
Efficient Data Management
and

Policy Composition
for

Software-defined Networking

Dissertation
for the award of the degree

”Doctor rerum naturalium” (Dr. rer. nat.)
of the Georg-August-Universität Göttingen

within the doctoral program in Computer Science (PCS)
Of the Georg-August University School of Science (GAUSS)

submitted by

Osamah Barakat
from Sana’a, Yemen

Göttingen
in July 2019

Thesis Committee: Prof. Dr. Xiaoming Fu,
Georg-August-Universität Göttingen

Prof. Dr. Ramin Yahyapour,
Georg-August-Universität Göttingen

PD. Dr. Mayutan Arumaithurai,
Georg-August-Universität Göttingen

Examination Board:
Reviewer: Prof. Dr. Xiaoming Fu,

Georg-August-Universität Göttingen

Other Reviewers: Prof. Dr. Tobias Hoßfeld,
Julius-Maximilians-Universität Würzburg

Further Members
of the Examination Board:

Prof. Dr. Ramin Yahyapour,
Georg-August-Universität Göttingen
Prof. Dr. Oliver Hohlfeld,
Brandenburgische Technische Universität
Prof. Dr. Jens Grabowski,
Georg-August-Universität Göttingen
Prof. Dr. Marcus Baum,
Georg-August-Universität Göttingen
PD. Dr. Mayutan Arumaithurai,
Georg-August-Universität Göttingen

Date of Oral Examination: 08. July 2019

Abstract

Network softwarization changes the way how should networks be managed. Introducing
Software-defined Networking in the last decade helps network administrators focus on net-
work management and write optimized applications that control network behavior. Network
administrators communicate with a network controller through an interface named north-
bound interface. This interface and any abstract build on it should be designed to enforce
the ease of the network management to align with the primary purpose of Software-defined
Networking. The performance of these abstractions is affected by the data organization and
software libraries used to deliver northbound interface services to end users.

We start with Gavel, an SDN controller that at its heart facilitates a plain data represen-
tation based on a graph database. In Software-defined Networking, high-level abstractions
typically offer a useful means to avoids writing network applications and policies on lower
levels. However, abstractions are typically developed for a specific use case, which in turn
results in an abundance of existing abstractions for different networking tasks. As a con-
sequence orchestrating these abstractions to implement a standard network policy becomes
an arduous task. To address this challenge, plain data representations of the network and
its control infrastructure have been proposed recently, which offer programmable ad-hoc
abstractions to administrators. However, these frameworks suffer from quite complex pro-
gramming requirements and impractical performance in terms of latency, as they are based
on relational database engines.

By exploiting the native graph support of the database engine, Gavel significantly eases
application and policy writing. Additionally, we show by experimental evaluation of sev-
eral typical applications on multiple different topologies that Gavel offers significant per-
formance improvements over state-of-the-art solutions.

In the second part of the thesis, we present Busoni, a framework that we build on Gavel to
provide needed libraries to manage policies on top of Segment Routing. Segment Routing is
a promising solution to support services like Traffic Engineering, Service Function Chain-
ing and Virtual Private Networks. It is a source routing based networking architecture that
provides an opportunity to include a list of instructions called segments in the packet head-
ers. The segments may allow the inclusion of detours for responding to Traffic Engineering
needs or Service Function Chains implementations. Even though there is an increasing
interest in enhancing and adopting Segment Routing, the administrators are still burdened
with the task of manually write and maintain the segment lists. Such type of management

iv

presents several challenges ranging from error-prone configurations to increased response
time for network updates.

To address these challenges, we propose Busoni that automates and simplifies the pro-
cess of segments lists management. Additionally, we also provide programming tools to
compose and manage Segment Routing policies that operate efficiently even under multi-
tenancy environments. Using different use cases we show the programming capabilities
offered by our framework. With experimental evaluation, we demonstrate the scalability of
our platform and the improvements achieved in response time for dynamic network events.

This thesis investigates the role of efficient data management and policy composition in
Software-defined Networking frameworks. It sheds light on the importance of data repre-
sentation and how it affects the performance of network application. It also presents one
of the first frameworks that manage network policies in the new network technology (i.e.,
Segment Routing). The work presented in this thesis has been implemented, evaluated, and
published as an extension to the state-of-the-art knowledge in the related field.

Acknowledgements

In the name of Allah, the Most Gracious and the Most Merciful.

With great pleasure, I would like to acknowledge and wholeheartedly thank all those
who have inspired, lead me and been active part of my unforgettable journey of PhD. All
praises to Allah for the strengths and His blessing in completing this thesis. I would like to
thank my PhD advisers sincerely: Prof. Dr. Xiaoming Fu, Prof. Dr. Ramin Yahyapour, Dr.
David Koll, and Dr. Mayutan Arumaithurai, whose support, expertise, continuous guidance,
encouragement, and patience has enabled me to author my PhD thesis.

Prof. Dr. Xiaoming Fu: I’m extremely grateful for giving me an opportunity to pursue PhD
under your guidance. I thank you for all the support, freedom and opportunities you let me
to explore and pursue diverse research topics and to visit top research conferences. Your
technical guidance and lessons including the art of communication and networking have had
an enormous impact on me. I am immensely grateful for the support and encouragement I
have received from you throughout my PhD.
Prof. Dr. Ramin Yahyapour: I would like to express my gratitude to all support and feed-
back I received during my PhD especially those in the thesis committee meetings.
Dr. David Koll and Dr. Mayutan Arimaithurai: I am lucky to have both of you as advisers. I
am thankful for your efforts in teaching ‘SDN Block course’ during my first semester. The
course inspired me the first idea of this thesis. You have been more a friend than just my
mentor, not just meticulously planning the course of my work, but consistently motivating
and guiding at every step of my PhD.

I am deeply grateful to Prof. Stefano Salsano who kindly suggested to me the idea to
enter the world of Segment Routing. Your talk and discussion with me helped me step
by step to build the second part of this thesis. Although your time schedule is busy with
commitments, you always find a time to set and discuss with me. Your invitation to visit
Rome is a remarkable page in my PhD journey.

I am also obliged to my thesis defense committee members: Prof. Dr. Tobias Hoßfeld,
Prof. Dr. Oliver Hohlfeld, Prof. Dr. Jans Grabowski, and Prof. Marcus Baum. Their
comments and suggestions have greatly improved the thesis.

I thank also Dr. Pier Luigi Ventre, who helped during the Segment Routing related
project. I’m extremely grateful to have worked with you, I have learned a lot from you.

I want to thank also the ‘German Academic Exchange Service’ for their continued sup-
port during my PhD thesis. Thank you for your help during my first days in Germany.

vi

I am grateful to my former and current colleagues at the Computer Networks Group at
the University of Göttingen, especially Dr. Sameer Kulkarni, Sripriya S. Adhatarao, Dr.
Abhinandan S. Prasad, Dr. Hong Huang, Jacopo De Benedetto, Shichang Ding, Bo Zhao,
and Dr. Yali Yuan, whose feedback at different stages has contributed to the quality of this
thesis.

