-LCB. GP-LCB (Gaussian process, lower confidence bound) [Sri10; Tou15] is an example

for a Bayesian optimization strategy. The objective function is treated as a stochastic

process. A prior distribution is updated according to the previous function evaluations

to calculate the posterior distribution. The posterior distribution is used to form the

acquisition function, which in turn determines the point at which the objective function

is evaluated next. The GP-LCB method is obtained by choosing Gaussian processes for the

family of stochastic processes and lower confidence bounds (which are the difference of

the mean and a multiple of the standard deviation) for the acquisition function.

124 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

Gradient descentGradient descentGradient descentGradient descentGradient descentGradient descentGradient descentGradient descentGradient descentGradient descentGradient descentGradient descentGradient descentGradient descentGradient descentGradient descentGradient descent

NLCGNLCGNLCGNLCGNLCGNLCGNLCGNLCGNLCGNLCGNLCGNLCGNLCGNLCGNLCGNLCGNLCG

NewtonNewtonNewtonNewtonNewtonNewtonNewtonNewtonNewtonNewtonNewtonNewtonNewtonNewtonNewtonNewtonNewton
BFGSBFGSBFGSBFGSBFGSBFGSBFGSBFGSBFGSBFGSBFGSBFGSBFGSBFGSBFGSBFGSBFGS

0
g(x)

−µ
k
log
(−

g(
x))

Log-barrierLog-barrierLog-barrierLog-barrierLog-barrierLog-barrierLog-barrierLog-barrierLog-barrierLog-barrierLog-barrierLog-barrierLog-barrierLog-barrierLog-barrierLog-barrierLog-barrier

0 g(x)

µ k
· (
(g
(x
)) +
)2

Squared penaltySquared penaltySquared penaltySquared penaltySquared penaltySquared penaltySquared penaltySquared penaltySquared penaltySquared penaltySquared penaltySquared penaltySquared penaltySquared penaltySquared penaltySquared penaltySquared penalty

Original
problem

Quadratic
sub-problem

SQPSQPSQPSQPSQPSQPSQPSQPSQPSQPSQPSQPSQPSQPSQPSQPSQP

FIGURE 5.2 Sketch of the ideas of gradient-based or constrained optimization methods.

5.1.2 Gradient-Based Unconstrained Optimization Methods

Most gradient-based optimization algorithms determine in each iteration k a unit search

direction dk ∈ Rd (‖dk‖2 = 1) to update the current iterate x k:

(5.3) x k→ x k+1 := x k +δkdk, δk := argmin
δ∈R>0

f (x k +δdk),

where δk ∈ R>0 is the step size. The algorithms essentially differ in the choice of the search

direction dk, which should be oriented like the negative gradient (〈dk,∇x f (x k)〉2 < 0).

The step size δk can then be determined independently of the algorithm via line search, for

instance, the Armijo line search algorithm [Noc99; Ulb12; Vale14], which uses a heuristic

acceptance criterion to find δk with a good enough improvement.

Gradient descent. Gradient descent [Ulb12; Vale14; Tou15] chooses dk ∝−∇x f (x k)
(i.e., normalized). The method suffers from slow convergence, if the Hessian ∇2

x f is

ill-conditioned: One can show that for strictly convex quadratic functions, the error

f (x k) − f (x opt) can decrease in each iteration only by the factor of (λ
max−λmin

λmax+λmin)2, where

λmin and λmax are the minimum and maximum eigenvalue of ∇2
x f , respectively [Ulb12].

If the condition number λ
max

λmin of ∇2
x f is large, then this factor will be very close to one.

5.1 OVERVIEW OF OPTIMIZATION ALGORITHMS 125

NLCG. A possible remedy for this issue is the method of non-linear conjugate gradients

(NLCG) [Noc99; Vale14; Tou15]. It is equivalent to the CG method for solving symmetric

positive definite linear systems Ax = b, if we optimize the strictly convex quadratic

function f (x) := 1
2 x TAx − bTx [Rei13; Vale14], i.e., it finds the optimum after only d

steps for strictly convex quadratic functions. The NLCG method quickly converges even

for non-convex objective functions, as due to the Taylor theorem, three times continuously

differentiable functions with positive definite Hessian are “similar” to a strictly convex

quadratic function in a neighborhood of x opt [Vale14].

Newton. The Newton method [Ulb12; Vale14; Tou15] replaces the objective function

with the second-order Taylor approximation given by f (x k+dk)≈ f (x k)+(∇x f (x k))Tdk +
1
2(dk)T(∇2

x f (x k))dk and determines the search direction such that x k+dk is the minimum

of the approximation, i.e., dk∝−(∇2
x f (x k))−1∇x f (x k). Despite converging for strictly

convex quadratic functions in a single step, the Hessian must not be ill-conditioned for

the Newton method as well, as we have to solve a linear system with the matrix∇2
x f (x k).

Hence, often a regularization/damping term λI for some λ > 0 is added to the Hessian.

BFGS. The Newton method has the disadvantage that it needs to evaluate the Hes-

sian ∇2
x f , which may be unavailable or too expensive. Quasi-Newton methods such

as the method of BFGS (Broyden, Fletcher, Goldfarb, Shanno) [Noc99; Ulb12; Tou15]
approximate the Hessian by a solution of the secant equation ∇2

x f (x k)(x k − x k−1) ≈
∇x f (x k)−∇x f (x k−1). As the solution is not unique for d > 1, Quasi-Newton methods

differ in which solution to choose. The BFGS method performs a simple rank-one update.

Rprop. Rprop (resilient propagation) [Rie93; Tou15] considers the gradient entries

(∇x f (x k))t of each dimension t = 1, . . . , d separately and updates the entries xk,t of

x k according to the sign of the respective gradient entry, while adapting the step size

dimension-wise. Although the algorithm is independent of the exact direction of∇x f (x k),
it was found to often work robustly in machine learning scenarios [Tou15].

Levenberg–Marquardt. The Levenberg–Marquardt method [Noc99; Fre07; Tou15] can

only solve non-linear least-squares problems, i.e., the objective function must be of the form

f (x) = ‖φ(x)‖2
2 =

∑mφ
i=1 |φi(x)|2 for some function φ : Rd → Rmφ . It is an improvement

over the Gauss–Newton method (which is in turn a slight modification of the Newton

method) and can be obtained by replacing the line search in the Gauss–Newton method

with a trust-region approach.

126 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

5.1.3 Constrained Optimization Methods

Methods for constrained optimization usually solve a series of unconstrained auxiliary

problems with an arbitrary unconstrained optimization method. The auxiliary function

to be minimized is the sum of the objective function and penalty terms, which penalize

if the current point x k is near the boundary of the feasible domain or even outside. The

penalty terms slowly increase to enforce the feasibility of the final result. Constrained

optimization methods can roughly be divided into interior-point or barrier methods, where

x k always stays in the feasible domain, and penalty methods, where intermediate solutions

x k may be infeasible, in which case the penalty term is applied.

At least for the interior-point methods, a feasible initial solution x 0 is required. We

can find an initial solution by solving another auxiliary problem [Tou15], for instance

(5.4) min
(x ,s)∈Rd+1

s s.t. s ≥ 0, g (x)≤ s · 1mg
,

where 1mg
∈ Rmg is the all-one vector. An initial solution for this problem can be explicitly

given (for example, x 0 = 0 and s0 =max(max(g (x 0)), 0)).

Log-barrier. The log-barrier method [Boy04; Rei13; Tou15] is an interior-point method

that adds a logarithmic barrier function term to the objective function near the boundary.

The method solves min [f (x)−µk

∑mg

i=1 log(−gi(x))] for some decreasing µk ∈ R>0.

Squared penalty. The squared penalty method [Pol71; Ulb12; Tou15] replaces the con-

strained problem with the penalized problem min [f (x)+µk‖(g (x))+‖2
2], where µk ∈ R>0

is a penalty parameter and (·)+ := max(·,0) denotes the non-negative part. With in-

creasing µk, the constraint violation of the solution of the penalized problem decreases,

although it may happen that it never vanishes.

Augmented Lagrangian. The method of the augmented Lagrangian [Rei13; Tou15]
considers the auxiliary problem

(5.5) min
x∈Rd

�

f (x) +µk

mg
∑

i=1

[λk,i > 0]((gi(x))+)
2 +λT

k g (x)

�

,

where [λk,i > 0] ∈ {0,1} is defined as one if and only if λk,i > 0, and λk ∈ R
mg

≥0 is an

estimate of the Lagrangian multipliers. They are updated according to the penalty of the

previous iteration, generating a “virtual gradient” that drastically decreases the necessary

magnitude of the penalty parameter µk to achieve feasibility of the solution [Tou15].

5.2 OPTIMIZATION OF SURROGATES ON SPARSE GRIDS 127

Sequential quadratic programming (SQP). Sequential quadratic programming (SQP)

methods [Ulb12; Rei13; Tou15] are one of the most powerful method classes for con-

strained optimization. They are motivated by the Karush–Kuhn–Tucker (KKT) condi-

tions, which are necessary to hold in any optimal point (similarly to critical points in

unconstrained optimization). The Newton method can be employed to solve the KKT

conditions when written as a non-linear system of equations. The linear system of the

resulting Newton–Lagrange method is equivalent to the KKT conditions of a quadratic

programming (QP) problem, for which objective and constraint functions have the form

f (x) = 1
2 x TQx + dTx and g (x) = Ax − b, respectively.

5.2 Optimization of Surrogates on Sparse Grids

IN THIS SECTION

5.2.1 Novak–Ritter Adaptivity
Criterion (p. 127)

5.2.2 Global Optimization of
Sparse Grid Surrogates (p. 128)

The methods presented in the last section can be com-

bined to a “meta-method” for surrogate optimization.

The surrogates are constructed as interpolants on spa-

tially adaptive sparse grids, which we explain in the

following.

5.2.1 Novak–Ritter Adaptivity Criterion

The classic surplus-based refinement strategy for spatially adaptive sparse grids is not

tailored to optimization, as this refinement strategy aims to minimize the overall L2 error.

However, in optimization, it is reasonable to generate more points in regions where we

suspect the global minimum to be to increase the interpolant’s accuracy in these regions.

Hence, we employ an adaptivity criterion proposed by Novak and Ritter [Nov96] for

hyperbolic cross points. The Novak–Ritter criterion has also been applied to sparse grids

[Fere05; Vale14; Vale16].

m-th order children. As usual, the criterion works iteratively: Starting with an initial

regular sparse grid of a very coarse level, the criterion selects a specific point x `,i in each

iteration and inserts all its children into the grid. This process is repeated until a given

number Nmax of grid points is reached, since we evaluate f at every grid point once, and

we assume that function evaluations dominate the overall complexity. The difference to

common refinement criteria is that a point may be selected multiple times, in which case

128 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

higher-order children are inserted. The m-th order children x `′,i ′ of a grid point x `,i satisfy

(5.6) `′−t = `−t , i ′−t = i−t , `
′
t = `t+m, i′t ∈

{1}, (`t = 0)∧ (it = 0),

{2m − 1}, (`t = 0)∧ (it = 1),

{2mit − 1, 2mit + 1}, `t > 0,

where m ∈ N and t ∈ {1, . . . , d} (cf. Eq. (4.37) for m= 1). The order is chosen individually

for each child point to be inserted as the lowest number m such that x `′,i ′ does not yet

exist in the grid.

Criterion. The Novak–Ritter refinement criterion [Nov96] refines the grid point x `,i
that minimizes the product1

(5.7) (r`,i + 1)γ · (‖`‖1 + d`,i + 1)1−γ.

Here, r`,i := |{(`′, i ′) ∈ K | f (x `′,i ′) ≤ f (x `,i)}| ∈ {1, . . . , |K |} is the rank of x `,i (where

K is the current set of level-index pairs of the grid), i.e., the place of the function value

at x `,i in the ascending order of the function values at all points of the current grid. We

denote the degree d`,i ∈ N0 of x `,i as the number of previous refinements of this point.

Finally, γ ∈ [0,1] is the adaptivity parameter. We have to choose a suitable compromise

between exploration (γ= 0) and exploitation (γ= 1). The best choice of course depends

on the objective function f at hand, but for our purposes, we choose a priori a value of

γ= 0.15. However, it may be an option to adapt the value of γ automatically during the

grid generation phase.

5.2.2 Global Optimization of Sparse Grid Surrogates

Global, local, and globalized optimization methods. In Sec. 5.1, we presented vari-

ous optimization methods for the unconstrained case, divided into global gradient-free

methods such as differential evolution and local gradient-based methods, for example,

gradient descent. A subset of these methods has been implemented in SG++ [Pfl10], see

Tab. 5.1. The gradient-based methods need an initial point, and they may get stuck in local

minima. Hence, we additionally implemented globalized versions of the gradient-based

methods via a multi-start Monte Carlo approach with m := min(10d, 100) uniformly

distributed pseudo-random initial points.2 This means there are three types of methods:

1Compared to [Nov96], we added one in the base of each factor to avoid ambiguities for 00. In addition,
we swapped γ with 1− γ to make γ more consistent with its name as adaptivity.

2We split the number of permitted function evaluations evenly among the m parallel calls.

5.2 OPTIMIZATION OF SURROGATES ON SPARSE GRIDS 129

T1. Global gradient-free methods listed as implemented in Tab. 5.1

T2. Local gradient-based methods listed as implemented in Tab. 5.13

T3. Globalized versions of the methods of type T2

Unconstrained optimization of sparse grid surrogates. Given the objective function

f : [0,1]→ R, the maximal number Nmax ∈ N of evaluations of f , and the adaptivity pa-

rameter γ ∈ [0, 1], we determine an approximation x opt,∗ ∈ [0,1] of the global minimum

x opt of f as follows:

1. Generate a spatially adaptive sparse grid Ωs with the Novak–Ritter refinement crite-

rion for f , Nmax, and γ.

2. Determine the sparse grid interpolant f s of f by solving the linear system (4.1).

3. Optimize the interpolant: First, find the best grid point x (0) := argminx `,i∈Ωs f (x `,i).
Second, apply the local methods of type T2 to the interpolant f s with x (0) as initial

point. Let x (1) be the resulting point with minimal objective function value. Third,

we apply the global and globalized methods of types T1 and T3 to the interpolant

f s. Again, let x (2) be the point with minimal f value. Finally, determine the point of

{x (0), x (1), x (2)} with minimal f value and return it as x opt,∗.

Note that the third step requires a fixed number of additional evaluations of the objective

function, which can be neglected compared to Nmax. By default, we use the cubic modified

hierarchical not-a-knot B-spline basis ϕp,nak,mod
`,i (p = 3) for the construction of the sparse

grid surrogate. However, we could apply any of the hierarchical (B-)spline bases presented

in Chapters 3 and 4.

Comparison methods. We use two comparison methods. First, we apply the gradient-

free methods (type T1) to the sparse grid interpolant using modified piecewise linear

hierarchical basis functions (i.e., p = 1) on the same sparse grid as the cubic B-splines.

We cannot employ gradient-based optimization as the objective function should be contin-

uously differentiable and discontinuous derivatives are usually numerically problematic

for gradient-based optimization methods (see, e.g., [Hüb14]). Second, we apply the

gradient-free methods (type T1) directly to the objective function. We cannot use the

gradient-based methods here as the gradient of the objective function is assumed to be

unknown. For both of the comparison methods, we make sure that the objective func-

tion is evaluated at most Nmax times by splitting the Nmax evaluations evenly among all

employed optimization methods.

3Excluding Levenberg–Marquardt, which is only applicable to least-squares problems.

130 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

Constrained optimization. For optimization problems with constraints, we proceed

exactly as for unconstrained optimization, except that for optimizing the interpolant, we

use the constrained optimization algorithms implemented in SG++ as listed in Tab. 5.1.

We only replace the objective function f with a sparse grid surrogate f s, and we assume

that the constraint function g can be evaluated fast. However, it would also be possible

to replace g with a sparse grid surrogate. In this case, it cannot be guaranteed that the

resulting optimal point x opt,∗ is feasible, i.e., we could have ¬(g (x opt,∗)≤ 0).

5.3 Test Problems

It is impossible to assess the capability of optimization methods for every possible opti-

mization problem. The most widespread approach in literature is the selection of a subset

of specific problems with different characteristics (test problems) and the application of

the methods to only these problems, in the hope that the methods perform similarly in

actual application settings.

Trivial test functions. When testing methods that involve sparse grid interpolation,

one has to consider that the function to be interpolated does not satisfy a specific trivial

property. A test function f : [0,1]→ R is trivial if f is a sum of tensor products of which

at least one factor is a linear polynomial, i.e., if f is of the form

(5.8) f (x)≡
m
∑

q=1

d
∏

t=1

fq,t(x t), m ∈ N0, fq,t : [0,1]→ R, ∀q=1,...,m∃t∈{1,...,d} fq,t ∈ P1,

where P1 is the space of univariate polynomials up to linear degree. This is already fulfilled

if the summands of f (x) do not depend on all coordinates x t of x . One can show that for

hat functions on sparse grids, the hierarchical surpluses α`,i for trivial functions vanish

if `≥ 1. This means that trivial functions can be well-approximated by hat functions on

sparse grids just with boundary points, without placing any points in the interior. As this

would distort our results, we avoid trivial test functions in the following, which include

popular functions such as the Branin01, Rosenbrock, and Schwefel26 functions.

Selection of test problems. In the following, we select six unconstrained test problems

and two constrained test problems, which are listed in Tab. 5.2 and plotted in Figures 5.3

and 5.4. The definitions of the problems are given in Appendix B. For the unconstrained

case and the standard hierarchical B-spline basis, a more exhaustive list of test functions

has been studied previously [Vale14]. Gavana [Gav13] and Runarsson/Yao [Run00]
provide a good overview of unconstrained and constrained test problems, respectively.

5.4 NUMERICAL RESULTS 131

Name Abbr. d mg C CD MM Reference

Branin02 Bra02 2 0 [Mun98]
GoldsteinPrice GoP 2 0 [Gol71]
Schwefel06 Sch06 2 0 [Schw77]
Ackley Ack d 0 [Ack87]
Alpine02 Alp02 d 0 [Cle99]
Schwefel22 Sch22 d 0 [Schw77]

G08 G08 2 2 [Schoena93]
G04Squared G04Sq 5 6 [Col68]

TABLE 5.2 Unconstrained (top) and constrained (bottom) test problems. The columns state
the full and abbreviated names, the dimensionality d of the objective function
f , the number mg of constraints, whether f is continuous in the domain [0,1]
(C), whether f is continuously differentiable in the domain [0,1] (CD), whether
f is multi-modal (MM, i.e., whether there are multiple local minima), and a
reference to the original literature that defines the problem.

For each test problem, we state unscaled versions of objective functions f̄ : [a, b]→
R, x̄ 7→ f̄ (x̄) (and the unscaled constraint function ḡ , if present). The actual objective

function f : [0,1] → R can be obtained by f (x) := f̄ (x̄) with the affine parameter

transformation x t =
x̄ t−at
bt−at

, t = 1, . . . , d (similarly for the constraint function).

The parameter domains of some test problems have been slightly translated compared

to the literature to avoid that the minima are located exactly at or close to the center

of the domain. In these cases, sparse grids would be in advantage as they tend to place

more points near the center of the domain (especially for high dimensionalities).

5.4 Numerical Results

IN THIS SECTION

5.4.1 Interpolation Error and Decay of
Surpluses (p. 133)

5.4.2 Complexity of Hierarchization (p. 137)
5.4.3 Optimality Gap (p. 139)

The following numerical experiments can be

roughly divided into two parts. First, we study

interpolation errors for the test functions to

assess the effects of the hierarchical B-spline

bases introduced in Chapters 2 and 3 on inter-

polation. Second, we consider the optimality gaps f (x opt,∗)− f (x opt) of the calculated

approximations x opt,∗ of the point x opt at which the objective function f is minimal.

132 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

x̄

−5

15

x̄

−5

15

100

200

300

400

500

A Bra02

x̄

−2

2

x̄

−2

2

20
40
60
80
100

B GoP

x̄
−6

4
x̄

−6

4

0

5

10

15

20

25

C Sch06

x̄

1.5

6.5

x̄

1.5

6.5

8
10

12

14

16

D Ack for d = 2

x̄

2

10

x̄

2

10
−7.5
−5.0
−2.5
0.0
2.5
5.0

E Alp02 for d = 2

x̄

−3

7

x̄

−3

7
0

20

40

60

F Sch22 for d = 2

FIGURE 5.3 Bivariate test functions f̄ in unconstrained optimization. The red dot indicates
the location of the global minimum.

5.4 NUMERICAL RESULTS 133

0.5 2.5x̄
3

6
x̄

ḡ 1
≤

0

ḡ2≤ 0

A G08

27 45x̄
27

45

x̄

ḡ 1
≤ 0

ḡ
5 ≤

0
ḡ

5 ≤
0

ḡ
5 ≤

0
ḡ

5 ≤
0

ḡ
5 ≤

0
ḡ

5 ≤
0

ḡ
5 ≤

0
ḡ

5 ≤
0

ḡ
5 ≤

0
ḡ

5 ≤
0

ḡ
5 ≤

0
ḡ

5 ≤
0

ḡ
5 ≤

0
ḡ

5 ≤
0

ḡ
5 ≤

0
ḡ

5 ≤
0

ḡ
5 ≤

0

ḡ
6 ≤

0
ḡ

6 ≤
0

ḡ
6 ≤

0
ḡ

6 ≤
0

ḡ
6 ≤

0
ḡ

6 ≤
0

ḡ
6 ≤

0
ḡ

6 ≤
0

ḡ
6 ≤

0
ḡ

6 ≤
0

ḡ
6 ≤

0
ḡ

6 ≤
0

ḡ
6 ≤

0
ḡ

6 ≤
0

ḡ
6 ≤

0
ḡ

6 ≤
0

ḡ
6 ≤

0

B G04Sq (bivariate projection over x̄3 and x̄5
onto x̄ t = x̄opt

t for t = 1,2, 4)

FIGURE 5.4 Test problems in constrained optimization. The blue areas denote the inequality
constraints and the red dot indicates the location of the global minimum.

The results have been computed with the sparse grid toolbox SG++ [Pfl10],4 which

has been extended in the scope of this thesis. The new code has been written in such a

way that it is scalable and efficient, while still being maintainable and portable [Pfl16].

5.4.1 Interpolation Error and Decay of Surpluses

Interpolation error for different test functions. Figure 5.5 shows the relative L2 in-

terpolation error
‖ f − f s‖L2

‖ f ‖L2
of sparse grid interpolants f s to different objective functions

f (approximated via Monte Carlo quadrature using 104 uniformly pseudo-random sam-

ples). The interpolation is performed on regular sparse grids of increasing levels using

hierarchical not-a-knot B-splines ϕp,nak
`,i of degree p = 1,3,5. As a visual aid, the plots

include gray lines that indicate different orders of convergence.

It is already known that—if the objective function is sufficiently smooth—the L2

error of spline interpolants of degree p on d-dimensional regular sparse grids of level n

asymptotically behaves like O (hp+1
n (log2 h−1

n)
d−1) = O (2−(p+1)nnd−1) for n→∞ [Sic11].

We can numerically verify this fact easily with Fig. 5.5, in which we obtain the asserted

orders of convergence for the bivariate functions that are continuously differentiable.

4http://sgpp.sparsegrids.org/

http://sgpp.sparsegrids.org/

134 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

Bra02
p = 1

GoP
p = 3

Sch06
p = 5

Ack Alp02 Sch22

2 4 6 8 10
10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
L2

in
te

rp
.

er
ro

r

2

4

6

d = 2

n 2 4 6 8 10
10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
L2

in
te

rp
.

er
ro

r

2

4

6

d = 2

n

2 4 6 8 10
10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
L2

in
te

rp
.

er
ro

r

2

46
d = 3

n 2 4 6 8

10−2

10−1

100

R
el

at
iv

e
L2

in
te

rp
.

er
ro

r

1

2

d = 4

n

FIGURE 5.5 Relative L2 interpolation error ‖ f − f s‖L2/‖ f ‖L2 for different test functions f
(colors) using hierarchical not-a-knot B-splines ϕp,nak

`,i of different degrees p
(line styles/markers) on regular sparse grids Ωs

n,d of different levels n.

For the functions Sch06 and Sch22, which have a non-differentiable kink, only linear

convergence can be achieved regardless of the B-spline degree.

The region where the asymptotic behavior dominates largely depends on the objective

function at hand. Functions like Bra02 and Ack with many small oscillations require more

interpolation points than “smoother” functions like GoP and Alp02. This is also the case

for all functions in higher dimensionalities, as more interpolation points are necessary to

sufficiently explore the domain (curse of dimensionality). In Fig. 5.5, this can already

be seen for d ≥ 3. This is not a consequence of employing higher-order B-splines for the

hierarchical basis. However, it seems that higher-order B-splines lead to a slight increase

of the interpolation error in the pre-asymptotic range.

5.4 NUMERICAL RESULTS 135

ϕ
p
`,i

ϕ
p,fs
`,i

p = 1

ϕ
p,nak
`,i

ϕ
p,fs,nak
`,i

p = 3

ϕ
p,mod
`,i

ϕ
p,wfs
`,i

p = 5

ϕ
p,nak,mod
`,i

ϕ
p,wfs,nak
`,i

2 4 6 8 10
10−8

10−6

10−4

10−2

100

R
el

at
iv

e
L2

in
te

rp
.

er
ro

r

2

4

6

n

FIGURE 5.6
Relative L2 interpolation er-
ror ‖ f − f s‖L2/‖ f ‖L2 for the
bivariate Alp02 function (d =
2) using different hierarchi-
cal basis functions ϕ`,i (col-
ors) of different degrees p
(line styles/markers) and reg-
ular sparse grids Ωs

n,d of dif-
ferent levels n.
The basis functions shown
here involve standard (no su-
perscript), not-a-knot (nak),
modified (mod), fundamen-
tal (fs), and weakly funda-
mental (wfs) splines as well
as the combinations intro-
duced in Chapters 2 and 3.

Interpolation error for different basis functions. In Fig. 5.6, we fix the objective

function and study the influence of the choice of hierarchical basis functions on the

interpolation error. Shown are eight types of hierarchical B-spline bases as introduced in

Chapters 2 and 3 for the degrees p = 1, 3, 5. Note that some lines exactly overlap, which

is indicated in the figure.

For p = 1, the non-modified bases and the modified bases coincide. For higher

degrees, the modified bases show worse results than the corresponding non-modified

versions for the same level n. However, modified bases need significantly less grid points

(no boundary points), which means that a direct comparison based on the sparse grid

level n is somewhat skewed. In addition, we see that the not-a-knot bases coincide exactly

for p > 1, as they span the same space for regular and dimensionally adaptive sparse

grids. Only with the not-a-knot boundary conditions, we obtain the true theoretical order

of convergence, which is p+ 1 for degree p. Otherwise, only quadratic convergence can

be achieved regardless of p, albeit with a smaller constant (offset).

Pointwise interpolation error. The importance of not-a-knot boundary conditions is

also evident from plots of the pointwise interpolation error as in Fig. 5.7. The interpolation

error grows for the standard hierarchical B-spline basis ϕp
`,i as we move towards the

boundary of the domain [0,1], before dropping to zero or near-zero values at or near

boundary grid points. With not-a-knot B-splinesϕp,nak
`,i , the interpolation error is uniformly

136 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101

0 1
0

1

x1

x2

A ϕ
p
`,i

0 1
0

1

x1

x2

B ϕ
p,nak
`,i

0 1
0

1

x1

x2

C ϕ
p,mod
`,i

FIGURE 5.7 Pointwise interpolation error | f (x) − f s(x)| on a logarithmic scale for the
bivariate GoP function (d = 2) using different hierarchical basis functions ϕ`,i
(left, center, right) of degree p = 3 on the regular sparse grid Ωs

n,d of level n= 7.

low. For comparison, modified B-splines ϕp,mod
`,i incur even worse issues near the boundary,

since the corresponding sparse grids do not contain boundary points.

Decay of surpluses. In the piecewise linear case (p = 1), the hierarchical surpluses

α`,i can be represented as the L2 inner product of the corresponding hat function ϕ1
`,i

with the second mixed derivative ∂ 2d

∂ x2
1 ···∂ x2

d
f of the objective function f , if ` ≥ 1 and if

this derivative exists and is continuous (see Eq. (2.25)). Consequently, one can prove

that |α`,i | ≤ 2−d2−2‖`‖1

∂ 2d

∂ x2
1 ···∂ x2

d
f

L∞
[Bun04], i.e., the absolute values of the hierarchical

surpluses decay in quadratic order with the level sum ‖`‖1. This relation can be used

to estimate the convergent range of the corresponding interpolation error (Figures 5.5

and 5.6). A generalization of this estimate to higher B-spline degrees p > 1 is not

straightforward, as the surpluses α`,i then also depend on function values f (x `′,i ′) at grid

points of higher levels `′ ≥ `.
The decay of surpluses can be seen in Fig. 5.8, which shows the mean absolute value

of surpluses corresponding to grid points grouped by their level sum ‖`‖1. Due to the

dependency of coarse-level surpluses on high-level grid points for p > 1, we have to

fix the level n of the regular sparse grid for this analysis. Figure 5.8 suggests that the

absolute value of the surpluses decays with order p+ 1 for B-spline degree p, although

no theoretical evidence is known to support this claim. Higher B-spline degrees seem to

imply that |α`,i | generally increases, if ‖`‖1 is in the pre-asymptotic range.

5.4 NUMERICAL RESULTS 137

Bra02
p = 1

GoP
p = 3

Sch06
p = 5

Ack Alp02 Sch22

0 2 4 6 8 10
10−12

10−9

10−6

10−3

100

103

M
ea

n
ab

so
lu

te
va

lu
e

of
su

rp
lu

se
s

2

4

6

d = 2

‖`‖1 0 2 4 6 8 10
10−10

10−7

10−4

10−1

102

M
ea

n
ab

so
lu

te
va

lu
e

of
su

rp
lu

se
s

2

4

6d = 2

‖`‖1

FIGURE 5.8 Mean absolute value of surpluses by level sum ‖`‖1 for different test functions
f (colors) using hierarchical not-a-knot B-splines ϕp,nak

`,i of different degrees p
(line styles/markers) on the regular sparse grid Ωs

n,d of level n= 11.

5.4.2 Complexity of Hierarchization

In Chap. 4, we introduced a number of new hierarchical spline bases with the aim to

reduce the complexity of algorithms with the key example of hierarchization. In the

following, we study the suitability of the new bases to achieve this goal [Vale18a].

Complexity of fundamental splines. Figure 5.9 compares the hierarchization complex-

ity of modified hierarchical B-splinesϕp,mod
`,i with the new modified hierarchical fundamen-

tal splines ϕp,fs,mod
`,i as measured on a laptop with Intel Core i5-4300U. For the modified

hierarchical B-spline basis, we solve a linear system of size N × N , for which Gaussian

elimination takes Θ(N 3) time and Θ(N 2)memory for N →∞ (where N is the number of

sparse grid points and d is assumed to be constant). More sophisticated methods to solve

linear systems are not able to significantly reduce this complexity without any further as-

sumptions on the system matrix A (e.g., symmetry, positive definiteness, or bandedness).

As N grows, the space needed to store an N × N matrix quickly exceeds the available

memory.

For the modified hierarchical fundamental splines, we can use the breadth-first search

(BFS) algorithm presented in Sec. 4.4. BFS works in quadratic time O (N 2), but more

importantly, it works in linear space O (N). Both can be seen very well in Fig. 5.9: The

computation time drops from cubic to quadratic complexity for fundamental splines and

the consumed memory is reduced from quadratic to linear complexity.

138 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

ϕ
p,mod
`,i ϕ

p,fs,mod
`,i p = 3 p = 5

102 103 104
10−3

10−2

10−1

100

101

102

103

W
al

lc
lo

ck
ti

m
e
[s
]

2

3

Nmax

A Computation time

102 103 104
105

107

109

M
em

or
y

co
ns

um
pt

io
n
[b

yt
es
]

1

2

Nmax

B Memory consumption

FIGURE 5.9 Computation time and memory consumption of hierarchization with modified
hierarchical B-splines ϕp,mod

`,i (blue) and modified hierarchical fundamental
splines ϕp,fs,mod

`,i (red) of degrees p = 3 and p = 5 on the spatially adaptive
sparse grids generated by the criterion of Novak–Ritter for the optimization of
Ack with d = 4 and Nmax grid points. Adapted from [Vale18a].

Complexity of weakly fundamental splines. It is not straightforward to include weakly

fundamental splines in Fig. 5.9 as we have to insert missing chain points to apply the

unidirectional principle (see Sec. 4.5). As this increases the number of necessary evalua-

tions of f , a comparison of computation times with standard B-splines would be skewed.

Instead, we study in Fig. 5.10 the number of grid points that have to be inserted to en-

sure the correctness of the unidirectional principle. As we have seen in Sec. 4.5.3 (cf.

Fig. 4.14), inserting all chains needed for standard hierarchical B-splines often results in

a full grid, which suffers from the curse of dimensionality. This can be seen in Fig. 5.10

for hierarchical not-a-knot B-splines (dashed lines). By inserting all full grid points, the

number of grid points increases by several orders of magnitude: If the initial grid has

Nmax = 10000 points, then the grid size increases roughly by the factor 102 for d = 2, 104

for d = 3, and 106 for d = 4, resulting in computationally infeasible grids with 106, 108,

and 1010 points, respectively. If we instead only insert the missing chain points needed for

the hierarchical weakly fundamental not-a-knot basis (solid lines, cf. Fig. 4.16), then the

number of grid points increases only slightly. For grids that have a low adaptivity (which

correspond to low adaptivity parameters γ in the Novak–Ritter criterion, see Sec. 5.2.1),

the grid size only increases by the factor of two. For highly-adaptive grids (corresponding

to large γ), the number of necessary chain grid points increases significantly.

5.4 NUMERICAL RESULTS 139

d = 2 d = 3 d = 4 With chains (ϕp,wfs,nak
`,i) Full grid (ϕp,nak

`,i)

102 103 104
100

102

104

106

Nmax

R
at

io
of

gr
id

si
ze

s

A γ= 0.05

102 103 104
100

102

104

106

Nmax
R

at
io

of
gr

id
si

ze
s

B γ= 0.15

102 103
100

102

104

106

Nmax

R
at

io
of

gr
id

si
ze

s

C γ= 0.25

FIGURE 5.10 Total number of grid points after inserting all missing chains for cubic weakly
fundamental not-a-knot splines ϕp,wfs,nak

`,i (p = 3, solid lines), and after insert-
ing all missing full grid points (dashed). Shown are the ratios of the resulting
grid sizes to the initial grid sizes before inserting points. The initial grids are
the spatially adaptive sparse grids generated by the criterion of Novak–Ritter
for the optimization of Ack with different dimensionalities (colors), different
adaptivity parameters γ (left, center, right), and Nmax grid points.

5.4.3 Optimality Gap

Optimality gaps and displacements. With the method described in Sec. 5.2, we find

approximations x opt,∗ of the global minimum x opt of some objective function f using

optimization of a B-spline surrogate f s of f on sparse grids. Obviously, the more accurate

the sparse grid surrogate is, the better the approximation x opt,∗ will be. In the following

plots, we show the optimality gaps f (x opt,∗)− f (x opt) in terms of function values.5 The

results are sensitive to even small displacements of the objective function, i.e., the results

may change for the function x 7→ f (x − a) instead of x 7→ f (x) for x ∈ [0,1] and some

small a ∈ Rd .6 Therefore, the optimization for each of the data points for Figures 5.11

and 5.12 was repeated five times with replacements a whose entries at were independent

and identically distributed Gaussian pseudo-random numbers with zero mean and a

standard deviation of 0.01. The optimality gaps shown in the figures of this section were

computed as the mean of the five runs to increase confidence in the results.
5In order to calculate the optimality gap, it is crucial to determine f (x opt) as exact as possible. Otherwise,

the optimality gap might either not converge to zero or it might even become negative.
6By using the formulas in Appendix B, all test functions f in Sec. 5.3 can be extended such that they can

be evaluated at x − a for all x ∈ [0,1], if a ∈ Rd is small enough. Note that we set at to zero if a
non-zero displacement in the t-th component would change the location of the global minimum.

140 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

Unconstrained optimization. Figure 5.11 shows the optimality gaps for different test

functions f over the number Nmax of allowed evaluations of f . For the continuously

differentiable functions Bra02, GoP, Ack, and Alp02 in d = 2 dimensions (top row), the

optimization of the corresponding cubic B-spline surrogates (solid lines) performs signif-

icantly better than using piecewise linear basis functions (dashed lines). The reason is

two-fold: First, by using higher-order basis functions, the surrogates are more accurate

in general as seen in the discussion of the interpolation error in Sec. 5.4.1. Second, the

availability of surrogate gradients accelerates the convergence of the employed optimiza-

tion methods. For some test functions, B-splines give better results than even the direct

optimization of the objective function (dotted lines).

For the test functions Sch06 and Sch22 with discontinuous derivatives, the advan-

tage of higher-order B-splines is not as evident (Sch22) or does not even exist (Sch06).

However, in low dimensions, i.e., d ≤ 4, B-splines achieve a slight advantage compared

to the piecewise linear basis for the Sch22 function. In higher dimensionalities, i.e., d ≥ 6

(bottom row), convergence visibly slows down for all methods shown in Fig. 5.11, al-

though for some objective functions, B-splines are still able to perform better than the

comparison methods (most notably for the Ack function).

Constrained optimization. Figure 5.12 shows the result for the two constrained op-

timization problems. The objective function value f (x opt,∗) at the approximated opti-

mum x opt,∗ should not only be as small as possible, but x opt,∗ should also be feasible,

i.e., g (x opt,∗) ≤ 0. Hence, we also plot the maximal violation ‖(g (x opt,∗))+‖∞ of the

constraints in the respective optimal points x opt,∗.

For the bivariate G08 problem, the hierarchical B-splines surrogates perform better

than the direct gradient-free optimization of the problem for Nmax ≤ 3500 objective func-

tion evaluations and better than the piecewise linear surrogate for Nmax ≥ 300 objective

function evaluations. All calculated points are feasible.7

The range of the objective function of the five-dimensional G04Sq problem is larger

than the range of G08. This results in generally higher optimality gaps f (x opt,∗)− f (x opt)
as we do not normalize with respect to the range. B-splines achieve good approxima-

tions x opt,∗ of x opt already for Nmax = 1000 with an optimality gap of around one. Both

comparison methods show optimality gaps that are seven orders of magnitude higher.

Additionally, the corresponding values of constraint violation are between 10−10 and

10−6, i.e., the constraints are numerically met. In contrast, the optimizers struggle more

for the comparison methods (optimization of the linear surrogate and of the objective

function) to meet the constraints, as the values of the constraint violation partly exceed

7For plotting reasons, Fig. 5.12 shows max(‖(g (x opt,∗))+‖∞, 10−16) instead of the true constraint violation.

5.4 NUMERICAL RESULTS 141

Bra02
B-spl. surrogate

GoP Sch06
Linear surrogate

Ack Alp02

Objective function

Sch22

102 103 104

10−9

10−6

10−3

100

f(
x

op
t,
∗)
−

f(
x

op
t)

Nmax

d = 2

102 103 104

10−9

10−6

10−3

100

f(
x

op
t,
∗)
−

f(
x

op
t)

Nmax

d = 2

102 103 104
10−11

10−8

10−5

10−2

101

f(
x

op
t,
∗)
−

f(
x

op
t)

Nmax

d = 3

102 103 104
10−8

10−5

10−2

101
f(

x
op

t,
∗)
−

f(
x

op
t)

Nmax

d = 4

102 103 104
10−4

10−2

100

102

f(
x

op
t,
∗)
−

f(
x

op
t)

Nmax

d = 6

102 103 104
10−3

10−1

101

103

f(
x

op
t,
∗)
−

f(
x

op
t)

Nmax

d = 8

FIGURE 5.11 Optimality gaps f (x opt,∗)− f (x opt) between the function value at the approx-
imated optimum x opt,∗ and the minimal function value at the actual optimum
x opt over the number Nmax of objective function evaluations for different un-
constrained objective functions f (colors). Shown are the optimization results
of the B-spline surrogate (solid lines), the optimization results of the piecewise
linear surrogate (dashed), and the optimization results of the actual objective
function (dotted) as described in Sec. 5.2.

142 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

B-spl. surrogate Linear surrogate Objective function

10−17

10−13

10−9

10−5

10−1

‖(
g
(x

op
t,
∗)
) +
‖ ∞

102 103 104
10−12

10−9

10−6

10−3

f(
x

op
t,
∗)
−

f(
x

op
t)

Nmax

d = 2

A G08

10−17

10−13

10−9

10−5

10−1

‖(
g
(x

op
t,
∗)
) +
‖ ∞

102 103 104
10−2

100

102

104

106

108

f(
x

op
t,
∗)
−

f(
x

op
t)

Nmax

d = 5

B G04Sq

FIGURE 5.12 Optimality gaps f (x opt,∗)− f (x opt) between the function value at the approx-
imated optimum x opt,∗ and the minimal function value at the actual optimum
x opt over the number Nmax of objective function evaluations for different con-
strained optimization problems (dark, left vertical axes). Additionally to the
lines of Fig. 5.11, the constraint violation ‖(g (x opt,∗))+‖∞ at the approxi-
mated optimum x opt,∗ is plotted (light, right vertical axes).

10−3. The availability of gradients seems to allow the constrained optimization methods

to better enforce the feasibility of the resulting points x opt,∗.

Note that while the results look already promising for the B-spline surrogate method,

these results could still be improved upon. The Novak–Ritter criterion used to generate

the spatially adaptive sparse grids does not take the constraints into account. Conse-

quently, many sparse grid points are created outside the feasible domain. By modifying

the criterion to prefer points that are in a neighborhood of the feasible domain, the quality

of the interpolant close to potential optima should increase.