I am equally thankful and indebted to Federica Poltronieri, Annette Kadziora, Gunnar
Krull, Tina Bockler, Carmen Scherbaum, Heike Jachinke and all the staff who have been of
great help and support in different matters of need.

I would also like to thank the City and the University of Göttingen for providing such a
wonderful and serene atmosphere blend with excellent research opportunities.

Last but definitely not least, I want to thank my parents Dr. Lutf and Belques Barakat,
my wife Rehab Aldhabbi, and my children Ala and Aseel, and my siblings for their never-
ending support. Without them, this thesis would not have been written in the first place.

Copyright Notice

In reference to IEEE copyrighted material which is used with permission in this
thesis, the IEEE does not endorse any of University of Göttingen’s products or
services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications standards/publications/rights/rights link.html to learn
how to obtain a License from RightsLink. If applicable, University Microfilms and/or
ProQuest Library, or the Archives of Canada may supply single copies of the dissertation.

Contents

Table of Contents viii

List of Figures xii

List of Tables xiv

Acronyms xv

1. Introduction 1
1.1. Motivation . 1
1.2. High Level Research Problems . 3
1.3. Thesis Challenges . 5

1.3.1. Performance . 5
1.3.2. Portability . 6
1.3.3. Expressiveness and Automation 7

1.4. Thesis Contributions . 7
1.4.1. Performance . 8
1.4.2. Portability . 9
1.4.3. Expressiveness and Automation 9

1.5. Thesis Outline . 9

2. Background 11
2.1. Network Softwarization . 11

2.1.1. SDN . 11
2.1.2. NFV . 12

2.2. Segment Routing . 13
2.2.1. Overview . 13
2.2.2. Segment Routing on IPv6: SRv6 14
2.2.3. SRv6 Programming . 15

2.3. Graph Database . 17

Contents x

I. A Fast and Easy-to-Use Plain Data Representation for Software de-
fined Networking 19

3. Problem Statement 21
3.1. Introduction . 21
3.2. Challenges in SDN Northbound Abstractions 22

4. Related Work 25
4.1. Abstractions . 25
4.2. Databases in SDN Controllers . 26
4.3. Use of Graph Modeling in Networks . 27

5. Software-defined network control with graph databases: Gavel 29
5.1. Introduction . 29
5.2. The Case for the Use of Graph Databases 30

5.2.1. Data Representations . 30
5.2.2. Drawbacks of Relational Databases 31
5.2.3. Advantages of Graph Databases 31

5.3. Gavel Architecture and Design Choices 34
5.3.1. Network Model . 34
5.3.2. Selecting a Graph Database Engine for Gavel 35
5.3.3. Native Graph Functions and Cypher 36
5.3.4. Gavel Architecture . 37

5.4. Gavel and Network Application Programming 38
5.4.1. Routing . 38
5.4.2. Access Control Firewall . 40
5.4.3. Load-Balancer . 40
5.4.4. Service Function Chaining . 41
5.4.5. Network Slicing . 42
5.4.6. Summary . 43

5.5. Evaluation . 43
5.5.1. Methodology . 43
5.5.2. Gavel’s Applications . 44
5.5.3. Writing Network Applications on Gavel 51

6. Future Prospects 53
6.1. Applicability of Gavel with Other SDN Environments 53

6.1.1. Gavel and SR . 53
6.1.2. Gavel and other Northbound Interfaces 53

6.2. Current Limitations and Prospects of Extensions 54

xi Contents

II. Addressing Northbound Interface Challenges in IPv6 Segment Routing 55

7. Problem Statement 57
7.1. Introduction . 57
7.2. Challenges in Segment Routing Policy Composition 57

8. Related Work 59
8.1. Segment Routing on IPv6 . 59
8.2. Northbound Interfaces in SDN . 60

9. A Northbound Interface for IPv6 Segment Routing: Busoni 61
9.1. Introduction . 61
9.2. Requirements for Segment Routing Policy Framework and Target Scenarios 62
9.3. Busoni Architecture . 63

9.3.1. Overall Architecture . 63
9.3.2. API Policies Composing . 66
9.3.3. Encoding Path Nodes as Segments 67
9.3.4. Busoni in Action . 68
9.3.5. Data Store . 69
9.3.6. Responding to Network Dynamics 69

9.4. Use Cases . 70
9.4.1. Basic policy with SFC . 72
9.4.2. Overlay with QoS Policy . 72
9.4.3. Responding to a VNF Migration 73

9.5. Evaluation and Discussion . 74
9.5.1. Implementation and Lab Setup . 74
9.5.2. Scalability . 74
9.5.3. Reactivity to Network Dynamics 78

10. Future Prospects 81
10.1. Applicability of Busoni in MPLS-SR Environment 81
10.2. Applicability of Busoni in SRv6 on non-Linux Routers Environment 82
10.3. Current Limitations and Prospects of Extensions 82

10.3.1. Flow Specifications . 82
10.3.2. Rules Conflicts . 82
10.3.3. Complex Network Dynamics . 83

11. Conclusion 85
11.1. Dissertation Summary . 85
11.2. Thesis Impact . 86

Contents xii

III. Appendix 89

A. Concepts and Definition of Related Terms 93

B. Gavel Internals 95
B.1. Representation of Network Topologies in Graph Database 95
B.2. Comparison of Routing Application Implementation between Gavel and Ravel 96
B.3. ASR Algorithm Implementation . 96

C. Busoni Algorithms and Work flow 99
C.1. Busoni’s work flow . 100
C.2. SRtypes Code Snippets . 101
C.3. Path finding in Busoni Code Snippets . 105

Bibliography 111

List of Figures

1.1. High-level Research Problems associated with the northbound interface in
SDN . 4

1.2. The position of Gavel and Busoni, the thesis contributions, in the SDN ar-
chitecture . 8

2.1. SDN architecture . 12
2.2. SRv6 Extension Header . 14
2.3. Representing SR network command using IPv6 16
2.4. An example of declaring segments list and SRv6 behaviors 16
2.5. An example of an SRv6 network topology 17
2.6. An example of iproute2 command to attach the segments list to packets . . 17
2.7. The chapters of this thesis organized as a GDB model 18

5.1. Database management systems as SDN controllers 32
5.2. Basic network topology model in Gavel 34
5.3. Cypher snippets to add two switches and their connections to each other to

the network topology . 36
5.4. Gavel interaction with forwarding plane to learn the topology and install the

new forwarding rules . 38
5.5. Cypher code snippets . 39
5.6. ARS algorithm [1] chooses the shortest path for every next network function

until it reaches egress point . 41
5.7. Cypher sample to find a path between two hosts within a single slice l . . . 42
5.8. A comparison of the latency induced on different topologies by routing ap-

plication in Gavel and Ravel, respectively. 45
5.9. A Comparison of the latency induced on different topologies by routing

through different function chains in Gavel the lower bound for Ravel 48
5.10. A comparison of routing delay in combination with firewall routines for

blocking hosts (BH) and unblocking hosts (UbH) in both Ravel and Gavel
in k-ary FatTree networks with k=16,32,64 49