5.5 Example Application: Fuzzy Extension Principle

IN THIS SECTION

5.5.1 Fuzzy Sets and Fuzzy Intervals (p. 143)
5.5.2 Fuzzy Extension Principle (p. 144)
5.5.3 Using B-Splines on Sparse Grids to

Propagate Fuzzy Uncertainties (p. 145)

To conclude this chapter, we consider the fuzzy

extension principle as an example application of

optimization of B-spline sparse grid surrogates.

Aleatoric and epistemic uncertainties. Clas-

sical uncertainty quantification (UQ) distinguishes between aleatoric and epistemic un-

certainties [Wal16]. Aleatoric uncertainties result from the variability of inputs or model

5.5 EXAMPLE APPLICATION: FUZZY EXTENSION PRINCIPLE 143

components and from the “intrinsic randomness” of quantities. They are best described

by probability theory, giving exact probabilities. Epistemic uncertainties arise from subjec-

tivity, simplifying modeling assumptions, and incomplete knowledge. These uncertainties

are better captured by fuzzy theory, which is more imprecise than the “exact” stochastic

assumptions of probabilities [Wal16].

Uncertainty quantification with fuzzy uncertainties. In uncertainty quantification,

the key question is as follows: Given a model and uncertain input parameters for the

model, how uncertain is the model output? While there are many approaches available

for probabilistic uncertainties, it is not straightforward to solve this task for fuzzy un-

certainties. Fortunately, Zadeh proposed in 1975 the fuzzy extension principle [Zad75],
which addresses this very question.

Sparse grids and B-splines for fuzzy uncertainties. As we explain in this section, the

fuzzy extension principle requires the solution of numerous optimization problems that

involve the original objective function f . This predestines the replacement of f with

sparse grid surrogates, as explained in the beginning of the chapter. Previous work by

Klimke [Kli06] already studied this approach for piecewise linear functions on uniform

sparse grids and for global polynomials on sparse Clenshaw–Curtis grids. We assess the

suitability of interpolation with higher-order hierarchical B-splines on sparse grids for the

fuzzy extension principle. It should be mentioned that there is also work directly incor-

porating (non-hierarchical) B-splines into the framework of fuzzy theory for modeling

uncertain surfaces [Ani00; Zak14].

5.5.1 Fuzzy Sets and Fuzzy Intervals

In the following, we repeat very briefly the necessary definitions of basic fuzzy theory.

Examples for the definitions are shown in Fig. 5.13. A more in-depth introduction can be

found in [Hanss05; Kli06; Wal16].

Fuzzy sets. Let X ⊆ R be a closed interval on the real line and µ x̃ : X → [0,1] be a

function. We call the graph x̃ := {(x ,µ x̃(x) | x ∈ X } of µ x̃ a fuzzy set with membership

function µ x̃ . Fuzzy sets generalize ordinary subsets of X , which can be obtained by

requiring µ x̃(X) ⊆ {0, 1}. In this case, the fuzzy set is called crisp and x̃ can be identified

with the ordinary set {x ∈ X | µ x̃(x) = 1}. A fuzzy set x̃ is normalized if maxx∈X µ x̃(x) = 1.

A convex fuzzy set x̃ satisfies min(µ x̃(a),µ x̃(c))≤ µ x̃(b) for all a, b, c ∈ X with a ≤ b ≤ c.

144 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

0

α

1

µ x̃

(x̃)α

A Non-convex fuzzy set (blue)
and α-cut (red).

0

α1

µ x̃

B Fuzzy interval.

0

α1

TFN TFI GFN
QGFN

C Common types of fuzzy numbers
and intervals (see text).

FIGURE 5.13 Examples of membership functions of fuzzy sets and α-cuts.

Fuzzy intervals and α-cuts. A convex and normalized fuzzy set x̃ with piecewise con-

tinuous membership function µ x̃ is called fuzzy interval. If {x ∈ X | µ x̃(x) = 1}= {a} for

some a ∈ X , then the fuzzy interval x̃ is called fuzzy number.

For α ∈ [0,1], the α-cut of x̃ is defined as (x̃)α := {x ∈ X | µ x̃(x) ≥ α} for α > 0

and (x̃)0 := suppµ x̃ for α = 0. The α-cuts of fuzzy intervals x̃ are always nested closed

intervals, i.e., (x̃)α = [a, b] for some a ≤ b and (x̃)α1
⊇ (x̃)α2

for α1 ≤ α2.

Common types of fuzzy numbers and intervals. There are various types of fuzzy

numbers and intervals [Kli06]. Most common are triangular fuzzy numbers (TFNs, i.e.,

linear B-splines), trapezoidal fuzzy intervals (TFIs, where a plateau of height one is inserted

at the peak, i.e., sums of two neighboring linear B-splines), and Gaussian fuzzy numbers

(GFNs) with membership function µ x̃(x) = exp(− (x−µ)
2

(2σ)2). As the support of Gaussian fuzzy

numbers is unbounded, quasi-Gaussian fuzzy numbers (QGFNs) truncate the support to a

fixed multiple of the standard deviation σ [Kli06]. However, it would be more natural to

directly employ B-splines of degree p > 1 (normalized adequately), since they generalize

triangular fuzzy numbers and their limit with respect to p is a Gaussian fuzzy number.

5.5.2 Fuzzy Extension Principle

Let f : [0,1]→ R be an objective function, whose values y = f (x) represent the results

of the simulation of a model with input parameters (x1, . . . , xd) = x . If the input pa-

rameters are uncertain and given as fuzzy sets x̃1, . . . , x̃d , what is the resulting uncertain

outcome “ ỹ := f (x̃1, . . . , x̃d)”? Note that there is no definite answer to this question, as

“ f (x̃1, . . . , x̃d)” is not well-defined. The fuzzy extension principle, suggested by Zadeh

[Zad75], provides one possible definition.

5.5 EXAMPLE APPLICATION: FUZZY EXTENSION PRINCIPLE 145

Alternative fuzzy extension principle. We use an alternative formulation of the fuzzy

extension principle, which is stated in [Kli06]. The original formulation is computationally

more complex, as it requires the solution of equality-constrained optimization problems

and one needs to know the range of f , which might not be given. The two formulations

are equivalent, if x̃1, . . . , x̃d are (compactly supported) fuzzy intervals and f is continuous

[Buc90], which we assume in the following.

The alternative fuzzy extension principle defines “ ỹ = f (x̃1, . . . , x̃d)” as the fuzzy set

ỹ with

µ ỹ(y) := sup{α ∈ [0,1] | y ∈ (ỹ)α}, y ∈ R,(5.9a)

(ỹ)α :=
�

min
x∈Ωα

f (x), max
x∈Ωα

f (x)
�

, α ∈ [0,1],(5.9b)

Ωα := (x̃1)α × · · · × (x̃d)α, α ∈ [0,1].(5.9c)

This definition is visualized in Fig. 5.14. The first equation defines ỹ via its α-cuts,

which are given in the second equation as the closed interval between the minimal and

the maximal value of f on some hyper-rectangular domain Ωα. The third equation

specifies this domain Ωα as the Cartesian product of the univariate α-cuts. Hence, we only

have to solve box-constrained optimization problems, as opposed to the general equality-

constrained problems in the original formulation of the fuzzy extension principle.

Implementation. The implementation of the alternative fuzzy extension principle is

straightforward and shown in Alg. 5.1 [Kli06]. The range [0,1] of α is discretized into

m+1 uniformly spaced values α j (where m ∈ N). For each of these values α j, we compute

the corresponding α j-cut of ỹ by solving the two box-constrained optimization problems

of Eq. (5.9). The fuzzy output interval ỹ can then be approximated by interpolating the

interval bounds of the α j-cuts of ỹ .

5.5.3 Using B-Splines on Sparse Grids to Propagate Fuzzy
Uncertainties

Following Klimke’s approach [Kli06], we replace the objective function f in Alg. 5.1 with

a sparse grid surrogate f s. The solution of the optimization problems minx∈Ωα j
f s(x) and

maxx∈Ωα j
f s(x) with respect to the surrogate f s instead of the true objective function f

takes significantly less time, if evaluations of the objective function are expensive.

However, Klimke used piecewise linear functions as the hierarchical basis on uniform

sparse grids and global polynomials on sparse Clenshaw–Curtis grids. The drawbacks

of each of the bases are evident: First, piecewise linear surrogates are not continuously

146 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

0 1
0

1

min max

fffffffffffffffff
0

1

2

3

4

5

6

0 1
0

0.25

0.5

0.75

1
µ x̃1

, (x̃1)α

x̃1

00.250.50.751
0

1
µ x̃2

, (x̃2)α

x̃2

0 0.25 0.5 0.75 1

µ ỹ , (ỹ)α

ỹ

FIGURE 5.14 Example of the application of the alternative fuzzy extension principle to the
bivariate objective function f (x) = 6.4x1 x2 (bottom) and triangular fuzzy
input intervals x̃1 and x̃2 (top and left) to obtain the fuzzy output interval ỹ
(right). Adapted from [Kli06].

1 function ỹ = alternativeFuzzyExtensionPrinciple(m, x̃1, ..., x̃d)
2 for j = 0, . . . , m do
3 α j ← j/m
4 for t = 1, . . . , d do Compute (x̃ t)α j

= [a j,t , b j,t]
5 Ωα j

← (x̃1)α j
× · · · × (x̃d)α j

= [a j , b j]
6 Solve minx∈Ωα j

f (x) and maxx∈Ωα j
f (x)

7 (ỹ)α j
= [c j , d j]← [minx∈Ωα j

f (x),maxx∈Ωα j
f (x)]

8 D← {(c j ,α j) | j = 0, 1, . . . , m} ∪ {(d j ,α j) | j = m, m− 1, . . . , 0}
9 µ ỹ ← Piecewise linear interpolant of D extend to X by zero

ALGORITHM 5.1 Alternative fuzzy extension principle. Inputs are the number of α seg-
ments to use as discretization and the d fuzzy intervals x̃1, . . . , x̃d (we
have to be able to determine α-cuts of these fuzzy input intervals). The
output is an approximation to the output ỹ of the alternative fuzzy ex-
tension principle (given by an approximation of its membership function
µ ỹ).

5.5 EXAMPLE APPLICATION: FUZZY EXTENSION PRINCIPLE 147

differentiable and can thus not be optimized well with gradient-based optimization meth-

ods. Second, global polynomials are only suitable for Clenshaw–Curtis grids (Chebyshev-

distributed points) due to Runge’s phenomenon, unnecessarily restricting the choice of

grid points. Hierarchical B-splines of degree p are (p−1) times continuously differentiable

and defined for arbitrary point distributions, eliminating both drawbacks simultaneously.

Methodology. Given a sparse grid Ωs, which may be regular or spatially adaptive, we

compute three solutions of the alternative fuzzy extension principle as follows:

• First, we replace f in Alg. 5.1 with the sparse grid interpolant f s,p on Ωs using

modified hierarchical not-a-knot B-splines ϕp,nak,mod
`,i of cubic degree (p = 3). For

solving the optimization problems over f s,p in Alg. 5.1, we use the globalized version

of the method of gradient descent as described in Sec. 5.2.2 using 100 initial points.

The resulting fuzzy output interval is denoted by ỹ s,p.

• Second, we replace f in Alg. 5.1 with the sparse grid interpolant f s,1 on Ωs using

modified piecewise linear basis functions. For solving the optimization problems

over f s,1 in Alg. 5.1, we use a multi-start version of the Nelder–Mead method as de-

scribed in Sec. 5.2.2 using 100 initial simplices8. The resulting fuzzy output interval

corresponds to Klimke’s method and is denoted by ỹ s,1.

• Third, for comparison, we solve Alg. 5.1 for the actual objective function f . For

solving the optimization problems over f , we use a multi-start version of the Nelder–

Mead method as described in Sec. 5.2.2 using 1000 initial simplices and 2000 000

allowed evaluations of f . The resulting fuzzy output interval is denoted by ỹ ref

(reference solution).

In the following, we fix the number of α segments in Alg. 5.1 as m= 100. As fuzzy input

intervals x̃ t , t = 1, . . . , d, we use the trapezoidal fuzzy interval with 0-cut [0.125, 0.625]
and 1-cut [0.25,0.375] if t is odd and the quasi-Gaussian fuzzy number with mean 0.5,

standard deviation 0.125, and 0-cut [0.125,0.875] if t is even.

Convergence of fuzzy intervals on regular sparse grids. As an example, Fig. 5.15

shows the convergence of the fuzzy output intervals ỹ s,p and ỹ s,1 obtained by the interpo-

lation of the bivariate Alp02 function on regular sparse grids Ωs = Ωs
n,d to the reference

solution ỹ ref. Already for n= 4, the B-spline approximation is better than the piecewise

linear approximation. For n= 5, no difference is visible anymore between ỹ s,p and ỹ ref,

while ỹ s,1 still clearly deviates from ỹ ref.

8The Nelder–Mead method does not require an initial point, but an initial simplex. The method is a hybrid
between global and local optimization. If the initial simplex is chosen badly, Nelder–Mead may get
stuck in local minima. Hence, we restart the algorithm for different initial simplices.

148 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

FIGURE 5.15
Convergence of the membership func-
tions of the fuzzy output intervals ỹs,p

(solid lines, modified hierarchical cubic
not-a-knot B-splines) and ỹs,1 (dashed,
modified hierarchical hat functions) to
the reference solution ỹ ref (red) for the
bivariate Alp02 function using regular
sparse grids of level n= 2, . . . , 5. −6 −3 0 3 6

0

1

µ
ỹ∗
(y
)

y

n= 2
µ ỹs,p

n= 3
µ ỹs,1

n= 4
µ ỹ ref

n= 5

In Fig. 5.16, we study the convergence of the relative L2 errors

(5.10) es,∗ :=
‖µ ỹref −µ ỹs,∗‖L2

‖µ ỹref‖L2

, ∗ ∈ {1, p}.

of the membership functions (“fuzzy errors”). The Alp02 (d = 2) errors that correspond

to Fig. 5.15 are shown in green in the left-most plot of Fig. 5.16. For the Bra02, GoP, and

Alp02 functions, B-spline surrogates achieve dramatic improvements over the hat function

surrogates in the bivariate case. For the bivariate Ack function, B-splines yield an error

that is still an order of magnitude smaller than the error of hat functions. Just little or

even no improvement can be seen for the functions Sch06 and Sch22 with discontinuous

derivatives or higher dimensionalities d ≥ 4.

Fuzzy Novak–Ritter method. We want to employ spatial adaptivity to improve the

results of regular sparse grids. To this end, we modify the Novak–Ritter criterion to create

a grid generation method that is tailored for the fuzzy extension principle, resulting in

Alg. 5.2. Its main idea is to generate more points near the optima of the fuzzy extension

principle (Alg. 5.1) than in other regions of [0,1]. Therefore, we apply the Novak–Ritter

criterion twice to every α level α j =
j

m (j = 0, . . . , m), once for the minimum and once

for the maximum. For all α j, the points to be refined are collected in a set. If a point is

selected multiple times for different α j, it is refined only once. In addition, we enlarge

the search domain Ωα j
by 10 %, since the minimum or the maximum might be near the

boundary Ωα j
and since the points to be inserted might not be close to the points to be

refined. We ensure that the size of Ωα j
is at least 0.05 in every coordinate direction. The

remaining experiments use γ= 0.1 as adaptivity.

5.5 EXAMPLE APPLICATION: FUZZY EXTENSION PRINCIPLE 149

Bra02
B-spl. surrogate

GoP Sch06
Linear surrogate

Ack Alp02 Sch22

2 4 6 8 10

10
−1

3
10
−1

0
10
−7

10
−4

10
−1

n

es,∗

d = 2

2 4 6 8

10
−9

10
−7

10
−5

10
−3

10
−1

n

es,∗

d = 3

2 4 6
10
−3

10
−2

10
−1

n

es,∗

d = 4

2 4 6

10
−1

n

es,∗

d = 6

FIGURE 5.16 Fuzzy errors es,∗ := ‖µ ỹref −µ ỹs,∗‖L2/‖µ ỹref‖L2 for regular sparse grids Ωs
n,d

and different objective functions f (colors) over the level n of the sparse grid.

1 function K = fuzzyNovakRitterMethod(f , γ, m, K, x̃1, ..., x̃d)
2 for (`, i) ∈ K do d`,i ← 0 degrees (number of refinements)
3 while |K |< Nmax do
4 R← ;
5 for j = 0, . . . , m do
6 α j ← j/m
7 for t = 1, . . . , d do
8 [a j,t , b j,t]← (x̃ t)α j

 determine α j-cut
9 if b j,t − a j,t < 0.05 then ensure minimal size of 0.05
10 (a j,t , b j,t)← ((a j,t + b j,t)/2− 0.025, (a j,t + b j,t)/2+ 0.025)
11 (a j,t , b j,t)← (a j,t − 0.05(b j,t − a j,t), b j,t + 0.05(b j,t − a j,t)) enlarge by 10 %
12 K j ← {(`, i) ∈ K | x `,i ∈ [a j , b j]∩ [0,1]} set of feasible points ([a j , b j] = Ωα j

)
13 for (`, i) ∈ K j do r`,i ← |{(`′, i ′) ∈ K j | f (x `′,i ′)≤ f (x `,i)}| ranks
14 (`∗, i∗)← argmin(`,i)∈K j

�

(r`,i + 1)γ(‖`‖1 + d`,i + 1)1−γ
�

 for minimum
15 (`∗∗, i∗∗)← argmin(`,i)∈K j

�

(|K j| − r`,i + 2)γ(‖`‖1 + d`,i + 1)1−γ
�

 for maximum
16 R← R∪ {(`∗, i∗), (`∗∗, i∗∗)}
17 Refine all points in K that are in R
18 for (`, i) ∈ R do d`,i ← d`,i + 1

ALGORITHM 5.2 Fuzzy Novak–Ritter method to generate spatially adaptive sparse grids
for the fuzzy extension principle. Inputs are the objective function f , the
adaptivity parameter γ ∈ [0,1], the number of α segments, the initial
sparse grid K as a set of level-index pairs, and the the d fuzzy intervals
x̃1, . . . , x̃d . The output is the spatially adaptive sparse grid K .

150 CHAPTER 5: GRADIENT-BASED OPTIMIZATION

Ack
B-spl. (adap.)

Alp02 Sch22
Linear (adap.) B-spl. (reg.) Linear (reg.)

102 103 10410
−1

0
10
−8

10
−6

10
−4

10
−2

Nmax

es,∗

d = 3

102 103 104

10
−4

10
−3

10
−2

10
−1

Nmax

es,∗

d = 4

102 103 104

10
−2

10
−1

Nmax

es,∗

d = 6

FIGURE 5.17 Fuzzy errors es,∗ := ‖µ ỹref −µ ỹs,∗‖L2/‖µ ỹref‖L2 for spatially adaptive sparse
grids Ωs (solid markers) and different objective functions f (colors) over the
number Nmax of objective function evaluations. For comparison, the results
of Fig. 5.16 for regular sparse grids are repeated (hollow markers).

Convergence of fuzzy intervals on spatially adaptive sparse grids. As we can see in

Fig. 5.17, the spatially adaptive sparse grids generated by the fuzzy Novak–Ritter method

improve results significantly for both cubic B-spline and piecewise linear surrogates. How-

ever, the performance of the B-spline surrogates benefits more from the spatial adaptivity.

Even for higher-dimensional settings such as d = 6, the spatial adaptivity helps to de-

crease the errors by one order of magnitude. For instance, for the Ack function in six

variables, we can achieve an error of 2.6 % with a budget of 10000 objective function

evaluations (grid points) on regular sparse grids. With the same budget and with spatial

adaptivity, the error drops below 0.25 %. Conversely, to achieve the same error as in the

regular case (2.6 %), only 1600 evaluations are needed for spatially adaptive grids.

151

6
Application 1:

Topology Optimization

“ Money. A social life. A shave.

A Ph.D. student needs not such things.

— Mike Slackenerny (PHD Comics1)

Now, we want to investigate the first real-world application, which is the field of

topology optimization. The classical and widely-used method in engineering is

shape optimization, where the shape of a component (parametrized by x ∈ Rd) has to

be determined such that some objective function value f (x) is optimal, i.e., minimal or

maximal. For example, a bridge over a valley can be built in the shape of a parabolic arc.

The task of shape optimization is then to choose the coefficients of the parabola such that

the bridge’s stability is maximized, possibly with the constraint that the volume occupied

by the bridge does not exceed a certain value (to save construction costs) or that the size

of the resulting passage meets some size requirements (e.g., at least 20 m wide and 6 m

tall).

However, the framework of shape optimization unnecessarily prescribes the topology

of the shapes in the search space [All16]. In the bridge example, it may well be that a

1http://phdcomics.com/comics/archive.php?comicid=40

http://phdcomics.com/comics/archive.php?comicid=40

152 CHAPTER 6: APPLICATION 1 – TOPOLOGY OPTIMIZATION

viaduct-type bridge with three arcs instead of one is more stable while occupying less

volume. We are not able to find such a bridge with shape optimization in the previous

example, as we have restricted the search space to single-arc bridges. This issue is resolved

by the more sophisticated framework of topology optimization, where the topology2 is

not given by the user, but chosen by the optimization algorithm (in a hopefully optimal

way), rendering topology optimization a key area of simulation technology.

Recently, B-splines have been used for shape optimization [Mar16] and topology

optimization [Qia13; Zha17]. Sparse grids have been employed for topology optimization

[Hüb14] as well. In this chapter, we want to combine these two numerical tools, which

have been used in isolation until now, to perform topology optimization using B-splines

on sparse grids. The two most common approaches for topology optimization are the

level-set method and the homogenization method [All16]. The level-set method describes

the boundary of the object as the zero level set ψ−1(0) of a function ψ: Ω̃ → R (level-

set function) and uses a partial differential equation (PDE) to iteratively transport this

function and, consequently, the object’s boundary [All04]. However, we want to focus on

the second method: the method of homogenization.

This chapter is structured as follows: Section 6.1 explains the homogenization

method. In Sec. 6.2, we discuss the details of applying B-splines on sparse grids to this

method. We set up different micro-cell models and scenarios in Sec. 6.3, before reviewing

numerical results in Sec. 6.4. The results in this chapter have been obtained in collab-

oration with Prof. Dr. Michael Stingl and Daniel Hübner (both FAU Erlangen-Nürnberg,

Germany). The author of this thesis contributed the parts related to interpolation and

sparse grids, while the collaborators at FAU studied the engineering and application parts

of the joint project (for example, they provided optimization scenarios and assessed the

quality of the results).

6.1 Homogenization and the Two-Scale Approach

IN THIS SECTION

6.1.1 Homogenization (p. 153)
6.1.2 Two-Scale Approach (p. 154)

We roughly follow the presentation given in [Hüb14;

Vale14; Vale16]. The necessary notation is summarized

in Tab. 6.1.

2Two objects are considered “topologically different” if their numbers of “holes” differ. This stems from
the fact that in the field of mathematical topology, the genus (i.e., the number of holes) of a topological
space is a topological invariant, i.e., the genus is invariant under homeomorphism. If the genera of
two topological spaces differ, then they cannot be homeomorphic and are thus considered topologically
different.

6.1 HOMOGENIZATION AND THE TWO-SCALE APPROACH 153

Ω̃ Object domain F External force %̃ Global density fcn.
d̃ #dimensions of Ω̃ u Displacement fcn. % Micro-cell density fcn.
d #micro-cell param. J(%̃) Compliance fcn. %∗ Density bound
x (q) Micro-cell param. vol(Ω̃) Total volume E Elasticity tensor

vol%̃(Ω̃) Volume w.r.t. %̃ R Cholesky factor

TABLE 6.1 Glossary of the notation for topology optimization.

6.1.1 Homogenization

Density function. Let Ω̃ ⊆ Rd̃ be the object domain.3 Usually, we assume d̃ = 2 or

d̃ = 3, although the method can be generalized to arbitrary dimensionalities d̃ ∈ N.

Shapes and topologies are described by density functions %̃ : Ω̃ → [0,1]. The function

values %̃(x̃) ∈ [0,1] tell if x̃ is contained in the object (value of one) or not (value of

zero). The homogenization approach also allows values between zero and one, giving the

physical density of the material in x̃ .

Optimization of compliance values. Furthermore, for every density function %̃, let

J(%̃) be an objective function value. In our setting, which is shown in Fig. 6.1, we exert

a force F on the object, measure the resulting deformation, and compute the compliance

(i.e., the inverse of the stiffness) as the objective function value J(%̃):

(6.1) J(%̃) =

∫

Ω̃

FTu %̃(x̃)dx̃ ,

where the displacement function u %̃ : Ω̃→ Rd̃ depends on the density [Hüb14]. We want

to find the density function with the minimal compliance value:

(6.2) min
%̃

J(%̃).

If we do not impose additional conditions, then there are often uninteresting trivial

solutions. For example, choosing %̃ :≡ 1 (i.e., filling the entire domain Ω̃ with material)

usually leads to the topology with the highest stiffness and, thus, the smallest displacement

3We use tildes to denote variables and quantities that correspond to the object domain Ω̃ (e.g., x̃ is a point
in Ω̃). In contrast, variables without a tilde will correspond to the sparse grid domain [0,1] = [0,1]d

(e.g., x `,i ∈ [0,1] will be a sparse grid point).

154 CHAPTER 6: APPLICATION 1 – TOPOLOGY OPTIMIZATION

FIGURE 6.1
Example scenario for topology optimization. An
object (light blue) is fixed on the left side of the
object domain Ω̃ (darker blue) and deformed by
a force F , resulting in a displaced object (dashed).
The density function %̃(x̃) is one inside the object
and zero outside.

F

%̃(x̃)
= 1

%̃(x̃) = 0

Ω̃

and compliance value. Therefore, we introduce the following volume constraint:

(6.3)
vol%̃(Ω̃)

vol(Ω̃)
≤ %∗, vol%̃(Ω̃) :=

∫

Ω̃

%̃(x̃)dx̃ , vol(Ω̃) := vol1(Ω̃),

where vol(Ω̃) =
∫

Ω̃
1dx̃ is the volume of the object domain and %∗ ∈ [0,1] is an upper

bound on the volume fraction.

6.1.2 Two-Scale Approach

Discretization and two-scale approach. Of course, we cannot solve the problem (6.2)

numerically, as there are infinitely many density functions %̃. For simplicity, we assume

that Ω̃ is some hyper-rectangle [ã, b̃] = [ã1, b̃1]× · · · × [ãd̃ , b̃d̃]; if it is not, we replace

Ω̃ with its bounding box. The object domain Ω̃ can then be split into M1 × · · · × Md̃

equally-sized and axis-aligned sub-hyper-rectangles, which we call macro-cells (where

M1, . . . , Md̃ ∈ N).

In the two-scale approach, we assume the material of the macro-cells to be repetitions

of infinitesimally small periodic structures (i.e., identical for each macro-cell), called

micro-cells. These micro-cells have a specific shape, which is parametrized by d micro-cell

parameters x1, . . . , xd , normalized to values in the unit interval [0, 1]. For instance, in two

dimensions, this shape may be an axis-aligned cross with thicknesses x1 and x2, as shown

in Fig. 6.2. The choice of a suitable micro-cell model (parametrization of the micro-cells)

depends on the optimization scenario and has to be done a priori.

Elasticity tensors. Note that while the shape of all micro-cells in one macro-cell is iden-

tical, the micro-cell parameters corresponding to different macro-cells differ in general.

This enables varying densities in different regions of Ω̃. We denote the micro-cell param-

eters corresponding to the q-th macro-cell with x (q) = (x (1)q , . . . , x (d)q) ∈ [0,1] = [0,1]d ,

where q = 1, . . . , M and M := M1 · · ·Md̃ is the number of macro-cells. With linear elastic-

6.1 HOMOGENIZATION AND THE TWO-SCALE APPROACH 155

Object domain Ω̃

M1 macro-cells

M
2

m
ac

ro
-c

el
ls

. . .

. . .

...
...

Macro-cell Micro-cell

x2

x
1

FIGURE 6.2 Two-scale approach to discretize the homogenized topology optimization prob-
lem in two dimensions (d̃ = 2). Left: The object domain Ω̃ is subdivided into
M1 ×M2 macro-cells, each with its own density (gray squares). Center: Every
macro-cell is the repetition of infinitesimally small periodic micro-cells. Right:
The shape of the structure in every micro-cell is described by a micro-cell model
with d parameters x1, . . . , xd . Here, the micro-cell model is a cross with two
parameters that represent the thickness of each crossbar.

ity, one can compute so-called elasticity tensors E(q), which encode information about the

material properties of the different macro-cells. The elasticity tensors can be written as

symmetric matrices in R3×3 (for d̃ = 2) or in R6×6 (for d̃ = 3).4 To simplify the following

considerations, we assume that d̃ = 3, i.e., E(q) ∈ R6×6. The elasticity tensors are usually

computed as the solution of a finite element method (FEM) problem (micro-problem).

Once all E(q) are known, we can compute the compliance value by solving another FEM

problem (macro-problem), see [All04] and [Hüb14].

Discretized optimization problem. The new optimization problem emerging from the

two-scale discretization process has the form

min J(x (1), . . . , x (M)), x (1), . . . , x (M) ∈ [0,1] s.t. %̄(x (1), . . . , x (M))≤ %∗,(6.4a)

%̄(x (1), . . . , x (M)) :=
1
M

M
∑

q=1

%(q)(x (q)).(6.4b)

Here, %(q)(x (q)) ∈ [0, 1] is the density of the q-th macro-cell with micro-cell parameter x (q)

(i.e., the fraction of material volume of one micro-cell with respect to its total volume) and

%̄(x (1), . . . , x (M)) ∈ [0, 1] is the resulting total mean density. This discretized optimization

problem can now be implemented and solved numerically.

4In general, the elasticity tensor is a fourth-order tensor in Rd̃×d̃×d̃×d̃ . One can reduce the size of the
tensor by exploiting various symmetries [Hüb14] to obtain 6 or 21 stiffness coefficients in two or three
dimensions, respectively. These coefficients can then be expressed as a symmetric matrix.

156 CHAPTER 6: APPLICATION 1 – TOPOLOGY OPTIMIZATION

6.2 Approximating Elasticity Tensors

IN THIS SECTION

6.2.1 Drawbacks of the Naive
Approach (p. 156)

6.2.2 B-Splines on Sparse Grids for
Topology Optimization (p. 157)

6.2.3 Cholesky Factor
Interpolation (p. 158)

Optimization process. During the process of solv-

ing Eq. (6.4), optimization algorithms typically eval-

uate the objective function J(x (1), . . . , x (M)) itera-

tively at different micro-cell parameter combinations

(x (1), . . . , x (M)) ∈ (Rd)M . Every evaluation of J corre-

sponds to one solution of a macro-problem. However,

to solve the macro-problem, the elasticity tensors E(q)

of all M macro-cells need to be known. Hence, in every optimization iteration, it is nec-

essary to solve one macro-problem and M micro-cell problems, all with the FEM. This

naive approach has two major drawbacks, which we explain in the following.

6.2.1 Drawbacks of the Naive Approach

Drawback 1: Computation time. First, this approach is computationally infeasible

even for simple micro-cell models and optimization scenarios. The computation of a

single elasticity tensor usually takes seconds to minutes. All M micro-cell problems per

optimization iteration can be solved in parallel without any communication. However,

M is typically in the range of thousands and there are thousands or tens of thousands

optimization iterations (the optimization problem is (d ·M)-dimensional!). This implies

that the overall computation may still take several days or even weeks to complete.

Drawback 2: Approximation of gradients. Second, most optimization algorithms re-

quire gradients of the objective function and of the constraints, i.e.,

(6.5)
∂

∂ x t
E(q)(x (q)),

∂

∂ x t
%(q)(x (q)), q = 1, . . . , M , t = 1, . . . , d.

However, in general, both gradients are unavailable and have to be approximated by finite

differences. This introduces new error sources and increases the number of elasticity

tensors to be evaluated, further slowing down the solution process. Additionally, the

number of optimization iterations necessary to achieve convergence might increase if

there are discontinuities in the objective function or its gradient. Such discontinuities

can already be caused by the inexact solution of the FEM. If we need Hessians or other

higher-order derivatives, then the issues even worsen.

6.2 APPROXIMATING ELASTICITY TENSORS 157

6.2.2 B-Splines on Sparse Grids for Topology Optimization

Elasticity tensor function. As a remedy, we replace the costly elasticity tensors with

cheap surrogates. If we assume that all macro-cells use the same micro-cell model, the

elasticity tensor E(q) of the q-th macro-cell with the parameter x (q) ∈ [0,1] can be written

as the value E(x (q)) of some function E : [0,1]→ R6×6 (assuming that d̃ = 3) at the point

x (q). In the following, E : [0,1] → Rm gives m ∈ N values from which the symmetric

elasticity tensor can be uniquely reconstructed, i.e., m = 6 for d̃ = 2 and m = 21 for

d̃ = 3. The vector-valued/matrix-valued versions of E will be used interchangeably.

Elasticity tensor surrogate. The idea is to use B-splines on sparse grids to approxi-

mate the elasticity tensor function E. In contrast to the theoretical framework that we

established in Chapters 2 to 4, the function to be interpolated is not scalar-valued, but

vector-valued. This means that we have to construct m sparse grid interpolants Es
j for the

m components E j of E (j = 1, . . . , m). Note that one could generate different spatially

adaptive sparse grids for the different components Es
j . However, it is not possible to

evaluate only specific entries of E without also evaluating all other entries, which means

that we would waste computational resources by selecting only a subset of the calculated

entries. Therefore, we use the same grid for all components.

Additionally, we approximate the density %(q) of the q-th macro-cell with a surrogate

%s using B-splines on the same sparse grid as for Es
j for reasons of implementation, re-

sulting in m+ 1 sparse grid interpolants in total. From a theoretical perspective, this is

not necessary, since the density can be explicitly calculated with simple formulas for most

micro-cell models, independently of evaluations of the elasticity tensor.

Advantages. Our approach has multiple obvious advantages:

• The sparse grid interpolant Es has to be generated only once in an offline step be-

fore the optimization algorithm starts. During the optimization (online phase), only

inexpensive evaluations of Es are performed, saving much computation time.

• Sparse grids ease the curse of dimensionality, which prohibits conventional full grid

interpolation methods if d > 4.

• With spatially adaptive sparse grids and a suitable refinement criterion, we can spend

more grid points in regions of interest of E, e.g., regions with large oscillations.

• By using B-splines as basis functions, the interpolant Es will be more accurate than

with piecewise linear basis functions. In addition, we can calculate its derivatives
∂
∂ x t

Es(x (q)) fast and explicitly, accelerating the speed of convergence of the optimizer.

158 CHAPTER 6: APPLICATION 1 – TOPOLOGY OPTIMIZATION

6.2.3 Cholesky Factor Interpolation

Positive definiteness of elasticity tensors. Unfortunately, just replacing elasticity ten-

sors with B-spline surrogates often does not lead to correct results in practice. Experiments

show that for only for some sparse grids, the optimization algorithm converges to an opti-

mal point [Vale16]. The optimization algorithm crashes for most spatially adaptive grids,

not being able to find any meaningful optimum. The root of the problem proves to be that

the interpolated elasticity tensors Es(x) are not positive definite for specific micro-cell

parameters x ∈ [0,1]. However, indefinite or even negative definite tensors Es would

mimic unphysical behavior.5 Hence, it is imperative for the optimization process that the

interpolated elasticity tensors are symmetric positive definite (SPD).

Positive definiteness of sparse grid interpolants. Interpolation on sparse grids per

se does not preserve positive definiteness. A counterexample is shown in Fig. 6.3A,

which displays the minimal eigenvalue of the elasticity tensor surrogate resulting from

interpolation on a regular sparse grid. As the positivity of the diagonal is a necessary

condition for positive definiteness, small oscillations of the interpolant of some entries

already make the whole elasticity tensor non-positive-definite.

These oscillations are more likely to occur near the boundary of the domain [0,1],
such that there are larger regions where the interpolated tensor is not positive definite

anymore. The reason is two-fold: First, sparse grids without boundary points are noto-

riously biased towards the center of the domain, as they place only few points near the

boundary [Pfl10]. This leads to a loss of interpolation accuracy near the boundary when

compared to the center of [0,1]. Second, both the minimal eigenvalue of E(x) and the

norm of its gradient with respect to x are small near x1 = 0 or x2 = 0. Consequently,

the “surface” of the minimal eigenvalue function is rather flat in these regions and almost

vanishes, facilitating the existence of negative eigenvalues of surrogate functions Es(x).

Note that for most micro-cell models, the optimization algorithm often evaluates the

objective function J(x (1), . . . , x (M)) at micro-cell parameter combinations for which many

of the points x (j) are near the boundary of [0,1]. This is because many of the macro-cells

will either be empty or fully filled with material, which usually corresponds to micro-cell

parameters near zero or one, respectively. Thus, Es is frequently evaluated in the regions

of indefiniteness, which further worsens the issue.

5In the scalar case, this is analogous to Hooke’s law for linear springs, where the force F = kx needed
to displace the end of a spring (fixed at the other end) by x is proportional to x . The proportionality
constant k (which corresponds to the elasticity tensor) has to be positive.

6.2 APPROXIMATING ELASTICITY TENSORS 159

0 0.25 0.5 0.75 1x1
0

0.25

0.5

0.75

1
x 2

A Minimal eigenvalue of Es(x)

0 0.25 0.5 0.75 1x1
0

0.25

0.5

0.75

1

x 2

B Minimal eigenvalue of Echol,s(x)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

FIGURE 6.3 Minimal eigenvalue (colored contour lines) of elasticity tensor surrogates for
the 2D cross model (d̃ = 2, d = 2) and cubic hierarchical B-splines ϕp

`,i (p =
3) on the regular sparse grid Ωs(b)

n,d (dots) with n = 6 and b = 4. Left: The
minimal eigenvalue of Es(x) becomes negative in some regions (red areas) of
the domain [0,1], indicating that Es(x) is not positive definite. Right: The
minimal eigenvalue of Echol,s(x) is non-negative in the whole domain [0,1].

Positivity-preserving methods. Even in one dimension, it cannot be guaranteed that

the interpolant of positive data remains positive, which is a key problem in the estimation

of probability densities [Pfl10; Gri10; Fra16]. Just clamping the interpolated values via

max(·, 0) does not help: In our application, the tensor may still be indefinite; additionally,

the calculated gradients of the interpolants do not match the actual gradients anymore.

In density estimation, clamping a density-like function changes its integral, making it

necessary to recalculate its normalization constant [Fra17].

One possible workaround is to apply a continuous injective transformation T : R>0→
R on the positive values (e.g., ln), then interpolate the resulting values, and finally apply

the inverse transformation T−1 : R → R>0 on the interpolated values (e.g., exp).6 For

the piecewise linear hierarchical basis, another approach has been developed recently

[Fra17], maintaining the positivity by inserting additional sparse grid points. In the

context of spline approximation, positivity-preserving approximation schemes based on

so-called quasi-interpolation are known [Höl13]. For our application, for which we need

to preserve positive definiteness, it is conceivable that one could apply these positivity-

preserving methods in the eigenspace, interpolating the positive eigenvalues.

6Formally, the inverse function T−1 : T (R>0) → R>0 is only defined on the image T (R>0) of T , which
might not be the whole real line. However, we assume that T−1 can be “reasonably” extended to R
(e.g., T :=

p
· and T−1 = (·)2).

160 CHAPTER 6: APPLICATION 1 – TOPOLOGY OPTIMIZATION

Interpolation of Cholesky factors. Instead, we pursue a different, more canonical

approach based on Cholesky factorization:

PROPOSITION 6.1 (Cholesky factorization)

For every SPD matrix E ∈ R6×6, there is a unique upper triangular matrix R ∈ R6×6

with positive diagonal entries such that

(6.6) E = RTR.

PROOF See [Ben24] or [Fre07]. �

In one dimension, the Cholesky factorization is equivalent to the application of a

transformation T as above by choosing T :=
p
· and T−1 = (·)2. Our approach is as

follows:

1. Define R : [0,1] → R6×6 as the Cholesky factor of E : [0,1] → R6×6, i.e., E(x) =
R(x)TR(x) for all x ∈ [0,1].

2. During the grid generation (offline phase), evaluate E(x `,i) at the grid points x `,i ,

compute the Cholesky factors R(x `,i) of E(x `,i), and interpolate them instead of the

elasticity tensors to obtain an interpolant Rs : [0,1]→ R6×6.

3. During the optimization (online phase), every time the value E(x) of an elasticity

tensor is needed, the interpolant Rs(x) is evaluated and we return

(6.7) Echol,s(x) := Rs(x)TRs(x).

Advantages of Cholesky factor interpolation. As shown in Fig. 6.3B, the resulting

elasticity tensor surrogate Echol,s is positive semidefinite on the whole domain and positive

definite almost everywhere: The surrogate Echol,s(x) is singular if and only if Rs(x) is

singular, which is in general only the case on a negligible null set in [0,1].
Another advantage of this approach is that not only the positive definiteness, but

also the explicit differentiability of the surrogate Echol,s is preserved. The gradient can be

computed easily and fast with the product rule:

(6.8)
∂

∂ x t
Echol,s(x) = Rs(x)T ·

∂

∂ x t
Rs(x) +

∂

∂ x t
Rs(x)T ·Rs(x), t = 1, . . . , d,

where both the sparse grid interpolant Rs(x) and its derivative ∂
∂ x t

Rs(x) are known. As

discussed above, this is key to the applicability of gradient-based optimization.