5.11. A comparison of different delay time induced by routing application with(1-
9)/without(0) slices in different topologies 50

List of Figures xiv

9.1. The position of Busoni framework in a SRv6 network 64
9.2. Major software subsystems of Busoni . 65
9.3. Using Match class to define source and destination addresses 66
9.4. Using eval function to add custom packet handling 68
9.5. Illustration of different use cases including initial state of the network topology 71
9.6. Instantiating match object for the use cases 72
9.7. Instantiating an object for the first use case 72
9.8. Instantiating an object for the second use case 73
9.9. Compilation time for different number of policies 77
9.10. Response time for events affect batches of policies 78

B.1. Exemplary specification of two switches (left) and an edge between these
switches (right) in Gavel’s graph database. Green coloring indicates the
respective endpoints of the edge . 95

B.2. Peusodo code for processing a routing request in Rave [2] 96
B.3. Code to implement a routing application in Gavel 96

C.1. A flowchart of Busoni’s work flow . 100

List of Tables

5.1. Graph databases comparison matrix . 35
5.2. Topologies used to evaluate Gavel . 44

9.1. Summary of the policies used in the evaluation 75
9.2. Average compilation time (ms) and coefficient of variation (%) for every

policy with incremental batch size . 76
9.3. Response time (ms) (95% percentile) for different number of affected poli-

cies in the two dynamic events . 79

Acronyms

The following table describes the significance of various abbreviations and acronyms used
throughout the thesis. Nonstandard acronyms that are used in some places to abbreviate the
names of certain white matter structures are not in this list.

dpid OpenFlow Data Path ID

ETSI European Telecommunications Standards Institute

FRR Fast Re-Route

ICMPv6 Internet Control Message Protocol version 6

GDB Graph Database

HMAC Hashed Message Authentication Code

IGP Interior Gateway Routing Protocol

IPv6 Internet Protocol Version 6

ISPs Internet Service Providers

MPLS Multiple Protocol Label Switching

NFV Network Function Virtualization

NF Network Function

OAM Operations, Administration, and Management

OSPF Open Shortest Path First

QoS Quality of Service

RDB Relational Databases

RDBMS Relational Database Managmenet System

Acronyms xviii

RSVP Resource Reservation Protocol

SBI Southbound Interface

SIDs Segment Identifiers

SDN Software Defined Networking

SFC Service Function Chaining

SPRING IETF Source Packet Routing in Networking

SR Segment Routing

SRH SRv6 Extension Header

SRv6 Segment Routing on IPv6

TCP Transmission Control Protocol

TLVs Type Length Values

UDP User Datagram Protocol

VM Virtual Machine

VNF Virtual Network Function

Chapter1
Introduction

Not having heard something is not as good as having heard it; having heard it is not
as good as having seen it; having seen it is not as good as knowing it; knowing it is
not as good as putting it into practice

— Xunzi: The teachings of the Ru. Xun Kuang

1.1. Motivation

Nowadays, computer networking plays a significant role in providing different technologies
and services such as Microsoft, Google, and Facebook. Network-layer protocols (e.g., IP
and routing) and transport-layer protocols (e.g., TCP) are fundamental elements for com-
puter networking. However, IP networks are complex and challenging to manage [3]. This
is evidenced by, for example, the poor utilization (40-60%) of high-cost Wide Area Network
(WAN) [4] as a result of lack of coordination between the services that use the network.
These services are typically implemented via an end-to-end connection, which would tra-
verse different networking topologies and types (e.g., data-centers, WAN, and carrier-grade
networks). Hence, managing, monitoring, and debugging such connection is a tedious job.
Another example of network management complexity is poor traffic engineering decisions
that lead to locally optimum routes that are nevertheless sub-optimal globally [5] caused
by the absence of a global view in the distributed routing mechanism. Moreover, to rep-
resent a desired high-level policy to govern the network behavior, network administrators
have to configure each single network device using low-level commands which are mostly
vendor-dependent. Automating these configurations and response procedures to manage
vast networks is not feasible in IP networks [3].

To offer flexibility in network control, Software-defined Networking (SDN) introduces
the separation of the control plane from the data plane [6]. Here, network administrators can

Introduction 2

develop management applications to control the network behavior dynamically through pre-
defined software interfaces (i.e., Northbound Interfaces), which allows the configuration of
forwarding devices in the data plane regardless of their hardware specifications. Controlling
decisions in SDN as a consequence of the separation is logically centralized which provides
a single-point entry for network management. This centralization simplifies the automation
of configuration procedures. Moreover, SDN enables the notion of network softwarization,
i.e., making the writing of portable network applications possible. Also, the introduction
of Network Function Virtualization (NFV) further advances network softwarization. In
an NFV-based network, functions used to process network traffic are programmed to be
deployed dynamically in response to the load size and place. In SDN and NFV, decoupling
the dependency between the hardware and the software offers the freedom of developing
customized network applications and reusing them across different types of networks. There
are various realizations of SDN in the current systems which depend on the technology
that steers data-plane devices. OpenFlow-SDN is a flavor of SDN that uses OpenFlow [7]
open source protocol to communicate with forwarding devices in the data-plane layer. This
flavor is now used extensively in academia as it promotes open source and freedom of using
software regardless of hardware providers. Another famous flavor is Segment Routing [8],
introduced by industry pioneers as a practical SDN realization that takes into account legacy
networking. It focuses on providing traffic engineering solutions and network programming
with minimum complexity in management comparing to existing networking technologies.

Network management is an essential ongoing task that is needed to ensure a network is an
operational round the clock (24/7), and all networked devices are connected and functioning
as desired. Given the benefits and power of SDN, network researchers and administrators
are considering to migrate existing networks to SDN. Global network providers like Google
and Microsoft presented different strategies to adopt SDN in their systems [4, 9]. They
showed how their management experience could be improved after applying SDN concepts
in their networks. Additionally, they enforced new management policies in the data plane,
allowing richer management functions.

Despite these exciting advancements in network management, they pose new challenges
in writing network applications in SDN. To make optimized and efficient management de-
cisions, network applications should be designed carefully. In practice, control plane appli-
cations in the SDN architecture are typically designed to perform one particular task in the
network (e.g., routing), and network administrators usually implement these applications
at a low level of abstraction in one big piece of software, which has hindered the adoption
of network applications that control SDN behavior (SDN applications) [10]. To tackle this
problem, researchers proposed software abstractions that take advantage of the SDN sep-
aration nature and provide development libraries to end users. These abstractions hide the
details of low-level devices configurations and automate the generation of these commands
based on which function call is used. Being located at an intermediate position between user

3 1.2. High Level Research Problems

applications and the network controller, such abstractions are also called Northbound Inter-
faces. SDN developers usually employ an easy-to-write high-level language for northbound
interfaces to express application policies, combine these policies into a single network pol-
icy, and then translate this policy to a lower level protocol (i.e., OpenFlow).