6.3 MICRO-CELL MODELS AND OPTIMIZATION SCENARIOS 161

x1

x2

A 2D cross
(2D-C, d = 2)

x1/2

x1/2

x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2

x2

2

x2

2

x2

2

x2

2

x2

2

x2

2

x2

2

x2

2
x2

2
x2

2
x2

2
x2

2

x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2

x2

2

x2

2

x2

2

x2

2

x2

2

x2

2

x2

2

x2

2
x2

2
x2

2
x2

2
x2

2x3

x4

B 2D framed cross
(2D-FC, d = 4)

x1

x2

θ

C 2D sheared cross
(2D-SC, d = 3)

x1/2

x1/2

x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2

x2

2

x2

2

x2

2

x2

2

x2

2

x2

2

x2

2

x2

2
x2

2
x2

2
x2

2
x2

2

x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2
x2

2

x2

2

x2

2

x2

2

x2

2

x2

2

x2

2

x2

2

x2

2
x2

2
x2

2
x2

2
x2

2x3

x4

θ

D 2D sheared framed
cross (2D-SFC, d = 5)

x1 x2

x3

E 3D cross (3D-C, d = 3)

x1 x2

x3

θ1θ1θ1θ1θ1θ1θ1θ1θ1θ1θ1θ1θ1θ1θ1θ1θ1

θ2θ2θ2θ2θ2θ2θ2θ2θ2θ2θ2θ2θ2θ2θ2θ2θ2

F 3D sheared cross (3D-SC, d = 5)

FIGURE 6.4 Types of micro-cell models in two dimensions (top row) and three dimensions
(bottom row).

6.3 Micro-Cell Models and Optimization Scenarios

IN THIS SECTION

6.3.1 Micro-Cell Models (p. 161)
6.3.2 Test Scenarios (p. 162)

In the following, we present the different micro-cell models

and optimization scenarios for which we perform numerical

experiments in the next section.

6.3.1 Micro-Cell Models

We use the various micro-cell models that are depicted in Fig. 6.4. The models differ

in the spatial dimensionality d̃ and the number d of micro-cell parameters x ∈ [0,1] =
[0,1]d . Note that the presented models are only some examples. One can easily design

complicated micro-cell models with larger numbers of parameters.

Orthogonal (non-sheared) models in two dimensions. The basic component of the

four two-dimensional models is a square with a cross (Fig. 6.4A) of two axis-aligned

orthogonal bars, whose widths are determined by two micro-cell parameters x1 and x2.

The micro-cell parameters are ratios of the bar widths to the edge lengths of the micro-cell

162 CHAPTER 6: APPLICATION 1 – TOPOLOGY OPTIMIZATION

(although the actual micro-cells are infinitesimally small). This results in the cross model.

For the framed cross model (Fig. 6.4B), we add a diagonal cross with orthogonal bars of

widths x3 and x4 (horizontally measured). To simplify the boundary treatment, we shift

the contents of the framed cross micro-cell by 50 % of the micro-cell’s edge lengths in

both directions, such that previous corners of the micro-cell correspond to the new center.

Sheared models in two dimensions. Both of these models can be extended by shearing.

The idea is to increase the stability of the resulting macro-structure with respect to forces

that act at angles other than 0° and 90° (cross model) or 0°, 90°, and 45° (framed cross

model). If we just rotated the crosses in the micro-cells, then the micro-structure would

not be periodic. Instead, we shear the whole micro-cell in the horizontal direction, where

the shearing angle θ is an additional micro-cell parameter, which gives us another degree

of freedom.7 This results in the sheared cross model (Fig. 6.4C) and sheared framed cross

model (Fig. 6.4D) with three and five micro-parameters each.

Models in three dimensions. The two-dimensional cross model can be transferred to

three spatial dimensions by just adding another bar in the new dimension. Each of the

three bars has square cross-section with given edge lengths x1, x2, or x3, respectively,

resulting in the 3D cross model with three micro-cell parameters (Fig. 6.4E). By shearing in

the two horizontal directions, we obtain two new degrees of freedom θ1 and θ2 (shearing

angles). The emerging 3D sheared cross model has five micro-cell parameters (Fig. 6.4F).

6.3.2 Test Scenarios

To benchmark the performance of the new method, we take a subset of the scenarios given

in [Vald17], which reviews more than 100 papers on topology optimization to determine

the most common test scenarios in the field. The geometry and the boundary conditions

of the four scenarios (two for each 2D and 3D) are given in Fig. 6.5 (dimensions in

meters). In contrast to [Vald17], we only use single-point loads (i.e., not loads applied

to line segments, areas, or volumes) for implementational reasons. The upper bound on

the density (see Sec. 6.1.1) is %∗ = 50% for the 2D scenarios and %∗ = 10% for the 3D

scenarios. As in [Sig01] and for reasons of simplicity, we apply a force F with unit value

(i.e., ‖F‖2 = 1N), and we use a hypothetical material with a Young’s modulus (stiffness)

of 1 Pa and a Poisson ratio (transversal expansion to axial compression) of 0.3.

7To be more precise, the angle θ corresponds to an additional micro-cell parameter x3 (sheared cross) or x5
(sheared framed cross) that is determined by normalization from [−0.35π, 0.35π], i.e., θ/(0.7π)+1/2.

6.4 IMPLEMENTATION AND NUMERICAL RESULTS 163

0 2
00000000000000000

11111111111111111

x̃1

x̃2x̃2x̃2x̃2x̃2x̃2x̃2x̃2x̃2x̃2x̃2x̃2x̃2x̃2x̃2x̃2x̃2

F

A 2D cantilever

0 2 5
0

2

5

x̃1

x̃2

F

B 2D L-shape

F
0

1 0

1

0

1

x̃1

x̃2

x̃3

C 3D cantilever

F0

2 0

2

0

1

0.2
0.2

0.2

x̃1

x̃2

x̃3

D 3D center-load

FIGURE 6.5 Test scenarios in topology optimization in two and three spatial dimensions.
Shown are the domains Ω̃, load points, locations of homogeneous Dirichlet
boundary conditions (red), and exemplary optimal structures (blue).

6.4 Implementation and Numerical Results
IN THIS SECTION

6.4.1 Implementation (p. 163)
6.4.2 Error Sources (p. 166)
6.4.3 Interpolation Error (p. 166)
6.4.4 Optimal Compliance Values

and Structures (p. 168)

In this final section of the chapter, we study optimal

results of the test scenarios and analyze interpolation

errors and optimization results for topology optimiza-

tion with B-spline surrogates on sparse grids.

6.4.1 Implementation

In the following, for simplicity, we combine the two functions to be interpolated, i.e., the

Cholesky factor R : [0,1]→ R6×6 and the micro-cell density % : [0,1]→ R, to one single

objective function f : [0,1]→ Rm+1, from which both functions can be recovered.

164 CHAPTER 6: APPLICATION 1 – TOPOLOGY OPTIMIZATION

x `1,i1
,

. . . ,
x `N ,iN

E(x `1,i1
),

. . . ,
E(x `N ,iN

)

R(x `1,i1
),

. . . ,
R(x `N ,iN

)

Rs : [0,1]
→ R6×6

micro-problem RTR = E interpolate

A Offline phase (without the actual grid generation).

x (1),
. . . ,
x (M)

Rs(x (1)),
. . . ,

Rs(x (M))

Echol,s(x (1)),
. . . ,

Echol,s(x (M))

J s(x (1),
. . . ,

x (M))

evaluate Echol,s = (Rs)TRs macro-problem

B Online phase (one iteration of the optimizer).

FIGURE 6.6 Offline and online phase for topology optimization. The interpolation of the
micro-cell density % with %s (see Sec. 6.2.2) has been omitted for brevity.

Overview of offline and online phase. Our method is divided into an offline phase

and an online phase, both of which are sketched in Fig. 6.6. The offline phase consists

of generating the spatially adaptive sparse grid Ωs = {x `k ,ik
| k = 1, . . . , N}, solving the

corresponding micro-problems, computing the Cholesky factors, and hierarchizing the

Cholesky factor entries and micro-cell densities to obtain the sparse grid interpolant f s.

Each optimization iteration of the online phase consists of evaluating the interpolant

f s for each micro-cell parameter x (j) (j = 1, . . . , M), reconstructing the elasticity tensor

Echol,s from the Cholesky factors Rs,8 and solving the macro-problem to retrieve the ap-

proximated compliance value J s(x (1), . . . , x (M)). The superscript in J s indicates that we

do not use the exact elasticity tensors E to compute the compliance value, but rather the

reconstructed and interpolated tensors Echol,s.

Generation of spatially adaptive sparse grids. We use the classical surplus-based

refinement criterion (see, e.g., [Pfl10]) as shown in Alg. 6.1 to generate the spatially

adaptive sparse grids. The difference to common surrogate settings is that the objective

function f : [0,1]→ Rm+1 is vector-valued. As the entries of R cannot be evaluated indi-

vidually, the adaptivity criterion has to consider all entries at once to avoid performing

unnecessary evaluations. We use the surpluses in the piecewise linear hierarchical ba-

sis, as their absolute values correlate with the second mixed derivative of the objective

function due to Eq. (2.25). The surpluses are combined using the formula βk := cT|α`k ,ik
|

(with entry-wise absolute value) and the points with largest βk are refined.

8In addition, the partial derivatives ∂ Echol,s/∂ x t (t = 1, . . . , d) are evaluated using Eq. (6.8). This is
necessary to employ gradient-based optimization.

6.4 IMPLEMENTATION AND NUMERICAL RESULTS 165

1 function Ωs = offlinePhase(f , n, b, c, `max, κ, Nrefine)
2 Ωs← Ωs(b)

n,d initial regular sparse grid
3 while true do
4 N ← |Ωs| number of grid points
5 Let (α`k′ ,ik′

)k′=1,...,N satisfy ∀k=1,...,N
∑N

k′=1α`k′ ,ik′
ϕ1
`k′ ,ik′

(x `k ,ik
) = f (x `k ,ik

)
6 for k = 1, . . . , N do βk← cT|α`k ,ik

| combine surpluses to a scalar value
7 K∗← {k = 1, . . . , N | ∃x `,i /∈Ωs x `k ,ik

→ x `,i , ‖`k‖∞ < `max, |βk|> κ}
8 if K∗ = ; then break stop when there are no refinable grid points left
9 Refine ≤ Nrefine of the points {x `k ,ik

∈ Ωs | k ∈ K∗} with largest βk

ALGORITHM 6.1 Generation of spatially adaptive sparse grids for topology optimization.
Inputs are the objective function f : [0,1]→ Rm+1 (combination of the
Cholesky factor of the elasticity tensor and the micro-cell density), the
level n ≥ d and boundary parameter b ∈ N of the initial regular sparse
grid, the vector c ∈ Rm+1 of coefficients with which the absolute values
of the entries of the surpluses are combined, the maximal level `max ∈ N,
the refinement threshold κ ∈ R>0, and the number Nrefine ∈ N of points
to refine in each iteration. Output is the spatially adaptive sparse grid Ωs.

Parameter bounds. In the micro-cell models presented in Sec. 6.3.1, extreme micro-

cell parameters near zero or one may cause problems with the resulting elasticity tensors.

For instance, many elasticity tensor entries corresponding to the 2D cross model are

discontinuous near the lines x1 = 1 or x2 = 1 [Hüb14; Vale14]. This is due to the fact

that the micro-cell is completely filled with material on these lines, independent of the

other micro-cell parameter. Similar issues occur for the other models and the shearing

angles. Hence, we have to restrict the range of the feasible micro-cell parameters, i.e.,

the sparse grid points x = x `k ,ik
are still defined on the unit hyper-cube [0,1], but the

actual micro-cell parameters x̄ are retrieved by an affine transformation x̄ := a+(b−a)x .

For the models in Sec. 6.3.1, we restrict the bar widths to [0.01,0.99] and the shearing

angles to [−0.35π, 0.35π].

Software, algorithms, and domain discretization. The micro-problems and macro-

problems were solved with the FEM software package CFS++ [Kal10].9 The micro-prob-

lems were discretized by dividing the micro-cells into 128 × 128 = 16384 elements

(models in two dimensions) or 16×16×16= 4096 elements (models in three dimensions).

The macro-domains Ω̃were discretized using 32 macro-cells per meter in the 2D cantilever

scenario (i.e., 64×32= 2048 cells), 20 macro-cells per meter in the 3D cantilever scenario

(i.e., 20×20×20= 8000 cells), and 10 macro-cells per meter in the other scenarios (i.e.,

1600 cells for the 2D L-shape and 4000 cells for the 3D center-load). The generation of

9http://www.lse.uni-erlangen.de/cfs/

http://www.lse.uni-erlangen.de/cfs/

166 CHAPTER 6: APPLICATION 1 – TOPOLOGY OPTIMIZATION

the sparse grids (offline phase) was done via a MATLAB code, while the evaluation of the

interpolants (online phase) was performed by the sparse grid toolbox SG++ [Pfl10].10 For

the solution of the emerging optimization problems, a sequential quadratic programming

method was employed (see Sec. 5.1.3).

6.4.2 Error Sources

There are multiple sources that contribute to the numerical error of our method:

E1. Discretization of the micro-problem (i.e., the elasticity tensors E are inaccurate)

E2. Sparse grid interpolation (i.e., Es 6= E)

E3. Reconstruction of elasticity tensors with Cholesky factors (i.e., Echol,s 6= Es)

E4. Discretization of the macro-problem (i.e., the compliance J is inaccurate)

E5. Optimization (i.e., the minimum found by the optimizer is inaccurate or not global)

E6. Floating-point rounding errors (i.e., arithmetical operations are inaccurate)

E6-type errors are always present and will not be analyzed in this chapter. Errors of type

E1 and E4 are intrinsic to the homogenization approach and will not be discussed here

either. The optimization error E5 has already been discussed in Sec. 5.4.3 for explicit test

functions. Therefore, in the remainder of this chapter, we will focus on the analysis of

the errors of types E2 and E3, since the interpolation of Cholesky factors is the major new

contribution to this application.

6.4.3 Interpolation Error

Spectral interpolation error measure. For the interpolation error E2 and the Cholesky

factorization error E3, we cannot simply take the absolute value of the difference of the

objective function f : [0,1]→ Rm+1 and its surrogate f s, since both are vector-valued. As

the micro-cell density % is not affected by the Cholesky factorization, we consider only

the elasticity tensor E : [0,1]→ R6×6 and its surrogate Echol,s : [0,1]→ R6×6 obtained by

Cholesky factorization. To retrieve a scalar error measure, we use the spectral norm

(6.9) ‖E(x)− Echol,s(x)‖2, x ∈ [0,1],

i.e., the largest absolute eigenvalue of E(x)− Echol,s(x). However, the choice of the norm

is arbitrary, as all matrix norms on R6×6 are equivalent to each other.

10http://sgpp.sparsegrids.org/

http://sgpp.sparsegrids.org/

6.4 IMPLEMENTATION AND NUMERICAL RESULTS 167

0 1x1

0

1
x 2

A ‖E(x)− Es(x)‖2

0 1x1

0

1

x 2
B ‖E(x)− Echol,s(x)‖2

10−6

10−5

10−4

10−3

FIGURE 6.7 Pointwise spectral interpolation error for the 2D cross model and cubic B-splines
on N = 1320 spatially adaptive sparse grid points (dots) for the direct elasticity
tensor interpolation (left) and the Cholesky factor interpolation (right).

Pointwise spectral interpolation error. Figure 6.7 shows the pointwise spectral inter-

polation error for the 2D cross model and the corresponding spatially adaptive sparse grid

generated with the refinement algorithm as explained in Sec. 6.4.1. The above-mentioned

discontinuity of elasticity tensor entries near x1 = 1 or x2 = 1 is most severe near the

corners x ∈ {(0,1), (1,0)} (cf. Fig. 6.3), as some entries vanish if one of the micro-cell

bars has zero width. Hence, most points are placed near these singularity corners.

The left plot (Fig. 6.7A) shows the spectral interpolation error ‖E(x)− Es(x)‖2 of

the direct elasticity tensor interpolant without Cholesky factorization (i.e., error E2). The

maximum error is 1.2 · 10−3, which is attained near the critical lines x1 = 1 or x2 = 1.

Note that the mean error over the whole domain [0,1] is only 4.5 · 10−5. In the right

plot (Fig. 6.7B), the picture changes slightly when looking at the spectral interpolation

error ‖E(x)− Echol,s(x)‖2 of the elasticity tensor resulting from Cholesky factorization

(i.e., errors E2 and E3 combined). The maximum error becomes 3.4 · 10−3, while the

mean error increases to 1.1 · 10−4. We conclude that the Cholesky factorization leads to

an increase of interpolation errors by only less than half an order of magnitude.

Convergence of spectral interpolation error. Figure 6.8A shows the convergence of

the relative L2 spectral interpolation errors

(6.10) εs :=

‖E(·)− Es(·)‖2

L2

‖E(·)‖2

L2

, εchol,s :=

‖E(·)− Echol,s(·)‖2

L2

‖E(·)‖2

L2

168 CHAPTER 6: APPLICATION 1 – TOPOLOGY OPTIMIZATION

2D-C (εs)
p = 1 p = 3

2D-C (εchol,s)
p = 5

2D-FC
3D-C

2D-SC
3D-SC

2D-SFC

102 103 104
10−5

10−4

10−3

10−2

R
el

at
iv

e
L2

sp
ec

tr
al

er
ro

r

N

A εs (blue) and εchol,s (red) for the 2D cross
model and different degrees.

102 103 104
10−3

10−2

10−1

R
el

at
iv

e
L2

sp
ec

tr
al

er
ro

r
N

B εchol,s for the other models and p = 3.

FIGURE 6.8 Convergence of relative L2 spectral interpolation errors over the increasing
number N of spatially adaptive grid points (i.e., decreasing threshold κ) for
the 2D cross model without or with Cholesky factor interpolation and different
degrees p (left) and for the other models and cubic degree (right).

for the 2D cross model, i.e., the relative L2 error of the functions depicted in Fig. 6.7.

Relative errors of 1 %� are already obtained for N = 200 grid points. Unfortunately, even

for higher B-spline degrees p > 1, the order of convergence is only quadratic due to the

singularities of the elasticity tensor. This slow convergence does not improve for the other

micro-cell models as shown in Figure 6.8B. In fact, the convergence decelerates even

more as the number of micro-cell parameters increases. For the 2D sheared cross and 3D

cross models with three parameters, the spatially adaptive sparse grid with N ≈ 10000

grid points is able to achieve a relative error of around 3 %�. However, for the 2D sheared

framed cross and 3D sheared cross models with five parameters, only errors of about 5 %

are reached for the same grid size.

6.4.4 Optimal Compliance Values and Structures

Optimal compliance values for different micro-cell models. In the following, we use

for each micro-cell model a specific spatially adaptive sparse grid with around 10000

points. The exact grid sizes and other details about the employed sparse grids can be

found in Tab. C.2 (located in Appendix C). For hierarchical cubic B-splines (p = 3),

Tab. 6.2 lists the compliance values J(x opt,∗,(1), . . . , x opt,∗,(M)) for each of the four scenarios

6.4 IMPLEMENTATION AND NUMERICAL RESULTS 169

Scenario 2D-C 2D-FC 2D-SC 2D-SFC 3D-C 3D-SC

2D cantilever 74.974 70.816 67.809 68.602 — —
2D L-shape 183.68 177.51 169.60 174.55 — —

3D cantilever — — — — 247.60 162.59
3D center-load — — — — 169.27 46.171

TABLE 6.2 Optimal compliance values for the different scenarios and micro-cell models
using cubic B-splines (spatially adaptive grids with around 10000 points). The
entries highlighted in bold face indicate the best choice of micro-cell models for
a given scenario. More details can be found in Tab. C.1.

and the corresponding possible micro-cell models, where (x opt,∗,(1), . . . , x opt,∗,(M)) ∈ (Rd)M

is the micro-cell parameter combination that is returned by the optimizer.11 It is obvious

that more complicated micro-cell models lead to lower (better) compliance values, as they

are a generalization of the simple models. For instance, the 2D cross is a special case of

the 2D framed cross, the 2D sheared cross, and the 2D sheared framed cross. By choosing

the respectively best model for each scenario, we are able to decrease the compliance

value (and, hence, increase the stability of the resulting structure) by 9.6 % in the 2D

cantilever scenario, by 7.7 % in the 2D L-shape scenario, by 34 % in the 3D cantilever

scenario, and by 73 % in the 3D center-load scenario. In general, this motivates the

usage of more complicated micro-cell models, which cannot be computationally handled

with conventional full grid interpolation methods. Consequently, sparse grids or similar

methods have to be used.

Corresponding optimal structures. The corresponding optimal structures are shown

in Fig. 6.9 for the 2D cantilever scenario and, for reasons of space, in Appendix C in

Figures C.1 and C.2 for the other three scenarios. Of course, the periodic micro-cell

structures cannot be plotted directly, as the micro-cells are infinitesimally small. Therefore,

the figures show for each macro-cell only one single large micro-cell.

Two effects can be seen in the plots of the optimal structures: First, the simpler

models are not able to direct the emerging forces at arbitrary angles. For example, the

2D framed cross model strongly prefers angles of 45°, which results in structures that

are not as stable as they could be. The 2D sheared cross and 2D sheared framed cross

models are considerably more flexible, allowing internal forces to act at almost arbitrary

angles. Second, the sheared micro-cell models use the available material volume more

11Note that this true compliance value differs from the approximated value J s(x opt,∗,(1), . . . , x opt,∗,(M)), which
the optimizer reports as the optimal objective function value.

170 CHAPTER 6: APPLICATION 1 – TOPOLOGY OPTIMIZATION

A 2D cross B 2D framed cross

C 2D sheared cross D 2D sheared framed cross

FIGURE 6.9 Topologically optimal structures in the 2D cantilever scenario for different
micro-cell models using cubic B-splines (spatially adaptive grids with around
10000 points). The colors indicate the length of the displacement, where
dark regions correspond to weak displacements and bright regions to strong
displacements. The color map is the same as in Fig. C.1. Only bars with widths
≥ 0.1 are shown. More details can be found in Tab. C.1.

efficiently than the cross model. This is most striking in the 3D case (see Fig. C.2), where it

seems that the sheared cross structures use more volume than the simple cross structures,

although the structures spend exactly the same amount of material volume. The reason

is that for the cross model, both bars have to be used in order to connect the macro-cell to

its neighbors. For the sheared cross model, a shearing of the vertical bar suffices and we

save volume by not using the horizontal bar. Both of these effects explain the significantly

lower compliance values for the sheared micro-cell models.

Comparison to the direct solution. B-splines on sparse grids lead to a drastic reduction

in computation time. Solving the 2D cantilever scenario with the best-placed sheared

cross model would take 453 days with exact elasticity tensor evaluations (i.e., without

surrogates), assuming the same number of iterations as for the surrogate tensor case

and sequential computation of the elasticity tensors. This estimate does not account

for approximating the missing derivatives of the elasticity tensor. If we incorporate this

and use 100 parallel processes, we still need weeks for the solution. In contrast, the

computation time using our sparse grid surrogates is a matter of minutes or hours at

6.4 IMPLEMENTATION AND NUMERICAL RESULTS 171

Jopt,∗

2D-C
J s,opt,∗

2D-FC 2D-SC 2D-SFC 3D-C 3D-SC

102 103 104

75.00

75.25

75.50

75.75

76.00

C
om

pl
ia

nc
e

va
lu

e

10−5

10−4

10−3

10−2

10−1

N 102 103 104

10−4

10−3

10−2

10−1

100

101

O
pt

im
al

it
y-

in
te

rp
ol

at
io

n
ga

p

N

FIGURE 6.10 Convergence of the optimality-interpolation gap |Jopt,∗−J s,opt,∗| for the 2D/3D
cantilever scenario and and different micro-cell models using cubic B-splines
(p = 3). The left plot additionally shows Jopt,∗ := J(x opt,∗,(1), . . . , x opt,∗,(M))
and J s,opt,∗ := J s(x opt,∗,(1), . . . , x opt,∗,(M)) for the 2D cross model.

most, resulting in speedups of around 200. This is excluding the time for the offline phase,

which is in the range of hours, but which has to be spent only once, as the resulting grid

can be reused for different scenarios.

Optimality-interpolation gaps. Ideally, we would measure the true optimality gap

(6.11) J(x opt,∗,(1), . . . , x opt,∗,(M))− J(x opt,(1), . . . , x opt,(M)),

cf. error E5. Unfortunately, the true optimum (x opt,(1), . . . , x opt,(M)) could not be computed:

Apart from the time issue mentioned above, oscillations in the elasticity tensor evaluation

and errors stemming from types E1 and E6 reliably led to optimizer crashes as it ran into

discontinuities, which are smoothed out when using B-spline surrogates. However, as in

Fig. 6.10, we can at least calculate the optimality-interpolation gap

(6.12) |J(x opt,∗,(1), . . . , x opt,∗,(M))− J s(x opt,∗,(1), . . . , x opt,∗,(M))|

between the actual compliance value and the approximated, reported compliance value.

This gap does not constitute any kind of bound on the true optimality gap; however, the

idea is that as the interpolation error converges to zero, the optimality-interpolation gap

should converge to zero, too.

172 CHAPTER 6: APPLICATION 1 – TOPOLOGY OPTIMIZATION

2D/3D cross 2D/3D sheared cross
Scenario p = 1 p = 3 p = 5 p = 1 p = 3 p = 5

2D cantilever 82.365 74.974 76.070 68.889 67.809 68.018
2D L-shape 193.83 183.68 183.70 169.85 169.60 169.60

3D cantilever 249.75 247.60 247.33 148.72 162.59 152.34
3D center-load 162.68 169.27 163.94 45.713 46.171 47.074

TABLE 6.3 Optimal compliance values for the different scenarios and B-spline degrees using
the 2D/3D cross micro-cell model (left) and the 2D/3D sheared cross micro-cell
model (right). The spatially adaptive sparse grids are the same as in Tab. 6.2.
The entries highlighted in bold face indicate the best choice of B-spline degree
for a given scenario and micro-cell model. Optimization runs of entries marked
as italic terminated prior to success due to numerical difficulties.

Figure 6.10 (left) shows that for the 2D cross model, the optimizer reports compliance

values that are smaller than in reality (J s,opt,∗ vs. Jopt,∗). However, the difference steadily

converges to zero. This is similar for the other micro-cell model as shown in the right

part of Fig. 6.10, although the convergence is much slower due to the higher number d

of micro-cell parameters.

Optimal compliance values for different B-spline degrees. Finally, to study the effect

of the B-spline degree on the optimization performance, Tab. 6.3 lists the compliance

values for the degrees p = 1, 3, 5 and the 2D/3D cross and sheared cross micro-cell models.

In the two-dimensional scenarios, higher-order B-splines decrease the compliance value

by up to 9 %. In the three-dimensional scenarios, higher-order B-splines may perform

worse than the piecewise linear functions (p = 1). (However, as indicated in Tab. 6.3,

all optimization runs with piecewise linear functions terminated prematurely due to

numerical difficulties with the discontinuous derivatives.) It may be suspected that if

we used micro-cell models with less prominent discontinuities (i.e., “smoother” elasticity

tensors), the advantage of higher-order B-splines would be more visible. All in all, the

application of topology optimization underlines that good interpolation (and thus a good

quality of the surrogate) is key to good optimization results.

173

7
Application 2:

Musculoskeletal Models

“ Beware of bugs in the above code;

I have only proved it correct, not tried it.

— Donald E. Knuth [Knu77]

Existing musculoskeletal models of muscle-tendon complexes, e.g., of the human

upper limb, can mainly be divided into two different types. Lumped-parameter

musculoskeletal models, for example Hill-type models based on multi-body simulations

[Röh16; Vale18b], constitute the most common type. These models assume that the

components of the musculoskeletal system are rigid. The mechanics is reduced to point

masses associated with their moment of inertia; thus, these models can be described by

few parameters.

Continuum-mechanical musculoskeletal models form the other type. Their advantage is

that they are more detailed and, hence, more realistic. However, their increased complex-

ity leads to higher computational costs. As an example, we consider an inverse problem

(see Chap. 1) that involves a continuum-mechanical simulation of such a musculoskeletal

model, where we search values of model parameters such that a specific movement is

attained. Each iteration of the solution process for such an inverse problem may take

hours or even days, depending on the model at hand.

174 CHAPTER 7: APPLICATION 2 – MUSCULOSKELETAL MODELS

FT Triceps force rT Triceps lever arm βT Triceps activation

FB Biceps force rB Biceps lever arm βB Biceps activation

FL Load force rL Load lever arm M Moment

θ Elbow angle θ ∗ Target elbow angle θFL
Equil. elbow angle

t Time (·)s Sparse grid solution (·)ref Reference solution

TABLE 7.1 Glossary of the notation for musculoskeletal models.

Surrogate methods based on sparse grids help to decrease the complexity in two ways:

First, the evaluation of surrogates is obviously drastically cheaper than the solution of

the inverse problem. Second, the particular choice of sparse grids decreases the number

of necessary samples to construct the surrogates. As for the previous application, the

choice of B-splines as hierarchical basis functions enables the evaluation of continuously

differentiable surrogate gradients. For the example of inverse problems, this means that

gradient-based optimization methods may be employed, which significantly accelerates

convergence compared to gradient-free methods.

This chapter is split into three sections. First, in Sec. 7.1, we introduce a continuum-

mechanical model of the human upper limb. Second, in Sec. 7.2, we list the types of

inverse problems of interest. Finally, in Sec. 7.3, we present numerical results regarding

the solution of these inverse problems.

The results of this chapter are based on a collaboration with Prof. Oliver Röhrle,

PhD, and Dr. Michael Sprenger (both SimTech/University of Stuttgart, Germany).1 The

collaborators contributed the biomechanical model with its theory, its geometry, and

its implementation, while the author of this thesis contributed the sparse grid/B-spline

methodology and computed the numerical results. Note that the results have already

been published in a paper [Vale18b], which we will follow closely in this chapter.

7.1 Continuum-Mechanical Model of the Upper Limb

IN THIS SECTION

7.1.1 Continuum-Mechanical
Musculoskeletal Models (p. 175)

7.1.2 Details of the Human
Upper Limb Model (p. 176)

In the following, we first discuss the state of the art in

biomechanical modeling. Then, we address details of

the model of the human upper limb. For convenience,

the most relevant symbols are listed in Tab. 7.1.

1Michael Sprenger left the University of Stuttgart in 2015.

7.1 CONTINUUM-MECHANICAL MODEL OF THE UPPER LIMB 175

7.1.1 Continuum-Mechanical Musculoskeletal Models

Limitations of classical models and benefits of continuum-mechanical models. Due

to the simplicity of classical lumped-parameter models, their degree of realism is limited.

Without any modifications, lumped-parameter models are not able to represent detailed

heterogeneous material characteristics or non-trivial muscle force paths [Röh16].
The exploitation of continuum-mechanical constitutive laws for musculoskeletal mod-

els is a more recent development [Röh16]. The resulting models are capable to model

spatial quantities such as complex muscle fiber field architectures, local activation princi-

ples, complex muscle geometries, or contact mechanics [Röh16; Vale18b]. Most of the

existing work only treats single skeletal muscles in isolation [Lem05; Shara11; Hei14].
The model used in this thesis (which is the same model as in [Spr15; Röh16; Vale18b])
aims at studying the interplay of multiple muscles and bones.

Overdetermined antagonistic systems. Musculoskeletal systems are typically overde-

termined [Röh16]. This means that the number of muscles that act on a specific joint is

usually larger than the number of the joint’s degrees of freedom. For instance, in a simple

model of the human upper limb, there are two antagonistic muscles (i.e., muscles that

work against each other), namely triceps and biceps, but only one joint angle at the elbow.

Mathematically speaking, a single muscle suffices to attain a large range of elbow angles

that are possible with an antagonistic muscle pair. However, the usage of two muscles

enables faster movements and allows for abrupt changes of direction.

The overdetermination of most musculoskeletal models implies that additional con-

ditions have to be imposed in order to obtain unique solutions. There exist various types

of such conditions, for instance, minimal control effort, minimal control change, and

minimal kinematic energy [Vale18b]. The idea behind these conditions is that the human

body tries to minimize the energy effort that is associated with all types of motion.

Forward and inverse dynamics. Musculoskeletal simulations are usually based on

either forward dynamics or inverse dynamics [Vale18b]. Forward-dynamic approaches use

activation parameters for the muscles as the input and simulate the corresponding motion

as the output. This requires that we know the muscle forces (depending on the activation

levels) beforehand. For example, one can prescribe activation levels of facial muscles

to achieve specific facial expressions [Wu13]. In contrast, inverse-dynamic approaches

use experimental motion data as the input to estimate the muscle forces as the output

[Röh16]. With inverse-dynamic simulations, one can investigate the wrapping of muscles

around the knee joint [Fern05] or visualize the motion of skin [Lee09], for instance.

176 CHAPTER 7: APPLICATION 2 – MUSCULOSKELETAL MODELS

θ = 10° θ = 45° θ = 80° θ = 115° θ = 150°

θθθθθθθθθθθθθθθθθ

rTrTrTrTrTrTrTrTrTrTrTrTrTrTrTrTrT rBrBrBrBrBrBrBrBrBrBrBrBrBrBrBrBrB

rLrLrLrLrLrLrLrLrLrLrLrLrLrLrLrLrL

FTFTFTFTFTFTFTFTFTFTFTFTFTFTFTFTFT

FBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFB

FLFLFLFLFLFLFLFLFLFLFLFLFLFLFLFLFL

FIGURE 7.1 Human upper limb model geometry shown as a raising arm movement for
the elbow angles θ = 10°, 45°, 80°, 115°, and 150° (from left to right). For
θ = 80°, the contributing forces (blue) and lever arms (red) are shown. Taken
and adapted from [Spr15; Vale18b].

7.1.2 Details of the Human Upper Limb Model

As shown in Fig. 7.1, our model of the human upper limb consists of the three bones

humerus, ulna, and radius, the elbow joint with one degree of freedom, and the antagonis-

tic muscle pair of triceps brachii and biceps brachii [Vale18b]. The bones are rigid bodies

and the muscle-tendon complex is simulated with a continuum-mechanical approach.

This implies that the muscles deform when they contract.

Overall stress components. The continuum-mechanical part of the model is based on

the theory of finite elasticity. When muscles deform, forces act on each infinitesimally

small element of the muscles, which is known as stress. Usually, especially in linear

elasticity, stress is measured with the Cauchy stress tensor (also called the true stress)

[Sön13]. For non-linear stress-strain relations, one may use other measures such as

the second Piola-Kirchhoff stress. The second Piola-Kirchhoff stress has the additional

advantage that it is defined along the material directions, in contrast to the Cauchy stress

tensor, which measures the stress in coordinate directions [Sön13].

In [Spr15; Röh16; Vale18b], the strain energy function is defined such that the

resulting overall second Piola-Kirchhoff stress SMTC of the muscle-tendon complex satisfies

(7.1) SMTC = Siso + Saniso − pC−1,

where Siso and Saniso are the isotropic and anisotropic parts of the stress, respectively, p

is the hydrostatic pressure to ensure incompressibility, and C is the right Cauchy–Green

7.2 MOMENTUM EQUILIBRIUM AND ELBOW ANGLE OPTIMIZATION 177

deformation tensor. The anisotropic part Saniso is defined as

(7.2) Saniso := (Spassive + βγMSactive)(1− γST),

cf. [Vale18b]. Here, Spassive and Sactive are the passive and active contributions due to the

skeletal muscle fibers, β ∈ [0,1] is the activation parameter of the respective muscle-

tendon complex, and γM,γST are two material parameters with which we can differentiate

between the different types of soft tissues of the muscle-tendon complex: fat, tendon,

and muscle [Vale18b]. Isotropic fat tissue can be obtained by setting γST := 1, passive

anisotropic tendon tissue by setting γST := 0 and γM := 0, and skeletal muscle tissue by

setting γST := 0 and γM := 1. A mixture of these pure materials is achieved by linear

interpolation when setting γM and γST to values between zero and one [Vale18b]. More

details about the theory part of the model are given in [Spr15; Röh16; Vale18b].

7.2 Momentum Equilibrium and Elbow Angle
Optimization

IN THIS SECTION

7.2.1 From Muscle Forces to
Equilibrium Angles (p. 177)

7.2.2 Optimization Problems (p. 179)
7.2.3 B-Spline Surrogates on

Sparse Grids (p. 180)

In this section, we give an overview of the methodology

of our approach. We continue following the presenta-

tion of [Vale18b].

7.2.1 From Muscle Forces to Equilibrium Angles

Model inputs and outputs. In the following, we regard simulations of the human upper

limb model described in Sec. 7.1 as a black box, which receives as its input the elbow angle

θ ∈ [10°, 150°] and the activation parameters (βT,βB) ∈ [0,1] = [0,1]2 of triceps and

biceps.2 The outputs of the black box simulation are the forces FT(θ ,βT) and FB(θ ,βB)
that triceps and biceps exert. These forces depend on the elbow angle as well as on

the respective activation parameter. Gravitational forces due to the masses of bones or

muscles are neglected in this context. However, we allow the specification of an external

load FL, which is applied to the end of the forearm. This load may be the weight force of

some object that the arm is supposed to keep in position.

Moments and lever arms. Each force exerts a moment (or torque) on the elbow joint.

The moments are the products of the forces FX with the respective lever arms rX (X ∈

2Here and in the following, the subscripts T, B, and L stand for triceps, biceps, and load, respectively.

178 CHAPTER 7: APPLICATION 2 – MUSCULOSKELETAL MODELS

{T,B, L}). The lever arms are approximated as in [Röh16; Vale18b] by using the tendon-

displacement method of [An84]:

rT(θ) := (−0.0009399{θ}2 + 0.1126{θ}+ 22.21)mm,(7.3a)

rB(θ) := (−0.001482{θ}2 + 0.1776{θ}+ 35.02)mm,(7.3b)

rL(θ) := sin(θ) · 282.5mm,(7.3c)

where {θ} denotes the dimensionless value of θ in degrees. The lever arms are non-

negative and the forces are signed, i.e., positive forces pull the forearm downwards and

negative forces pull it upwards. In general, FT, FL ≥ 0N and FB ≤ 0N.

Total moment and equilibrium elbow angle. The total moment of the system is given

by the function

MFL,βT ,βB
: [10°, 150°]→ R,(7.4a)

MFL,βT ,βB
(θ) := FT(θ ,βT)rT(θ) + FB(θ ,βB)rB(θ) + FLrL(θ),(7.4b)

cf. [Vale18b]. The system is in equilibrium if the total moment vanishes, i.e., MFL,βT ,βB
(θ) =

0Nm. We call the corresponding angle θ the equilibrium elbow angle for the load FL and

the activation parameters βT,βB. To find this angle for a given load FL and activation

parameters βT and βB, we first note that MFL,βT ,βB
may have zero, exactly one, or multiple

zeros in [10°, 150°]. Hence, the inverse function evaluated at 0Nm is partially defined

depending on the load and the activation parameters:

(7.5) θFL
: DθFL

→ [10°, 150°], DθFL
⊆ [0,1], θFL

(βT,βB) := (MFL,βT ,βB
)−1(0Nm),

which is well-defined whenever MFL,βT ,βB
has a unique root. We approximate θFL

(βT,βB)
with the Newton method [Röh16; Vale18b]:

(7.6) θ (j+1) := θ (j) −
MFL,βT ,βB

(θ (j))
∂
∂ θ MFL,βT ,βB

(θ (j))
, j ∈ N,

with an initial value θ (0) ∈ [10°, 150°] and the stopping criterion of |MFL,βT ,βB
(θ (j))| <

10−9 Nm. We repeat the Newton method for the initial values θ (0) = 80°, 40°, 120° and

use the first converged result (i.e., we check if θ (0) = 80° converges; if not, we proceed

with θ (0) = 40°, and so on). If all three initial values do not converge, we conclude that

(βT,βB) /∈ DθFL
.

7.2 MOMENTUM EQUILIBRIUM AND ELBOW ANGLE OPTIMIZATION 179

7.2.2 Optimization Problems

General problem. The general problem in our setting is as follows: For a given external

load FL and a target elbow angle θ ∗, find activation parameters (βT,βB) ∈ [0,1] such

that the target elbow angle is attained in the equilibrium, i.e., θFL
(βT,βB) = θ ∗. Example

applications of such a scenario are medicine and robotics, when a specific movement

should be carried out.

List of optimization problems. As discussed in Sec. 7.1.1, musculoskeletal systems

with an antagonistic muscle pair such as our human upper limb model are usually overde-

termined. This means that there are multiple solutions to this general problem. As a

remedy, one may solve one of the following two optimization problems [Vale18b]:

O1. For a given external load FL and a target angle θ ∗ ∈ [10°, 150°], find the activation

parameters (βT,βB) ∈ [0,1] such that βT + βB is minimized under the constraint

θFL
(βT,βB) = θ ∗.

O2. For a given external load FL(t2) for a time t2 > t1, a target angle θ ∗(t2) ∈ [10°, 150°],
and initial activation parameters (βT(t1),βB(t1)) ∈ [0,1], find new activation pa-

rameters (βT(t2),βB(t2)) ∈ [0,1] such that (βT(t2)− βT(t1))2 + (βB(t2)− βB(t1))2

is minimized under the constraint θFL(t2)(βT(t2),βB(t2)) = θ ∗(t2).

The motivation of both problems is that the human body tries to achieve a given movement

with minimal energy effort.

Motivation of problem O1. For the first problem O1, this effort is quantified by βT+βB,

i.e., the energy effort for each muscle is assumed to be proportional to its activation

parameter.

Motivation of problem O2. The second problem O2 is motivated as follows: Before

time t = t1, the musculoskeletal system is in equilibrium for the external load FL(t1),
activation parameters βT(t1),βB(t1), and elbow angle θ ∗(t1) := θFL(t1)(βT(t1),βB(t1)),
i.e., MFL(t1),βT(t1),βB(t1)(θ

∗(t1)) = 0Nm. Directly after t = t1, the external force and/or

the target angle is suddenly changed to FL(t2) and θ ∗(t2), respectively. Consequently,

triceps and biceps adapt their activation parameters such that the musculoskeletal system

returns to equilibrium at some time t = t2 > t1. Hence, we have to determine the new

activation parameters βT(t2),βB(t2) such that MFL(t2),βT(t2),βB(t2)(θ
∗(t2)) = 0Nm. Again,

these parameters βT(t2) and βB(t2) are not uniquely determined. Therefore, we want to

find the pair of activation parameters that is closest (in terms of the Euclidean norm) to

the initial activation parameters βT(t1),βB(t1).

180 CHAPTER 7: APPLICATION 2 – MUSCULOSKELETAL MODELS

Optimization method. Problems O1 and O2 are both constrained optimization prob-

lems. For their solution, we employ the augmented Lagrangian method as described in

Sec. 5.1.3 using an adaptive gradient descent algorithm for the gradient-based optimiza-

tion of the penalized objective function (see Sec. 5.1.2).

7.2.3 B-Spline Surrogates on Sparse Grids

Complexity. To solve optimization problems O1 and O2, the optimization method needs

to evaluate the objective and constraint functions multiple times during the algorithm.

This requires the evaluation of θFL
, which in turn has to be approximated with the Newton

method. As we see in Eq. (7.6), each iteration of the Newton method needs not only the

values of the muscle forces FT and FB, but also their partial derivatives with respect to θ .

These partial derivatives have to be approximated with finite differences.

Unfortunately, simulations of continuum-mechanical models are computationally

expensive. One evaluation of the muscle force pair FT, FB requires the solution of a solid

mechanics model with a complex constitutive law, pre-stretch, and contact between bone

and muscles [Vale18b]. On average, a single evaluation of FT and FB takes about half an

hour on current desktop computers. If we assume that we need four Newton iterations on

average, then a single iteration of the optimization algorithm to solve problems O1 and

O2 will take four hours to complete (assuming one evaluation of objective and constraint

functions per optimizer iteration and two evaluations of the muscle force pair per Newton

iteration to approximate the missing derivative). Consequently, the whole optimization

process takes two weeks to complete, if the optimizer converges after 100 iterations.

Sparse grid surrogates. A popular way to reduce complexity is to employ surrogates.

In this case, the idea is to replace the muscle force functions FT, FB with surrogates F s
T, F s

B

[Vale18b], e.g., by interpolation. We then automatically obtain a surrogate

M s
FL,βT ,βB

: [10°, 150°]→ R,(7.7a)

M s
FL,βT ,βB

(θ) := F s
T(θ ,βT)rT(θ) + F s

B(θ ,βB)rB(θ) + FLrL(θ),(7.7b)

for the total moment (cf. Eq. (7.4)) and, consequently, a surrogate

(7.8) θ s
FL

: Dθ s
FL
→ [10°, 150°], Dθ s

FL
⊆ [0,1], θ s

FL
(βT,βB) := (M s

FL,βT ,βB
)−1(0Nm),

for the equilibrium elbow angle function (cf. Eq. (7.5)). Since the surrogates are much

cheaper to evaluate, the computation time is decreased by up to seven orders of magni-

tude, as experiments show.

7.2 MOMENTUM EQUILIBRIUM AND ELBOW ANGLE OPTIMIZATION 181

The approach in [Vale18b] and in this thesis is to determine surrogates F s
X : [0,1]→ R

(X ∈ {T,B}) by sparse grid interpolation. Compared to surrogate construction techniques

based on full grids, sparse grids help to reduce the number of samples that are neces-

sary to build “reasonably” accurate surrogates, especially if the number of dimensions is

moderately large (d ≥ 4, curse of dimensionality).

The present model only has d = 2 dimensions (βT and βB), since the model contains

only two muscles. However, as we will see, already for this low-dimensional problem,

sparse grids outperform conventional full grid interpolation. The results have to be seen

as a proof of concept. One will be able to handle higher dimensionalities (i.e., models

with a larger number of muscles) similarly with little or even no adjustments at all. The

low dimensionality of the model in this thesis enables us to compute and compare against

reference solutions, which would not be possible in a higher-dimensional setting.

Benefiting from B-splines. As in [Vale18b], we use higher-order hierarchical B-splines

as basis functions for the sparse grid surrogates. This has three advantages when com-

pared with conventional sparse grid bases such as piecewise linear functions: First, the

partial derivative ∂
∂ θ M s needed for the Newton method in Eq. (7.6) is continuous and

explicitly known. There is no need to approximate the derivative with finite differences,

reducing both error and computation time. Second, we can use gradient-based optimiza-

tion methods for the solution of the optimization problems O1 and O2, which involve

the equilibrium elbow angle function θ s
FL

: [0,1]→ R. With the implicit function theorem

[Kud95], we obtain for the derivative of θ s
FL

(7.9) ∇βT ,βB
θ s

FL
= − (∇βT ,βB

M s) · (∇θ M s)−1 = −
∇βT ,βB

M s

∂
∂ θ M s

,

where∇βT ,βB
is the transposed Jacobian with respect to βT and βB.3 For B-splines, both the

transposed Jacobian ∇βT ,βB
M s and the partial derivative ∂

∂ θ M s are continuous, explicitly

known, and can be evaluated fast. Third and finally, the usage of higher-order B-splines

as basis functions increases the order of convergence of interpolation errors as shown for

test functions in Sec. 5.4.1. Thus, fewer interpolation points are necessary to construct a

surrogate with the same error as for piecewise linear functions.

3For example, the first column is the gradient with respect to βT and the second column is the gradient
with respect to βB.

182 CHAPTER 7: APPLICATION 2 – MUSCULOSKELETAL MODELS

7.3 Implementation and Numerical Results

IN THIS SECTION

7.3.1 Implementation (p. 182)
7.3.2 Reference and Sparse

Grid Solution (p. 182)
7.3.3 Errors of Muscle Forces

and Equilibrium Angle (p. 183)
7.3.4 Test Scenario (p. 186)
7.3.5 Spatial Adaptivity (p. 189)

7.3.1 Implementation

Parameters, implementation, and geometry. Details

about implementational aspects of the model can be

found in [Spr15; Röh16; Vale18b], for instance, values

for the material parameters. The constitutive law has

been implemented in the CMISS software package (an

interactive computer program for Continuum Mechan-

ics, Image analysis, Signal processing and System identification4). The emerging PDEs

are discretized using quadratic finite element basis functions and the resulting linearized

system is solved with CMISS. The geometry of the human upper limb model is based on

the Visible Human Male’s dataset [Spi96]. Again, we refer to [Spr15; Röh16] for details

about the geometry.

7.3.2 Reference and Sparse Grid Solution

Reference solution. Since the model is only two-dimensional, we can compute a refer-

ence solution on a full grid. To this end, we evaluate the exerted muscle forces FT and FB

on the full grid

(7.10) {10°, 11°, . . . , 150°} × {0,0.1, . . . , 1} 3 (θ ,βX), X ∈ {T,B}.

The resulting 1551 grid points are interpolated with bicubic full grid splines5 to obtain

reference solutions F ref
T , F ref

B : [10°, 150°]× [0,1]→ R, which are shown in Fig. 7.2. Due

to the high resolution of the full grid, we may assume that the reference solutions are

accurate enough to ensure F ref
T ≈ FT and F ref

B ≈ FB. We refer to the resulting equilibrium

elbow angle with θ ref
FL

. It is displayed in Fig. 7.3 for the loads of FL = 22N, −60N, and

180N.

Sparse grid solution. Additionally, we evaluate FT and FB at the N = 49 grid points

(7.11) {(θ (k,unif),β (k,unif)
X) | k = 1, . . . , N} ⊆ [10°, 150°]× [0,1], X ∈ {T,B},

of the uniform regular sparse grid �Ωs
n,d of level n = 5 in d = 2 dimensions without

boundary points (to reduce the number of samples) and at the sparse Clenshaw–Curtis

4https://www.cmiss.org/
5Computed with the Geometric Tools Engine [Schn03], see https://www.geometrictools.com/.

https://www.cmiss.org/
https://www.geometrictools.com/

7.3 IMPLEMENTATION AND NUMERICAL RESULTS 183

10
45

80
115

150

0
0.25

0.5
0.75
1
0

0.25
0.5

0.75
1

θ [◦]

βT

F ref
T [kN]

10
45

80
115

150

0
0.25

0.5
0.75
1

−0.75

−0.5

−0.25

0

θ [◦]

βB

F ref
B [kN] F ref

X [kN]

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

FIGURE 7.2 Reference triceps and biceps forces F ref
X (X ∈ {T,B}).

grid

(7.12) {(θ (k,cc),β (k,cc)
X) | k = 1, . . . , N} ⊆ [10°, 150°]× [0,1], X ∈ {T,B},

of the same size and level.6 These values are interpolated using three different hierarchical

B-spline bases of degree p = 1, 3, and 5: modified hierarchical uniform B-splines ϕp,mod
`,i

(see Sec. 3.1.3), modified hierarchical Clenshaw–Curtis B-splinesϕp,cc,mod
`,i (see Sec. 3.1.4),

and modified hierarchical uniform not-a-knot B-splines ϕp,nak,mod
`,i (see Sec. 3.2.3). The

implementation was done using the sparse grid toolbox SG++ [Pfl10].7 The corresponding

interpolants and resulting quantities are denoted with the superscripts “s,p”, “s,p,cc”, or

“s,p,nak”, respectively. A superscript of “s” without any further specification means one of

the three hierarchical B-spline bases in general. Note that the equilibrium elbow angle is

not interpolated (neither in the full grid nor in the sparse grid case), but rather obtained

by inserting the interpolated muscle forces into (7.7) and (7.8).

7.3.3 Errors of Muscle Forces and Equilibrium Angle

Quality of reference interpolants. Before we turn to the sparse grid interpolants, we

assess the quality of the reference interpolants on the full grid. For this purpose, we

evaluate the full grid interpolants F s
T, F s

B at the sparse grid points (θ (k),β (k)X) (which are

not a subset of the full grid points!) and compare the resulting values with the known exact

values FT(θ (k),β
(k)
T) and FB(θ (k),β

(k)
B) of the muscle forces FT, FB. We also incorporate

6The domain [10°, 150°]× [0,1] is assumed to be implicitly normalized to the unit square [0,1].
7http://sgpp.sparsegrids.org/

http://sgpp.sparsegrids.org/

184 CHAPTER 7: APPLICATION 2 – MUSCULOSKELETAL MODELS

10◦ 30◦ 50◦ 70◦ 90◦ 110◦ 130◦ 150◦

0 1
0

1

βT

βB

25
◦30

◦
35
◦

40
◦

45
◦

50
◦

55
◦

60
◦

65
◦

70
◦
75
◦

25
◦

25
◦

25
◦

25
◦

25
◦

25
◦

25
◦

25
◦

25
◦

25
◦

25
◦

25
◦

25
◦

25
◦

25
◦

25
◦

25
◦30

◦
30
◦

30
◦

30
◦

30
◦

30
◦

30
◦

30
◦

30
◦

30
◦

30
◦

30
◦

30
◦

30
◦

30
◦

30
◦

30
◦

35
◦

35
◦

35
◦

35
◦

35
◦

35
◦

35
◦

35
◦

35
◦

35
◦

35
◦

35
◦

35
◦

35
◦

35
◦

35
◦

35
◦

40
◦

40
◦

40
◦

40
◦

40
◦

40
◦

40
◦

40
◦

40
◦

40
◦

40
◦

40
◦

40
◦

40
◦

40
◦

40
◦

40
◦

45
◦

45
◦

45
◦

45
◦

45
◦

45
◦

45
◦

45
◦

45
◦

45
◦

45
◦

45
◦

45
◦

45
◦

45
◦

45
◦

45
◦

50
◦

50
◦

50
◦

50
◦

50
◦

50
◦

50
◦

50
◦

50
◦

50
◦

50
◦

50
◦

50
◦

50
◦

50
◦

50
◦

50
◦

55
◦

55
◦

55
◦

55
◦

55
◦

55
◦

55
◦

55
◦

55
◦

55
◦

55
◦

55
◦

55
◦

55
◦

55
◦

55
◦

55
◦

60
◦

60
◦

60
◦

60
◦

60
◦

60
◦

60
◦

60
◦

60
◦

60
◦

60
◦

60
◦

60
◦

60
◦

60
◦

60
◦

60
◦

65
◦

65
◦

65
◦

65
◦

65
◦

65
◦

65
◦

65
◦

65
◦

65
◦

65
◦

65
◦

65
◦

65
◦

65
◦

65
◦

65
◦

70
◦

70
◦

70
◦

70
◦

70
◦

70
◦

70
◦

70
◦

70
◦

70
◦

70
◦

70
◦

70
◦

70
◦

70
◦

70
◦

70
◦

75
◦

75
◦

75
◦

75
◦

75
◦

75
◦

75
◦

75
◦

75
◦

75
◦

75
◦

75
◦

75
◦

75
◦

75
◦

75
◦

75
◦

A FL = 22N

0 1
0

1

βT

βB

85
◦

90
◦

95
◦

10
0
◦

10
5
◦

11
0
◦

11
5
◦

12
0
◦
12

5
◦

13
0
◦
13

5
◦

14
0
◦

14
5
◦

15
0◦

85
◦

85
◦

85
◦

85
◦

85
◦

85
◦

85
◦

85
◦

85
◦

85
◦

85
◦

85
◦

85
◦

85
◦

85
◦

85
◦

85
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

90
◦

95
◦

95
◦

95
◦

95
◦

95
◦

95
◦

95
◦

95
◦

95
◦

95
◦

95
◦

95
◦

95
◦

95
◦

95
◦

95
◦

95
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
0
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

10
5
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
0
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

11
5
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦

12
0
◦
12

5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

12
5
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦

13
0
◦
13

5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

13
5
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
0
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

14
5
◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

15
0◦

B FL = −60N

0 1
0

1

βT

βB

10
◦

15
◦

20
◦

10
◦

10
◦

10
◦

10
◦

10
◦

10
◦

10
◦

10
◦

10
◦

10
◦

10
◦

10
◦

10
◦

10
◦

10
◦

10
◦

10
◦

15
◦

15
◦

15
◦

15
◦

15
◦

15
◦

15
◦

15
◦

15
◦

15
◦

15
◦

15
◦

15
◦

15
◦

15
◦

15
◦

15
◦

20
◦

20
◦

20
◦

20
◦

20
◦

20
◦

20
◦

20
◦

20
◦

20
◦

20
◦

20
◦

20
◦

20
◦

20
◦

20
◦

20
◦

C FL = 180N

FIGURE 7.3 Reference equilibrium elbow angle θ ref
FL

for different loads FL. The empty areas

correspond to activation pairs at which θ ref
FL

is not well-defined (see Eq. (7.5)).

the known values at the sparse Clenshaw–Curtis grid points. In particular, let G be the

union of {(θ (k,unif),β (k,unif)
X) | k = 1, . . . , N} and {(θ (k,cc),β (k,cc)

X) | k = 1, . . . , N}. We then

approximate the relative L2 interpolation error of the reference interpolants by

(7.13)
‖FX − F ref

X ‖L2

‖FX‖L2

≈
|G|−1/2‖(FX (θ ,βX)− F ref

X (θ ,βX))(θ ,βX)∈G‖2

|G|−1/2‖(FX (θ ,βX))(θ ,βX)∈G‖2
, X ∈ {T,B},

where ‖·‖2 is the Euclidean norm.8 After inserting the known values FX (θ ,βX) and

F ref
X (θ ,βX) ((θ ,βX) ∈ G) on the right-hand side, we obtain

(7.14)
‖FT − F ref

T ‖L2

‖FT‖L2

≈ 2.19%�,
‖FB − F ref

B ‖L2

‖FB‖L2

≈ 2.06%�.

These errors are very small, which justifies our assumption of F ref
T ≈ FT and F ref

B ≈ FB.

Error of sparse grid muscle forces. Table 7.2a contains the relative L2 interpolation er-

rors ‖F ref
X − F s

X‖L2/‖F ref
X ‖L2 (X ∈ {T,B}) of the sparse grid interpolants for all hierarchical

bases and degrees p = 1, 3, 5. All reported errors are relatively small due to the smooth-

ness of the original functions (cf. F ref
X in Fig. 7.2). All in all, the modified Clenshaw–Curtis

B-splines perform best, achieving relative L2 errors of below 3.6 %� in the cubic case.

Surprisingly, the not-a-knot B-splines are the worst choice in our comparison. Their corre-

8We have |G| = 2N − 1, since sparse grids of uniform and Clenshaw–Curtis type only share the center
point (θ ,βX) = (80°, 0.5), if there are no boundary points.

7.3 IMPLEMENTATION AND NUMERICAL RESULTS 185

p 1 3 5

ϕ
p,mod
`,i 3.60,7.12 3.05,7.00 2.98, 7.90

ϕ
p,cc,mod
`,i 3.28, 4.35 3.31,3.56 3.35,3.64

ϕ
p,nak,mod
`,i 3.60,7.12 3.09,10.0 7.13,24.6

A ‖F ref
X − F s

X‖L2/‖F ref
X ‖L2 [%�] given as triceps/biceps

pairs (X ∈ {T,B}).

p 1 3 5

ϕ
p,mod
`,i 4.15 3.74 3.72

ϕ
p,cc,mod
`,i 3.42 2.83 2.86

ϕ
p,nak,mod
`,i 4.15 4.06 8.28

B ‖θ ref
FL
− θ s

FL
‖L2/‖θ ref

FL
‖L2 [%�] for FL =

22N.

TABLE 7.2 Relative L2 errors of triceps/biceps force (left) and equilibrium elbow angle
(right) for different hierarchical bases ϕ`,i and B-spline degrees p. Highlighted
entries are the best among those with the same hierarchical basis or the same
degree (similar to Nash equilibria).

sponding errors exceed 1 % for the triceps and p > 1. The possible reasons are two-fold:

First, there might be slight noise in the given muscle force data, which is visible in Fig. 7.2,

as there seems to be a kink in F ref
B at θ ≈ 25°. Second, the employed regular sparse grids

might be too coarse as the higher convergence order of not-a-knot B-splines only pays off

in the asymptotic range (see Sec. 5.4.1). The same observations hold for the degree p,

for which p = 3 seems to be the best choice, as the errors increase again for p = 5.

Figure 7.4 shows the pointwise absolute error |F ref
X (θ ,βX)− F s

X (θ ,βX)| for the mod-

ified B-splines ϕp,mod
`,i and ϕp,cc,mod

`,i on uniform and Clenshaw–Curtis grids in the cubic

case p = 3. Note that in contrast to usual interpolation settings, the absolute errors

|F ref
X − F s

X | shown in Fig. 7.4 do not vanish at the sparse grid points (θ (k),β (k)X) (X ∈ {T,B},
k = 1, . . . , N), since F s

X does not interpolate F ref
X at these points.9 As it is typical for (mod-

ified) sparse grid interpolants, the error is the largest near the boundary of the domain.

However, the Clenshaw–Curtis points help to decrease the error due to the higher density

of grid points near the boundary. In the Clenshaw–Curtis case, the maximal errors are

(7.15) ‖F ref
T − F s,p,cc

T ‖L∞ ≈ 10.6N, ‖F ref
B − F s,p,cc

B ‖L∞ ≈ 9.51N,

where ‖F ref
X − F s,p,cc

X ‖L∞ := max(θ ,βX) |F
ref
X (θ ,βX)− F s,p,cc

X (θ ,βX)| (since the functions are

continuous). If we restrict the domain to [31°, 129°]× [0.15,0.85] by omitting 15 % on

each side of the original domain, then the maximal absolute errors drop to only 6.73 N

(triceps) and 0.967 N (biceps), which is small compared to maximal possible forces of

around 1 kN.
9It would have been possible to construct F s

X as a sparse grid interpolant of F ref
X . However, building a

spline surrogate (F s
X) of another spline surrogate (F ref

X) would skew the results.

186 CHAPTER 7: APPLICATION 2 – MUSCULOSKELETAL MODELS

0.01N 0.1N 1 N 10N

10◦ 150◦
0

1

θ

βT

10◦ 150◦
0

1

θ

βB

A |F ref
X − F s,p

X | for X = T (left) and X = B (right).

10◦ 150◦
0

1

θ

βT

10◦ 150◦
0

1

θ

βB

B |F ref
X − F s,p,cc

X | for X = T (left) and X = B (right).

FIGURE 7.4 Absolute error of muscle forces FT, FB for modified cubic B-splines (p = 3) on
sparse grids of uniform type (left two plots) and of Clenshaw–Curtis type (right
two plots) together with the points of the sparse grid (dots).

Error of the equilibrium elbow angle. The relative L2 errors ‖θ ref
FL
− θ s

FL
‖L2/‖θ ref

FL
‖L2 of

the equilibrium elbow angle function are shown in Tab. 7.2a for the load of FL = 22N.

Modified cubic Clenshaw–Curtis B-splines achieve the best results. Therefore, we use this

type of hierarchical basis for the remainder of this chapter. Pointwise plots of the absolute

error |θ ref
FL
− θ s,p,cc

FL
| are presented in Fig. 7.5. Again, the maximal error is comparatively

small: For FL = 22N, it is only 0.886°. If we restrict the domain to [0.15,0.85]2, then

this maximal error drops to 0.103° (or 6.18′), as the areas near the boundary of [0,1]
contribute the most to the error.

7.3.4 Test Scenario

Definition of the test scenario. In the following, we want to assess the performance

of the sparse grid interpolants for the optimization problems O1 and O2. For this goal,

we create a test scenario [Vale18b] that simulates a pseudo-dynamic sequence of motions

by varying the load force and/or the target elbow angle in discrete time steps t as seen

in Fig. 7.6A. The test scenario is as follows:

1. Find a feasible initial solution for problem O1 with FL(t0) := 22N and θ ∗(t0) := 75°.

2. Apply O1 with FL(t1) := 22N and θ ∗(t1) := 75°.

3. Apply O2 with FL(t2) := 22N and θ ∗(t2) := 60° (changed target angle).

4. Apply O2 with FL(t3) := 30N and θ ∗(t3) := 60° (changed load).

5. Apply O2 with FL(t4) := 40N and θ ∗(t4) := 50° (changed load and target angle).

7.3 IMPLEMENTATION AND NUMERICAL RESULTS 187

0.001◦ 0.01◦ 0.1◦ 1◦

0 1
0

1

βT

βB

A FL = 22N

0 1
0

1

βT

βB

B FL = −60N

0 1
0

1

βT

βB

C FL = 180N

FIGURE 7.5 Absolute error |θ ref
FL
− θ s,p,cc

FL
| of the equilibrium elbow angle for modified hier-

archical cubic Clenshaw–Curtis B-splines (p = 3) for different loads FL. In the
empty areas, at least one of θ ref

FL
and θ s,p,cc

FL
is not well-defined (see Eq. (7.5)).

For each of the steps 2 to 5, the activation levels βT,βB obtained in the previous step (i.e.,

either the feasible initial solution of step 1 or the optimal solution of steps 2 to 4) are

used as the input of the optimization problem O1 or O2. The feasible initial solution in

step 1 is determined as explained in Sec. 5.1.3.

Solutions of problem O1. We note that independently of FL and θ ∗, every solution

(βT,βB) of problem O1 will be on the boundary part of the domain [0,1], on which at

least one activation parameter vanishes, i.e.,

(7.16) {(βT,βB) ∈ [0,1] | (βT = 0)∨ (βB = 0)}.

The reason is that the two muscles triceps and biceps are antagonistic (see Sec. 7.1.1),

meaning that they work against each other. If both βT > 0 and βB > 0, then the body

will waste energy, as the same target elbow angle can be attained by reducing both βT

and βB simultaneously, thus requiring less energy. A visual example for this is Fig. 7.3,

where the contour lines generally go from the bottom left (small βT,βB) to the top right

(large βT,βB). This issue may be prevented by either more complicated musculoskeletal

models with more than two muscles or different optimization problems such as problem

O2, where the objective function differs.

Plots of optimization results. Figures 7.6B to 7.6D show the results of the test scenario

using the muscle forces F s,p,cc
X obtained by interpolating with modified hierarchical cubic

188 CHAPTER 7: APPLICATION 2 – MUSCULOSKELETAL MODELS

Using F s,p,cc
X , p = 3 Using F s,p,cc

X , p = 1 Using F ref
X

t0 t1 t2 t3 t4

Time

0

10

20

30

40

50

F L
[N
]

0

15

30

45

60

75

θ
∗
[◦
]

A Load FL and target elbow angle θ ∗.

t0 t1 t2 t3 t4

Time

0.0

0.2

0.4

0.6

0.8

1.0

β
T
,β

B

B Optimal activation parameters βT and βB.

t0 t1 t2 t3 t4

Time

10−10

10−7

10−4

10−1

|θ
F L
−
θ
∗ |
[◦
]

|θ ref
FL
− θ ∗|

|θ s
FL
− θ ∗|

10−3

10−2

10−1

100

|M
re

f |
[N

m
]

C Deviation |θFL
− θ ∗| of attained elbow angle to

target and deviation |M ref| of the moment from
equilibrium.

t0 t1 t2 t3 t4

Time

103

104

#
Ev

al
ua

ti
on

s

0

1

2

3

4

5

6

#
N

ew
to

n
it

er
at

io
ns

pe
r

ev
al

.
D Number of evaluations of θFL

and number of
Newton iterations per evaluation of θFL

.

FIGURE 7.6 Setting (a) of the test scenario and corresponding results (b, c, d).

Clenshaw–Curtis B-splines (solid lines, p = 3). As comparison, we repeat the solution

process with the forces obtained by interpolating with the corresponding hierarchical

piecewise linear basis (dashed lines, p = 1) and with the reference forces F ref
X (dotted

lines). For the piecewise linear basis, we use exactly the same method as for the cubic

case (Newton method for θ s
FL

, Augmented Lagrangian with adaptive gradient descent for

the solution of problems O1 and O2), although the derivatives of the muscle forces are

discontinuous. For the reference forces, we use the fact that the reference surrogates are

full grid spline interpolants, which can be explicitly differentiated. Without the full grid

interpolants, we would have to approximate the derivatives with finite differences.

7.3 IMPLEMENTATION AND NUMERICAL RESULTS 189

Equilibrium elbow angle. In Fig. 7.6B, we see that the activation levels of all three

methods are more or less the same. However, Fig. 7.6C reveals that even these small

differences lead to deviations of the resulting equilibrium elbow angle to the target angle

that differ by up to two orders of magnitude. The two green lines with filled markers at

the bottom of Fig. 7.6C show the error of the equilibrium elbow angle θ s
FL

using sparse

grid interpolation to the desired target angle θ ∗. Unsurprisingly, this error is very small

as it is minimized by the optimizer as part of the constraint. The true error, which is

obtained by using the reference equilibrium elbow angle θ ref
FL

, is in general much larger

(top two green lines in Fig. 7.6C with hollow markers). We see that the cubic B-splines

decrease the error by up to two orders of magnitude compared to the piecewise linear

basis. There are two reasons for this: First, the error of θFL
is generally smaller when using

higher-order B-splines as we have seen above. Second, higher-order B-splines are con-

tinuously differentiable, which makes them suitable for gradient-based optimization. In

contrast, the surrogates obtained by piecewise linear interpolation have kinks, which may

complicate finding optimal points in the augmented Lagrangian and Newton methods.

Number of evaluations and Newton iterations. This is supported by Fig. 7.6D, which

shows the number of evaluations of θFL
during the optimization and the average number

of Newton iterations per evaluation. While the number of total evaluations is similar for

all three methods, the number of required Newton iterations to achieve convergence is

in general around 50 % larger for the piecewise linear basis functions.

7.3.5 Spatial Adaptivity

Generation of a spatially adaptive sparse grid. As mentioned in [Vale18b], spatial

adaptivity may be employed to reduce the number of necessary muscle force samples even

further, especially for more complicated musculoskeletal systems with more parameters.

To verify this statement, we remove all grid points (θ (k,cc),β (k,cc)
X) from the regular sparse

Clenshaw–Curtis grid that satisfy

(7.17)
|α(k,p,cc)

T |

maxk′ |α
(k′,p,cc)
T |

< 1% and
|α(k,p,cc)

B |

maxk′ |α
(k′,p,cc)
B |

< 1%,

where α(k,p,cc)
X (X ∈ {T,B}) is the hierarchical surplus of the basis function ϕp,cc,mod

k cor-

responding to (θ (k,cc),β (k,cc)
X). For higher-dimensional models, one would of course not

sample muscle data on a regular sparse grid and then coarsen the data by removing

points, but rather use an a posteriori adaptivity criterion to decide which grid points to

refine iteratively.

190 CHAPTER 7: APPLICATION 2 – MUSCULOSKELETAL MODELS

0.01 N 0.1N 1N 10N 0.001◦ 0.01◦ 0.1◦ 1◦

10◦ 150◦
0

1

θ

βT

A |F ref
T − F s,p,cc,adap

T |

10◦ 150◦
0

1

θ

βB

B |F ref
B − F s,p,cc,adap

B |

0 1
0

1

βT

βB

C |θ ref
FL
−θ s,p,cc,adap

FL
| for FL = 22N

FIGURE 7.7 Errors of muscle forces and equilibrium elbow angle for the spatially adap-
tive case (modified hierarchical cubic Clenshaw–Curtis B-splines, i.e., p = 3)
together with the points of the spatially adaptive sparse grid (dots).

Comparison with the regular case. For the cubic case p = 3, the resulting force in-

terpolants F s,p,cc,adap
X together with the spatially adaptive sparse grid (which has been

coarsened from 49 to 28 points) and equilibrium elbow angle θ s,p,cc,adap
FL

for FL = 22N are

shown in Fig. 7.7. The sparse grid is almost dimensionally adaptive, as F ref
X seems to be al-

most linear in the βX direction for both X = T and X = B. The errors increase slightly: The

relative L2 force errors for (T,B) increase from (3.31%�, 3.56 %�) to (3.36%�, 4.43 %�),
and the absolute L∞ errors increase from (10.6N, 9.51N) to (12.3N, 9.57N). In addition,

the relative L2 and absolute L∞ errors for θFL
increase from 2.83 %� and 0.886° to 4.12 %�

and 1.09°, respectively. While all these errors are somewhat larger than for the regular

sparse grid, they are still at an acceptable level, but the number of necessary muscle force

evaluations is halved compared to the regular case. Additionally, the solution of the test

scenario doesn’t change significantly due to the similar errors of FX and θFL
.

191

8
Application 3:

Dynamic Portfolio Choice Models

“ The goal is to buy as many iPads as possible

during your lifetime.

— In a talk at the 5th Workshop on

Sparse Grids and Applications

Surrogates based on B-splines on sparse grids can also be used for our third appli-

cation, which stems from finance. In this application, we optimize financial decisions

of an individual over their lifetime in discrete time steps or iterations t = 0, . . . , T (for

example, years t = 0, . . . , 80, where 20+ t is the age of the individual), depending on

internal and external factors. There are three types of variables:

• State variables x t such as the individual’s wealth wt and their income cannot be

controlled directly by the individual. Instead, the individual’s decisions may influence

the value of state variables of future iterations.1

• Policy variables y t such as consumption ct and the amount of stocks to buy or sell

represent the investment decisions the individual can make in each iteration. They

1The time t can also be regarded as a state variable.

192 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

are subject to specific constraints (for instance, you cannot spend more money than

you have, if you do not allow debts).

• Stochastic variablesωt such as return rates of stocks and inflation cannot be controlled

by the individual at all. Therefore, statements about optimal investment conditions

are usually made for expected values instead of exact values.

We discretize the state space with a spatially adaptive sparse grid. For each state grid

point, an optimization problem over the policy variables has to be solved, where the

objective function depends on the expected value over the stochastic variables. By using

B-splines as hierarchical basis functions, the accuracy of the interpolants is increased and

the explicitly known gradients enable the usage of gradient-based optimization methods,

thus accelerating convergence. The process is repeated for each time step, which is

possible due to the Bellman principle, which implies that the objective functions occurring

at time t depend on the interpolant of the next iteration t +1. Hence, the problem has to

be solved backward in time via a scheme that closely resembles dynamic programming.

The outline of this chapter is as follows: In Sec. 8.1, we formalize the framework

of dynamic portfolio choice models and describe our approach. Afterwards, we explain

in Sec. 8.2 the necessary algorithms for implementing the solution of these models. Sec-

tion 8.3 introduces the transaction costs problem as an example application of the general

framework presented in Sec. 8.1. Finally, in Sec. 8.4, we study numerical results.

This chapter is based on a collaboration with Prof. Dr. Raimond Maurer and Peter

Schober (both Goethe University Frankfurt, Germany). In previous work, Peter Schober

treated the solution of dynamic portfolio choice models with piecewise linear basis func-

tions on spatially adaptive sparse grids [Schob18]. The original contribution of this thesis

is the introduction of higher-order B-splines for the solution of these problems. The author

of this thesis contributed the methodology of hierarchical B-splines and large parts of the

implementation. The contributions of the collaborators at Goethe University Frankfurt

are the financial models, the literature review of related work, and the assessment of the

quality of results.

8.1 Solving the Bellman Equation

IN THIS SECTION

8.1.1 Bellman Equation (p. 193)
8.1.2 Solution with B-Spline

Surrogates on Sparse Grids (p. 196)

In this section, we give a mathematical framework

for dynamic portfolio choice models, briefly mention

related literature, and explain where B-splines on

sparse grids come into play. Table 8.1 summarizes

8.1 SOLVING THE BELLMAN EQUATION 193

t Time wt Wealth u Utility fcn.

x t State variables ct Consumption ψt State transition fcn.

y t Policy variables bt Bond investment Jt Value fcn.

ωt Stochastic variables J̃ s
t Interpolated certainty-equivalent-transf. value fcn.

γ Risk aversion st, j Stock holding yopt
t Optimal policy fcn.

% Patience factor δ±t, j Stock buy/sell (̂·) Normalized quantity

rt Bond return rate λt, j Stock return rate ηt Wealth ratio

τ Transaction cost rate ε
w,Eu
t Weighted Euler equation error

TABLE 8.1 Glossary of the notation for dynamic portfolio choice models.

the symbols that are introduced in this chapter. Rust provides a more detailed introduction

to dynamic portfolio choice models [Rus18].

8.1.1 Bellman Equation

Utility maximization. In the following, dynamic portfolio choice models aim to maxi-

mize the expected discounted time-additive utility over the lifetime of the individual, where

the terminal utility is derived solemnly from consumption (i.e., no inheritance motive).

If we neglect stochastic factors, then these models solve

(8.1) (yopt
0 , . . . , yopt

T) = argmax
y0,...,y T

T
∑

t=0

% tu(ct(x t , y t)) s.t. specific constraints.

Here, x t ∈ [0,1] ⊆ Rd and y t ∈ Rmy are the state2 and policy of time t = 0, . . . , T ,

respectively. The constraints ensure that for instance, we do not spend more money

than we actually have. Starting from a given initial state x 0, the state x t+1 of time t + 1

can be computed from x 0 and y0, . . . , y t with a state transition function (x t , y t) 7→ x t+1.

As shown in Fig. 8.1, in each time step, a fraction of the available wealth is consumed

(consumption ct), which can be computed from the state x t and the policy y t . The

individuals rate the consumption with a utility function u(ct). A common choice for u is

the constant relative risk aversion (CRRA) utility u(ct) := c1−γ
t /(1−γ)with the risk aversion

γ ∈ R \ {1}. Positive and negative values of γ correspond to risk-averse and risk-affine

individuals, respectively. The factor % ∈]0,1] is the patience or time discount factor.

2We assume that each state variable x t,o (o = 1, . . . , d) is bounded, since the state space will be discretized
with sparse grids. Without loss of generality, we may then assume that x t ∈ [0,1]. If some state variables
are unbounded in reality, then extrapolation is necessary, which will be explained in Sec. 8.2.5.

194 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

FIGURE 8.1
Example of a dynamic portfo-
lio choice model. The available
wealth wt is either invested into
risk-free bonds (bt) or consumed
(ct), resulting in utility u(ct). In
the last time step T (far right),
the optimal solution is to con-
sume the whole wealth, if we do
not take inheritance into account.

wtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwtwt btbtbtbtbtbtbtbtbtbtbtbtbtbtbtbtbt

ctctctctctctctctctctctctctctctctct

t

u(ct)

wt+1wt+1wt+1wt+1wt+1wt+1wt+1wt+1wt+1wt+1wt+1wt+1wt+1wt+1wt+1wt+1wt+1 bt+1bt+1bt+1bt+1bt+1bt+1bt+1bt+1bt+1bt+1bt+1bt+1bt+1bt+1bt+1bt+1bt+1

ct+1ct+1ct+1ct+1ct+1ct+1ct+1ct+1ct+1ct+1ct+1ct+1ct+1ct+1ct+1ct+1ct+1

t + 1

u(ct+1)

wt+2wt+2wt+2wt+2wt+2wt+2wt+2wt+2wt+2wt+2wt+2wt+2wt+2wt+2wt+2wt+2wt+2

t + 2

· · ·

· · ·

wTwTwTwTwTwTwTwTwTwTwTwTwTwTwTwTwT cTcTcTcTcTcTcTcTcTcTcTcTcTcTcTcTcT

T

u(cT)

Limitations of naive utility maximization. When solving the utility maximization

problem in Eq. (8.1), there are two issues. First, solving Eq. (8.1) for all times t at

once implies solving a (T + 1)my -dimensional optimization problem, which is usually

computationally infeasible. Second, Eq. (8.1) does not take stochastic variables ωt such

as stock return rates into account. These variables influence the state transition, i.e.,

(x t , y t ,ωt) 7→ x t+1. Consequently, x t+1 cannot be computed from x 0 and y0, . . . , y t

alone, which complicates the solution of Eq. (8.1) even for expected values.

Bellman principle. To resolve the first issue, Bellman’s principle of optimality [Bel57]
can be applied to problems like Eq. (8.1) that are said to have optimal substructure. The

principle states that the optimal policy for all times t = 0, . . . , T is also optimal with

respect to t = 1, . . . , T , i.e.,

(8.2) max
y0,...,y T

T
∑

t=0

% tu(ct(x t , y t)) =max
y0

�

u(c0(x 0, y0)) +% max
y1,...,y T

T
∑

t=1

% t−1u(ct(x t , y t))

�

,

where we omitted the constraints for brevity. The inner maximum problem over y1, . . . , y T

has the same structure as the problem on the left-hand side (LHS). With the value function

Jt : [0,1]→ R, Jt(x t) :=maxy t ,...,y T

∑T
t ′=t %

t ′−tu(ct ′(x t ′ , y t ′)), this can be rewritten as

(8.3) J0(x 0) =max
y0

�

u(c0(x 0, y0)) +%J1(x 1)
�

s.t. specific constraints,

where x 1 is the result of the state transition starting from (x 0, y0).

General Bellman equation. If we formulate Eq. (8.3) for arbitrary times t and consider

constraints, state transition, and stochastic variables, we obtain the Bellman equation:

Jt(x t) =max
y t

�

u(ct(x t , y t)) +%Et

�

Jt+1(ψt(x t , y t ,ωt))
��

, t = 0, . . . , T,(8.4a)

y t ∈ R
my s.t. g t(x t , y t)≤ 0,(8.4b)

8.1 SOLVING THE BELLMAN EQUATION 195

where JT+1 :≡ 0 for simplicity, ψt : [0,1]×Rmy ×Ω→ [0,1], (x t , y t ,ωt) 7→ x t+1, is the

state transition function, g t : [0,1]×Rmy → Rmg is the constraint function, and

(8.5) Et

�

Jt+1(ψt(x t , y t ,ωt))
�

:=

∫

Ω

Jt+1(ψt(x t , y t ,ωt))Pt,ω(ωt)dωt

with the probability density function Pt,ω : Ω → R≥0 of ωt .
3 We denote the location of

the maximum of (8.4) as the optimal policy yopt
t , which may be regarded as a function

yopt
t : [0,1]→ Rmy , x t 7→ yopt

t (x t).

Dynamic programming scheme. The Bellman equation (8.4) can be solved backwards

in time with a dynamic programming scheme. Starting from the solution JT and yopt
T of

time T , which is determined by maximizing the utility for the terminal time step, we can

determine Jt and yopt
t from Jt+1 and yopt

t+1 for t = T − 1, T − 2, . . . , 0 with the Bellman

equation. This way, we only have to solve T + 1 separate my -dimensional optimization

problems instead of a single large (T + 1)my -dimensional problem. Often, the terminal

solutions JT and yopt
T are explicitly known. In our case, the optimal terminal solution is

to consume the whole wealth wT (see Fig. 8.1).

Implementation and interpolation. For the implementation of (8.4), we discretize the

state space [0,1] into Nt grid points x (k)t , k = 1, . . . , Nt , and we tabulate the values of Jt

and yopt
t at x (k)t for all t = 0, . . . , T and k = 1, . . . , Nt . However, in general, the next state

ψt(x
(k)
t , y t ,ωt) does not correspond to a grid point x (k

′)
t+1, which means that we cannot

lookup the value of Jt+1 at ψt(x
(k)
t , y t ,ωt). Therefore, we have to interpolate Jt+1 at the

grid points, obtaining the interpolant J s
t+1 as a result:

(8.6) J s
t (x

(k)
t) =max

y t

�

u(ct(x
(k)
t , y t)) +%Et

�

J s
t+1(ψt(x

(k)
t , y t ,ωt))

��

, k = 1, . . . , Nt ,

where J s
T+1 :≡ 0 for simplicity. As J s

t+1 on the right-hand side (RHS) is only an approxima-

tion to Jt+1, the values J s
t (x

(k)
t) on the LHS are approximations, too. Since we are mainly

interested in the optimal policy decisions yopt
t , we have to interpolate them as well, i.e.,

(8.7) yopt,s
t (x (k)t) = argmax

y t

�

u(ct(x
(k)
t , y t)) +%Et

�

J s
t+1(ψt(x

(k)
t , y t ,ωt))

��

.

Note that the employed grids for yopt,s
t may be different from the grids for J s

t .