One important consideration in network programming is the automation of the genera-
tion of configurations. As mentioned above, a typical end-to-end communication nowadays
would go through heterogeneous networking environments composed of different network-
ing devices. Therefore, managing these large-scale and heterogeneous networks requires
the automation of configurations that enable the networking devices to support efficient
end-to-end communications. In the case of failures or traffic engineering needs, timely re-
configuration in an automated manner is also required. Minimizing human interaction to
fetch updated physical configurations is crucial to avoid unnecessary flaws regarding pro-
gramming. Additionally, this feature helps the generalization of network programs and
hence, re-usability, which saves time, cost, and improves user experiences. To conclude,
the automation of the programming cycle is an urgent demand which starts from expressing
network policies, goes through collecting network statistics, applying related analysis and
optimization and ends by generating suitable network devices configurations.

In addition to automation, the performance of northbound interfaces itself is also essen-
tial. For example, the response time to user requests and the compilation time needed to
translate users’ policies to low-level commands should be minimized. Note that there is
already propagation delay caused by physical transmission media and multiple queuing de-
lays caused by forwarding devices (which are geographically distributed). To satisfy a better
user experience, northbound interfaces should be written in such a way that keeps in mind
the minimization of the delay resulted from generating low-level commands from submitted
policies.

This thesis addresses these aspects and develops a couple of approaches to provide ef-
ficient data management and a high-performance northbound interface that could be run
either with OpenFlow-SDN or Segment Routing. The following section details the overall
research questions.

1.2. High Level Research Problems

P1 Performance: Using a northbound interface or an abstract comes with the cost of
overhead during the life cycle of a policy composition. One of the contributors to this
overhead is the time needed to translate user commands in this abstract language into
vendor-depended commands or other open-source southbound protocol (e.g., Open-

Introduction 4

Performance

Expressiveness,
Automation

Security, Policy,
Isolation

Interoperability
, Portability

Extensibility

Northbound
 Interface

Figure 1.1.: High-level Research Problems associated with the northbound interface in SDN

Flow). We refer to this time in the thesis as compilation time. Another source of
overhead is the time needed by the policy management or northbound interface to
respond to network topology-related updates. This response time is critical when
policies affected by these updates are sensitive to delays. Both sources show the
importance of minimizing these delays while keeping other features available.

P2 Security, Policy, and Isolation: Isolation is when there are tenants who run different
policies on their share of the network; each policy should affect only the user’s share
or part of the network. It is not possible for any user to manipulate any policy of traf-
fic that belongs to other users. The northbound interface should provide tools to help
users maintain isolation. It should also provide means for defining policies which
control network behavior. Finally, the third component that orchestrates policy and
isolation is security. Any attempt to manipulate network behavior should be authen-
ticated and validated. Any attempt from unauthorized users should be rejected, and
any submitted policy violates the general controlling policy should also be blocked.

P3 Extensibility: Another problem that faces northbound interfaces is the ability to be
extended later. Network environments are evolving with time, and new implemen-
tation scenarios are continuing to appear. Such a demanding environment needs a

5 1.3. Thesis Challenges

flexible interface that could be used in new scenarios; the interface or the abstract
was not designed for. When a running interface failed to address or implement the
new scenario, other abstractions are needed and this complicates the composition of
policies.

P4 Interoperability, Portability: SDN architecture presents a clear separation between
the control plane and the data plane. This separation means changing the technology
that operates the data plane should not imply in its turn update to the control plane
and network applications. However, northbound interfaces which were written for
OpenFlow-driven SDN cannot operate directly on SR-driven SDN. Seamless inter-
operability helps network administrators to manage all their network infrastructure
from a single view.

P5 Expressiveness and Automation: One of the main goals of the high-level network ab-
stractions is to allow end users to express their intended policies easier than what
could be done using low-level commands (e.g., OpenFlow). As a result, writing
complex policies should be made easy. This feature is linked to the fact that using
software-networking technology is aiming basically to automate policy management
and hide low-level details. In this context, It is important that end users should not
be bothered with gathering low-level information (e.g., Routers’ IP addresses) to get
their policies to work correctly.

1.3. Thesis Challenges

Giving the high-level research problems described earlier, this section outlines the main
challenges that are addressed in this thesis.

1.3.1. Performance

A wide variety of network abstractions have been developed and each is targeted at a cer-
tain type or set of network policies. Besides, network abstractions continue to evolve to
address new emerged network policies requirements. As a result, it is often insufficient to
implement a complete network policy with one single abstraction especially when network
policy requirements keep changing. In many cases, network administrators have to com-
bine two or more abstractions to formulate and implement their policies. The complexity
of combining abstraction policies increases with the number of employed abstractions and
can be a tedious task [2, 11].

Introduction 6

Existing approaches to this orchestration challenge have only provided a partial solu-
tion [10,12–15]. These solutions either require writing a new wrapping library for enabling
a new cooperation pair or depend on common structures (e.g. OpenFlow rules or network
state variables) and further increase programming complexity as they work on low-level
commands.

To address these challenges, Wang et al. [2] proposed plain data presentations of the
network to simplify the complexity of combining and integrating policies resulting in a
simplified northbound interface. For instance, in Ravel [2], the whole network is modeled
as a relational database and application developers can request ad-hoc views based on the
database tables, which can then be queried against. However, these advantages come at the
price of performance. In essence, the network model and all relevant information are dis-
tributed across different, typically normalized database tables, leading to significant delay
when aggregated views are used to establish a complete view. Although inserting specific
information (e.g., a firewall entry) is fast, retrieving information that needs to be collected
from many tables is costly (e.g., retrieving routes). Consequently, even simple applications
need to interact with a large number of database tables. As a result, the processing applica-
tion request is slow, leading to the conclusion that writing network applications can still be
overly complicated.

This thesis is investigating the possibility to re-organize data in the network controller
such that the performance of running network applications is enhanced.

1.3.2. Portability

On the one hand, after the introduction of SDN in [7], researchers started to develop differ-
ent solutions on top of SDN. Direct management of the southbound interface (i.e. Open-
Flow) was one of the main challenges during the early stages. Researchers responded early
to this issue and presented many approaches to ease OpenFlow handling (i.e. northbound in-
terfaces). These approaches could be categorized based on their end objectives. Some were
focusing on optimizing resources reservation [16, 17], some supporting multiple composi-
tion [10,15,18], and others minimizing the number of forwarding rules in the dataplane [19].
On the other hand, SRv6s is a variation of Segment Routing networking technology that
runs on top of IPv6 networks. Segment Routing presents a new way of doing SDN which is
easier to integrate with legacy networking more than OpenFlow-based SDN. Migrating the
northbound interfaces and abstracts that were written for OpenFlow-based SDN to SRv6
involves an intensive restructuring of the internal software of these abstracts.

7 1.4. Thesis Contributions

This thesis, in its second part, tries to motivate portability by using what will be presented
in its first part. The OpenFlow-based SDN controller in the first part would be used in the
second part as an SDN controller for SRv6 networks.

1.3.3. Expressiveness and Automation

The IETF draft [20] introduced the concept of encoding network commands (i.e., SRv6 be-
havior) as IPv6 addresses in the segments list. Therefore, whenever a network administrator
wants to implement a network program (e.g. traffic engineering), she/he needs to inject a
segments list that represents his program in the packet’s header.

Even with all of these programming capabilities enabled by SRv6, network administra-
tors still face the difficulty of manually constructing segments lists that fulfill their intents
and policies. To the best of our knowledge, there is only one proposal that partially auto-
mates segments list management [21], where authors proposed to utilize the DNS service
in the enterprise network to transfer segments lists between end users and the controller.
However, the proposal does not react to networks updates and overrides the forwarding
leveraging DNS service instead of using the service IP address, which not make it appli-
cable in several real contexts. In other related SRv6 works [22–26], segments lists were
composed manually as topologies used in the evaluation tended to be small. However, in
real operated network topologies, manual composition presents various challenges in the
context of composing network policies. Challenges such as the errors prone manual seg-
ments list composition, responding to dynamic network topology events, finding a correct
parameter to pass in the SRv6 command, and possible conflicts between SRv6 behaviors
could exist due to behavior misuse.

The thesis in its two parts investigates the automation and expressiveness challenges.
The objective is to present northbound interface support that could be easily extended to
address future scenarios.

1.4. Thesis Contributions

This thesis presents efficient data management and policy composition for software-defined
networking that addresses the challenges mentioned earlier. In Figure 1.2 we show the
relation between the two parts of the thesis and how they relate to the standard SDN ar-
chitecture. We elaborate in this section how the contributions in the thesis relate to the
challenges mentioned earlier.

Introduction 8

Southbound Interface

B

A

D F

C
E G

Net 1

Net 3

Net 2

Network Controller

Network Applications

Northbound Interface

Data-plane

Control-plane

Application-plane

Gavel

Busoni

Figure 1.2.: The position of Gavel and Busoni, the thesis contributions, in the SDN archi-
tecture

1.4.1. Performance

We developed Gavel [27] that addressed the performance challenge in the data represen-
tation. Gavel is an SDN controller that utilizes a graph database management system to
provide a more natural plain data representation that can be easily queried by network ap-
plications. Gavel organizes network topology data in a graph structure which provides at
the end a high-performance data representation. Gavel is the first controller to exploit graph
databases to produce a plain data representation of a software-defined network, and thereby
removes the need for a translation between multiple, different and task-specific network
policies. Compared to the RDBMS-oriented state-of-the-art of plain data representations,
Gavel significantly reduces programming complexity and is able to scale better in large net-
works. The key factor for these achievements is facilitating a much more natural native
graph support instead of relying on an RDBMS table structure.

We have further implemented a variety of proof-of-concept network applications on top
of Gavel. By exploiting the native graph support of the database engine, Gavel significantly
eases application and policy writing. Additionally, we show by experimental evaluation
of several typical applications on multiple different topologies that Gavel offer significant
performance improvements over state-of-the-art solutions.

9 1.5. Thesis Outline

1.4.2. Portability

Taking this challenge into consideration during the design of Gavel, we further designed
and implemented Busoni. Busoni’s main objective is to provide automation for policy man-
agement on top of SRv6 network; however, utilizing Gavel in the implementation of Busoni
shows the portability advantage of Gavel. Although Gavel was designed and introduced in
OpenFlow-SDN environment, it operates smoothly with Busoni in SRv6 environment. This
feature allows users to write programs without the need to know the exact technology that
drives the data plane. The only changes that are needed is the adding of the connecting
drivers that sense the topology structure and changes associated with it.

1.4.3. Expressiveness and Automation

Our work Busoni addresses automation and expressiveness challenges in the northbound
interfaces. Busoni provides the proper tools to manage policies on top of SRv6. End-users
can use Busoni to automate the generation of their policies. They can define endpoints in
flexible terms as we show later, and write their functions or any peculiar behavior that they
want to apply to the flow between the defined endpoints. In the case of network dynamics
or failure events, the framework will automatically update the affected policies and report
any events for which Busoni failed to find enough resources that satisfied the policy’s goals.

Using different use cases we show the programming capabilities offered by our frame-
work. We start with a service function chaining scenario where traffic between two areas
should be processed through a sequence of network functions. We also show how Busoni
would be used to apply a VPN policy. In the evaluation, we demonstrate the scalability of
our platform and the improvements achieved in response time for dynamic network events.

1.5. Thesis Outline

This section outlines the main two parts of this thesis and the organization of chapters within
these parts. In Chapter §2, we first present the background on state-of-the-art SDN/NFV/SR
frameworks which advocate network softwarization. Presenting more on how network pro-
gramming is done with SR, we elaborate more about SRv6 programming. Finally, we briefly
introduce the graph databases.

In Part I, we present Gavel an SDN controller that utilizes a graph database manage-
ment system to provide a more natural plain data representation that can be easily queried
by network applications. Chapter §3 outlines the problem statement, Chapter §4 presents

Introduction 10

the state-of-the-art solutions and related work, Chapter §5 details our Gavel solution, and
Chapter §6 presents some future extensions.

In Part II we present Busoni, a framework to compose and manage network policies on
top of IPv6 SR networks. Busoni provides the needed programming functions to network
administrators as a northbound interface on top of an SR controller. Chapter §7 outlines
the problem statement, Chapter §8 presents the state-of-the-art solutions and related work
and Chapter §9 details our policy framework to account northbound interface portability,
performance, automation, and expressiveness problems.

Finally, in Chapter §11, we revisit the overall contributions and impact of this thesis and
outline the key future research prospects of this dissertation. Besides, the supplementary
materials in support of this thesis including the relevant pseudo code, proof of theorems,
data-flow and sequence diagrams are listed in the appendix Chapters §A-C of part III.

Chapter2
Background

We provide in this chapter an elaboration for the fundamentals concepts and technologies,
which they serve as a prerequisite to follow and understand the next chapters. We introduce
first the primary motivation behind this thesis Network softwarization. Later, we present
Segment Routing and Graph Databases, which are used to implement contributions pre-
sented in this thesis.