3While the state x t ∈ [0,1] is continuous in this thesis, Markov-chain discrete states θ t ∈ Θ such as
alive/dead (i.e., Θ is the Cartesian product of finite sets) can be incorporated into (8.4). The objective
function of Jt(x t ,θ t) then equals u(ct(x t ,θ t , y t)) +%Et

�

Jt+1(ψt(x t ,θ t , y t ,ωt),θ t+1) | θ t

�

.

196 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

8.1.2 Solution with B-Spline Surrogates on Sparse Grids

Sparse grids for dynamic models and related work. As interpolation approaches

for Jt based on full grids suffer from the curse of dimensionality, we want to use inter-

polation on spatially adaptive sparse grids instead. Recently, sparse grids have found

increasing interest in the solution of dynamic models in finance [Bru17; Jud14; Schob18;

Win10]. For example in [Bru17], discrete choices in the value iteration are computed

using piecewise linear basis functions on spatially adaptive sparse grids. Schober employs

spatially adaptive sparse grids for the interpolation of dynamic portfolio choice models,

but uses piecewise linear basis functions [Schob18]. Judd et al. use global polynomials

on sparse Clenshaw–Curtis grids for the interpolation of higher-dimensional economic

models [Jud14].

B-splines on sparse grids for dynamic portfolio choice models. The shortcomings

of the two approaches of piecewise linear functions [Bru17; Schob18] or global polyno-

mials [Jud14] are evident: Piecewise linear functions are not continuously differentiable,

impeding convergence of interpolation errors (see Sec. 5.4.1) and prohibiting the use of

gradient-based optimization methods to solve Eq. (8.6). The reason for the latter state-

ment is that gradient-based optimizers require the derivatives of the objective function

of Eq. (8.6) with respect to the entries yt, j of y t (j = 1, . . . , my), i.e.,

u′(ct(x
(k)
t , y t))

∂

∂ yt, j
ct(x

(k)
t , y t)

+%Et

�

�

∇x t+1
J s

t+1(ψt(x
(k)
t , y t ,ωt))

�T ∂

∂ yt, j
ψt(x

(k)
t , y t ,ωt)

�

,
(8.8)

which involves the gradient ∇x t+1
J s

t+1 of the value function interpolant J s
t+1. Gradient-

based optimization methods do not converge fast if this gradient is discontinuous. More-

over, piecewise linear basis functions introduce many additional local minima. In contrast,

global polynomials only work well on Clenshaw–Curtis grids with Chebyshev-distributed

nodes due to Runge’s phenomenon.

In the following, we use higher-order B-splines as basis functions for the interpolation

of Jt and yopt
t . This method has two advantages: First, B-splines of degree p > 1 are

continuously differentiable, increasing the order of convergence and enabling gradient-

based optimization for solving Eq. (8.6). Second, B-splines are defined for arbitrary knot

sequences, leading to a greater flexibility when compared to global polynomials.

8.2 ALGORITHMS 197

8.2 Algorithms

IN THIS SECTION

8.2.1 General Structure (p. 197)
8.2.2 Solution for the Value Function (p. 197)
8.2.3 Optimization (p. 198)
8.2.4 Quadrature (p. 200)
8.2.5 Interpolation and Extrapolation (p. 200)
8.2.6 Grid Generation (p. 201)
8.2.7 Solution for Optimal Policies (p. 202)
8.2.8 Post-Processing (p. 202)

This section gives an overview of the algorithms

that we use to implement the solution process af-

ter discretization of the Bellman equation (8.6).

In the following, we assume that the probability

density functions of the stochastic variables are

known.

8.2.1 General Structure

The general approach to solve dynamic portfolio choice models is as follows:

1. Generation of value function interpolants J s
t

2. Generation of optimal policy interpolants yopt,s
t

3. Post-processing, e.g., Monte Carlo simulation

The separation of the solution processes for the value function interpolants J s
t and the

optimal policy interpolants yopt,s
t enables the generation of different spatially adaptive

sparse grids for the value function and the optimal policies. This is useful if the shapes of

value function and optimal policies have different characteristics.

In the following Sections 8.2.2 to 8.2.6, we describe the algorithmic details of solve-
ValueFunction (step 1). The treatment of the other steps solvePolicy (step 2) and

post-processing (step 3) follows with Sec. 8.2.7 and Sec. 8.2.8, respectively.

We track two interpolants J s,1
t and J s,p

t for each t = 0, . . . , T . The former interpolates

value function data at the grid points with the hierarchical piecewise linear basis (used

for the surplus-based grid generation), while the latter interpolates the same data with

hierarchical B-splines of degree p > 1. Each J s,∗
t (∗ ∈ {1, p}) additionally stores the grid

points x (k)t and the optimal policies yopt,s
t (x (k)t) at the grid points (k = 1, . . . , Nt). For

simplicity, we do not pass them as separate data to the algorithms.

8.2.2 Solution for the Value Function

solveValueFunction algorithm. Algorithm 8.1 shows solveValueFunction, which

generates the value function interpolants J s,1
t and J s,p

t (t = 0, . . . , T). The algorithm fol-

lows a simple optimize–refine–interpolate scheme, which is visualized in Fig. 8.2: First,

the Bellman equation (8.6) is solved on an initial sparse grid (optimize). Then, we re-

198 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

1 function (J s,p
t)t=0,...,T = solveValueFunction()

2 J s,p
T+1← ; dummy variable (is not used)

3 for t = T, T − 1, . . . , 0 do
4 J s,1

t ← Initial regular sparse grid with no values
5 J s,1

t ← optimize(t, J s,1
t , J s,p

t+1)
6 J s,1

t ← refine(t, J s,1
t , J s,p

t+1)
7 J s,p

t ← interpolate(J s,1
t)

ALGORITHM 8.1 Generation of value function interpolants. The output is the higher-order
B-spline interpolant J s,p

t for all t = 0, . . . , T .

fine the grid spatially adaptively. Finally, the resulting grid point data are interpolated

with hierarchical higher-order B-splines.

At the beginning of every iteration t, the grid of the piecewise linear interpolant is

reset to an initial, possibly regular sparse grid. It would also be possible to reuse the grid

from the previous iteration t +1. Nevertheless, the results we then obtain become worse,

likely due to the different characteristics of J s,1
t for different t (e.g., kinks).

The higher-order B-spline interpolant J s,p
t+1 of the previous iteration t + 1 is used for

the RHS of the Bellman equation (8.6), if t < T . In the first iteration t = T , there is no

such interpolant. However, the terminal solution JT is usually a known function.

8.2.3 Optimization

optimize algorithm. The optimize step is given as Alg. 8.2. The grid of the argument

J s,1
t is some spatially adaptive sparse grid Ωs

t = {x
(k)
t | k = 1, . . . , Nt}, where the function

values J s,1
t (x

(k)
t) may already be known for some of the grid points x (k)t , if optimize is

called from within refine. The function optimize computes the missing value function

values. For t = T , we assume that the terminal solution JT can be computed by some

function computeKnownTerminalSolution.4 Otherwise, for t < T , we solve the Bell-

man equation (8.6) by using the higher-order B-spline interpolant J s,p
t+1 of the previous

iteration t + 1 (optimizeSinglePoint). The computations for the different x (k)t are

independent of each other, which means that they can be computed in parallel [Hor16].5

After generating all missing data, we update the hierarchical surpluses of the piecewise

linear interpolant J s,1
t to interpolate the new data at all grid points of Ωs

t .

4In any case, the terminal solution may be computed as the solution of the corresponding single-time
optimization problem, e.g., JT (x

(k)
T) =maxy T

u(cT (x
(k)
T , y T)).

5Such a problem is usually referred to as embarrassingly parallel.

8.2 ALGORITHMS 199

optimize

refine

optimize

inter-
polate

t ←
(t
−

1)

optimize

x t

op
tim

izeSinglePoint

y t

ev
alOb

jFcnGrad

ωt

ev

alQ
uadPoint

o evalInterp-
PartDeriv

FIGURE 8.2 Scheme of the generation of value function interpolants with solveValueFunc-
tion (Alg. 8.1, left), which repeatedly calls the optimize routine (Alg. 8.2,
right), which in turn consists of various sub-functions. The function optimize
iterates over all state grid points x t = x (k)t (k = 1, . . . , Nt) and calls opti-
mizeSinglePoint for each point. The optimization method evaluates the
objective function and its gradient at a sequence of different policy points y t to
find yopt,s

t (x (k)t). This evaluation (denoted by evalObjFcnGrad) has to com-
pute the expectation in Eq. (8.6), which is done using a quadrature rule. For
every quadrature point ωt =ω

(j)
t (j = 1, . . . , mζ), evalQuadPoint computes

the corresponding value of the expression in the expectation. Finally, evalIn-
terpPartDeriv evaluates the interpolant J s,p

t+1 and its partial derivatives, for
which we have to loop over the state dimensions o = 1, . . . , d.

1 function J s,1
t = optimize(t, J s,1

t , J s,p
t+1)

2 (x (k)t)k=1,...,Nt
← grid of J s,1

t
3 for k = 1, . . . , Nt do
4 if J s,1

t (x
(k)
t) not previously computed then

5 if t = T then J s,1
T (x

(k)
T)← computeKnownTerminalSolution(x (k)T)

6 else J s,1
t (x

(k)
t)← optimizeSinglePoint(t, x (k)t , J s,p

t+1)
7 Re-interpolate (J s,1

t (x
(k)
t))k=1,...,Nt

with piecewise linear functions

ALGORITHM 8.2 Evaluation of the value function at all grid points x (k)t of J s,1
t at which

the value function has not been evaluated yet. Inputs are the time t,
the piecewise linear interpolant J s,1

t of the current iteration t (with the
underlying sparse grid and corresponding function values, possibly unset),
and the higher-order B-spline interpolant J s,p

t+1 of the previous iteration
t + 1 (not used if t = T). The output is the updated piecewise linear
interpolant J s,1

t , where all missing function values at grid points have
been computed.

200 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

Certainty-equivalent transformation. For utility functions of CRRA-type, i.e., of the

form u(ct) = c1−γ
t /(1−γ), the curvature of the objective function in the Bellman equation

(8.6) can be very high (depending on the risk aversion parameter γ), which may impede

convergence of the optimizer. As a remedy, we transform the value function J s
t with the

certainty-equivalent transformation J s
t 7→ J̃ s

t := ((1− γ)J s
t)

1/(1−γ) if γ > 1. Equation (8.6)

then becomes J̃ s
T (x

(k)
T) =maxy T

cT (x
(k)
T , y T) for t = T and

(8.9) J̃ s
t (x

(k)
t) =max

y t

�
�

ct(x
(k)
t , y t)

1−γ +%Et

�

�

J̃ s
t+1(ψt(x

(k)
t , y t ,ωt))

�1−γ��1/(1−γ)�

for t < T , since for γ > 1, (·)1/(1−γ) is strictly monotonously decreasing and (1− γ) < 0.

The notation in the remainder of this section does not distinguish between J s,∗
t and J̃ s,∗

t

and uses J s,∗
t for both if it is not relevant whether the value function is transformed.

8.2.4 Quadrature

We need to approximate the expectation in Eq. (8.9) by quadrature,

(8.10) Et

�

�

J̃ s,p
t+1(ψt(x

(k)
t , y t ,ωt))

�1−γ�
≈

mζ
∑

j=1

ζ(j)t

�

J̃ s,p
t+1(ψt(x

(k)
t , y t ,ω

(j)
t))

�1−γ
,

for some weights ζ(j)t ∈ R and nodesω(j)t ∈ Ω (j = 1, . . . , mζ). Since the stochastic domain

Ω ⊆ Rmω might be high-dimensional as well, full grid quadrature rules suffer from the

curse of dimensionality. Therefore, we use sparse grid quadrature rules based on Gauss–

Hermite quadrature [Ger98; Hor16]. Note that this sparse grid in the stochastic space

Ω is independent of the sparse grid in the state space [0,1]. However, it would also be

feasible to employ Monte Carlo quadrature, albeit usually far more expensive.

8.2.5 Interpolation and Extrapolation

Sparse grid interpolation. As already mentioned, J s,1
t is constructed as the sparse grid

interpolant of the grid data x (k)t (k = 1, . . . , Nt) using the hierarchical piecewise linear

basis. For J s,p
t , we use cubic hierarchical weakly fundamental not-a-knot splines (see

Sec. 4.5.4). The not-a-knot boundary conditions help to decrease the interpolation er-

ror (see Sec. 5.4.1), while the weakly fundamental property eases the hierarchization

complexity by enabling us to use the unidirectional principle (see Sections 4.5 and 5.4.2).

8.2 ALGORITHMS 201

Extrapolation. Unfortunately, for many dynamic portfolio choice models, the state tran-

sition is not a functionψt : [0,1]×Rmy×Ω→ [0,1], especially if the state space is actually

unbounded. It may then happen thatψt(x
(k)
t , y t ,ω

(j)
t) /∈ [0,1] for some quadrature nodes

ω
(j)
t ∈ Ω in Eq. (8.10). Hence, we might not be able to evaluate the value function inter-

polant J s,p
t+1(ψt(x

(k)
t , y t ,ω

(j)
t)), as it is only defined on [0,1]. Scaling of the domain is not

an option due to the dynamic nature of the problem.

Instead, we extend the interpolant J s,p
t+1 to Rd by an extrapolation method based on

Taylor approximation. First, we crop the evaluation point x t+1 ∈ Rd \ [0,1] to a point

x in
t+1 = ψt(x

(k)
t , y t ,ω

(j)
t) ∈ [0,1] with x in

t+1 := min(max(x t+1,0),1) (component-wise

minimum/maximum). The extrapolation type, which may be constant, linear, and

quadratic, determines the degree of the Taylor approximation:

J s,p
t+1(x t+1)≈ J s,p

t+1(x
in
t+1) + (∇x t+1

J s,p
t+1(x

in
t+1))

T(x t+1 − x in
t+1)

+ (x t+1 − x in
t+1)

T(∇2
x t+1

J s,p
t+1(x

in
t+1))(x t+1 − x in

t+1),
(8.11)

where constant and linear only use the first summand and first two summands, re-

spectively. Since hierarchical B-splines enable us to exactly and efficiently compute the

gradient ∇x t+1
J s,p

t+1 and the Hessian ∇2
x t+1

J s,p
t+1, we do not have to approximate the deriva-

tives with finite differences.

8.2.6 Grid Generation

refine algorithm. Algorithm 8.3 shows how to generate the spatially adaptive sparse

grid in solveValueFunction (Alg. 8.1). The underlying criterion is the common surplus-

based refinement criterion [Pfl13]. As for the application in topology optimization (see

Chap. 6), we use the piecewise linear interpolant for the surplus-based grid generation,

since the surpluses are easier to compute in the piecewise linear case, and they are more

meaningful due to the integral representation formula (2.25). Parameters for Alg. 8.3

are the tolerance κt ∈ R≥0, by which the set of grid points to be refined is determined,

and the number qt ∈ N0 of refinement iterations. These parameters may depend on the

time t, since it might be beneficial to change the adaptivity of the grid over time.

Gradient grids. The classical surplus-refinement criterion focuses on regions where the

mixed second derivative ∂ 2d

∂ x2
t,1···∂ x2

t,d
J s,1

t of J s,1
t has large absolute values, i.e., where J s,1

t has

large high-frequency oscillations. In gradient-based optimization, it might be advisable

to apply this criterion also to the partial derivatives ∂
∂ x t,o

J s,1
t of J s,1

t (o = 1, . . . , d), since

the optimizer depends on the accuracy of the gradient. In this case, we have to track

in Alg. 8.1 additional sparse grid interpolants for every partial derivative ∂
∂ x t,o

J s,1
t that

202 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

1 function J s,1
t = refine(t, J s,1

t , J s,p
t+1)

2 for j = 1, . . . , qt do
3 Nt ← number of grid points of J s,1

t

4 for k = 1, . . . , Nt do α(k)t ← surplus of x (k)t in J s,1
t

5 Krefine← {k = 1, . . . , Nt | |α
(k)
t | ≥ κt}

6 if Krefine = ; then break
7 Refine all grid points in {x (k)t | k ∈ Krefine}
8 J s,1

t ← optimize(t, J s,1
t , J s,p

t+1)

ALGORITHM 8.3 In-place refinement of the value function J s,1
t . Inputs are the time t, the

piecewise linear interpolant J s,1
t of the current iteration t, and the higher-

order B-spline interpolant J s,p
t+1 of the previous iteration t +1 (not used if

t = T). The output is the updated piecewise linear interpolant J s,1
t with

the refined sparse grid.

is affected by a policy variable. This possibility is omitted from the algorithms in this

section, as it would unnecessarily complicate their presentation.

8.2.7 Solution for Optimal Policies

solvePolicies algorithm. After explaining the generation of the value function inter-

polants J s,p
t (t = 0, . . . , T), we move on to step 2 of the general structure of our method

(see Sec. 8.2.1), which is the generation of optimal policy interpolants. The correspond-

ing Alg. 8.4 is similar to solveValueFunction (Alg. 8.1), except that it operates on the

policy instead of the value function interpolants. The functions optimize, refine, and

interpolate have been replaced by corresponding policy versions optimizePolicy,

refinePolicy, and interpolatePolicy that work very much like their value function

counterparts. optimizePolicy only has to generate new values if the initial regular

sparse grid for the policies is not contained in the grid of J s,p
t . The policy grid is then

refined and interpolated independently of the value function grid. The iterations over

time are independent of each other, which means that they can be parallelized.

8.2.8 Post-Processing

Monte Carlo simulation. There are various ways to assess whether the resulting opti-

mal policy B-spline interpolants (yopt,s,p
t)t=0,...,T are reasonable. One possibility is a Monte

8.3 TRANSACTION COSTS PROBLEM 203

1 function (yopt,s,p
t)t=0,...,T = solvePolicies((J s,p

t)t=0,...,T)
2 J s,p

T+1← ; dummy variable (is not used)
3 for t = 0, . . . , T do
4 yopt,s,1

t ← Initial regular sparse grid, retrieve values from J s,p
t

5 yopt,s,1
t ← optimizePolicy(t, yopt,s,1

t , J s,p
t+1)

6 yopt,s,1
t ← refinePolicy(t, yopt,s,1

t , J s,p
t+1)

7 yopt,s,p
t ← interpolatePolicy(yopt,s,1

t)

ALGORITHM 8.4 Generation of interpolants for optimal policies. The input is the higher-
order B-spline interpolant J s,p

t of the value function for all t = 0, . . . , T .
The output is the higher-order B-spline interpolant yopt,s,p

t of the optimal
policies for all t = 0, . . . , T .

Carlo simulation, where we calculate the mean optimal policy

(8.12) ȳopt
t :=

1
mMC

mMC
∑

j=1

yopt
t,(j)

for mMC ∈ N individuals. The optimal policies yopt
t,(j) of the individuals (t = 0, . . . , T and

j = 1, . . . , mMC) are determined by

yopt
t,(j) := yopt,s,p

t (x t,(j)),(8.13a)

x t,(j) :=ψt−1(x t−1,(j), yopt
t−1,(j),ωt−1,(j)), t > 0, x 0,(j) ∼ P0,x ,(8.13b)

ωt,(j) ∼ Pt,ω,(8.13c)

i.e., the initial state x 0,(j) and the stochastic variables ωt,(j) are samples of random vari-

ables. Monte Carlo simulations enable us to draw macro-economic conclusions, e.g., the

evolution of the amount of consumption of the average individual over time.

8.3 Transaction Costs Problem
IN THIS SECTION

8.3.1 Unnormalized Problem (p. 204)
8.3.2 Normalization (p. 204)
8.3.3 State Space Cropping (p. 205)
8.3.4 Euler Equation Errors (p. 206)

Description. In the transaction costs problem, the in-

dividual can invest their money risk-free in bonds (with

a fixed interest rate similar to a bank account) or in

ms ∈ N different risk-affected stocks [Schob18]. Every

stock transaction, i.e., buy δ+t, j or sell δ−t, j, inflicts transaction costs τδ±t, j (τ ∈ R≥0) pro-

portional to the amount δ±t, j bought or sold (j = 1, . . . , ms). The individual only wants to

invest a fixed amount w0 in stocks, i.e., we omit the individual’s income.

204 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

8.3.1 Unnormalized Problem

Consumption and state transition. In the following, st, j denotes the fraction of the

total wealth wt that is invested in the j-th stock. We combine these stock fractions st, j

in a vector s t := (st,1, . . . , st,ms
); similarly, δ±t := (δ±t,1, . . . ,δ±t,ms

) combines buy and sell

amounts. Then, the consumption can be computed as a residual variable (i.e., a variable

that can be fully computed from x and y and is thus omitted from y), which is given by

(8.14) ct := (1−Σ(s t))wt − bt − (1+τ)Σ(δ
+
t) + (1−τ)Σ(δ

−
t),

where Σ(a) := 1Ta is the sum of all entries of a. The state transition is computed by

adding the returns of bonds and stocks:

(8.15) wt+1 := bt rt + (s t wt +δ
+
t −δ

−
t)

Tλt , s t+1 :=
(s t wt +δ

+
t −δ

−
t)�λt

wt+1
,

where rt ∈ R is the bond interest rate, λt = (λt,1, . . . ,λt,ms
) ∈ Rms is the vector of

(stochastic) stock return rates, and � is component-wise multiplication.

8.3.2 Normalization

State transition. The above equations can be normalized with respect to the wealth

wt: By setting ĉt := ct/wt , b̂t := bt/wt , and δ̂
±
t := δ±t /wt , we obtain

ĉt = (1−Σ(s t))− b̂t − (1+τ)Σ(δ̂
+

t) + (1−τ)Σ(δ̂
−
t),(8.16a)

ηt+1 := b̂t rt + (s t + δ̂
+

t − δ̂
−
t)

Tλt , (= wt+1/wt)(8.16b)

s t+1 =
(s t + δ̂

+

t − δ̂
−
t)�λt

ηt+1
,(8.16c)

where ĉt and ηt+1 are residual variables that specify normalized consumption and wealth

ratio, respectively. All in all, the resulting dynamic portfolio choice model has the follow-

ing variables:

• d = ms state variables x̂ t: Stock fractions st,1, . . . , st,ms

• my = 2ms + 1 policy variables ŷ t: Normalized bonds b̂t , normalized buy amounts

δ̂+t,1, . . . , δ̂+t,ms
and normalized sell amounts δ̂−t,1, . . . , δ̂−t,ms

• mω = ms stochastic variables ωt: Stock return rates λt,1, . . . ,λt,ms

8.3 TRANSACTION COSTS PROBLEM 205

The state space and policy space constraints are given by

s t ≥ 0, Σ(s t)≤ 1, b̂t ≥ 0, δ̂
±
t ≥ 0, δ̂

−
t ≤ s t , ηt+1 ≥ 0,(8.17a)

ĉmin + b̂t + (1+τ)Σ(δ̂
+

t)− (1−τ)Σ(δ̂
−
t)≤ 1−Σ(s t),(8.17b)

where ĉmin ∈ R≥0 is some minimal consumption that must be maintained.

Bellman equation. Consequently, the Bellman equation (8.9) after the certainty-equiva-

lent transformation has to be normalized as well. By setting ˆ̃J s
t (x

(k)
t) := J̃ s

t (x
(k)
t)/wt , we

obtain

ˆ̃J s
t (x

(k)
t) = w−1

t J̃ s
t (x

(k)
t)(8.18a)

=max
y t

�
�

�

w−1
t ct(x

(k)
t , y t)

�1−γ
+%Et

�

�

w−1
t J̃ s

t+1(ψt(x
(k)
t , y t ,ωt))

�1−γ��1/(1−γ)�

(8.18b)

=max
ŷ t

�

�

ĉt(x
(k)
t , ŷ t)

1−γ +%Et

�

�

ηt+1
ˆ̃J s

t+1(ψ̂t(x
(k)
t , ŷ t ,ωt))

�1−γ��1/(1−γ)
�

.(8.18c)

This means that compared with (8.9), the value function in the expectation has to be mul-

tiplied by the wealth ratio ηt+1 introduced above in (8.16). Since there is no inheritance,

the optimal terminal solution is to sell all stocks and consume everything:

(8.19) ˆ̃J s
t (x

(k)
T) = 1−τΣ(s (k)T), b̂opt

T (x
(k)
T) = 0, δ̂

+,opt

T (x (k)T) = 0, δ̂
−,opt

T (x (k)T) = s (k)T .

8.3.3 State Space Cropping

Sparse grids on non-rectangular domains. Unfortunately, the constraint Σ(s t) ≤ 1

from Eq. (8.17) limits the feasible state space region to a proper subset (which is the

unit simplex) of the unit hypercube [0,1], which impedes the direct application of sparse

grids. There are three possible remedies: transforming the unit hypercube to the feasible

state space, applying extrapolation techniques as discussed in Sec. 8.2.5, or choosing a

model-tailored approach to obtain function values outside the feasible state space.

Virtual selling of stocks. We choose the third remedy and virtually sell, if Σ(s t) > 1,

as many stocks as needed to meet the constraint Σ(s t) ≤ 1. We already might need

to sell stocks even if Σ(s t) is smaller but close to one in order to satisfy the minimum

consumption requirement (8.17b). In detail, we replace s t by β̂ s t whenever β̂ < 1,

where β̂ ∈ R>0 is a cropping factor that is determined by

(8.20)
�

1−τ
�

Σ(s t)−Σ(β̂ s t)
�

�

·
�

1−Σ(β̂ s t)
�

= ĉmin.

206 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

Here,
�

Σ(s t)−Σ(β̂ s t)
�

is the amount of virtually sold stocks. Hence, the term in square

brackets is the fraction of wealth that is still available after deducting the induced trans-

action costs. The product of this term with
�

1−Σ(β̂ s t)
�

is the fraction of wealth that can

be consumed after the virtual selling, which needs to be at least ĉmin. Solving Eq. (8.20)

for β̂ and choosing the positive solution, we finally obtain

(8.21) β̂ :=
τ
�

1+Σ(s t)
�

− 1+
Ç

τ2
�

1−Σ(s t)
�2
− 2τ

�

2ĉmin − 1+Σ(s t)
�

+ 1

2τΣ(s t)
.

8.3.4 Euler Equation Errors

Motivation. Due to the curse of dimensionality, reasonably accurate full grid reference

solutions of the transaction costs problem can only be computed if the number ms of

stocks is small. Mainly (but not only) in higher-dimensional settings, a different means

of assessing the quality of sparse grid solutions is desirable. We use Euler equation errors

to measure the deviation in the first-order optimality conditions.

Derivation. In the following, we fix the state x̂ t ∈ [0,1] for which we want to compute

the Euler equation error. We abbreviate the value function interpolant ˆ̃J s
t := ˆ̃J s

t (x̂ t), the

state transition function ψ̂t := ψ̂t(x̂ t , ŷ t ,ωt), the wealth ratio ηt+1 := ηt+1(x̂ t , ŷ t ,ωt),
and the consumption ĉt := ĉt(x̂ t , ŷ t). The Lagrangian of the optimization problem corre-

sponding to the Bellman equation (8.18c) of the normalized transaction costs problem

with respect to the problem’s constraints (8.17) is given by

Lt(x̂ t , ŷ t ,µ) :=
�

(ĉt)
1−γ +%Et

�

�

ηt+1
ˆ̃J s

t+1(ψ̂t)
�1−γ��1/(1−γ)

−µ1 b̂t −µT
2δ̂
+

t −µ
T
3δ̂
−
t +µ

T
4 (δ̂

−
t − s t) +µ5 (ĉmin − ĉt)

(8.22)

with µ := (µ1,µ2,µ3,µ4,µ5), µ1,µ5 ∈ R, and µ2,µ3,µ4 ∈ Rms . According to the first-order

conditions (Karush–Kuhn–Tucker (KKT) conditions), the partial derivative ∂

∂ b̂t
Lt(x̂ t , ŷ t ,µ)

with respect to b̂t vanishes in the exact optimum ŷ t = ŷopt
t := ŷopt

t (x̂ t), i.e.,

(8.23)
∂

∂ b̂t

�

(ĉopt
t)

1−γ +%Et

�

�

η
opt
t+1

ˆ̃J s
t+1(ψ̂

opt
t)
�1−γ��1/(1−γ)

−µ1 −µ5
∂

∂ b̂t

ĉopt
t = 0,

where ψ̂opt
t := ψ̂t(x̂ t , ŷopt

t ,ωt), η
opt
t+1 := ηt+1(x̂ t , ŷopt

t ,ωt), and ĉopt
t := ĉt(x̂ t , ŷopt

t). We

now neglect binding constraints, i.e., we assume that µ1 = µ5 = 0, otherwise we cannot

compute the error. After calculating the derivatives, Eq. (8.23) becomes

(8.24) %rt ·Et

�

� ˆ̃J s
t − (∇x̂ t

ˆ̃J s
t)

Tψ̂
opt
t

�

·
�

η
opt
t+1

ˆ̃J s
t

�−γ�
= (ĉopt

t)
−γ.

8.4 IMPLEMENTATION AND NUMERICAL RESULTS 207

This equation can be used as an error measure by substituting ŷopt
t for the interpo-

lated optimum ŷopt,s
t = ŷopt,s

t (x̂ t). By multiplying the resulting equation by (ĉopt,s
t)γ :=

(ĉt(x̂ t , ŷopt,s
t))γ, we obtain the unit-free Euler equation errors εEu

t (x̂ t) with respect to b̂t:

(8.25) εEu
t (x̂ t) :=

�

�

�1−
�

%rt(ĉ
opt,s
t)γ ·Et

�

� ˆ̃J s
t − (∇x̂ t

ˆ̃J s
t)

Tψ̂
opt, s
t

�

·
�

η
opt,s
t+1

ˆ̃J s
t

�−γ��−1/γ�
�

�

with ψ̂opt, s
t := ψ̂t(x̂ t , ŷopt,s

t ,ωt) and ηopt,s
t+1 := ηt+1(x̂ t , ŷopt,s

t ,ωt).

Weighted Euler equation errors. However, the state space cropping as introduced

above distorts Euler equation errors: The error εEu
t (x̂ t) does not vanish even for the exact

solution and even inside the feasible state space. This is because the cropping already

occurs for large stock holdings Σ(x̂ t) that are less than one, as stocks have to be sold to

maintain minimum consumption ĉmin. Numerical experiments show that due to this issue,

the error attains large values in the region near the hyperplane Σ(x̂ t) = 1. Economically,

this region is not significant as such large stock fractions are highly unusual, which is

confirmed by Monte Carlo simulations. We therefore use the weighted Euler equation error

(8.26) εw,Eu
t (x̂ t) :=

�

1−Σ(x̂ t)
�

· εEu
t (x̂ t)

instead of εEu
t , although other strategies exist such as restricting the state domain where

the error is computed or weighting the error with the probability that a given state occurs

in Monte Carlo simulations.

8.4 Implementation and Numerical Results

IN THIS SECTION

8.4.1 Implementation (p. 207)
8.4.2 Error Sources and

Error Measure (p. 208)
8.4.3 Numerical Results (p. 209)

8.4.1 Implementation

Parameter values. We used a risk aversion factor of γ :=
3.5, a patience factor of % := 0.97, a transaction cost rate

of τ := 1%, and a minimum consumption of ĉmin := 0.001.

The bond and stock return rates rt and λt were taken from

[Cai10]; the log-normally distributed stock return rates were generalized from the three-

stock case to five stocks via lnλt ∼N (µ,Σ), where

(8.27) µ :=

0.0572

0.0638

0.07

0.0764

0.0828

, Σ := 10−2

2.56 0.576 0.288 0.176 0.096

0.576 3.24 0.90432 1.0692 1.296

0.288 0.90432 4 1.32 1.68

0.176 1.0692 1.32 4.84 2.112

0.096 1.296 1.68 2.112 5.76

.

208 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

The models were solved for T = 6 time steps; this number suffices to show all relevant

numerical effects and results, while keeping the computational effort at a reasonable

level. As initial grids, we employed regular sparse grids Ωs(b)
n,d with b = 1 to decrease the

number of grid points (see Sec. 2.4.1).

Software. The dynamic portfolio choice models were solved using a self-written MAT-

LAB framework. The object-oriented framework was designed in such a way that not only

transaction costs problems, but many other types of dynamic portfolio choice models can

be handled. For instance, the base class LifecycleProblem provides an interface with

abstract functions such as computeTerminalValueFunction and computeStateTran-
sition. The actual functionality implemented in the base class strongly resembles the

algorithms presented in Sec. 8.2. This is not only desirable from a modeling perspective,

but also facilitates future usage by other researchers. For creating (i.e., hierarchizing) and

evaluating sparse grid interpolants, the sparse grid toolbox SG++ was used [Pfl10].6 The

emerging optimization problems were solved using sequential quadratic programming

methods supplied by the NAG Toolbox for MATLAB.7 To avoid being stuck in local minima,

we repeated the optimization process for a varying number of initial multi-start points (in

the range of a few dozens). All computation times were measured on a shared-memory

computer with 4x Intel Xeon E7-8880v3 (72 cores, 144 threads).

8.4.2 Error Sources and Error Measure

Error sources. In this application, there are the following error sources:

E1. Interpolation of the value function (i.e., ˆ̃J s
t+1 6=

ˆ̃Jt+1)

E2. Interpolation of the policy functions (i.e., ŷopt,s
t 6= ŷopt

t)

E3. Extrapolation (i.e., ˆ̃J s
t+1(x t+1) 6= ˆ̃Jt+1(x t+1))

E4. State space cropping (i.e., Euler errors do not vanish for exact solution)

E5. Optimization (i.e., the minimum found by the optimizer is inaccurate or not global)

E6. Quadrature (Et[· · ·] 6=
∑mζ

j=1 ζ
(j)
t · [· · ·](ω

(j)
t))

E7. Floating-point rounding errors (i.e., arithmetical operations are inaccurate)

Due to the dynamic programming scheme, the combination of all errors accumulates over

t. For instance, if the optimization does not find the global optimum exactly or it only

6http://sgpp.sparsegrids.org/
7https://www.nag.com/

http://sgpp.sparsegrids.org/
https://www.nag.com/

8.4 IMPLEMENTATION AND NUMERICAL RESULTS 209

finds a local one for t+1, the error propagates from the interpolant ˆ̃J s
t+1 on the right-hand

side of the Bellman equation (8.18c) to ˆ̃J s
t on the left-hand side, and so on. If the system

does not damp these errors, the error steadily becomes larger backwards in time t.

Error measure. We use the weighted Euler equation error εw,Eu
t (x̂ t) to assess the quality

of the resulting policies (L2 norm or pointwise). As the errors generally grow backwards

in time, it suffices to consider t = 0. However, since Euler equation errors can only be

evaluated at points in the simplex Ωsimplex := {x̂ t ∈ [0,1] | Σ(x̂ t) ≤ 1}, the L2 norm

would quickly converge to zero with growing dimensionality, even if the mean error

stayed constant. Therefore, we normalize the L2 norm:

(8.28) εw,Eu,L2

t :=
p

d! · ‖εw,Eu
t ‖L2 =

√

√

√
1

vol(Ωsimplex)

∫

Ωsimplex

εw,Eu
t (x̂ t)2 dx̂ t ,

where the expression under the root sign is approximated via Monte Carlo quadrature as

the mean of samples of εw,Eu
t (x̂ t)2.

8.4.3 Numerical Results

Full grid solution. We show in Fig. 8.3 a full grid solution for the case of d = 2 stocks,

i.e., {x (k)t | k = 1, . . . , Nt} = Ωn,d for some fixed level n ∈ N (here, n = 7 and Nt =
(27+1)2 = 16641) and for all t = 0, . . . , T . Obviously, this is only computationally feasible

for low dimensionalities d due to the curse of dimensionality. The two-dimensional

solution of level n = 7 took over nine hours to compute. The solution of the next level

is estimated to already take one week. Hence, full grid solutions can only be computed

up to d = 3 due to excessive computation time for d ≥ 4. This underlines the need for

sophisticated discretization techniques such as sparse grids.

Convergence of the weighted Euler equation error. Figure 8.4 shows the convergence

of the L2 norm εw,Eu,L2

0 of the weighted Euler equation error for t = 0 for regular sparse

grids and spatially adaptive sparse grids for the cases of d = 1, . . . , 4 stocks. For this and

the following plots, the value function grid is left unchanged (usually a slightly refined

regular sparse grid), while the average number Nt of policy grid points increases with

decreasing refinement threshold κt . This is because the value function grid does not seem

to have a great influence on the convergence of the Euler equation errors. Compared to

regular grids, the spatial adaptivity decreases the error by two orders of magnitude in one

dimension. The gain is smaller for higher dimensionalities d, but spatially adaptive grids

still outperform regular grids. For d = 2, we observe that the error saturates at Nt ≈ 4000

210 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

0

1

0

1

0.
07

76

0.
07

82

st,1

st,2

ˆ̃Jt

0

1

0

1
0

0.15

st,1

st,2

δ̂
+,opt
t,1

0

1

0

1
0

0.6

st,1

st,2

δ̂
−,opt
t,1

0

1

0

1

0

0.4

st,1

st,2

b̂opt
t

0

1

0

1
0

0.15

st,1

st,2

δ̂
+,opt
t,2

0

1

0

1
0

0.6

st,1

st,2

δ̂
−,opt
t,2

FIGURE 8.3 Full grid solution for the transaction costs problem with d = 2 stocks. Shown
are the value function ˆ̃Jt (top left) and the optimal policy ŷopt

t for t = 0.

Regular Spatially adaptive

102 103

10
−8

10
−7

10
−6

10
−5

10
−4

εw,Eu,L2

t

Nt

A d = 1

102 103 104

10
−4

10
−3

10
−2

εw,Eu,L2

t

Nt

B d = 2

102 103 104

10
−3

10
−2

10
−1 ε

w,Eu,L2

t

Nt

C d = 3

103 104

10
−1

εw,Eu,L2

t

Nt

D d = 4

FIGURE 8.4 Convergence of the L2 norm ε
w,Eu,L2

t of the weighted Euler equation error for
t = 0 for regular sparse grids (blue) and spatially adaptive sparse grids (red).
The number Nt is the average number 1

my

∑my

j=1 Nt, j of grid points over all policy
grids for t = 0, where Nt, j is the number of grid points of the j-th policy entry.

8.4 IMPLEMENTATION AND NUMERICAL RESULTS 211

0 0.5 1
0

0.5

1

st,1

st,2

A ˆ̃J s,1
t

0 0.5 1
0

0.5

1

st,1

st,2

B δ̂
+,opt,s,1
t,1

0 0.5 1
0

0.5

1

st,1

st,2

C δ̂
−,opt,s,1
t,1

0 0.5 1
0

0.5

1

st,1

st,2

D b̂opt,s,1
t

0 0.5 1
0

0.5

1

st,1

st,2

E δ̂
+,opt,s,1
t,2

0 0.5 1
0

0.5

1

st,1

st,2

F δ̂
−,opt,s,1
t,2

FIGURE 8.5 Spatially adaptive sparse grid solution for the transaction costs problem with
d = 2 stocks. Shown are the value function ˆ̃J s

t (top left) and the optimal policy
ŷopt,s

t for the initial time step t = 0, together with the corresponding grid points
(dots). The color coding is the same as in Fig. 8.3.

points just above 10−5. This is most likely due to the parts E3 to E7 of the error that

are not influenced by sparse grid interpolation. In addition, convergence significantly

decelerates starting with d = 4. For d = 4, spatially adaptive sparse grids are able to

achieve a weighted Euler equation error of εw,Eu,L2

t ≈ 2.0 · 10−2 for t = 0 (with an average

number N0 = 4252 of policy grid points). For d = 5, we are still able to achieve a small

error of εw,Eu,L2

t ≈ 1.9 · 10−2 for t = 0 with spatially adaptive sparse grids with an average

number N0 = 12572 of policy grid points. While we cannot detect any convergence for

this dimensionality yet, this is still a major result as such high-dimensional models could

not be solved up to now with conventional methods.

Optimal policies in 2D and 5D. Figures 8.5 and 8.6 each display the value function and

the optimal policies corresponding to sparse grid solutions for d = 2 stocks with N0 = 879

policy grid points or d = 5 stocks with N0 = 12572 policy grid points. Obviously, most

212 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

0.0834 0.0840ˆ̃J s,1
t 0.0 0.1δ̂+,s,1

t,o 0.24 0.29b̂s,1
t 0.0 0.6δ̂−,s,1

t,o

0 1
0

1

st,1

s t
,2

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

ˆ̃J s,1
t

0 1
0

1

st,3

s t
,4

δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3δ̂
+,opt,s,1
t,3

0 1
0

1

st,1

s t
,2

b̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
tb̂opt,s,1
t

0 1
0

1

st,3

s t
,4

δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3δ̂
−,opt,s,1
t,3

0 1
0

1

st,1

s t
,2

δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1δ̂
+,opt,s,1
t,1

0 1
0

1

st,4

s t
,5

δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4δ̂
+,opt,s,1
t,4

0 1
0

1

st,1

s t
,2

δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1δ̂
−,opt,s,1
t,1

0 1
0

1

st,4

s t
,5

δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4δ̂
−,opt,s,1
t,4

0 1
0

1

st,2

s t
,3

δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2δ̂
+,opt,s,1
t,2

0 1
0

1

st,5

s t
,1

δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5δ̂
+,opt,s,1
t,5

0 1
0

1

st,2

s t
,3

δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2δ̂
−,opt,s,1
t,2

0 1
0

1

st,5

s t
,1

δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5δ̂
−,opt,s,1
t,5

FIGURE 8.6 Spatially adaptive sparse grid solution for the transaction costs problem with
d = 5 stocks. Shown are slice plots of the value function ˆ̃J s

t (top left) and the
optimal policy ŷopt,s

t for the initial time step t = 0, where for each function, a
pair (o1, o2) of dimensions to be plotted was chosen, and the stock fractions
st,o of the other dimensions o are set to 0.1. In addition, the corresponding
grid points (dots) are shown as the projection onto the st,o1

-st,o2
plane.

grid points are placed along the various kinks in the policies. Interestingly, experiments

show that the surplus-based refinement criterion does not place more grid points along the

perfectly diagonal kink caused by the cropping of the state space (i.e., along Σ(s t) = 1).

It is possible to circumvent this issue by either transforming the domain (e.g., rotations

as in [Boh18]) or directly incorporating the distance to the diagonal into the refinement

criterion for the value function. However, we refrain from doing so here as this does not

seem to drastically improve results. Again, this might be due to the domination of the

overall error by the parts E3 to E7 that are not related to interpolation.

Pointwise error. Pointwise plots of the weighted Euler equation error as in Fig. 8.7 for

two stocks reveal that there are two types of regions where the error is large: The first type

8.4 IMPLEMENTATION AND NUMERICAL RESULTS 213

0 0.5 1
0

0.5

1

st,1

st,2

A Nt = 129 (5.3 · 10−3)

0 0.5 1
0

0.5

1

st,1

st,2

B Nt = 889 (2.1 · 10−4)

0 0.5 1
0

0.5

1

st,1

st,2

C Nt = 5159 (1.2 · 10−5)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

FIGURE 8.7 Pointwise weighted Euler equation error εw,Eu
t (s t) (t = 0) for the two-

dimensional transaction costs problem and different spatially adaptive sparse
grids. The L2 error εw,Eu,L2

t is given in parentheses.

of region is the neighborhood of the aforementioned diagonal boundary Σ(s t) = 1 of the

uncropped region, where the cropping distorts the error despite the weights. The second

type of region are kinks of the optimal policy functions, which is most visible for coarse

grids (e.g., Fig. 8.7A). When increasing the number of grid points (e.g., Figures 8.7A

and 8.7B), the error decreases quickly in the whole domain.

Monte Carlo simulation. As explained in Sec. 8.2.8, we perform a multi-agent Monte

Carlo simulation and plot the resulting mean state and policy in Fig. 8.8 for d = 3, 4, and

5 stocks. In addition, this figure contains the evolution of the weighted Euler equation

error εw,Eu,L2

t over time. We perform a two-part assessment of the simulated results.

First, consumption should ideally be constant over time from a finance perspective. We

measure this by calculating the coefficients of variation (ratio of the standard deviation

of the ct values to their mean), which is 2.76 %, 2.68 %, and 2.58 % for d = 3, 4, and

5, respectively. This indicates that the variation of the consumption over time is indeed

small. Second, we consider the so-called Sharpe ratios [Sharp66]. The ratios are stock

fractions s that are determined such that the excess stock return (compared to risk-free

investment) per unit of risk is maximized:8

(8.29) argmax
s∈[0,1]d

µT
1:d s − r

Æ

sTΣ1:d,1:d s
,

8The Sharpe ratios per se are derived for non-skewed stock return rate distributions. Our stock return
rates are log-normally distributed and thus skewed, but the deviation should be small after six time
steps. However, there are variants that take skewed distributions into account [Mül15].

214 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

wt bt ct śt,1 śt,2 śt,3 śt,4 śt,5 εw,Eu,L2

t

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

t

$

10−4

10−3

ε
w

,E
u,

L2

t

A d = 3 (N0 = 28739)

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

t

$

10−2

10−1

ε
w

,E
u,

L2

t

B d = 4 (N0 = 3343)

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

t

$

10−2

10−1

ε
w

,E
u,

L2

t

C d = 5 (N0 = 12572)

FIGURE 8.8 Mean values of wealth wt (blue), unnormalized optimal bonds bt (purple), un-
normalized optimal consumption ct (green), and unnormalized stock holdings
ś t := (s t + δ̂

+
t − δ̂

−
t)wt after buying and selling (red) in a Monte Carlo simula-

tion of 10000 individuals, where we assume that w0 = $1 for all individuals.
In addition, the plots show the evolution of the L2 error εw,Eu,L2

t over time t
(gray, right axes).

where µ1:d and Σ1:d,1:d are the first d entries of µ and the principal minor of order d

of Σ as given in Eq. (8.27). We compare these theoretical Sharpe ratios (left) with the

simulated stock fractions śt,o/Σ(ś t) for t = 0 (right):

d = 3: (0.314,0.302, 0.384), (0.300,0.317, 0.383),(8.30a)

d = 4: (0.275,0.185, 0.250,0.289), (0.239,0.238, 0.253,0.270),(8.30b)

d = 5: (0.275,0.122, 0.176,0.203, 0.223), (0.199,0.188, 0.197,0.205,0.212).(8.30c)

The simulated stock fractions match the predicted Sharpe ratios well for d = 3, while the

deviation for d ≥ 4 is larger. However, as the simulated stock fractions do not change

much over time, we may suspect that the skewness of the distribution of the stock return

rates limits the applicability of the Sharpe ratios to these cases.

Complexity and computation time. A complexity analysis reveals that the difficulty of

solving transaction cost problems quickly grows with the dimensionality d: As shown in

Fig. 8.2, the number of necessary arithmetic operations grows like

(8.31) Θ(T · Nt ·#optimizer iterations ·mζ ·
one evaluation of interpolant
︷ ︸︸ ︷

my · Nt+1 ·mx · p
︸ ︷︷ ︸

one evaluation of objective gradient

),

8.4 IMPLEMENTATION AND NUMERICAL RESULTS 215

where mx , my ∈ Θ(d) and mζ, Nt , Nt+1 ∈ Θ(2nnd−1) if regular sparse grids of level n

without boundary points are used for state and stochastic grids (due to mω = d). In

addition, the number of optimizer iterations is likely superlinear in d, as this depends

on the dimensionality my of the search space as well as on the number of multi-start

points (which also grows with my). This means that the complexity is at least cubic in d,

quadratic in the average number N of employed state grid points, and linear in the number

mζ of quadrature points. Figure 8.9 confirms these observations with experimental data.

For fixed d, the total time required by the optimization process grows quadratically with

the number N of grid points. The time for one solution of the Bellman equation, the

time for one optimizer iteration, and the time for one evaluation of the interpolant are all

linear in N , as the number of optimizer iterations is constant for fixed d. If d increases,

then the number of interpolant evaluations per optimizer iteration (i.e., the number of

quadrature points) increases as well. Surprisingly, the number of optimizer iterations

per grid point and the time per evaluation are not monotonously increasing. The latter

observation might be due to vectorization effects.

Comparison to piecewise linear functions. Hierarchical B-splines introduce two major

benefits to the solution of dynamic portfolio choice models. The first benefit are the

smooth objective functions: When repeating the computations with piecewise linear

functions (i.e., p = 1), one obtains almost the same weighted Euler equation errors as in

the cubic case (except for the case of d = 1, where the error is one order of magnitude

greater than in the cubic case). However, as we see in Fig. 8.9, the total computation

time is several times larger (e.g., more than five times for d = 3) for piecewise linear

functions, although evaluations are cheaper than for B-splines. The main reason is that

the number of required optimizer iterations is for p = 1 almost seven times as high as

in the cubic case, since the optimizer has to deal with kinks in the objective function.

Experiments show that beginning with d = 4, the total optimization time required to

solve the transaction costs problem is one whole order of magnitude shorter for cubic

B-splines than for piecewise linear functions.

Comparing exact gradients to finite differences. The second benefit is the availability

of exact gradients: Figure 8.9 also contains computation times of the solution process if

we artificially do not use exact gradients of the objective functions, but rather approxi-

mate them with finite differences. For each evaluation of the objective gradient, at least

my additional evaluations of the objective function have to performed to compute the

finite differences (2my if central differences are used). Consequently, while the resulting

weighted Euler equation errors are similar, the total optimization time roughly increases

by a factor of up to five if we do not use exact gradients.

216 CHAPTER 8: APPLICATION 3 – DYNAMIC PORTFOLIO CHOICE MODELS

Total time
#It.
p = 3, ∇

Time per opt.
#Eval.
p = 3, FD

Time per it.

#It./#Opt.
p = 1, ∇

Time per eval.

#Eval./#It.
p = 1, FD

102 103

10−4

10−2

100

102

104

106

1

2

N

[s]

102 103

102

104

106

108

1

N
A d = 1

102 103

10−4

10−2

100

102

104

106

1

2

N

[s]

102 103

102

104

106

108

1

N
B d = 2

102 103

10−4

10−2

100

102

104

106

1

2

N

[s]

102 103

102

104

106

108

1

N
C d = 3

FIGURE 8.9 Computation times (top) and numbers of iterations and evaluations of the
interpolant (bottom) for the transaction costs problem on static regular sparse
grids (i.e., without refinement). “Total time” is the serial time required to solve
all emerging optimization problems. “Time per opt.” is this time divided by
the number #Opt. = T N of optimization problems. “Time per it.” is the time
divided by the number #It. of optimization iterations, each of which is assumed
to correspond to exactly one combined evaluation of objective function and
gradient (the latter only if gradients are used). “Time per eval.” is the time
divided by the number #Eval. of evaluations of the sparse grid interpolant and
its gradient. The colors correspond to B-spline degrees p = 3 or p = 1 and to
using gradients (“∇”) or finite differences (“FD”).

217

9
Conclusion

Finally, we conclude the thesis by summarizing its results and by giving an outlook on

possible future work. In particular, we highlight key contributions of the thesis to research,

give recommendations for future applications of the presented method, and state possible

downsides and limitations.

Summary of the thesis. The contribution of this thesis consisted of two major parts.

In the first part, hierarchical B-splines on sparse grids were comprehensively presented

and embedded in a sparse grid framework with general tensor product basis functions.

The advantage of this approach was that the framework could be reused for different hi-

erarchical bases (as for the various spline bases derived in this thesis) and that it clarified

which properties only held for the classical piecewise linear bases and not for other tensor

product bases. We saw that standard hierarchical B-splines suffer from approximation

issues near the boundary, and we resolved these issues by incorporating not-a-knot bound-

ary conditions into the hierarchical B-spline basis. In the further course of the thesis, the

focus was put on the algorithmic implications of the novel bases, taking the hierarchiza-

tion problem as an example. We looked at requirements that had to be satisfied by grids

and bases to enable efficient hierarchization algorithms such as breadth-first search and

unidirectional principle, for which we gave clear formulations and formal correctness

proofs. As a result, a whole “zoo” of hierarchical (B-)spline functions has been derived

in this thesis. The main types were standard hierarchical B-splines, modified hierarchi-

cal B-splines, hierarchical not-a-knot B-splines, hierarchical fundamental splines, and

hierarchical weakly fundamental splines (where the first two are not novel). Modified,

not-a-knot, and (weakly) fundamental splines could be combined almost arbitrarily to

tailor the ansatz functions to suit one’s specific needs.

218 CHAPTER 9: CONCLUSION

Category Topology opt. Biomechanics Finance

Interpolated quantities Elasticity tensors Muscle forces Value functions
SG dimensionality 5 2 5
#Optimization variables 40000 2 11
Time per evaluation 30 s 30 min —
#Eval. per opt. iteration 8000 4 150
Objective function type Non-linear Linear/non-linear Non-linear
Constraint function type Non-linear Non-linear/— Linear
Optimization method SQP Augm. Lagrangian SQP

TABLE 9.1 Summary of characteristics of the applications presented in this thesis. The given
values are rough example values that represent possible application test cases.

The second, more practical part of the thesis was dedicated to transferring the newly

gained theoretical knowledge to academic and real-life application test cases. We veri-

fied that only with the new hierarchical not-a-knot conditions, one is able to obtain the

best possible order of convergence O (hp+1
n) for interpolation (B-spline degree p, fixed

dimensionality d). Using the Novak–Ritter criterion, which was specifically designed for

optimization, we were able to achieve optimization gaps that were for some test func-

tions up to six orders of magnitude smaller for cubic B-splines than for standard piecewise

linear functions. We transferred the Novak–Ritter criterion to uncertainty quantification

and obtained similarly strong results for the propagation of fuzzy uncertainties with the

fuzzy extension principle. Furthermore, we successfully showed the suitability of hier-

archical B-splines for three real-world applications, which are summarized in Tab. 9.1.

First, by interpolating Cholesky factors of elasticity tensors, we accomplished to efficiently

solve topology optimization problems in three spatial dimensions with complex micro-

cell structures. Second, in the biomechanical application, we dramatically reduced the

computational time to solve test scenarios by up to 99 % by using sparse grid surrogates

with B-splines instead of the exact continuum-mechanical model. Third, we were able

to solve dynamic portfolio choice problems with five state variables and eleven policy

variables with unprecedented precision, as one could only speculate how the solution

looked like with state-of-the-art methods. In all of these applications, the advantages of

B-splines were made clear by comparing the results to the classical piecewise linear basis.

The implementation of hierarchical B-splines of sparse grids is publicly available as part

of the sparse grid toolbox SG++ under a free and open-source license.1

1http://sgpp.sparsegrids.org/

http://sgpp.sparsegrids.org/

219

Recommendations (advantages and disadvantages). Despite its broad applicability,

the presented method of B-splines on sparse grids is of course not suited for all possible

scenarios. One must be able to sample the objective function at arbitrary locations in some

hyper-rectangle in order to use sparse grids; a prescribed point cloud of scattered data

does not suffice. Moreover, the problem should not have more than ten dimensions, since

convergence notably slows down as the dimensionality grows, although spatially adaptive

approaches might still be feasible for higher dimensionalities [Pfl10]. In addition, the

objective function should be “as smooth as possible” in order to benefit from higher-order

B-splines. This means “continuous” at the very least, but twice continuous differentiability

is more desirable. The general rule is that the objective function should be at least as

smooth as the employed basis functions in order to obtain optimal convergence results.

The concrete choice of basis (general type and degree) depends on the application: Not-

a-knot B-splines are well-suited for objective functions with dominating near-polynomial

parts. Fundamental splines may be used to accelerate the process of hierarchization by

enabling breadth-first search in quadratic time. With weakly fundamental splines, this

can be further reduced to linear time using the unidirectional principle. However, the

additional grid points that have to be inserted have to be taken into account as well. The

rule of thumb is that the more spatially adaptive a sparse grid is (i.e., only few high-level

grid points), the more points have to be inserted. In general, it does not hurt to try the

different available B-spline types and degrees, since most function values can simply be

reused once the objective function has been sampled.

Outlook and future work. Finally, we briefly give suggestions for possible future work.

A major topic of interest is that of refinement criteria and adaptivity. Besides the Novak–

Ritter criterion, there are other refinement criteria that are tailored to optimization such

as simultaneous optimistic optimization [Wan14]. In addition, nested methods for hierar-

chical optimization could use multiple interpolants with different resolutions on different

grids [Delb14]. Criteria that directly incorporate constraints would improve results in

constrained optimization settings. With respect to adaptivity, there is also much work left

to do. This thesis focused on spatial adaptivity for its applications, but there are inter-

esting applications that greatly benefit from dimensional adaptivity, for example plasma

physics [Pfl14]. Another key task would be the introduction of h-p-adaptivity to B-splines

on sparse grids, which would greatly enhance the applicability of B-splines in non-smooth

scenarios. As a simple special case, one could investigate different B-spline degrees in

different dimensions. However, true h-p-adaptivity would allow to locally choose both

the spatial resolution h and the B-spline degree p, adapting them according to the local

smoothness of the function.

220 CHAPTER 9: CONCLUSION

FIGURE 9.1
Extended model of the human upper limb
with the three bones humerus, radius, and
ulna (light brown) and the five muscles tri-
ceps, biceps, brachialis, brachioradialis, and
anonceus (red). Each muscle has associated
tendon (white) and muscle-tendon complexes
(light red). Biceps and brachioradialis have
each been fixed with one and two bands
(green) to simulate the effect of the missing
skin. Without bands, the muscles would un-
naturally raise from the bones.

Humerus

Radius

Ulna

TricepsBiceps

Brachialis

Brachioradialis

Anonceus

With regard to the application side, there are also quite a few possibilities for future

work. The sparse grids in the biomechanical application we considered in this thesis

were only two-dimensional. This is not in the range of dimensions in which sparse grids

demonstrate their full strength, although the two-dimensional surrogates were already

able to drastically reduce the required computation time compared to full grids. Currently,

an extended model with five muscles and therefore five-dimensional sparse grids is being

considered (see Fig. 9.1). Here, it will be mandatory to employ spatial adaptivity to

cope with the increased dimensionality. In the application of topology optimization,

more complicated micro-cell models and more complicated settings could be studied.

For example, the widths of the diagonal macro-bars could be constrained [All16]. The

dynamic portfolio choice models in the financial application were quite limited. For

example, there was no inheritance motive (i.e., bequest), the model did not contain the

individual’s regular income, and the model did not account for savings for large necessary

investments (e.g., cars or houses), which seems unnecessarily unrealistic. Finally, one

could consider many other real-world optimization problems or other application fields

of B-splines on sparse grids, for instance, data mining or uncertainty quantification. If

objective gradients are available besides function values, it might be feasible to directly

incorporate the gradients into the interpolation scheme [Baa15].
This extensive but by no means exhaustive list of possible future work can be seen

as an inspiration and starting point for new and interesting applications of B-splines for

sparse grids.

221

A
Proofs

This chapter contains proofs that were too long or too technical to include them in the

main text. For convenience, the corresponding propositions and theorems are repeated

before the proofs, using the same numbering as in their original chapter.

A.1 Proofs for Chapter 2

A.1.1 Proof of the Size of the Regular Sparse Grid with Coarse
Boundaries

PROPOSITION 2.10 (number of regular sparse grid points with coarse boundary)

(2.38) |Ωs(b)
n,d |= |�Ω

s
n,d |+

d
∑

q=1

2q
�

d
q

�

|�Ωs
n−q−b+1,d−q|, b ∈ N

PROOF Note that the outer union in the definition of Ls(b)
n,d in (2.37b) is indeed disjoint.

Therefore,

(A.1) |Ωs(b)
n,d |=

∑

`∈Nd

‖`‖1≤n

|I`|+
∑

`∈Nd
0\N

d

(‖max(`,1)‖1≤n−b+1)∨(`=0)

|I`|.

The first sum is the number |�Ωs
n,d | of interior grid points in Ωs

n,d . The second sum can

be split into summands with the same number q of zero entries, which we count with

222 APPENDIX A: PROOFS

N` := |{t | `t = 0}|= ‖max(`,1)‖1 − ‖`‖1, and the same level sum m= ‖`‖1:

(A.2) |Ωs(b)
n,d |= |�Ω

s
n,d |+ 2d +

d−1
∑

q=1

n−b−q+1
∑

m=d−q

∑

`∈Nd
0

N`=q,‖`‖1=m

|I`|,

where 2d is the summand for ` = 0 (number |I0| of corners of [0,1]). The limits of the

sum over m are d−q, since there are d−q entries ≥ 1 in a level vector with q zero entries,

and n− b− q+ 1, since m= ‖`‖1 = ‖max(`,1)‖1 − N` ≤ n− b+ 1− N` = n− b− q+ 1.

In general, the innermost summand |I`| equals |I`| =
∏

{t|`t≥1} 2
`t−1 ·

∏

{t|`t=0} 2 =
2‖`‖1−d+2N` . The number of innermost summands is given by

(A.3) |{` ∈ Nd
0 | N` = q, ‖`‖1 = m}|=

�

d
q

�

|{` ∈ Nd−q | ‖`‖1 = m}|=
�

d
q

��

m− 1
d − q− 1

�

.

This can be seen by first putting q zeros in d places, for which there are
�d

q

�

possibilities,

and then counting all positive vectors of length d − q with level sum m, which can be

done in
� m−1

d−q−1

�

ways. Thus,

|Ωs(b)
n,d |= |�Ω

s
n,d |+ 2d +

d−1
∑

q=1

�

d
q

� n−b−q+1
∑

m=d−q

2m−d+2q
�

m− 1
d − q− 1

�

.(A.4a)

After shifting the index m→ (m+ d − q) and slightly rearranging the terms, we obtain

· · ·= |�Ωs
n,d |+ 2d +

d−1
∑

q=1

2q
�

d
q

� n−d−b+1
∑

m=0

2m
�

(d − q)− 1+m
(d − q)− 1

�

.(A.4b)

We can now use Lemma 2.8 (number of interior regular sparse grid points) to conclude

that

· · ·= |�Ωs
n,d |+

d
∑

q=1

2q
�

d
q

�

|�Ωs
n−q−b+1,d−q|(A.4c)

as desired. �

A.1 PROOFS FOR CHAPTER 2 223

A.1.2 Correctness Proof of the Construction of the Regular Sparse
Grid with Coarse Boundaries

PROPOSITION 2.11 (invariant of SG generation with coarse boundary)

After iteration t of Alg. 2.1 (t = 1, . . . , d), it holds

L(t) = {` ∈ Nt | ‖`‖1 ≤ n− d + t}

∪̇
�

{` ∈ Nt
0 \N

t | ‖max(`,1)‖1 ≤ n− d + t − b+ 1} ∪ {0}
�

.
(2.39)

PROOF First, we show that every inserted level `′ ∈ Nt
0 in the inner loop can be found

on the right-hand side of (2.39). If `′ := (`, 0) is inserted for some ` ∈ L(t−1), then we

have ‖max(`,1)‖1 ≤ n− d + t − b or `= 0 by line 6 of Alg. 2.1. In the first case, we have

(A.5) ‖max(`′,1)‖1 = ‖max(`,1)‖1 + 1≤ n− d + t − b+ 1,

and in the second case `′ = 0. In either case, `′ is contained in the right-hand side (RHS)

of (2.39).

If `′ := (`,`t) is inserted for some ` ∈ L(t−1) and `t ∈ {1, . . . ,`∗}, then there are,

depending on whether ` ∈ Nt−1, two cases:

• If ` ∈ Nt−1, then `′ ∈ Nt and ‖`′‖1 ≤ ‖`‖1 + `∗ = n − d + t due to line 9, i.e., `′ is

contained in the first set of the RHS of (2.39).

• If ` /∈ Nt−1, then `′ /∈ Nt and ‖max(`′,1)‖1 ≤ ‖max(`,1)‖1 + `∗ = n− d + t − b + 1

due to line 11, i.e., ` is contained in the second set of the RHS of (2.39).

Thus, all levels that the algorithm inserts into L(t) can be found on the RHS of (2.39).

It remains to prove that all levels on the RHS of (2.39) are eventually inserted by

the algorithm into L(t). We prove this by induction over t = 1, . . . , d. For t = 1, the RHS

of (2.39) equals {` ∈ N0 | `≤ n− d +1}, which is just L(1) (see line 2 of Alg. 2.1). For the

induction step (t − 1)→ t, we assume the validity of the induction hypothesis

(A.6)
L(t−1) = {` ∈ Nt−1 | ‖`‖1 ≤ n− d + t − 1} ∪̇

�

{` ∈ Nt−1
0 \Nt−1 | ‖max(`,1)‖1 ≤ n− d + t − b} ∪ {0}

�

.

The RHS of (2.39) has three parts, so we check for elements `′ ∈ Nt
0 of each of the three

sets that they are appended to L(t) eventually.

First, let `′ = (`,`t) be in the first set of the RHS, i.e., `′ ∈ Nt (in particular `t ≥ 1)

and ‖`′‖1 ≤ n− d + t. Note that ` will be encountered in the inner loop, as ` ∈ Nt−1 and

‖`‖1 = ‖`
′‖1 − `t ≤ n− d + t − 1, which implies ` ∈ L(t−1) by the induction hypothesis

224 APPENDIX A: PROOFS

(A.6). Since 1≤ `t ≤ `∗ (due to `t = ‖`
′‖1 −‖`‖1 ≤ n− d + t −‖`‖1 = `∗), the level `′ is

inserted into L(t) during the innermost loop in line 12 of Alg. 2.1.

Second, let `′ = (`,`t) be in the second set of the RHS, i.e., we have `′ /∈ Nt and

‖max(`′,1)‖1 ≤ n− d + t − b+ 1. Here, there are three cases:

1. `t ≥ 1: This implies ` /∈ Nt−1 and ‖max(`,1)‖1 = ‖max(`′,1)‖1− `t ≤ n− d + t − b.

Consequently, ` ∈ L(t−1) by the induction hypothesis (A.6). As 1 ≤ `t ≤ `∗ (due to

`t ≤ n− d + t − b+ 1− ‖max(`,1)‖1 = `∗), ` is added to L(t) in line 12.

2. `t = 0 and ` ∈ Nt−1: This implies ‖`‖1 = ‖`
′‖1 = ‖max(`′,1)‖1−1≤ n− d+ t− b ≤

n− d + t −1 since b ≥ 1. Again, by the induction hypothesis (A.6), ` is added to L(t)

in line 7 due to ‖max(`,1)‖1 = ‖`‖1 ≤ n− d + t − b.

3. `t = 0 and ` /∈ Nt−1: This implies ‖max(`,1)‖1 = ‖max(`′,1)‖1 − 1≤ n− d + t − b.

Again, by the induction hypothesis (A.6), ` is added to L(t) in line 7.

Third, let ` = (0, 0) ∈ Nt
0 be in the third set of the RHS. This level is appended in line 7

to L(t), since `′ = 0 ∈ Nt−1
0 is in L(t−1) by the induction hypothesis (A.6). �

A.2 Proofs for Chapter 3

A.2.1 Proof of the Linear Independence of Hierarchical B-Splines

PROPOSITION 3.5 (hierarchical B-splines are linearly independent)

The hierarchical B-splines ϕp
`′,i′ (`′ ≤ `, i′ ∈ I`′) are linearly independent.

PROOF The proof is rigorous for the common B-spline degrees of p ∈ {1,3,5,7}. For

higher degrees, the proof has to be viewed as a sketch.

We follow the presentation in [Vale16] and prove the assertion by induction over

` ∈ N0. For ` = 0, the B-splines ϕp
0,i′ with i′ ∈ {0,1} are linearly independent. For the

induction step (`− 1)→ `, let

(A.7)
∑̀

`′=0

∑

i′∈I`′

α`′,i′ϕ
p
`′,i′ ≡ 0

be a linear combination of the zero function. We separate the summands of level ` from

the summands of coarser levels `′ < `:

(A.8)
∑

i∈I`

α`,iϕ
p
`,i =: g1 ≡ g2 := −

`−1
∑

`′=0

∑

i′∈I`′

α`′,i′ϕ
p
`′,i′ .

A.2 PROOFS FOR CHAPTER 3 225

The right-hand side g2 is smooth in every grid point x`,i of level ` (i ∈ I`), since these

grid points are not knots of the hierarchical B-splines ϕp
`′,i′ of level `′ < ` (i′ ∈ I`′). This

implies that the left-hand side g1 must be smooth there as well:

(A.9)
∑

i∈I`

α`,i ∂
p
−ϕ

p
`,i(x`,i′)

︸ ︷︷ ︸

=∂ p
− g1(x`,i′)

=
∑

i∈I`

α`,i ∂
p
+ϕ

p
`,i(x`,i′)

︸ ︷︷ ︸

=∂ p
+ g1(x`,i′)

, i′ ∈ I`,

where ∂ p
− and ∂ p

+ denote the left and right derivative of order p, respectively. By repeated

application of (3.3), one can show that

(A.10) ∂
p
− bp(k+ 1) = (−1)k

�

p
k

�

= ∂ p
+ bp(k), k ∈ Z,

where
�p

k

�

= 0 for k < 0 or k > p [Höl13]. We can insert this relation into (A.9) and use

(3.5) to obtain

∑

i∈I`

α`,i(−1)k−1
�

p
k− 1

�

=
∑

i∈I`

α`,i(−1)k
�

p
k

�

, i′ ∈ I`, k :=
p+ 1

2
+ i′ − i.(A.11)

As
� p

k−1

�

+
�p

k

�

=
�p+1

k

�

and (−1)k is constant for i ∈ I` when i′ is fixed, this is equivalent

to

(A.12)
∑

i∈I`

α`,i

� p+ 1
p+1

2 + i′ − i

�

= 0, i′ ∈ I`.

This is a square system of linear equations whose system matrix A(p) is a banded

symmetric Toeplitz matrix1 of size 2`−1×2`−1 with bandwidth d p−1
4 e. The non-zero values

of A(p) are tabulated for some degrees p in Tab. A.1. For p = 1, 3, 5, 7, the corresponding

matrices are diagonally dominant and therefore regular. For higher B-spline degrees p,

the regularity of A(p) has to be shown differently.

Due to the regularity of A(p), we infer from (A.12) that α`,i = 0 for i ∈ I`. According

to (A.7), we obtain a linear combination of the zero function with the hierarchical B-

splines of level < `, i.e.,

(A.13)
`−1
∑

`′=0

∑

i′∈I`′

α`′,i′ϕ
p
`′,i′ = 0,

which implies α`′,i′ = 0 for all `′ < ` and i′ ∈ I`′ by the induction hypothesis. Thus, the

1The entries Ak, j of a Toeplitz matrix A solely depend on k− j, i.e., Ak, j = ck− j for some vector c.

226 APPENDIX A: PROOFS

k = 0 k = 1 k = 2 k = 3

p = 1 2
p = 3 6 1
p = 5 20 6
p = 7 70 28 1
p = 9 252 120 10
p = 11 924 495 66 1

TABLE A.1 Non-zero values A j, j+k(p) of the diagonals of A(p) obtained in (A.12).

hierarchical B-splines ϕp
`′,i′ (`′ ≤ `, i′ ∈ I`′) are linearly independent. �

A.3 Proofs for Chapter 4

A.3.1 Combinatorial Proof of the Combination Technique

DEFINITION A.1 (binomial coefficient for integer parameters)

The binomial coefficient
�n

k

�

is defined for n ∈ N0 and k ∈ Z as

(A.14)
�

n
k

�

:=

n(n−1)···(n−(k−1))
k! , 0< k < n,

1, (k = 0)∨ (k = n),

0, (k < 0)∨ (k > n).

LEMMA A.2 (inclusion-exclusion counting lemma)

For a ∈ N0, r ≥ a, and s ∈ Z, we have

(A.15)
a
∑

q=0

(−1)q
�

a
q

��

r − q
s

�

=
�

r − a
s− a

�

.

PROOF We apply the upper negation formula (see Eq. (5.14) of [Gra94]) to the second

binomial of the left-hand side (LHS):

a
∑

q=0

(−1)q
�

a
q

��

r − q
s

�

= (−1)s
a
∑

q=0

�

a
0+ q

��

(s− r − 1) + q
s

�

(−1)q.(A.16a)

A.3 PROOFS FOR CHAPTER 4 227

This sum can be simplified using the identity in Eq. (5.24) of [Gra94] (the sum has already

been written in the same way as in [Gra94]):

· · ·= (−1)s+a
�

s− r − 1
s− a

�

.(A.16b)

Applying the upper negation formula again,

· · ·=
�

r − a
s− a

�

,(A.16c)

we obtain the desired quantity. �

PROPOSITION 4.4 (inclusion-exclusion principle)

For every x `,i ∈ Ωs
n,d , we have

(4.19)
d−1
∑

q=0

(−1)q
�

d − 1
q

�

· |{`′ | ‖`′‖1 = n− q, Ω`′ 3 x `,i}|= 1.

PROOF Let q = 0, . . . , d − 1 and x `,i ∈ Ωs
n,d , i.e., ‖`‖1 ≤ n and i ∈ I`. Note that for

`′ ∈ Nd
0 , we have Ω`′ 3 x `,i ⇐⇒ `′ ≥ `. Hence,

|{`′ | ‖`′‖1 = n− q, Ω`′ 3 x `,i}|= |{`
′ | ‖`′‖1 = n− q, `′ ≥ `}|(A.17a)

= |{a ∈ Nd
0 | ‖a‖1 = n− q− ‖`‖1}|(A.17b)

by mapping a := `′−`. The size of the last set is known as the number of weak compositions

of n− q− ‖`‖1 into d parts and can be computed as

· · ·=
�

n− q− ‖`‖1 + d − 1
d − 1

�

,(A.17c)

see Theorem 2.2 of [Bón15]. Now, we can use Lemma A.2 with the values a := s := d −1

and r := n− ‖`‖1 + d − 1 to conclude that the LHS of the assertion (4.19) equals

(A.18)
d−1
∑

q=0

(−1)q
�

d − 1
q

�

·
�

n− q− ‖`‖1 + d − 1
d − 1

�

=
�

n− ‖`‖1

0

�

= 1,

proving the proposition. �

LEMMA A.3 ∼ is an equivalence relation.

PROOF We check reflexivity, symmetry, and transitivity of ∼:

228 APPENDIX A: PROOFS

• Reflexivity: Using the same level `′ = `′′ implies T`′,`′ = {t | `′t < `t}. For all t /∈ T`′,`′ ,

we have `′t ≥ `t . Consequently, `′ ∼ `′.

• Symmetry: We have `′ ∼ `′′ ⇐⇒ `′′ ∼ `′, since T`′,`′′ = T`′′,`′ and min{`′t ,`
′′
t } =

min{`′′t ,`′t}.

• Transitivity: Let `′ ∼ ˆ̀, ˆ̀ ∼ `′′, and t /∈ T`′,`′′ . From the definition of T`′,`′′ , it holds

that either `′t 6= `
′′
t or `′t = `

′′
t ≥ `t . As `′t = `

′′
t ≥ `t already implies min{`′t ,`

′′
t } ≥ `t ,

we assume that `′t 6= `
′′
t . Here, we have three cases:

– Case 1: `′t 6= ˆ̀
t = `′′t . t /∈ T`′,ˆ̀ implies `′t ≥ `t and `′′t = ˆ̀

t ≥ `t . Therefore,

min{`′t ,`
′′
t } ≥ `t .

– Case 2: `′t = ˆ̀
t 6= `′′t . Analogously to the first case, we conclude min{`′t ,`

′′
t } ≥ `t .

– Case 3: `′t 6= ˆ̀
t 6= `′′t . t /∈ T`′,ˆ̀ implies `′t ≥ `t and t /∈ T`′′,ˆ̀ implies `′′t ≥ `t .

Hence, min{`′t ,`
′′
t } ≥ `t .

Therefore, it holds that min{`′t ,`
′′
t } ≥ `t for all t /∈ T`′,`′′ , i.e., `′ ∼ `′′.

This shows that ∼ is an equivalence relation. �

LEMMA 4.6 Let `′,`′′ ∈ L with `′ ∼ `′′. Then, f`′(x `,i) = f`′′(x `,i).

PROOF First, we note that T`′,`′′ 6= ;. Otherwise, for T`′,`′′ = ;, we have min{`′t ,`
′′
t } ≥ `t

for all t = 1, . . . , d, which implies `′ ≥ `, i.e., Ω`′ 3 x `,i . This contradicts the fact that

`′ ∈ L, where L is defined in (4.20) (which holds as our equivalence relation is only

defined on L). Therefore, T`′,`′′ 6= ;must hold. Without loss of generality, we assume that

T`′,`′′ = {1, . . . , m} for some m ∈ {1, . . . , d}.
Let

(A.19) S := x `,i + span{e1, . . . , em}= {x `,i +
∑m

t=1 cte t | c1, . . . , cm ∈ R}

be the m-dimensional affine subspace of Rd through x `,i parallel to the dimensions

1, . . . , m, where e t is the t-th standard basis vector. It holds that S ∩ Ω`′ = S ∩ Ω`′′
due to `′t = `

′′
t for t ≤ m.2

On this m-dimensional grid S ∩Ω`′ = S ∩Ω`′′ , the full grid interpolants f`′ and f`′′

coincide, as both interpolate the function values given by the objective function f :

(A.20) f`′ |S∩Ω`′ = f |S∩Ω`′ = f`′′ |S∩Ω`′ .

2In more detail: If we have an x ˆ̀,î ∈ S ∩Ω`′ , then ∀t≤m
ˆ̀

t ≤ `′t = `
′′
t and ∀t>m

ˆ̀
t = `t ≤ `′′t , i.e., ˆ̀ ≤ `′′

and therefore x ˆ̀,î ∈ S ∩Ω`′′ .

A.3 PROOFS FOR CHAPTER 4 229

However, this does not suffice to conclude f`′(x `,i) = f`′′(x `,i), since x `,i /∈ Ω`′ .
To this end, we recall from (2.11) that

(A.21) f`′ =
2`
′

∑

i ′=0

c`′,i ′ϕ`′,i ′ , c`′,i ′ ∈ R.

This implies that the m-variate restricted interpolant f`′ |S∩[0,1] can be written as

(f`′ |S∩[0,1])(x 1:m) =
2`
′
1:m
∑

i ′1:m=0

c̃`′1:m,i ′1:m
ϕ`′1:m,i ′1:m

(x 1:m), x 1:m ∈ [0,1]m,(A.22a)

c̃`′1:m,i ′1:m
:=

2`
′
m+1:d
∑

i ′m+1:d=0

c`′,i ′ϕ`′m+1:d ,i ′m+1:d
(x `m+1:d ,im+1:d

)(A.22b)

by factoring out tensor product factors corresponding to dimensions m+ 1, . . . , d. The

subscripts 1 : m and m+ 1 : d denote the entries with respect to the dimensions 1, . . . , m

and m+ 1, . . . , d, respectively. As a result, both f`′ |S∩[0,1] and, analogously, f`′′ |S∩[0,1] are

interpolants of f in V`′1:m
= V`′′1:m

. Due to Lemma 2.1 (linear independence of tensor

products), it follows from (A.20) that they must be the same:

(A.23) f`′ |S∩[0,1] = f`′′ |S∩[0,1].

Consequently, f`′(x `,i) = f`′′(x `,i) as x `,i ∈ S ∩ [0,1]. �

LEMMA 4.7 (characterization of equivalence classes)

Let L0 ∈ L/∼ be an equivalence class of ∼. If we define

(4.22) TL0
:= {t | ∃`∗t<`t

∀`′∈L0
`′t = `

∗
t}

as the set of dimensions t in which all levels in L0 have the same entry `∗t < `t , then

(4.23) L0 = {`
′ ∈ L | ∀t∈TL0

`′t = `
∗
t , ∀t /∈TL0

`′t ≥ `t}.

PROOF “⊆”: Let `′ ∈ L0. We have to prove that ∀t∈TL0
`′t = `

∗
t and ∀t /∈TL0

`′t ≥ `t . The

first statement is clear by the definition of TL0
. Therefore, let t /∈ TL0

. By the definition

of TL0
, we have either ∃ˆ̀∈L0

`′t 6= ˆ̀
t or ∀ˆ̀∈L0

`′t = ˆ̀
t ≥ `t . In the latter case, we obtain

`′t ≥ `t (e.g., by setting ˆ̀ to `′). In the former case, there is an ˆ̀ ∈ L0 such that `′t 6= ˆ̀
t .

Due to `′ ∼ ˆ̀ (since `′ and ˆ̀ are both contained in the same equivalence class L0) and

t /∈ T`′,ˆ̀, we have min{`′t , ˆ̀t} ≥ `t . This implies ∀t /∈TL0
`′t ≥ `t , as desired.

230 APPENDIX A: PROOFS

“⊇”: Let `′ ∈ L such that ∀t∈TL0
`′t = `

∗
t and ∀t /∈TL0

`′t ≥ `t . Furthermore, let `′′ ∈ L0

be an arbitrary representative of L0. We prove that `′ ∼ `′′ (i.e., `′ ∈ L0). Note that

TL0
⊆ T`′,`′′ , as t ∈ TL0

implies `′′t = `
∗
t < `t , which can be combined with `′t = `

∗
t to

`′t = `
′′
t < `t , i.e., t ∈ T`′,`′′ .

To prove the equivalence of `′ and `′′, let t /∈ T`′,`′′ , i.e., t /∈ TL0
. By assumption on

`′, it holds `′t ≥ `t . Hence, it remains to show that `′′t ≥ `t as well. Again, by definition of

TL0
, we have either ∃ˆ̀∈L0

`′′t 6= ˆ̀
t or ∀ˆ̀∈L0

`′′t = ˆ̀
t ≥ `t . In the second case, it holds `′′t ≥ `t .

In the first case, there is an ˆ̀ ∈ L0 such that `′′t 6= ˆ̀
t . Due to `′′ ∼ ˆ̀ (since `′′ and ˆ̀ are

both contained in the same equivalence class L0) and t /∈ T`′′,ˆ̀, we have min{`′′t , ˆ̀t} ≥ `t .

In particular, `′′t ≥ `t . In total, we have min{`′t ,`
′′
t } ≥ `t for all t /∈ T`′,`′′ , proving that `′

and `′′ are equivalent, as asserted. �

PROPOSITION 4.8 (function value cancellation)

For every x `,i ∈ Ωs
n,d , we have

(4.24)
d−1
∑

q=0

(−1)q
�

d − 1
q

�

·
∑

‖`′‖1=n−q
Ω`′ 63x `,i

f`′(x `,i) = 0.

PROOF Lemma 4.6 implies that the summands f`′(x `,i) corresponding to levels `′ of

the same equivalence class L0 ∈ L/∼ are identical. Let fL0
denote the common function

value. The sum in the LHS of the assertion can be reordered to combine levels of the

equivalence classes L0 ∈ L/∼:

d−1
∑

q=0

(−1)q
�

d − 1
q

�

·
∑

‖`′‖1=n−q
Ω`′ 63x `,i

f`′(x `,i)(A.24a)

=
∑

L0∈L/∼

fL0

d−1
∑

q=0

(−1)q
�

d − 1
q

�

· |{`′ ∈ L0 | ‖`
′‖1 = n− q}|.(A.24b)

It now suffices to show that the inner sum vanishes for every equivalence class L0 ∈ L/∼.

To this end, we have to calculate |{`′ ∈ L0 | ‖`
′‖1 = n−q}| for a fixed equivalence class

L0. Without loss of generality, let TL0
= {1, . . . , m} in the notation of Lemma 4.7 (charac-

terization of equivalence classes) with 1≤ m≤ d. Note that the case m= 0 is impossible:

Otherwise, TL0
= ; implies ∀`′∈L0

`′ ≥ ` by Lemma 4.7, and as equivalence classes are

non-empty, there is at least one `′ ∈ L0 with `′ ≥ `. However, this is equivalent to

Ω`′ 3 x `,i , which contradicts `′ ∈ L. Hence, we have m> 0.