2.1. Network Softwarization

In the last decade, the need to automate network management operations became an essence.
One of the factors behind this is the massive size and the varieties of networks comparing
to the early days in the ’80s and ’90s. “Network Softwarization” in the form of Software-
Defined Networking (SDN) and Network Function Virtualization (NFV) is the normal re-
sponse giving software flexibility is higher than hardware. Network Softwarization has
influenced and innovates the design, deployment, and management of networks [28].

2.1.1. SDN

To offer flexibility in network control, Software-defined Networking (SDN) introduced the
separation of the control plane from the data plane [6]. In legacy networking, these two
planes exist together in each device; therefore, each device processes packets according to
its view of the network, which is a limited view considering the size of the network. Making
the control plane logically centralized provides a single entry to manage the network and
to apply different policies. It also helps in generating optimized traffic routes comparing
to legacy networking [4]. Figure 2.1 shows the typical SDN architecture, where we can

Background 12

Southbound Interface

B

A

D F

C
E G

Net 1

Net 3

Net 2

Network Controller

Network Applications

Northbound Interface

Data-plane

Control-plane

Application-plane

Figure 2.1.: SDN architecture

clearly distinguish three planes; data-plane, control-plane, and application-plane. Devices
in data-plane focus only on forwarding packets and delegate thinking and path calculations
to control-plane. Additionally, controllers also collect statistics about network state peri-
odically to find better routes. The third plane is the application-plane, which is the main
motivation behind this architecture. This plane allows network users to easily compose and
define their policies and applications that control network behavior. The SDN architecture
also provides two types of communication interfaces to allow smooth interaction between
network applications and forwarding devices.

2.1.2. NFV

Middleboxes are one of the fundamental parts of any network infrastructure. Their task is
to perform any functions other than the standard router’s functions. According to V. Sekar
et al. [29], the number and the diversity of these devices are observed in nowadays net-
works. In 2012, the European Telecommunications Standards Institute (ETSI) proposed
a paradigm that focuses on managing NFV middleboxes. The new software middleboxes
or NFV separates software implementation from propriety hardware of network functions,
which delivers three main advantages. The first is the freedom to run these network func-
tions on any platform either as a virtual machine (VM), as a container, or on bare metal. The

13 2.2. Segment Routing

second advantage is the separation between software development timeline and hardware/-
software maintenance which provides enhanced network functions. The last advantage is
the dynamic scaling provided due to the natural process of spawning new instances when
there is a demand on a service or function or shrinking down when they are idle and saves,
therefore, power consumption.

2.2. Segment Routing

We present here Segment Routing technology and its relation to SDN and network soft-
warization. Then, we focus on IPv6 variant and how it could be utilized to deliver network
as a program service.

2.2.1. Overview

SR [8] was proposed to address issues concerning MPLS control plane manageability. SR is
a variation of source routing where instructions, commonly known as segments, are attached
to packet headers in order to implement detours to the default shortest path. It is also
presented as a different SDN implementation to OpenFlow based networking where current
networks could utilize SR and facilitate SDN management capabilities by upgrading the
legacy routing devices’ operating systems.

SR plays a decisive role in network scalability and allows a more effortless network man-
agement experience. This experience is possible because SR does not keep the state in the
core routers, where classification and embedding segments take place at ingress routers [30].
Moreover, SR reduces the load on network controllers by offloading default routing de-
cisions to data-plane routers provided that not all routing decisions need individual path
computations. SR exploits the ability in data plane devices to run distributed shortest path
protocols like Open Shortest Path First (OSPF) to perform shortest path routing. This abil-
ity effectively leaves the non-shortest (constrained) path inquiries to the network controllers
as this needs a knowledge of the whole network and its current status (e.g., during traffic
engineering).

SR specifications are currently being developed in the IETF Source Packet Routing in
Networking (SPRING) work group [31]. These specifications target the compliance of SR
in different use cases such as SDWAN [32], mobility [33], protocol extensions [34]. Ad-
ditionally, SR could be implemented on top of either MPLS or IPv6 (i.e., SRv6) networks.
Providing this flexibility for network engineers would allow SR to be easily integrated into
existing networks. While the detours in MPLS are implemented as MPLS labels, the de-

Background 14

Optional Type Length Value Objects (TLVs) (variable size)

Segments [1..n-1] (variable size)

Flags

Header External LengthNext Header
TagFirst Segment

Segements LeftRouting Type = 4

Segment[n] (128 bit IPv6 address)

Segment[0] (128 bit IPv6 address)

8 bits 8 bits 8 bits 8 bits

Figure 2.2.: SRv6 Extension Header

tours in SRv6 are represented as IPv6 addresses. Although MPLS variant of SR could be
more attractive to Internet Service Providers (ISPs), the IPv6 variant is more promising
given the massive number of Internet-connected devices (IoT) which yields in need to a
vast addressing space.

2.2.2. Segment Routing on IPv6: SRv6

SRv6 as stated before used IPv6 addresses to tag the needed detours in the network path. To
do so, it exploits the extension headers support in IPv6 to attach the segments list by defining
an SRv6 Extension Header (SRH) [34]. This support means that SR-incapable routers and
SR-capable routers can co-exist in the same IPv6 domain. When packets with SRH arrive at
SR-incapable router, they will appear as standard IPv6 packets and will be routed based on
the router table and the destination/source address. Such an environment allows the packets
to flow smoothly and any SRH related detour takes place only at SR-capable routers, which
results in more comfortable, incremental adoption of SR on the broader network.

In SRH as showed in Figure 2.2, Segment Identifiers (SIDs) are stacked to indicate the
detours that packet should take when it flows through the network. The segments list or-
dered reversely (i.e., Segment List [0] contains the last segment to visit). To indicate which
segment is the next detour, Segments Left is designed for this purpose. Type Length Val-
ues (TLVs) field contains information regarding Operations, Administration, and Manage-

15 2.2. Segment Routing

ment (OAM) functions [35] or authentication information as Hashed Message Authentica-
tion Code (HMAC) which enhances the security of the source routing. The remaining fields
are used as described in the original RFC 8200 [36].

The SRv6 SIDs used in the header could be classified based on reachability either global
or local segments. All routers in a single domain can route packets to the global segments,
while a single router only reaches local segments. Therefore, in the case of the local segment
in the segments list, the global segment of the hosting router should be routed first. Each
entry in the segments list consists of 128 bit and coded as IPv6 address. The SIDs also could
be classified based on the type they are referring to. There are Adjacency Segments which
refers to the ports of the routing device. So when a router has four ports, it could have four
different adjacency segments. There are also Node Segments which represents the routing
devices in the data plane. Each router could have only one global node segment.

2.2.3. SRv6 Programming

The introduction of SRH opens the door to new programming features in SR. The IETF
draft [20] introduced the concept of encoding network commands (i.e., SRv6 behavior) as
IPv6 addresses in the segments list. This means when a network node receives a packet with
SRH, and the destination address matches an associated behavior provided by this node, it
will execute this defined action. Therefore, if a network administrator wants to implement
a network program (e.g., traffic engineering), she/he needs to inject a segments list that
represents his program in the packet’s header.