To enumerate all levels `′ ∈ L0 with ‖`′‖1 = n− q, we exploit the characterization of

A.3 PROOFS FOR CHAPTER 4 231

L0 of Lemma 4.7. For notational convenience, we define the vector

(A.25) ˆ̀ := (`∗1, . . . ,`∗m, `m+1, . . . ,`d),

where `∗ is given as in Lemma 4.7. We show that a := (`′t − `t)t=m+1,...,d constitutes a

bijection between

(A.26) {`′ ∈ L0 | ‖`
′‖1 = n− q} and {a ∈ Nd−m

0 | ‖a‖1 = n− q− ‖ˆ̀‖1}:

• Let `′ ∈ L0 with ‖`′‖1 = n − q. Then, ∀t=m+1,...,d `
′
t − `t ≥ 0 (by Lemma 4.7), i.e.,

a ∈ Nd−m
0 , and

(A.27) ‖a‖1 =
d
∑

t=m+1

(`′t − `t) =

�

‖`′‖1 −
m
∑

t=1

`′t

�

−
d
∑

t=m+1

ˆ̀
t = n− q− ‖ˆ̀‖1.

• Conversely, let a ∈ Nd−m
0 with ‖a‖1 = n− q− ‖ˆ̀‖1. If we define `′ as

(A.28) `′ = (`∗1, . . . ,`∗m, a1 + `m+1, . . . , ad−m + `d),

then ∀t=1,...,m `
′
t = `

∗
t < `t and ∀t=m+1,...,d `

′
t ≥ `t . By Lemma 4.7, we obtain `′ ∈ L0

and

(A.29) ‖`′‖1 = ‖ˆ̀‖1 + ‖a‖1 = n− q.

This bijection implies that

|{`′ ∈ L0 | ‖`
′‖1 = n− q}|= |{a ∈ Nd−m

0 | ‖a‖1 = n− q− ‖ˆ̀‖1}|.(A.30a)

This is the number of weak decompositions of n− q− ‖ˆ̀‖1 into d −m parts:

· · ·=
�

n− q− ‖ˆ̀‖1 + d −m− 1
d −m− 1

�

,(A.30b)

see Theorem 2.2 of [Bón15]. We insert this quantity into the inner sum of (A.24b):

d−1
∑

q=0

(−1)q
�

d − 1
q

�

· |{`′ ∈ L0 | ‖`
′‖1 = n− q}|(A.31a)

=
d−1
∑

q=0

(−1)q
�

d − 1
q

�

·
�

n− q− ‖ˆ̀‖1 + d −m− 1
d −m− 1

�

.(A.31b)

232 APPENDIX A: PROOFS

Again, we apply Lemma A.2 (inclusion-exclusion counting lemma) with the values a :=
d − 1, r := n− ‖ˆ̀‖1 + d −m− 1, and s := d −m− 1 to infer that as claimed, (A.31) is

equal to

(A.32)
�

n− ‖ˆ̀‖1 −m
−m

�

= 0

by the convention for binomial coefficients in Def. A.1 as −m< 0.

Note that for the calculation in Equations (A.31) and (A.32) to be correct, we have

to ensure that n− ‖ˆ̀‖1 −m≥ 0; otherwise, the binomial coefficients would not be well-

defined. This is a direct consequence of the fact that `∗t < `t for all t = 1, . . . , m (see

Lemma 4.7) as

(A.33) n−‖ˆ̀‖1−m= n−
m
∑

t=1

`∗t−
d
∑

t=m+1

`t−m≥ n−
m
∑

t=1

(`t−1)−
d
∑

t=m+1

`t−m= n−‖`‖1 ≥ 0,

where we have used `∗t ≤ `t − 1 for t = 1, . . . , m and ‖`‖1 ≤ n. �

A.3.2 Correctness Proof of the Method of Residual Interpolation

PROPOSITION 4.10 (invariant of residual interpolation)

For j = 1, . . . , m, it holds

r(j−1)

`(j)
(x `,i) = 0, `≤ `(j

′), i ∈ I`, j′ = 1, . . . , j − 1,(4.28a)

r(j)(x `,i) = 0, `≤ `(j
′), i ∈ I`, j′ = 1, . . . , j,(4.28b)

r(j)(x `,i) = f (x `,i)− f s,(j)(x `,i), ` ∈ L, i ∈ I`,(4.28c)

(4.29) where f s,(j) :=
∑

`′∈L

∑

i ′∈I`′

j
∑

j′=1

α
(j′)
`′,i ′

!

ϕ`′,i ′ .

PROOF We prove the assertion by induction over j = 1, . . . , m. We will need the follow-

ing two equations that directly follow from the algorithm (lines 6 to 8, respectively):

r(j−1)

`(j)
(x `,i) = r(j−1)(x `,i), `≤ `(j), i ∈ I`,(A.34a)

r(j)(x `,i) = r(j−1)(x `,i)− r(j−1)

`(j)
(x `,i), ` ∈ L, i ∈ I`.(A.34b)

A.3 PROOFS FOR CHAPTER 4 233

Induction base case: For j = 1, there is nothing to show for (4.28a). Equation (4.28b)

can be proven as follows:

(A.35) r(1)(x `,i)
(A.34b)
= r(0)(x `,i)− r(0)

`(1)
(x `,i)

(A.34a)
= 0, `≤ `(1), i ∈ I`.

Equation (4.28c) holds as r(0)
`(1)
= f s,(1) (by line 7 in Alg. 4.3) and, therefore,

r(1)(x `,i)
(A.34b)
= r(0)(x `,i)− r(0)

`(1)
(x `,i) = f (x `,i)− f s,(1)(x `,i), ` ∈ L, i ∈ I`.(A.36)

Induction step case: We show the three statements for the induction step j→ (j + 1).

• Showing (4.28a) for j + 1: Let j′ = 1, . . . , j, `≤ `(j
′), and i ∈ I`. Due to the ordering

of the levels `(1), . . . ,`(m), we can conclude from j + 1 > j′ that ‖`(j+1)‖1 ≤ ‖`
(j′)‖1.

This implies that there must be a t ′ ∈ {1, . . . , d} such that `(j+1)
t ′ ≤ `(j

′)
t ′ . Let S be the

line in Rd defined by

(A.37) S := x `,i + span{e t ′},

where e t ′ is the t ′-th standard basis vector. It holds that S ∩Ω`(j+1) ⊆ Ω`(j′) . To show

this, let x `′,i ′ ∈ S ∩Ω`(j+1) be arbitrary (with i ′ ∈ I`′). Then, ∀t 6=t ′ `
′
t = `t ≤ `

(j′)
t (due

to x `′,i ′ ∈ S) and `′t ′ ≤ `
(j+1)
t ′ ≤ `(j

′)
t ′ (due to x `′,i ′ ∈ Ω`(j+1)). This means that `′ ≤ `(j

′),

which implies that x `′,i ′ ∈ Ω`(j′) . As x `′,i ′ is arbitrary, this shows S ∩Ω`(j+1) ⊆ Ω`(j′) .

Thus, we infer

(A.38) r(j)
`(j+1)(x `′,i ′)

(A.34a)
= r(j)(x `′,i ′)

(4.28b)
= 0, x `′,i ′ ∈ S ∩Ω`(j+1) ⊆ Ω`(j′) , i′ ∈ I`′ ,

with the induction hypothesis (4.28b) for j. Unfortunately, this does not suffice to

directly conclude that r(j)
`(j+1)(x `,i) = 0 as x `,i is in general not contained in Ω`(j+1) .

As in the proof of Lemma 4.6, we exploit the tensor product nature of the basis

functions and restrict r(j)
`(j+1) to S ∩ [0,1]:

(r(j)
`(j+1) |S∩[0,1])(x t ′) =

`
(j+1)
t′
∑

`′
t′=0

∑

i′
t′∈I`′

t′

α̃
(j+1)
`′

t′ ,i
′
t′
ϕ`′

t′ ,i
′
t′
(x t ′), x t ′ ∈ [0,1],(A.39a)

α̃
(j+1)
`′

t′ ,i
′
t′

:=
`
(j+1)
−t′
∑

`′−t′=0

∑

i ′−t′∈I`′
−t′

α
(j+1)
`′,i ′

ϕ`′−t′ ,i
′
−t′
(x `−t′ ,i−t′

),(A.39b)

where the subscript −t ′ indicates all entries but the t ′-th. As a consequence, this

234 APPENDIX A: PROOFS

shows that r(j)
`(j+1) |S∩[0,1] ∈ V

`
(j+1)
t′

is an interpolant of the zero function (by (A.38)). Due

to the linear independence of the univariate basis functions, we conclude

(A.40) r(j)
`(j+1) |S∩[0,1] ≡ 0.

Consequently, we obtain r(j)
`(j+1)(x `,i) = 0 as x `,i ∈ S ∩ [0,1].

• Showing (4.28b) for j + 1: Let j′ = 1, . . . , j + 1, ` ≤ `(j
′), and i ∈ I`. For the case

j′ ≤ j, we obtain

(A.41) r(j+1)(x `,i)
(A.34b)
= r(j)(x `,i)− r(j)

`(j+1)(x `,i) = 0

due to r(j)(x `,i) = 0 by induction hypothesis (Eq. (4.28b)) and r(j)
`(j+1)(x `,i) = 0 as

shown above (Eq. (4.28a) for j + 1).

For the case j′ = j + 1, Eq. (A.41) still holds as the difference between r(j)(x `,i) and

r(j)
`(j+1)(x `,i) vanishes due to (A.34a) for j + 1 (here, we need `≤ `(j+1)).

• Showing (4.28c) for j + 1: Let ` ∈ L and i ∈ I`. Then,

r(j+1)(x `,i)
(A.34b)
= r(j)(x `,i)− r(j)

`(j+1)(x `,i).(A.42a)

The first term can replaced with the induction hypothesis ((4.28c) for j). For the

second term, note that r(j)
`(j+1) =

∑

`′∈L

∑

i ′∈I`′
α
(j+1)
`′,i ′

ϕ`′,i ′ = f s,(j+1)− f s,(j) by definition.

Hence, we obtain as desired

· · · = (f (x `,i)− f s,(j)(x `,i))− (f s,(j+1)(x `,i)− f s,(j)(x `,i))(A.42b)

= f (x `,i)− f s,(j+1)(x `,i).(A.42c)

This shows the validity of the statements in (4.28) for j + 1. �

A.3.3 Correctness Proof of Hierarchization with Breadth-First Search

PROPOSITION 4.13 (invariant of breadth-first-search hierarchization)

Under the assumption (4.38), it holds after pop ping all grid points with level sum < q

from the queue Q in Alg. 4.4:

(4.39) y`,i = f (x `,i)−
∑

(`′,i ′)∈K
‖`′‖1<q

y`′,i ′ϕ
f
`′,i ′(x `,i), (`, i) ∈ K , ‖`‖1 = q.

A.3 PROOFS FOR CHAPTER 4 235

PROOF We start with two observations:

• First, due to the breadth-first search nature of Alg. 4.4 and the hierarchical relation

(4.37), all grid points with level sum < q are popped before the first point with level

sum ≥ q is popped.

• Second, after popping all grid points with level sum< q, the output values of the grid

points with level sum ≤ q remain unchanged for the rest of the algorithm: If line 8 of

the algorithm updates the output value of a point (`, i) in the iteration of (`′, i ′) ∈ K

with ‖`′‖1 ≥ q, then line 7 implies ` ≥ `′ and thus, ‖`‖1 ≥ ‖`
′‖1 ≥ q. However,

‖`‖1 = q is not possible as this would imply that ‖`‖1 = ‖`
′‖1 =⇒ (`, i) = (`′, i ′) by

line 7, but (`, i) = (`′, i ′) is explicitly excluded in the for loop of line 7. Therefore,

we must have ‖`‖1 > q. Hence, if a point (`, i) with level sum ≥ q has been popped,

only surpluses of points with level sum > q may be updated.

Now, we prove the asserted claim by induction over q.

Induction base case: For q = 0, Alg. 4.4 sets y`,i to f (x `,i) in line 2. As the sum in

(4.39) is empty, the claim is correct for q = 0.

Induction step case: Let y (q)
`′,i ′

and y (q+1)
`′,i ′

be the surpluses after popping all grid points

with level sum < q and < q + 1, respectively. We show the induction step q → (q + 1),
i.e., we assume that the assertion is true for q and prove that after popping all grid points

with level sum < q+ 1, it holds

(A.43) y (q+1)
`,i = f (x `,i)−

∑

‖`′‖1<q+1

y (q+1)
`′,i ′

ϕf
`′,i ′(x `,i), (`, i) ∈ K , ‖`‖1 = q+ 1.

Therefore, let (`, i) ∈ K fulfill ‖`‖1 = q + 1. The update in line 8 can safely be applied

with all grid points (`′, i ′) with level sum q. The grid points (`′, i ′) that do not satisfy

the relation in the set in line 7 do not contribute as ϕf
`′,i ′
(x `,i) = 0 due to the necessary

condition (4.32). By summing all updates from line 8, we obtain

y (q+1)
`,i = y (q)`,i −

∑

‖`′‖1=q

y (q)
`′,i ′
ϕf
`′,i ′(x `,i).(A.44a)

After inserting the induction hypothesis for the first y (q)`,i , we have

· · ·=

f (x `,i)−
∑

‖`′‖1<q

y (q)
`′,i ′
ϕf
`′,i ′(x `,i)

!

−
∑

‖`′‖1=q

y (q)
`′,i ′
ϕf
`′,i ′(x `,i)(A.44b)

= f (x `,i)−
∑

‖`′‖1<q+1

y (q)
`′,i ′
ϕf
`′,i ′(x `,i).(A.44c)

236 APPENDIX A: PROOFS

As noted above, we have ∀(`′,i ′),‖`′‖1<q+1 y (q)
`′,i ′
= y (q+1)

`′,i ′
(the values of points with level

sum < q+ 1 do not change after popping all points with level sum < q). This shows the

induction claim (A.43). �

A.3.4 Proof for the Correctness of the Unidirectional Principle on
Spatially Adaptive Sparse Grids

LEMMA 4.22 (sufficient condition for chain existence)

If (L(t1,...,t j))k ′′,k ′ 6= 0 for some j = 0, . . . , d, then the grid K contains the chain from k ′

to k ′′ with respect to (t1, . . . , t j).

PROOF We prove the assertion by induction over j = 0, . . . , d.

For j = 0, the operator L(;) is by definition (4.68) the identity operator id. The

assumption (L(;))k ′′,k ′ 6= 0 implies that k ′ = k ′′, since the identity matrix is diagonal.

Therefore, the chain (k(0)) from k ′ to k ′′ is given by k(0) = k ′, which is contained in K .

For the induction step j→ (j + 1), we split Eq. (4.68), i.e.,

(A.45) L(t1,...,t j+1) = L(t j+1)L(t j) · · ·L(t1) = L(t j+1)L(t1,...,t j),

and infer by assumption

(A.46) 0 6= (L(t1,...,t j+1))k ′′,k ′ =
∑

k∈K

(L(t j+1))k ′′,k(L
(t1,...,t j))k,k ′ .

Consequently, there is at least one summation index k for which both factors do not

vanish. The first factor (L(t j+1))k ′′,k can by definition only be non-zero if k ∼t j+1
k ′′.

The second factor (L(t1,...,t j))k,k ′ being non-zero implies that by induction hypothesis, K

contains the chain (k(0), . . . , k(j)) from k ′ to k with respect to (t1, . . . , t j). The combination

of both statements leads to the chain (k(0), . . . , k(j), k(j+1)) from k ′ to k ′′ with respect to

(t1, . . . , t j+1). All points of the chain are contained in K . �

LEMMA 4.23 (necessary condition for chain existence)

If the grid K contains the chain (k(0), . . . , k(j)) from k ′ to k ′′ with respect to (t1, . . . , t j)
for some j = 0, . . . , d, then

(4.72) (L(t1,...,t j))k(j),k ′ = (L
(t1),[k

(1)]∼t1)k′′t1 ,k′t1
· · · (L(t j),[k

(j)]∼t j)k′′t j
,k′t j

.

PROOF Again, we prove the claim by induction over j = 0, . . . , d.

A.3 PROOFS FOR CHAPTER 4 237

For j = 0, the operator L(;) is the identity operator. Therefore, the LHS of (4.72) is

one (due to k(0) = k ′). The RHS is by convention also one, as it is an empty product.

For the induction step j→ (j + 1), we consider again

(A.47) (L(t1,...,t j+1))k(j+1),k ′ =
∑

k∈K

(L(t j+1))k(j+1),k(L
(t1,...,t j))k,k ′

similar to (A.46). Recall that

k(j)t = k′′t and k(j+1)
t = k′′t for t ∈ {t1, . . . , t j},(A.48a)

k(j)t = k′t and k(j+1)
t = k′′t for t = t j+1,(A.48b)

k(j)t = k′t and k(j+1)
t = k′t for t /∈ {t1, . . . , t j, t j+1}.(A.48c)

We now argue that all summands of (A.47) vanish, except the summand with index k(j).

There are two cases for the summation index k, if we assume k 6= k(j):

• If there is a t ∈ {t1, . . . , t j}with kt 6= k′′t , then we have kt 6= k′′t = k(j+1)
t . Consequently,

k(j+1) 6∼t j+1
k and (L(t j+1))k(j+1),k = 0 due to (4.67), i.e., the first factor of the k-th

summand in (A.47) vanishes.

• If there is a t /∈ {t1, . . . , t j} with kt 6= k′t , then the second factor (L(t1,...,t j))k,k ′ of

the k-th summand in (A.47) vanishes. Indeed, if we assume the contrary, then

Lemma 4.22 implies that there is a chain from k ′ to k with respect to (t1, . . . , t j).
However, by definition of the chain, this means that k ′ and k coincide in all other

dimensions (which are not in {t1, . . . , t j}). This contradicts kt 6= k′t and therefore

(L(t1,...,t j))k,k ′ must vanish.

We infer that only the summand k = k(j) remains in (A.47):

(A.49) (L(t1,...,t j+1))k(j+1),k ′ = (L
(t j+1))k(j+1),k(j)(L

(t1,...,t j))k(j),k ′ .

The first factor equals

(A.50) (L(t j+1))k(j+1),k(j) = (L
(t j+1),[k

(j+1)]∼t j+1)k(j+1)
t j+1

,k(j)t j+1
= (L

(t j+1),[k
(j+1)]∼t j+1)k′′t j+1

,k′t j+1

by Equations (4.67) and (A.48b) (and due to k(j) ∼t j+1
k(j+1)). The second factor equals

(A.51) (L(t1,...,t j))k(j),k ′ = (L
(t1),[k

(1)]∼t1)k′′t1 ,k′t1
· · · (L(t j),[k

(j)]∼t j)k′′t j
,k′t j

by induction hypothesis. Hence, the product of both factors is

(A.52) (L(t1,...,t j+1))k(j+1),k ′ = (L
(t1),[k

(1)]∼t1)k′′t1 ,k′t1
· · · (L(t j+1),[k

(j+1)]∼t j+1)k′′t j+1
,k′t j+1

. �

238 APPENDIX A: PROOFS

PROPOSITION 4.24 (characterization of the correctness of the UP)

Let L have tensor product structure: For all k ′, k ′′ ∈ K with the chain (k(0), . . . , k(d))
from k ′ to k ′′ with respect to (t1, . . . , td), we assume that

(4.73) (L)k ′′,k ′ =
d
∏

j=1

(L
(t j),[k

(j)]∼t j)k′′t j
,k′t j

.

Then the unidirectional principle (UP) is correct for L and (t1, . . . , td) if and only if the

grid K contains the chain from k ′ to k ′′ with respect to (t1, . . . , td) for all k ′, k ′′ ∈ K for

which (L)k ′′,k ′ 6= 0.

PROOF “=⇒ ”: Let the UP be correct for L and (t1, . . . , td) and k ′, k ′′ ∈ K with (L)k ′′,k ′ 6=
0. Then, we obtain

(A.53) (L(t1,...,td))k ′′,k ′ = (L)k ′′,k ′ 6= 0.

By Lemma 4.22, this implies that K contains the chain from k ′ to k ′′ with respect to

(t1, . . . , td).

“⇐= ”: For the converse direction, we assume that there are chains from k ′ to k ′′

with respect to (t1, . . . , td) for all k ′, k ′′ ∈ K with (L)k ′′,k ′ 6= 0. Let k ′, k ′′ ∈ K be arbitrary.

There are two cases:

• (L)k ′′,k ′ 6= 0: By assumption, K contains the chain from k ′ to k ′′ with respect to

(t1, . . . , td). We apply Lemma 4.23 with j = d to infer

(A.54) (L(t1,...,td))k ′′,k ′ = (L
(t1),[k

(1)]∼t1)k′′t1 ,k′t1
· · · (L(td),[k

(d)]∼td)k′′td ,k′td
= (L)k ′′,k ′

by the assumption (4.73) on the tensor product structure of L.

• (L)k ′′,k ′ = 0: In this case, (L(t1,...,td))k ′′,k ′ must vanish as well. Indeed, if we assume the

contrary (L(t1,...,td))k ′′,k ′ 6= 0, then we can apply Lemma 4.22 to obtain that K contains

the chain from k ′ to k ′′ with respect to (t1, . . . , td). We conclude with Lemma 4.23

as in the first case that (L(t1,...,td))k ′′,k ′ = (L)k ′′,k ′ = 0, which is a contradiction.

In any case, we obtain (L(t1,...,td))k ′′,k ′ = (L)k ′′,k ′ , from which follows the correctness of the

UP, as k ′ and k ′′ are arbitrary. �

A.3 PROOFS FOR CHAPTER 4 239

A.3.5 Correctness Proof of Hermite Hierarchization

PROPOSITION 4.27 (invariant of Hermite hierarchization)

In Alg. 4.6, it holds for `= 0, . . . , n and i = 0, . . . , 2`

(4.84)
dq

dxq
f`(x`,i) =

∑̀

`′=0

∑

i′∈I`′

y`′,i′
dq

dxq
ϕ

p,wfs
`′,i′ (x`,i), q = 0, . . . ,

p− 1
2

.

PROOF We prove the assertion by induction over `= 0, . . . , n.

For the induction base case `= 0 and i ∈ {0,1}, we have

(A.55)
1
∑

i′=0

y0,i′
dq

dxq
ϕ

p,wfs
0,i′ (x0,i) = δq,0 · f (x0,i) +δq,1 · (f (x0,1)− f (x0,0)) =

dq

dxq
f0(x0,i)

for q = 0, . . . , p−1
2 by lines 3 and 4 of Alg. 4.6.

For the induction step case (`− 1)→ `, it suffices to show that

(A.56)
dq

dxq
f`−1(x`,i)

!
=

`−1
∑

`′=0

∑

i′∈I`′

y`′,i′
dq

dxq
ϕ

p,wfs
`′,i′ (x`,i), i = 0, . . . , 2`, q = 0, . . . ,

p− 1
2

.

Indeed, if (A.56) holds, then we obtain by lines 9 and 13 of Alg. 4.6

dq

dxq
f`(x`,i) =

dq

dxq
f`−1(x`,i) +

dq

dxq
r(`)
`
(x`,i)(A.57a)

=
`−1
∑

`′=0

∑

i′∈I`′

y`′,i′
dq

dxq
ϕ

p,wfs
`′,i′ (x`,i) +

∑

i′∈I`

y`,i′
dq

dxq
ϕ

p,wfs
`,i′ (x`,i)(A.57b)

=
∑̀

`′=0

∑

i′∈I`′

y`′,i′
dq

dxq
ϕ

p,wfs
`′,i′ (x`,i),(A.57c)

which is the desired relation (4.84) for level `.

To prove (A.56), we separate two cases:

• i /∈ I`: In this case, the “true” level of x`,i is actually ≤ `−1. Therefore, we can apply

the induction hypothesis for Eq. (4.84) to obtain (A.56).

• i ∈ I`: In this case, we cannot directly apply the induction hypothesis, as it only holds

for grid points of levels≤ `−1. However, we note that in (A.56), the term dq

dxq f`−1(x`,i)

is the q-th derivative of the Hermite interpolant of the data dq′

dxq′ f`−1(x`,i±1) (q′ =
0, . . . , p−1

2), as determined in line 7 of Alg. 4.6. The “true” level of the grid points

x`,i±1 is actually ≤ `− 1 due to i ∈ I`. Hence, we can apply the induction hypothesis

240 APPENDIX A: PROOFS

for Eq. (4.84) to conclude that the interpolated data of dq

dxq f`−1(x`,i) are given by

(A.58)
dq′

dxq′
f`−1(x`,i±1) =

dq′

dxq′

`−1
∑

`′=0

∑

i′∈I`′

y`′,i′ϕ
p,wfs
`′,i′

(x`,i±1), q′ = 0, . . . ,
p− 1

2
.

The linear combination in square brackets is a polynomial of degree ≤ p on the

interval [x`,i−1, x`,i+1] by construction of the hierarchical basis functions ϕp,wfs
`′,i′ (`′ =

0, . . . ,`− 1, i′ ∈ I`′). Due to the uniqueness of Hermite interpolation (Lemma 4.26),

the interpolation polynomial of the data must coincide on [x`,i−1, x`,i+1] with the

term in square brackets. In particular, as x`,i ∈ [x`,i−1, x`,i+1], we obtain the claim

(A.56).

In both cases, we obtain the desired relation (A.56). �

COROLLARY 4.28 Algorithm 4.6 is correct.

PROOF By Prop. 4.27 (q = 0), we have

(A.59)
n
∑

`′=0

∑

i′∈I`′

y`′,i′ϕ
p,wfs
`′,i′ (x`,i) =

∑̀

`′=0

∑

i′∈I`′

y`′,i′ϕ
p,wfs
`′,i′ (x`,i) = f`(x`,i), `≤ n, i ∈ I`,

as ϕp,wfs
`′,i′ (x`,i) = 0 if `′ > ` (weakly fundamental property (4.77)). Line 13 of Alg. 4.6

implies f`(x`,i) = f`−1(x`,i) + r(`)
`
(x`,i), and by lines 8 and 10, the second summand

r(`)
`
(x`,i) equals f (x`,i) − f`−1(x`,i), which cancels out the first summand, resulting in

f`(x`,i) = f (x`,i). Combining these statements, we obtain

(A.60) f s(x`,i) = f (x`,i), `≤ n, i ∈ I`, where f s :=
n
∑

`′=0

∑

i′∈I`′

y`′,i′ϕ
p,wfs
`′,i′ .

This means that f s is the correct hierarchical interpolant of the given function values (see

Eq. (4.2)). Due to the uniqueness of hierarchical surpluses, the coefficients y`,i (which

are the output of Alg. 4.6) must coincide with the surpluses α`,i. �

241

B
Test Problems for Optimization

In the following, we give formal definitions of the test problems mentioned in Sec. 5.3.

For each problem, we state the objective function f̄ : [a, b]→ R, x̄ 7→ f̄ (x̄), its domain

[a, b] (where x̄ ∈ [a, b]), the location x̄ opt ∈ [a, b] of its global minimum, and its

minimal value f̄ (x̄ opt) (and the constraint function ḡ : [a, b]→ Rmḡ , if any). Plots of the

test problems are given in Figures 5.3 and 5.4.

B.1 Unconstrained Problems

B.1.1 Bivariate Unconstrained Problems

Branin02. The function originates from [Mun98]. Compared to [Mun98], we changed

the domain from [−5, 10]× [0, 15] to [−5, 15]2, which seems more common in recent lit-

erature [Gav13]. In addition, [Mun98] uses the reciprocal function value, while searching

for the maximum instead of the minimum.

f̄Bra02(x̄) :=

�

−
51 x̄2

1

40π2
+

5 x̄1

π
+ x̄2 − 6

�2

+
�

10−
5

4π

�

cos(x̄1) cos(x̄2)(B.1a)

+ ln(x̄2
1 + x̄2

2 + 1) + 10,

x̄ ∈ [−5,15]2, x̄ opt = (−3.196988424804,12.52625788532),(B.1b)

f̄Bra02(x̄
opt) = 5.558914403894(B.1c)

242 APPENDIX B: TEST PROBLEMS FOR OPTIMIZATION

GoldsteinPrice. This function originates from [Gol71], where the function was stated

without bounds for the optimization domain. We took the domain [−2, 2]2 from [Gav13].
In addition, we scaled the function values by the factor 10−4 for the sake of plotting.

f̄GoP(x̄) := 10−4 ·
�

1+ (x̄1 + x̄2 + 1)2(19− 14 x̄1 + 3 x̄2
1 − 14 x̄2 + 6 x̄1 x̄2 + 3 x̄2

2)
�

(B.2a)

·
�

30+ (2 x̄1 − 3 x̄2)
2(18− 32 x̄1 + 12 x̄2

1 + 48 x̄2 − 36 x̄1 x̄2 + 27 x̄2
2)
�

,

x̄ ∈ [−2,2]2, x̄ opt = (0,−1),(B.2b)

f̄GoP(x̄
opt) = 3 · 10−4(B.2c)

Schwefel06. This function originates from [Schw77]. We changed the domain from

[−3, 5]× [−1, 7] to [−6, 4]2, such that the optimum point is not located at the center of

the optimization domain.

f̄Sch06(x̄) :=max(| x̄1 + 2 x̄2 − 7|, |2 x̄1 + x̄2 − 5|),(B.3a)

x̄ ∈ [−6,4]2, x̄ opt = (1,3), f̄Sch06(x̄
opt) = 0(B.3b)

B.1.2 d-Variate Unconstrained Problems

Ackley. The form of this function originates from [Ack87], where it was stated only for

two variables. We use the generalization to d variables from [Gav13]. The optimization

domain [1.5,6.5]d was chosen such that it does not contain 0, where the gradient of

the objective function becomes singular. Otherwise, the function would not be contin-

uously differentiable, which would be a disadvantage for spline-based approaches (see

Schwefel06 and Schwefel22 for functions with discontinuous derivatives).

f̄Ack(x̄) := −20exp
�

−
‖x̄‖2

5
p

d

�

− exp

�

1
d

d
∑

t=1

cos(2π x̄ t)

�

+ 20+ e,(B.4a)

x̄ ∈ [1.5,6.5]d , x̄ opt = 1.974451986484 · 1, f̄Ack(x̄
opt) = 6.559645375628(B.4b)

Alpine02. This function originates from [Cle99]. We changed the domain from [0, 10]d

to [2, 10]d to exclude the singularities of the derivative of the objective function at x̄ t = 0.

In addition, the author of [Cle99] searched for maximal points. For minimization, we

changed the sign of the objective function.

f̄Alp02(x̄) := −
d
∏

t=1

p

x̄ t sin(x̄ t), x̄ ∈ [2,10]d ,(B.5a)

x̄ opt = 7.917052684666 · 1, f̄Alp02(x̄
opt) = −2.808131180070d(B.5b)

B.2 CONSTRAINED PROBLEMS 243

Schwefel22. This function originates from [Schw77]. We changed the domain from

[−10,10]d to [−3,7]d , such that the optimum point is not located at the center of the

optimization domain.

f̄Sch22(x̄) :=
d
∑

t=1

| x̄ t |+
d
∏

t=1

| x̄ t |, x̄ ∈ [−3,7]d ,(B.6a)

x̄ opt = 0, f̄Sch22(x̄
opt) = 0(B.6b)

B.2 Constrained Problems

G08. This problem originates from [Schoena93]. We changed the domain from [0, 10]2

to [0.5,2.5]× [3,6] to increase the size of feasible region. In addition, we use different

frequencies for the sine terms as in [Gav13].

f̄G08(x̄) := −
sin3(2π x̄1) sin(2π x̄2)

x̄3
1(x̄1 + x̄2)

, ḡ G08(x̄) :=

�

x̄2
1 − x̄2 + 1

1− x̄1 + (x̄2 − 4)2

�

,(B.7a)

x̄ ∈ [0.5,2.5]× [3,6], x̄ opt = (1.227971358337,4.245373366474),(B.7b)

f̄G08(x̄
opt) = −0.09582504141804(B.7c)

G04Squared. This problem is based on a problem from [Col68] with the objective

function f̄G04(x̄) := 5.3578547 x̄2
3 + 0.8356891 x̄1 x̄5 + 37.293239 x̄1 − 40792.141 and the

same constraints ḡ G04(x̄) := ḡ G04Sq(x̄). However, hierarchical cubic not-a-knot B-splines

are able to exactly represent the polynomial f̄G04 of coordinate degree two on the whole

domain [0,1], if the level of the sparse grids is high enough, see Corollary 3.11 (sparse

grid with not-a-knot B-splines contains polynomials). Therefore, we modified the original

G04 problem by squaring the objective function. To ensure that this does not change the

location of the global minimum, we added a constant before squaring such that the shifted

function is non-negative on [0,1].

f̄G04Sq(x̄) := (5.3578547 x̄2
3 + 0.8356891 x̄1 x̄5 + 37.293239 x̄1 − 10120)2,(B.8a)

ḡ G04Sq(x̄) := 10−3

85334.407+ 5.6858 x̄2 x̄5 + 0.6262 x̄1 x̄4 − 2.2053 x̄3 x̄5 − 92000

−85334.407− 5.6858 x̄2 x̄5 − 0.6262 x̄1 x̄4 + 2.2053 x̄3 x̄5

80512.49+ 7.1317 x̄2 x̄5 + 2.9955 x̄1 x̄2 + 2.1813 x̄2
3 − 110000

−80512.49− 7.1317 x̄2 x̄5 − 2.9955 x̄1 x̄2 − 2.1813 x̄2
3 + 90000

9300.961+ 4.7026 x̄3 x̄5 + 1.2547 x̄1 x̄3 + 1.9085 x̄3 x̄4 − 25000

−9300.961− 4.7026 x̄3 x̄5 − 1.2547 x̄1 x̄3 − 1.9085 x̄3 x̄4 + 20000

,(B.8b)

244 APPENDIX B: TEST PROBLEMS FOR OPTIMIZATION

x̄ ∈ [78,102]× [33,45]× [27,45]3,(B.8c)

x̄ opt = (78,33,29.995256025682, 45,36.775812905788),(B.8d)

f̄G04Sq(x̄
opt) = 43.590737882363(B.8e)

245

C
Detailed Results for Topology

Optimization

This appendix complements Sec. 6.4. It contains visualizations of the topologically opti-

mal structures in the 2D L-shape and the 3D scenarios in Fig. C.1 and Fig. C.2, respectively.

In addition, we report details of the corresponding optimization runs in Tab. C.1 and infor-

mation about the employed spatially adaptive sparse grids in Tab. 6.2. The computation

times were measured on a shared-memory computer with 4x Intel Xeon E7-8880v3 (72

cores, 144 threads).

246 APPENDIX C: DETAILED RESULTS (TOPOLOGY OPTIMIZATION)

A 2D cross B 2D framed cross

C 2D sheared cross D 2D sheared framed cross

FIGURE C.1 Topologically optimal structures in the 2D L-shape scenario for different micro-
cell models using cubic B-splines (spatially adaptive grids with around 10000
points). The colors indicate the length of the displacement, where dark regions
correspond to weak displacements and bright regions to strong displacements.
The color map is the same as in Fig. 6.9. Only bars with widths ≥ 0.1 are
shown. More details can be found in Tab. C.1.

247

A 3D cantilever, 3D cross B 3D cantilever, 3D sheared cross

C 3D center-load, 3D cross

D 3D center-load, 3D sheared cross

FIGURE C.2 Topologically optimal structures in the 3D cantilever and center-load scenarios
for different micro-cell models using cubic B-splines (spatially adaptive grids
with around 10000 points). More details can be found in Tab. C.1.

248 APPENDIX C: DETAILED RESULTS (TOPOLOGY OPTIMIZATION)

Scenario Model #Iter. Jopt,∗ J s,opt,∗ O.-i. gap Time

2D-C 547 74.974 74.974 3.67 · 10−5 5 min
2D-FC 249 70.816 69.409 1.41 · 100 14 min
2D-SC 2196 67.809 67.804 5.21 · 10−3 1 h 06 min2D cantilever

2D-SFC 749 68.602 65.201 3.40 · 100 15 min

2D-C 289 183.68 183.68 9.06 · 10−5 3 min
2D-FC 602 177.51 174.49 3.02 · 100 17 min
2D-SC 1609 169.60 169.60 7.33 · 10−3 33 min2D L-shape

2D-SFC 574 174.55 158.19 1.64 · 101 8 min

3D-C 39 247.60 247.49 1.13 · 10−1 10 min
3D cantilever

3D-SC 608 162.59 159.33 3.25 · 100 3 h 17 min

3D-C 35 169.27 169.27 3.31 · 10−3 4 min
3D center-load

3D-SC 1026 46.171 45.571 6.00 · 10−1 2 h 25 min

TABLE C.1 Detailed information about the optimization runs corresponding to Tab. 6.2
and Figures 6.9, C.1, and C.2, which employs cubic B-splines (p = 3) on the
spatially adaptive grids listed in Tab. 6.2. From left to right, the columns contain
the optimization scenario, the micro-cell model, the number of optimization
iterations, the actual compliance value Jopt,∗ := J(x opt,∗,(1), . . . , x opt,∗,(M)), the
approximated compliance value J s,opt,∗ := J s(x opt,∗,(1), . . . , x opt,∗,(M)) as reported
by the optimizer, the optimality-interpolation gaps |Jopt,∗ − J s,opt,∗|, and the
computation time of the online phase (without the time to generate the sparse
grid data).

Model d N Threshold Rel. err. Eval. time

2D-C 2 10197 2.15 · 10−5 2.24 · 10−5 6.96 s
2D-FC 4 10502 7.94 · 10−1 1.81 · 10−2 7.45 s
2D-SC 3 10723 4.64 · 10−3 1.49 · 10−3 8.72 s
2D-SFC 5 10694 5.01 · 100 4.82 · 10−2 7.45 s

3D-C 3 9207 7.94 · 10−2 3.18 · 10−3 33.5 s
3D-SC 5 15389 5.01 · 100 4.95 · 10−2 40.0 s

TABLE C.2 Detailed information about the spatially adaptive sparse grids used for Tables 6.2
and C.1 and Figures 6.9, C.1, and C.2. The columns correspond to the micro-cell
model, the number d of micro-cell parameters, the number N of sparse grid
points, the threshold κ used in the grid generation algorithm, the relative L2

spectral interpolation error

‖E(·)− Echol,s(·)‖2

L2 /

‖E(·)‖2

L2 , and the time
needed to evaluate the elasticity tensor E(x k) at a single grid point x k.