Figure 2.3 depicts how a single IPv6 address would look like when we embed an SR
network command in it. The first part (named the locator) is used to route the node that hosts
the function. The second part holds the function that is needed to be executed which could
refer to an app in a container/VM or a stand-alone network device. The last part, which is
an optional entry, holds an argument which could be needed to be passed along with the
command. The specific length of each part is not fixed to give each network flexibility on
how it uses these features.

In a different usage from detour SIDs, SRv6 behaviors or commands and optionally ar-
guments are inserted in the remaining bits after the hosting node’s prefix. Thereby, routers
in the network will use the node’s prefix to deliver this packet and locally, host node (SR
capable) will use the behavior bits to forward the packet to the function’s holder (VM or
container). The advantage in such embedding policy is that there is no need to route func-
tions or behaviors in a flat routing architecture, instead only keeping the host node prefix in
the routing table should be sufficient which yields in fewer routing rules in the data plane
devices.

Background 16

IPv6 single address (128 bit)

ArgumentsFunctionNetwork Prefix

AAAA:BBBB:CCCC:DDDD:EEEE:FFFF:DEAD:BEAF

Figure 2.3.: Representing SR network command using IPv6

self.insert_behavior_first_segment("T_Encaps")

self.insert_behavior_end_segment("End_DT6",self.vpnuser)

Figure 2.4.: An example of declaring segments list and SRv6 behaviors

SRv6 behaviors come in different flavors and range from basic instructions related to
forwarding actions to more complex instructions such as supporting non-SR capable net-
work functions. For example, the End function indicates that the router must advance the
packet to the next destination according to the segments list. In another flavor, there is a
End.X command that specifies the port number to which the packet should be forwarded
to. The End.T command specifies a look-up table that the router should use when it routes
the packet to the next destination and the End.B6 command to inserts a new SRH on top
of the existing one. Besides the predefined behaviors, end users can define a custom set
of functions; however, it is necessary to validate if the data plane devices can support the
custom set.

Empowering Linux routers with SRv6 programming comes into practice after the last
implementation efforts either in Linux kernel [37] or in FD.io project [38]. In Linux kernel
(which we only consider in this thesis), SRv6 behaviors could be defined using seg6 and
seg6local options in the iproute2 command. For example, as depicted in Figure 2.4, we
instruct the Linux kernel to encapsulate the incoming packets with segments 2001::1 and
2001::2. In the second command we activate the special End.DT6 behavior which looks
up the next destination using a table named nh.

To put the operation of the system as a whole, let us consider a network topology as
shown in Figure 2.5 and a scenario where a network admin wants to steer the traffic be-
tween Net 1 and Net 3 through two network functions. Without any intervention from the
controller, routers should use B, D, F nodes as the shortest path based on the number of
hops. However, to traverse the needed SFC, SR then takes place, and the controller in its turn

17 2.3. Graph Database

B

A

D F

C
E G

Net 1

Net 3

Net 2

IPv6 Net1,Net3

Net1, FNet3

SRH
IPv6

FNet3, Efn2, Afn1

IPv6 Net1,Net3

IPv6 Net1,Net3

Net1, Efn2

SRH
IPv6

FNet3, Efn2, Afn1

IPv6 Net1,Net3

Figure 2.5.: An example of an SRv6 network topology

$ip -6 route add Net3 encap seg6 mode encap segs A::F1::, E::F2::, F::BEBE dev eth2

Figure 2.6.: An example of iproute2 command to attach the segments list to packets

tries to find the best path to do so. We assume that virtualized network functions are prop-
erly configured and their SIDs are known by the network controller where the function I

is hosted by node A and the function II is hosted by node E. The segments, representing
the requested path, in this case, would be FnIA, FnIIE, F-Net3 where the packets are
free to use the shortest path between these segments. In Linux routers, a command using
iproute2 as discussed earlier should be used. In this practical example, the command would
be as shown in Figure 2.6. Where the segments A::F1::, E::F2::, F::BEBE represent
the first function hosted in router A, the second function hosted in router E, and the end
behavior in router F with BEBE as End.X which will send the links to the adjacency link
connecting router F and Net3 respectively. We assume in this example that Net1 connects
to the network using one ingress point. In case of multiple ingress and egress points, the
controller needs to repeat the above work for each pair of ingress and egress points.

2.3. Graph Database

Although the term Graph Database (GDB) appeared first in the 80s, it comes into real
practice only in the last decade [39]. A GDB is a data store where the data structure of its
schema and instances modeled as a graph, and any data-related operation is expressed by a
graph-based query language [39].

Background 18

Intro-
duction

Back-
ground

Part 1Part of

needs

Part2

Busoni:
Problem

statement

Gavel:
Problem

statement

Busoni:
Related

work

Gavel:
Related

work

Busoni Gavel

Con-
clusion

Future
prospects

Part of

summarizes
Part of

needs

needs
needs

summarizes

Part of

Part of

Part of

Figure 2.7.: The chapters of this thesis organized as a GDB model

The GDB distinguished itself from a normal relational database (RDB) in the way it
organizes and processes its data. The GDB fits better compared to other databases in graph-
based environments like road networks, computer networks, mail distribution networks,
and so on. Additionally, the GDB also supports graph-based algorithms; therefore, any
application depends on such algorithms would integrate easily in such an environment. In
GDB, users can use nodes and links to model the target environment. Nodes would be used
to describe main environments actors or components and links or edges would be used to
model the relationships between the nodes. In Figure 2.7, we show an example of a GDB
model which summarizes thesis’s chapters and their relationships.

Part I.

A Fast and Easy-to-Use Plain Data
Representation for Software defined

Networking

Chapter3
Problem Statement

3.1. Introduction

SDN is a new networking paradigm that promotes easy-management concept through the
separation between the control plane and data plane as we described earlier in Chapter 2.
Giving this separation, users now can focus on writing network applications regardless of
which technology is used to operate the data plane. This separation motivated network ad-
ministrators to start writing applications at a low abstraction level (e.g., issuing OpenFlow
rules), however this hindered modular programming for SDNs [10]. To explain the chal-
lenges in using OpenFlow or any Southbound Interfaces (SBIs) protocol, we can look at
modern computers. Although Assembly was presented to ease programming using binary
instructions, it is a challenging task even to write and maintain programs in Assembly. The
solution was to design a new high-level programming language and a compiler to automate
the generation of proper assembly instructions.