249

Bibliography

[Ack87] Ackley, D. H.: A Connectionist Machine for Genetic Hillclimbing, Kluwer Academic
Publishers, 1987, isbn:978-0-89838-236-5

[All04] Allaire, G.: Topology optimization with the homogenization and the level-set methods,
Nonlinear Homogenization and its Applications to Composites, Polycrystals and
Smart Materials, ed. by Ponte Castaneda, P.; Telega, J. J.; Gambin, B., NATO
Science Series II: Mathematics, Physics and Chemistry 170, Springer, 2004, pp. 1–
13, doi:10.1007/1-4020-2623-4_1

[All16] Allaire, G.; Jouve, F.: Towards efficient and reliable topology optimization of struc-
tures, ECCOMAS Newsletter – June 2016, ed. by Ramm, E. et al., 2016, pp. 6–
9, https://web.archive.org/web/20181004085628/http://www.eccomas.org/cvdata/cntr1/spc22/

dtos/img/mdia/ECCOMAS-NL-2016-(1).pdf

[An84] An, K. N. et al.: Determination of muscle orientations and moment arms, Journal of
Biomechanical Engineering 106.3, 1984, pp. 280–282, doi:10.1115/1.3138494

[Ani00] Anile, A. M. et al.: Modeling uncertain data with fuzzy B-splines, Fuzzy Sets and
Systems 113.3, 2000, pp. 397–410, doi:10.1016/S0165-0114(98)00146-8

[Baa15] Baar, J. H. S. de; Harding, B.: A gradient-enhanced sparse grid algorithm for
uncertainty quantification, International Journal for Uncertainty Quantification
5.5, 2015, pp. 453–468, doi:10.1615/Int.J.UncertaintyQuantification.2015014394

[Bac01] Bachau, H. et al.: Applications of B-splines in atomic and molecular physics, Reports
on Progress in Physics 64.12, 2001, pp. 1815–1942, doi:10.1088/0034-4885/64/12/205

[Bal94] Balder, R.: Adaptive Verfahren für elliptische und parabolische Differentialgleichun-
gen auf dünnen Gittern, PhD thesis, Technical University of Munich, Institute of
Computer Science, 1994

[Bel57] Bellman, R.: Dynamic Programming, Princeton University Press, 1957, isbn:978-0-
691-07951-6

[Bel61] Bellman, R.: Adaptive Control Processes: A Guided Tour, Princeton University Press,
1961, isbn:978-1-4008-7466-8

[Ben24] Benoît, E.: Note sur une méthode de résolution des équations normales provenant
de l’application de la méthode des moindres carrés à un système d’équations linéaires
en nombre inférieur à celui des inconnues, Application de la méthode a la résolution
d’un systeme défini d’équations linéaires, Bulletin Géodésique 2, 1924, pp. 67–77,
doi:10.1007/BF03031308

https://www.amazon.com/s/?field-keywords=978-0-89838-236-5
https://doi.org/10.1007/1-4020-2623-4_1
https://web.archive.org/web/20181004085628/http://www.eccomas.org/cvdata/cntr1/spc22/dtos/img/mdia/ECCOMAS-NL-2016-(1).pdf
https://web.archive.org/web/20181004085628/http://www.eccomas.org/cvdata/cntr1/spc22/dtos/img/mdia/ECCOMAS-NL-2016-(1).pdf
https://doi.org/10.1115/1.3138494
https://doi.org/10.1016/S0165-0114(98)00146-8
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2015014394
https://doi.org/10.1088/0034-4885/64/12/205
https://www.amazon.com/s/?field-keywords=978-0-691-07951-6
https://www.amazon.com/s/?field-keywords=978-0-691-07951-6
https://www.amazon.com/s/?field-keywords=978-1-4008-7466-8
https://doi.org/10.1007/BF03031308

250 BIBLIOGRAPHY

[Boh18] Bohn, B.; Griebel, M.; Oettershagen, J.: Optimally Rotated Coordinate Systems
for Adaptive Least-Squares Regression on Sparse Grids, 2018, https://arxiv.org/abs/

1810.06749v1

[Bón15] Bóna, M.: Introduction to Enumerative and Analytic Combinatorics, 2nd ed., CRC
Press, 2015, isbn:978-1-4822-4909-5

[Boor16] Boor, C. de: A comment on Ewald Quak’s “About B-splines”, Journal of Numerical
Analysis and Approximation Theory 45.1, 2016, pp. 84–86

[Boor72] Boor, C. de: On calculating with B-splines, Journal of Approximation Theory 6.1,
1972, pp. 50–62, doi:10.1016/0021-9045(72)90080-9

[Boor76] Boor, C. de: Splines as linear combinations of B-splines. A survey, Approximation
Theory II, ed. by Lorentz, G. G.; Chui, C. K.; Schumaker, L. L., Academic Press,
1976

[Boos85] Boos, D. D.: A converse to Scheffé’s theorem, The Annals of Statistics 13.1, 1985,
pp. 423–427, doi:10.1214/aos/1176346604

[Boy04] Boyd, S.; Vandenberghe, L.: Convex Optimization, Cambridge University Press,
2004, isbn:978-0-521-83378-3

[Bru17] Brumm, J.; Scheidegger, S.: Using adaptive sparse grids to solve high-dimensional
dynamic models, Econometrica 85.5, 2017, pp. 1575–1612, doi:10.3982/ECTA12216

[Buc90] Buckley, J. J.; Qu, Y.: On using α-cuts to evaluate fuzzy equations, Fuzzy Sets and
Systems 38.3, 1990, pp. 309–312, doi:10.1016/0165-0114(90)90204-J

[Bun04] Bungartz, H.-J.; Griebel, M.: Sparse grids, Acta Numerica 13, 2004, pp. 147–269,
doi:10.1017/S0962492904000182

[Bun14] Bungartz, H.-J. et al.: Modeling and Simulation, An Application-Oriented Intro-
duction, Springer Undergraduate Texts in Mathematics and Technology, Springer,
2014, isbn:978-3-642-39523-9

[Bun92] Bungartz, H.-J.: Dünne Gitter und deren Anwendung bei der adaptiven Lösung der
dreidimensionalen Poisson-Gleichung, PhD thesis, Technical University of Munich,
Institute of Computer Science, 1992

[Bun98] Bungartz, H.-J.: Finite Elements of Higher Order on Sparse Grids, Habilitation thesis,
Technical University of Munich, Institute of Computer Science, 1998

[Cai10] Cai, Y.; Judd, K. L.: Stable and efficient computational methods for dynamic pro-
gramming, Journal of the European Economic Association 8.2–3, 2010, pp. 626–
634, doi:10.1111/j.1542-4774.2010.tb00532.x

[Chu92] Chui, C. K.: An Introduction to Wavelets, Wavelet Analysis and Its Applications 1,
Academic Press, 1992, isbn:978-0-12-174584-4

[Cle99] Clerc, M.: The swarm and the queen: Towards a deterministic and adaptive particle
swarm optimization, Proceedings of the 1999 Congress on Evolutionary Computa-
tion – CEC99, IEEE, 1999, pp. 1951–1957, doi:10.1109/CEC.1999.785513

[Coh01] Cohen, E.; Riesenfeld, R. F.; Elber, G.: Geometric Modeling with Splines: An
Introduction, A K Peters, 2001, isbn:978-1-56881-137-6

[Col68] Colville, A. R.: A comparative study on nonlinear programming codes, technical
report 320-2949, IBM New York Scientific Center, 1968

https://arxiv.org/abs/1810.06749v1
https://arxiv.org/abs/1810.06749v1
https://www.amazon.com/s/?field-keywords=978-1-4822-4909-5
https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/10.1214/aos/1176346604
https://www.amazon.com/s/?field-keywords=978-0-521-83378-3
https://doi.org/10.3982/ECTA12216
https://doi.org/10.1016/0165-0114(90)90204-J
https://doi.org/10.1017/S0962492904000182
https://www.amazon.com/s/?field-keywords=978-3-642-39523-9
https://doi.org/10.1111/j.1542-4774.2010.tb00532.x
https://www.amazon.com/s/?field-keywords=978-0-12-174584-4
https://doi.org/10.1109/CEC.1999.785513
https://www.amazon.com/s/?field-keywords=978-1-56881-137-6

251

[Cot09] Cottrell, J. A.; Hughes, T. J. R.; Bazilevs, Y.: Isogeometric Analysis, Toward Inte-
gration of CAD and FEA, John Wiley & Sons, 2009, isbn:978-0-470-74873-2

[Cox72] Cox, M. G.: The numerical evaluation of B-splines, IMA Journal of Applied Mathe-
matics 10.2, 1972, pp. 134–149, doi:10.1093/imamat/10.2.134

[Delb14] Delbos, F.; Dumas, L.; Echagüe, E.: Global Optimization Based on Sparse Grid
Surrogate Models for Black-Box Expensive Functions, 2014, https://web.archive.org/

web/20181121161555/http://dumas.perso.math.cnrs.fr/JOGO.pdf

[Delv82] Delvos, F.-J.: d-variate Boolean interpolation, Journal of Approximation Theory
34, 1982, pp. 99–114, doi:10.1016/0021-9045(82)90085-5

[Delv89] Delvos, F.-J.; Schempp, W.: Boolean Methods in Interpolation and Approximation,
Pitman Research Notes in Mathematics 230, Longman, 1989, isbn:978-0-470-21583-8

[Don09] Donahue, M. M.; Buzzard, G. T.; Rundell, A. E.: Robust parameter identification
with adaptive sparse grid-based optimization for nonlinear systems biology models,
Proceedings of the 2009 American Control Conference, St. Louis: IEEE, 2009,
pp. 5055–5060, doi:10.1109/ACC.2009.5160512

[Fere05] Ferenczi, I.: Globale Optimierung unter Nebenbedingungen mit dünnen Gittern,
Diploma thesis, Technical University of Munich, Department of Mathematics, 2005

[Fern05] Fernandez, J. W.; Hunter, P. J.: An anatomically based patient-specific finite element
model of patella articulation: Towards a diagnostic tool, Biomechanics and Modeling
in Mechanobiology 4.1, 2005, pp. 20–38, doi:10.1007/s10237-005-0072-0

[Fra16] Franzelin, F.; Pflüger, D.: From data to uncertainty: An efficient integrated data-
driven sparse grid approach to propagate uncertainty, Sparse Grids and Applications
– Stuttgart 2014, ed. by Garcke, J.; Pflüger, D., Lecture Notes in Computational Sci-
ence and Engineering 109, Springer, 2016, pp. 29–49, doi:10.1007/978-3-319-28262-

6_2

[Fra17] Franzelin, F.: Data-Driven Uncertainty Quantification for Large-Scale Simulations,
PhD thesis, University of Stuttgart, Department of Computer Science, IPVS, 2017

[Fre07] Freund, R. W.; Hoppe, R. H. W.: Stoer/Bulirsch:Numerische Mathematik 1, 10th ed.,
Springer, 2007, isbn:978-3-540-45389-5

[Gao12] Gao, F.; Han, L.: Implementing the Nelder-Mead simplex algorithm with adaptive
parameters, Computational Optimization and Applications 51.1, 2012, pp. 256–
277, doi:10.1007/s10589-010-9329-3

[Gar01] Garcke, J.; Griebel, M.; Thess, M.: Data mining with sparse grids, Computing
67.3, 2001, pp. 225–253, doi:10.1007/s006070170007

[Gar13] Garcke, J.: Sparse grids in a nutshell, Sparse Grids and Applications, ed. by Gar-
cke, J.; Griebel, M., Lecture Notes in Computational Science and Engineering 88,
Springer, 2013, pp. 57–80, doi:10.1007/978-3-642-31703-3_3

[Gav13] Gavana, A.: Global Optimization Benchmarks and AMPGO, Test Functions Index,
2013, https://web.archive.org/web/20171217080109/http://infinity77.net/global_optimizat
ion/test_functions.html

[Ger98] Gerstner, T.; Griebel, M.: Numerical integration using sparse grids, Numerical
Algorithms 18.3–4, 1998, pp. 209–232, doi:10.1023/A:1019129717644

https://www.amazon.com/s/?field-keywords=978-0-470-74873-2
https://doi.org/10.1093/imamat/10.2.134
https://web.archive.org/web/20181121161555/http://dumas.perso.math.cnrs.fr/JOGO.pdf
https://web.archive.org/web/20181121161555/http://dumas.perso.math.cnrs.fr/JOGO.pdf
https://doi.org/10.1016/0021-9045(82)90085-5
https://www.amazon.com/s/?field-keywords=978-0-470-21583-8
https://doi.org/10.1109/ACC.2009.5160512
https://doi.org/10.1007/s10237-005-0072-0
https://doi.org/10.1007/978-3-319-28262-6_2
https://doi.org/10.1007/978-3-319-28262-6_2
https://www.amazon.com/s/?field-keywords=978-3-540-45389-5
https://doi.org/10.1007/s10589-010-9329-3
https://doi.org/10.1007/s006070170007
https://doi.org/10.1007/978-3-642-31703-3_3
https://web.archive.org/web/20171217080109/http://infinity77.net/global_optimization/test_functions.html
https://web.archive.org/web/20171217080109/http://infinity77.net/global_optimization/test_functions.html
https://doi.org/10.1023/A:1019129717644

252 BIBLIOGRAPHY

[Gol71] Goldstein, A. A.; Price, J. F.: On descent from local minima, Mathematics of Com-
putation 25.115, 1971, pp. 569–574, doi:10.2307/2005219

[Gra94] Graham, R. L.; Knuth, D. E.; Patashnik, O.: Concrete Mathematics, A Foundation
of Computer Science, 2nd ed., Addison-Wesley, 1994, isbn:978-0-201-55802-9

[Gri10] Griebel, M.; Hegland, M.: A finite element method for density estimation with
gaussian process priors, SIAM Journal on Numerical Analysis 47.6, 2010, pp. 4759–
4792, doi:10.1137/080736478

[Gri92] Griebel, M.; Schneider, M.; Zenger, C.: A combination technique for the solution
of sparse grid problems, Proceedings of the IMACS International Symposium on
Iterative Methods in Linear Algebra, ed. by Groen, P. de; Beauwens, R., North
Holland, 1992, pp. 263–281, isbn:978-0-444-89248-5

[Hanse03] Hansen, N.; Müller, S. D.; Koumoutsakos, P.: Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (CMA-ES),
Evolutionary Computation 11.1, 2003, pp. 1–18, doi:10.1162/106365603321828970

[Hanss05] Hanss, M.: Applied Fuzzy Arithmetic, An Introduction with Engineering Applications,
Springer, 2005, isbn:978-3-540-24201-7

[Hee18] Heene, M.: A Massively Parallel Combination Technique for the Solution of High-Di-
mensional PDEs, PhD thesis, University of Stuttgart, Institute for Parallel and Dis-
tributed Systems, 2018, doi:10.18419/opus-9893

[Heg07] Hegland, M.; Garcke, J.; Challis, V.: The combination technique and some gen-
eralisations, Linear Algebra and its Applications 420.2–3, 2007, pp. 249–275,
doi:10.1016/j.laa.2006.07.014

[Hei14] Heidlauf, T.; Röhrle, O.: A multiscale chemo-electro-mechanical skeletal muscle
model to analyze muscle contraction and force generation for different muscle fiber
arrangements, Frontiers in Physiology 5, 498, 2014, pp. 1–14, doi:10.3389/fphys.

2014.00498

[Hig02] Higham, N. J.: Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM,
2002, isbn:978-0-89871-521-7

[Höl03] Höllig, K.: Finite Element Methods with B-Splines, SIAM, 2003, isbn:978-0-89871-699-
3

[Höl12] Höllig, K.; Hörner, J.; Hoffacker, A.: Finite element analysis with B-splines: Weight-
ed and isogeometric methods, Curves and Surfaces: 7th International Conference
on Curves and Surfaces, ed. by Boissonnat, J.-D. et al., Lecture Notes in Computer
Science 6920, Springer, 2012, doi:10.1007/978-3-642-27413-8_21

[Höl13] Höllig, K.; Hörner, J.: Approximation and Modeling with B-Splines, SIAM, 2013,
isbn:978-1-611972-94-8

[Hor16] Horneff, V.; Maurer, R.; Schober, P.: Efficient parallel solution methods for dynamic
portfolio choice models in discrete time, working paper, SSRN, 2016, doi:10.2139/ssrn.
2665031

[Hüb14] Hübner, D.: Mehrdimensionale Parametrisierung der Mikrozellen in der Zwei-Skalen-
Optimierung, Master’s thesis, FAU Erlangen-Nürnberg, Department of Mathematics,
2014

https://doi.org/10.2307/2005219
https://www.amazon.com/s/?field-keywords=978-0-201-55802-9
https://doi.org/10.1137/080736478
https://www.amazon.com/s/?field-keywords=978-0-444-89248-5
https://doi.org/10.1162/106365603321828970
https://www.amazon.com/s/?field-keywords=978-3-540-24201-7
https://doi.org/10.18419/opus-9893
https://doi.org/10.1016/j.laa.2006.07.014
https://doi.org/10.3389/fphys.2014.00498
https://doi.org/10.3389/fphys.2014.00498
https://www.amazon.com/s/?field-keywords=978-0-89871-521-7
https://www.amazon.com/s/?field-keywords=978-0-89871-699-3
https://www.amazon.com/s/?field-keywords=978-0-89871-699-3
https://doi.org/10.1007/978-3-642-27413-8_21
https://www.amazon.com/s/?field-keywords=978-1-611972-94-8
https://doi.org/10.2139/ssrn.2665031
https://doi.org/10.2139/ssrn.2665031

253

[Jud14] Judd, K. L. et al.: Smolyak method for solving dynamic economic models: Lagrange
interpolation, anisotropic grid and adaptive domain, Journal of Economic Dynamics
and Control 44, 2014, pp. 92–123, doi:10.1016/j.jedc.2014.03.003

[Kal10] Kaltenbacher, M.: Advanced simulation tool for the design of sensors and actuators,
Procedia Engineering 5, 2010: Eurosensor XXIV Conference, 5–8 September 2010,
Linz, Austria, ed. by Jakoby, B.; Vellekoop, M. J., pp. 597–600, doi:10.1016/j.proeng.
2010.09.180

[Ken95] Kennedy, J.; Eberhart, R.: Particle swarm optimization, 1995 IEEE International
Conference on Neural Networks, vol. 4, IEEE, 1995, pp. 1942–1948, doi:10.1109/

ICNN.1995.488968

[Kir14] Kiranyaz, S.; Ince, T.; Gabbouj, M.: Multidimensional Particle Swarm Optimization
for Machine Learning and Pattern Recognition, Adaptation, Learning, and Optimiza-
tion 15, Springer, 2014, isbn:978-3-642-37845-4

[Kli05] Klimke, A.; Wohlmuth, B.: Algorithm 847: spinterp, Piecewise multilinear hier-
archical sparse grid interpolation in matlab, ACM Transactions on Mathematical
Software 31.4, 2005, pp. 561–579, doi:10.1145/1114268.1114275

[Kli06] Klimke, W. A.: Uncertainty Modeling Using Fuzzy Arithmetic and Sparse Grids,
Industriemathematik und Angewandte Mathematik, Shaker Verlag, 2006, isbn:978-
3-8322-4766-9

[Knu74] Knuth, D. E.: Structured programming with go to statements, ACM Computing
Surveys 6.4, 1974, pp. 261–301, doi:10.1145/356635.356640

[Knu77] Knuth, D. E.: Notes on the van Emde Boas Construction of Priority Deques: An
Instructive Use of Recursion, 1977, https://web.archive.org/web/20180116050102/https:

//staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf, published as: The Correspondence be-
tween Donald E. Knuth and Peter van Emde Boas on Priority Deques During the
Spring of 1977

[Kud95] Kudryavtsev, L. D.: Implicit function, Encyclopaedia of Mathematics, vol. 3: Heaps
and Semi-Heaps–Moments, Method of (in Probability Theory), ed. by Hazewinkel,
M., Kluwer Academic Publishers, 1995, pp. 145–147, isbn:978-1-55608-010-4

[Laa87] Laarhoven, P. J. M. van; Aarts, E. H. L.: Simulated Annealing: Theory and Applica-
tions, Mathematics and Its Applications, Kluwer, 1987, isbn:978-90-481-8438-5

[Lee09] Lee, S.-H.; Sifakis, E.; Terzopoulos, D.: Comprehensive biomechanical modeling
and simulation of the upper body, ACM Transactions on Graphics 28.4, 99, 2009,
pp. 1–17, doi:10.1145/1559755.1559756

[Lem05] Lemos, R. R. et al.: Modeling and simulating the deformation of human skeletal
muscle based on anatomy and physiology, Computer Animation and Virtual Worlds
16.3–4, 2005, pp. 319–330, doi:10.1002/cav.83

[Mar16] Martin, F.: Formoptimierung elastischer Bauteile mit gewichteten B-Splines, Best-
Masters, Springer Spektrum, 2016, isbn:978-3-658-13293-4

[Mar17] Martin, F.: WEB-Spline Approximation and Collocation for Singular and Time-
Dependent Problems, Shaker Verlag, 2017, isbn:978-3-8440-5428-6

[McC04] McCurdy, C. W.; Martín, F.: Implementation of exterior complex scaling in B-splines
to solve atomic and molecular collision problems, Journal of Physics B: Atomic,

https://doi.org/10.1016/j.jedc.2014.03.003
https://doi.org/10.1016/j.proeng.2010.09.180
https://doi.org/10.1016/j.proeng.2010.09.180
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://www.amazon.com/s/?field-keywords=978-3-642-37845-4
https://doi.org/10.1145/1114268.1114275
https://www.amazon.com/s/?field-keywords=978-3-8322-4766-9
https://www.amazon.com/s/?field-keywords=978-3-8322-4766-9
https://doi.org/10.1145/356635.356640
https://web.archive.org/web/20180116050102/https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf
https://web.archive.org/web/20180116050102/https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf
https://www.amazon.com/s/?field-keywords=978-1-55608-010-4
https://www.amazon.com/s/?field-keywords=978-90-481-8438-5
https://doi.org/10.1145/1559755.1559756
https://doi.org/10.1002/cav.83
https://www.amazon.com/s/?field-keywords=978-3-658-13293-4
https://www.amazon.com/s/?field-keywords=978-3-8440-5428-6

254 BIBLIOGRAPHY

Molecular and Optical Physics 37.4, 2004, pp. 917–936, doi:10.1088/0953-4075/37/4/
017

[McK98] McKinnon, K. I. M.: Convergence of the Nelder–Mead simplex method to a non-
stationary point, SIAM Journal on Optimization 9.1, 1998, pp. 148–158, doi:

10.1137/s1052623496303482

[Mor87] Moré, J. J.; Wright, S. J.: Optimization Software Guide, Frontiers in Applied Math-
ematics 14, SIAM, 1987, isbn:978-0-89871-322-0

[Mül15] Müller-Freitag, J.: Ansätze zur Berücksichtigung von Schätzrisiken in der Asset
Allocation, Bachelor’s thesis, Goethe University Frankfurt, Faculty of Economics
and Business Administration, Department of Finance, 2015

[Mun98] Munteanu, C.; Lazarescu, V.: Global search using a new evolutionary framework:
The adaptive reservoir genetic algorithm, Complexity International 5, 1998, https://
web.archive.org/web/20110405204539/http://www.complexity.org.au/ci/vol05/munteanu/munte

anu.html

[Nel65] Nelder, J. A.; Mead, R.: A simplex method for function minimization, The Computer
Journal 7.4, 1965, pp. 308–313, doi:10.1093/comjnl/7.4.308

[Nob16] Nobile, F. et al.: An adaptive sparse grid algorithm for elliptic PDEs with lognormal
diffusion coefficient, Sparse Grids and Applications – Stuttgart 2014, ed. by Garcke,
J.; Pflüger, D., Lecture Notes in Computational Science and Engineering 109,
Springer, 2016, pp. 191–220, doi:10.1007/978-3-319-28262-6_8

[Noc99] Nocedal, J.; Wright, S. J.: Numerical Optimization, 2nd ed., Springer Series in
Operations Research, Springer, 1999, isbn:978-0-387-98793-4

[Nov96] Novak, E.; Ritter, K.: Global optimization using hyperbolic cross points, State of
the Art in Global Optimization, Computational Methods and Applications, ed. by
Floudas, C. A.; Pardalos, P. M., 1996, pp. 19–33, isbn:978-1-4613-3439-2

[Pan08] Pandey, D.: Regression with Spatially Adaptive Sparse Grids in Financial Appli-
cations, Master’s thesis, Technical University of Munich, Institute of Computer
Science, 2008

[Peh14] Peherstorfer, B.; Pflüger, D.; Bungartz, H.-J.: Density estimation with adap-
tive sparse grids for large data sets, Proceedings of the 2014 SIAM International
Conference on Data Mining, ed. by Zaki, M. et al., SIAM, 2014, pp. 443–451,
doi:10.1137/1.9781611973440.51

[Pfl10] Pflüger, D.: Spatially Adaptive Sparse Grids for High-Dimensional Problems, Verlag
Dr. Hut, 2010, isbn:978-3-86853-555-6

[Pfl13] Pflüger, D.: Spatially adaptive refinement, Sparse Grids and Applications, ed. by
Garcke, J.; Griebel, M., Lecture Notes in Computational Science and Engineering
88, Springer, 2013, pp. 243–262, doi:10.1007/978-3-642-31703-3_12

[Pfl14] Pflüger, D. et al.: EXAHD: An exa-scalable two-level sparse grid approach for higher-
dimensional problems in plasma physics and beyond, Euro-Par 2014: Parallel Pro-
cessing Workshops, Revised Selected Papers, Part II, ed. by Lopes, L. et al., Lecture
Notes in Computer Science 8806, Springer, 2014, pp. 565–576, doi:10.1007/978-3-

319-14313-2_48

[Pfl16] Pflüger, D.; Mehl, M.; Valentin, J., et al.: The scalability-efficiency/maintainability-
portability trade-off in simulation software engineering: Examples and a preliminary

https://doi.org/10.1088/0953-4075/37/4/017
https://doi.org/10.1088/0953-4075/37/4/017
https://doi.org/10.1137/s1052623496303482
https://doi.org/10.1137/s1052623496303482
https://www.amazon.com/s/?field-keywords=978-0-89871-322-0
https://web.archive.org/web/20110405204539/http://www.complexity.org.au/ci/vol05/munteanu/munteanu.html
https://web.archive.org/web/20110405204539/http://www.complexity.org.au/ci/vol05/munteanu/munteanu.html
https://web.archive.org/web/20110405204539/http://www.complexity.org.au/ci/vol05/munteanu/munteanu.html
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1007/978-3-319-28262-6_8
https://www.amazon.com/s/?field-keywords=978-0-387-98793-4
https://www.amazon.com/s/?field-keywords=978-1-4613-3439-2
https://doi.org/10.1137/1.9781611973440.51
https://www.amazon.com/s/?field-keywords=978-3-86853-555-6
https://doi.org/10.1007/978-3-642-31703-3_12
https://doi.org/10.1007/978-3-319-14313-2_48
https://doi.org/10.1007/978-3-319-14313-2_48

255

systematic literature review, Proceedings of the 2016 Fourth International Work-
shop on Software Engineering for High Performance Computing in Computational
Science and Engineering (SE-HPCCSE 2016), Held in Conjunction with SC16, Salt
Lake City, Utah, IEEE, 2016, pp. 26–34, doi:10.1109/SE-HPCCSE.2016.008

[Pol71] Polak, E.: Computational Methods in Optimization, A Unified Approach, Mathemat-
ics in Science and Engineering 77, Academic Press, 1971, isbn:978-0-12-559350-2

[Pre07] Press, W. H. et al.: Numerical Recipes, The Art of Scientific Computing, 3rd ed.,
Cambridge University Press, 2007, isbn:978-0-521-88068-8

[Qia13] Qian, X.: Topology optimization in B-spline space, Computer Methods in Applied
Mechanics and Engineering 265, 2013, pp. 15–35, doi:10.1016/j.cma.2013.06.001

[Qua16] Quak, E.: About B-splines. Twenty answers to one question: What is the cubic
B-spline for the knots −2,−1,0,1,2? Journal of Numerical Analysis and Approxi-
mation Theory 45.1, 2016, pp. 37–83

[Rei13] Reinhardt, R.; Hoffmann, A.; Gerlach, T.: Nichtlineare Optimierung, Theorie, Nu-
merik und Experimente, Springer Spektrum, 2013, isbn:978-3-8274-2948-3

[Rie93] Riedmiller, M.; Braun, H.: A direct adaptive method for faster backpropagation
learning: The RPROP algorithm, 1993 IEEE International Conference on Neural
Networks, vol. 1, IEEE, 1993, pp. 586–591, doi:10.1109/ICNN.1993.298623

[Röh16] Röhrle, O.; Sprenger, M.; Schmitt, S.: A two-muscle, continuum-mechanical for-
ward simulation of the upper limb, Biomechanics and Modeling in Mechanobiology
16.3, 2016, pp. 743–762, doi:10.1007/s10237-016-0850-x

[Run00] Runarsson, T. P.; Yao, X.: Stochastic ranking for constrained evolutionary optimiza-
tion, IEEE Transactions on Evolutionary Computation 4.3, 2000, pp. 284–294,
doi:10.1109/4235.873238

[Rus18] Rust, J.: Dynamic programming, The New Palgrave Dictionary of Economics,
3rd ed., Palgrave Macmillan, 2018, pp. 3133–3158, isbn:978-1-349-95188-8

[Schn03] Schneider, P. J.; Eberly, D. H.: Geometric Tools for Computer Graphics, Morgan
Kaufmann, 2003, isbn:978-1-55860-594-7

[Schob18] Schober, P.: Solving dynamic portfolio choice models in discrete time using spatially
adaptive sparse grids, Sparse Grids and Applications – Miami 2016, ed. by Garcke,
J. et al., Lecture Notes in Computational Science and Engineering 123, Springer,
2018, pp. 135–173, doi:10.1007/978-3-319-75426-0_7

[Schoena93] Schoenauer, M.; Xanthakis, S.: Constrained GA optimization, Proceedings of the
5th International Conference on Genetic Algorithms, ed. by Forrest, S., Morgan
Kaufmann, 1993, pp. 573–580, isbn:978-1-55860-299-1

[Schoenb46] Schoenberg, I. J.: Contributions to the problem of approximation of equidistant data
by analytic functions, Quarterly Applied Mathematics 4, 1946, pp. 45–99, 112–141

[Schoenb67] Schoenberg, I. J.: On spline functions, Inequalities, Proceedings of a Symposium
Held at Wright-Patterson Air Force Base, Ohio, August 19–27, 1965, ed. by Shisha,
O., Academic Press, 1967, pp. 255–291, isbn:978-0-126-40350-3

[Schoenb72] Schoenberg, I. J.: Cardinal interpolation and spline functions: II, Interpolation of
data of power growth, Journal of Approximation Theory 6.4, 1972, doi:10.1016/0021-
9045(72)90048-2

https://doi.org/10.1109/SE-HPCCSE.2016.008
https://www.amazon.com/s/?field-keywords=978-0-12-559350-2
https://www.amazon.com/s/?field-keywords=978-0-521-88068-8
https://doi.org/10.1016/j.cma.2013.06.001
https://www.amazon.com/s/?field-keywords=978-3-8274-2948-3
https://doi.org/10.1109/ICNN.1993.298623
https://doi.org/10.1007/s10237-016-0850-x
https://doi.org/10.1109/4235.873238
https://www.amazon.com/s/?field-keywords=978-1-349-95188-8
https://www.amazon.com/s/?field-keywords=978-1-55860-594-7
https://doi.org/10.1007/978-3-319-75426-0_7
https://www.amazon.com/s/?field-keywords=978-1-55860-299-1
https://www.amazon.com/s/?field-keywords=978-0-126-40350-3
https://doi.org/10.1016/0021-9045(72)90048-2
https://doi.org/10.1016/0021-9045(72)90048-2

256 BIBLIOGRAPHY

[Schoenb73] Schoenberg, I. J.: Cardinal Spline Interpolation, CBMS-NSF Regional Conference
Series in Applied Mathematics 12, SIAM, 1973, isbn:978-0-89871-009-0

[Schw77] Schwefel, H.-P.: Numerische Optimierung von Computer-Modellen mittels der Evo-
lutionsstrategie, Mit einer vergleichenden Einführung in die Hill-Climbing- und
Zufallsstrategien, Interdisciplinary Systems Research 26, Birkhäuser, 1977, isbn:

978-3-7643-0876-6

[Shara11] Sharafi, B. et al.: Strains at the myotendinous junction predicted by a micromechan-
ical model, Journal of Biomechanics 44.16, 2011, pp. 2795–2801, doi:10.1016/j.

jbiomech.2011.08.025

[Sharp66] Sharpe, W. F.: Mutual fund performance, The Journal of Business 39.1, 1966,
pp. 119–138, doi:10.1086/294846

[Sic11] Sickel, W.; Ullrich, T.: Spline interpolation on sparse grids, Applicable Analysis
90.3–4, 2011, pp. 337–383, doi:10.1080/00036811.2010.495336

[Sig01] Sigmund, O.: A 99 line topology optimization code written in Matlab, Structural and
Multidisciplinary Optimization 21.2, 2001, pp. 120–127, doi:10.1007/s001580050176

[Smo63] Smolyak, S. A.: Quadrature and interpolation formulas for tensor products of certain
classes of functions, trans. from the Russian by Brown, J. R., Soviet Mathematics
Doklady 4, 1963, pp. 240–243, Russian original: Doklady Akademii Nauk SSSR
148.5, 1963, pp. 1042–1045

[Sön13] Sönnerlind, H.: Why All These Stresses and Strains? COMSOL Inc., 2013, https://
web.archive.org/web/20150920210345/https://www.comsol.com/blogs/why-all-these-stresses-

and-strains/

[Spi96] Spitzer, V. et al.: The Visible Human Male: A technical report, Journal of the Ameri-
can Medical Informatics Association 3.2, 1996, pp. 118–130, doi:10.1136/jamia.1996.
96236280

[Spr15] Sprenger, M.: A 3D Continuum-Mechanical Model for Forward-Dynamics Simula-
tions of the Upper Limb, PhD thesis, University of Stuttgart, Institute of Applied
Mechanics (Civil Engineering), 2015, doi:10.18419/opus-8777

[Sri10] Srinivas, N. et al.: Gaussian process optimization in the bandit setting: No regret and
experimental design, Proceedings of the 27th International Conference on Machine
Learning (ICML’10), Omnipress, 2010, pp. 1015–1022, isbn:978-1-60558-907-7

[Stor97] Storn, R.; Price, K.: Differential evolution – A simple and efficient heuristic for global
optimization over continuous spaces, Journal of Global Optimization 11.4, 1997,
pp. 341–359, doi:10.1023/A:1008202821328

[Stoy18] Stoyanov, M.: User Manual: Toolkit for Adaptive Stochastic Modeling and Non-
Intrusive Approximation (TASMANIAN), version 5.1, ORNL/TM-2015/596, 2018

[Tem82] Temljakov, V. N.: Approximation of periodic functions of several variables with
bounded mixed difference, trans. from the Russian by Cooke, R. L., Mathematics of
the USSR Sbornik 41.1, 1982, doi:10.1070/SM1982v041n01ABEH002220, Russian original:
Matematicheskii Sbornik 113(155).1(9), 1980, pp. 65–80

[Tou15] Toussaint, M.: Introduction to Optimization, lecture slides and exercices, 2015,
https://web.archive.org/web/20180619123151/https://ipvs.informatik.uni-stuttgart.de/mlr/

marc/teaching/15-Optimization/15-Optimization-script.pdf

https://www.amazon.com/s/?field-keywords=978-0-89871-009-0
https://www.amazon.com/s/?field-keywords=978-3-7643-0876-6
https://www.amazon.com/s/?field-keywords=978-3-7643-0876-6
https://doi.org/10.1016/j.jbiomech.2011.08.025
https://doi.org/10.1016/j.jbiomech.2011.08.025
https://doi.org/10.1086/294846
https://doi.org/10.1080/00036811.2010.495336
https://doi.org/10.1007/s001580050176
https://web.archive.org/web/20150920210345/https://www.comsol.com/blogs/why-all-these-stresses-and-strains/
https://web.archive.org/web/20150920210345/https://www.comsol.com/blogs/why-all-these-stresses-and-strains/
https://web.archive.org/web/20150920210345/https://www.comsol.com/blogs/why-all-these-stresses-and-strains/
https://doi.org/10.1136/jamia.1996.96236280
https://doi.org/10.1136/jamia.1996.96236280
https://doi.org/10.18419/opus-8777
https://www.amazon.com/s/?field-keywords=978-1-60558-907-7
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1070/SM1982v041n01ABEH002220
https://web.archive.org/web/20180619123151/https://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/15-Optimization/15-Optimization-script.pdf
https://web.archive.org/web/20180619123151/https://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/15-Optimization/15-Optimization-script.pdf

257

[Ulb12] Ulbrich, M.; Ulbrich, S.: Nichtlineare Optimierung, Mathematik Kompakt, Birkhäu-
ser, 2012, isbn:978-3-0346-0142-9

[Uns92] Unser, M.; Aldroubi, A.; Eden, M.: On the asymptotic convergence of B-spline
wavelets to gabor functions, IEEE Transactions on Information Theory 38.2, 1992,
pp. 864–872, doi:10.1109/18.119742

[Vald17] Valdez, S. I. et al.: Topology optimization benchmarks in 2D: Results for minimum
compliance and minimum volume in planar stress problems, Archives of Computa-
tional Methods in Engineering 24.4, 2017, pp. 803–839, doi:10.1007/s11831-016-9190-
3

[Vale12] Valentin, J.: Spline-Approximation unregelmä ig verteilter Daten, Bachelor’s thesis,
University of Stuttgart, Department of Mathematics, IMNG, 2012, doi:10.18419/opus-
5143

[Vale14] Valentin, J.: Hierarchische Optimierung mit Gradientenverfahren auf Dünngitter-
funktionen, Master’s thesis, University of Stuttgart, Department of Computer Sci-
ence, IPVS, 2014, doi:10.18419/opus-3462

[Vale16] Valentin, J.; Pflüger, D.: Hierarchical gradient-based optimization with B-splines
on sparse grids, Sparse Grids and Applications – Stuttgart 2014, ed. by Garcke,
J.; Pflüger, D., Lecture Notes in Computational Science and Engineering 109,
Springer, 2016, pp. 315–336, doi:10.1007/978-3-319-28262-6_13

[Vale18a] Valentin, J.; Pflüger, D.: Fundamental splines on sparse grids and their application
to gradient-based optimization, Sparse Grids and Applications – Miami 2016, ed. by
Garcke, J. et al., Lecture Notes in Computational Science and Engineering 123,
Springer, 2018, pp. 229–251, doi:10.1007/978-3-319-75426-0_10

[Vale18b] Valentin, J. et al.: Gradient-based optimization with B-splines on sparse grids for
solving forward-dynamics simulations of three-dimensional, continuum-mechanical
musculoskeletal system models, International Journal for Numerical Methods in
Biomedical Engineering 34.5, e2965, 2018, pp. 1–21, doi:10.1002/cnm.2965

[Wal16] Walz, N.-P.: Fuzzy Arithmetical Methods for Possibilistic Uncertainty Analysis, Shaker
Verlag, 2016, isbn:978-3-8440-4911-4

[Wan14] Wang, Z. et al.: Bayesian multi-scale optimistic optimization, Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics, Pro-
ceedings of Machine Learning Research 33, 2014, pp. 1005–1014

[Wer11] Werner, D.: Funktionalanalysis, 7th ed., Springer, 2011, isbn:978-3-642-21016-7

[Win10] Winschel, V.; Krätzig, M.: Solving, estimating, and selecting nonlinear dynamic
models without the curse of dimensionality, Econometrica 78.2, 2010, pp. 803–821,
doi:10.3982/ECTA6297

[Wol97] Wolpert, D. H.; Macready, W. G.: No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation 1.1, 1997, pp. 67–82, doi:10.1109/4235.
585893

[Wu13] Wu, T. et al.: Modelling facial expressions: A framework for simulating nonlinear
soft tissue deformations using embedded 3D muscles, Finite Elements in Analysis and
Design 76, 2013, pp. 63–70, doi:10.1016/j.finel.2013.08.002

[Xu16] Xu, K.: The Chebyshev points of the first kind, Applied Numerical Mathematics 102,
2016, pp. 17–30, doi:10.1016/j.apnum.2015.12.002

https://www.amazon.com/s/?field-keywords=978-3-0346-0142-9
https://doi.org/10.1109/18.119742
https://doi.org/10.1007/s11831-016-9190-3
https://doi.org/10.1007/s11831-016-9190-3
https://doi.org/10.18419/opus-5143
https://doi.org/10.18419/opus-5143
https://doi.org/10.18419/opus-3462
https://doi.org/10.1007/978-3-319-28262-6_13
https://doi.org/10.1007/978-3-319-75426-0_10
https://doi.org/10.1002/cnm.2965
https://www.amazon.com/s/?field-keywords=978-3-8440-4911-4
https://www.amazon.com/s/?field-keywords=978-3-642-21016-7
https://doi.org/10.3982/ECTA6297
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.finel.2013.08.002
https://doi.org/10.1016/j.apnum.2015.12.002

258 BIBLIOGRAPHY

[Zad75] Zadeh, L. A.: The concept of a linguistic variable and its application to approxi-
mate reasoning—I, Information Sciences 8.3, 1975, pp. 199–249, doi:10.1016/0020-
0255(75)90036-5

[Zak14] Zakaria, R.; Wahab, A. F.; Gobithaasan, R. U.: Fuzzy B-spline surface modeling,
Journal of Applied Mathematics 2014, 285045, 2014, pp. 1–8, doi:10.1155/2014/

285045

[Zen91] Zenger, C.: Sparse grids, Parallel Algorithms for Partial Differential Equations: Pro-
ceedings of the Sixth GAMM-Seminar, ed. by Hackbusch, W., Notes on Numerical
Fluid Mechanics 31, Vieweg, 1991, pp. 241–251, isbn:978-3-528-07631-3

[Zha17] Zhang, W. et al.: Topology optimization with closed B-splines and Boolean operations,
Computer Methods in Applied Mechanics and Engineering 315, 2017, pp. 652–
670, doi:10.1016/j.cma.2016.11.015

[Zie09] Zielinski, K.: Optimizing Real-World Problems with Differential Evolution and Parti-
cle Swarm Optimization, PhD thesis, University of Bremen, Department of Physics,
Electrical Engineering, and Information Engineering, 2009

https://doi.org/10.1016/0020-0255(75)90036-5
https://doi.org/10.1016/0020-0255(75)90036-5
https://doi.org/10.1155/2014/285045
https://doi.org/10.1155/2014/285045
https://www.amazon.com/s/?field-keywords=978-3-528-07631-3
https://doi.org/10.1016/j.cma.2016.11.015

	Contents
	Lists of Figures, Tables, Algorithms, and Theorems
	List of Symbols and Acronyms
	Abstract/Kurzzusammenfassung
	Preface
	1 Introduction
	2 Sparse Grids with Arbitrary Tensor Product Bases
	2.1 Nodal Basis and Nodal Space
	2.2 Hierarchical Basis and Hierarchical Subspace
	2.3 Sparse Grids
	2.4 Boundary Treatment

	3 Hierarchical B-Splines
	3.1 Uniform and Non-Uniform Hierarchical B-Splines
	3.2 Boundary Behavior of Hierarchical B-Splines

	4 Algorithms for B-Splines on Sparse Grids
	4.1 The Hierarchization Problem
	4.2 Hierarchization on Full Grids (Unidirectional Principle)
	4.3 Hierarchization on Dimensionally Adaptive Sparse Grids
	4.4 Hierarchization on Spatially Adaptive Sparse Grids with Breadth-First Search
	4.5 Hierarchization on Spatially Adaptive Sparse Grids with the Unidirectional Principle

	5 Gradient-Based Optimization with B-Splines on Sparse Grids
	5.1 Overview of Optimization Algorithms
	5.2 Optimization of Surrogates on Sparse Grids
	5.3 Test Problems
	5.4 Numerical Results
	5.5 Example Application: Fuzzy Extension Principle

	6 Application 1: Topology Optimization
	6.1 Homogenization and the Two-Scale Approach
	6.2 Approximating Elasticity Tensors
	6.3 Micro-Cell Models and Optimization Scenarios
	6.4 Implementation and Numerical Results

	7 Application 2: Musculoskeletal Models
	7.1 Continuum-Mechanical Model of the Upper Limb
	7.2 Momentum Equilibrium and Elbow Angle Optimization
	7.3 Implementation and Numerical Results

	8 Application 3: Dynamic Portfolio Choice Models
	8.1 Solving the Bellman Equation
	8.2 Algorithms
	8.3 Transaction Costs Problem
	8.4 Implementation and Numerical Results

	9 Conclusion
	A Proofs
	A.1 Proofs for Chapter 2
	A.2 Proofs for Chapter 3
	A.3 Proofs for Chapter 4

	B Test Problems for Optimization
	B.1 Unconstrained Problems
	B.2 Constrained Problems

	C Detailed Results for Topology Optimization
	Bibliography