Going back to networking, almost the same situation applies; high-level northbound in-
terfaces have been proposed recently. These abstractions usually promote an easy-to-write
high-level language to express network policies, combine these into a single network policy
and then translate it to a lower-level protocol (e.g., OpenFlow). For instance, Pyretic [10]
and Frenetic [18] proposed functional abstractions as solutions to construct SDN control
applications. Both of them use NetCore [40] to automate the generation of OpenFlow en-
tries. Also, FatTire [41] and, Merlin [42] presented extended support on top of Frenetic
for fault-tolerance and resource provisioning type policies, respectively. Last but not least,
PGA [12], Kinetic [13] and Janus [11] proposed additional abstractions for graph handling,
finite state machine support, and real-time realization on top of Pyretic. The main pur-
pose of these abstractions is to ease network programming by providing modular tools and
easy-to-use libraries to compose different network policies.

Problem Statement 22

3.2. Challenges in SDN Northbound Abstractions

Although there are this wide variety of network abstractions available, each abstraction usu-
ally targets a specific type of network policies. Besides, network abstractions continue to
evolve to address new emerged network policies requirements. As a result, one abstrac-
tion is often not enough to implement a complete network policy, especially when network
policy requirements keep changing. In many cases, network administrators have to com-
bine two or more abstractions to formulate and implement their policies. The complexity
of combining abstraction policies increases with the number of employed abstractions and
can be a tedious task [2, 11]. Here, one major issue is that different abstractions employ
different data representations that would need to be translated in order to combine multiple
abstractions.

Existing approaches to this orchestration challenge have only provided a partial solution.
These solutions can be broadly categorized in:

1. A high-level perspective [10, 12, 13] in which high-level representations coordinate
between each other, which essentially requires writing a new wrapping library for
enabling a new cooperation pair

2. Low-level or abstraction agnostic solutions [14, 15] which depend on common struc-
tures (e.g., OpenFlow rules or network state variables) and further increase program-
ming complexity as they work on low-level commands.

To address these challenges, Wang et al. [2] have recently proposed plain data represen-
tations of the network to simplify the complexity of combining and integrating policies,
resulting in a simplified northbound interface. Here, any application-specific structure that
might be outgrown by future demands is discarded in a much simpler network model, mak-
ing orchestration easier. For instance, in Ravel [2], the whole network is modeled as a rela-
tional database, and application developers can request ad-hoc views based on the database
tables, which can then be queried against.

This approach has three significant advantages: First, SQL as a query language is widely
known in the community and among administrators. Second, an RDBMS guarantees con-
sistency and integrity among different views. Third, different applications (e.g., virtual
networking) can be realized by exploiting database views.

However, these advantages come at the price of performance. In essence, the network
model and all relevant information are distributed across different, typically normalized
database tables, leading to significant delay when aggregated views are used to establish a
complete view. Although inserting specific information (e.g., a firewall entry) is fast, re-
trieving information that needs to be collected from many tables is costly (e.g., retrieving

23 3.2. Challenges in SDN Northbound Abstractions

routes). At the same time, implementing a new application requires first a good understand-
ing of the database scheme, and second, manipulating this scheme.

Consequently, even simple applications need to interact with a large number of database
tables. For instance, to calculate the shortest path between two nodes in the network, one of
several steps requires—for each switch on the path—to query a table storing that switch’s
port connectivity. As a result, the processing application request is slow, leading to the con-
clusion that writing network applications can still be overly complicated. In particular, each
application needs to create its tables and link them correctly to the existing database. This
can be a tedious task for the application developer, especially as the number of applications
running in the network increases.

To summarize the challenges as mentioned earlier, using a relational database as a plain
data representation in a networking environment presents unnecessary overhead espe-
cially when the network topology is huge and complex. There is a need to have higher per-
formance abstraction while maintaining the simple data representation offered by Ravel.
This part of the thesis answers the question raised in the first chapter regarding perfor-
mance enhancement using better data organization in 1.3.1.

Chapter4
Related Work

Related efforts could be categorized into three different classes of directions: north-bound
interface abstractions, the use of databases in existing SDN controllers, and the use of graph
modeling in networks.

4.1. Abstractions

Many abstractions and policies frameworks have been proposed to ease network program-
ming for different types of applications. Most works on northbound interfaces started with
Frenetic [18] and Pyretic [10] which proposed functional abstractions to construct SDN
control applications. These two abstractions used NetCore [40] as their core language for
forwarding decisions. Later on, Frenetic replaced NetCore with NetKAT semantics [43]
which is an extension to NetCore but verifiable for Kleene algebra with Tests [44] (KAT)
and complete in the sense of no bugs are missed. Later abstractions kept evolving either
to support some scenarios or to extend existing abstractions. For example, FatTire [41]
and Merlin [42] allowed for extended support for fault-tolerance, and resource provisioning
type policies, respectively. Last but not least, PGA [12], Kinetic [13] and Janus [11] pro-
posed additional abstractions for graph modeled policies, finite state machine support and
temporal based policies on top of Pyretic.

Other proposals were developed as a northbound intent framework, for example, [45]
which tries to simplify writing network application by enhancing intent framework in
ONOS [46], but is still a somewhat limited solution as it was designed for a single SDN
controller (i.e., ONOS). Other works that go in this direction include [47, 48] which focus
on supporting path finding and writing network intents, but do not study the consequences
of composing or simultaneously running multiple intents.

Related Work 26

The variety of existed abstractions is a two-sided coin. The positive side is the broad
support to different network scenarios. The other side could present a stiff challenge to net-
work flexibility [49], where network administrators need to spend time figuring out which is
the best abstract, or the orchestration of different abstracts, to represent a network policy to
respond to an event. The need to automate the orchestration of different network programs
written with different abstracts would represent another challenge. Referring to the second
challenge, there are two ways to combine network applications. The first approach involves
a high-level perspective in which a high-level representation [10, 12, 13] coordinates be-
tween different applications, and it is then restricted to the use of specific abstractions. The
other approach is a low-level conflict resolution which is abstract agnostic [14,15], hence it
depends on common structures like OpenFlow or some network state variables and yields
in increasing programming complexity. These two approaches present a partial solution to
the orchestration problem.

As a plain data representation, Ravel can support different types of policies and scenarios
without worrying about composition operations due to its imperative paradigm [50]. As we
will discuss throughout this part, while Ravel relies on a relational database for represent-
ing the network, our approach uses a graph database engine and thereby offers improved
application program-ability and controller performance.

4.2. Databases in SDN Controllers

In another direction, although databases are almost in every SDN controller [6], they are
only used for state distribution, distributed processing, concurrency, replication control or
network state storage which are passive roles. For example, [51] used a database in passive
roles to maintain flow statistics and information for every domain registered in the SDN
controller. Also [52] uses the graph database in a passive role to keep track of network
topology. [53] exploits a database’s synchronization capability, and more specifically, a re-
lational database to synchronize the states saved in switches with the controllers and hence,
the switches will be able to update routes accordingly. Ravel [2] first leverages the database
management system in active roles for controlling an SDN, however it relies on a relational
database which affect the performance of running graph-based algorithms and routines.
Conversely, our approach is the first controller to employ a powerful graph database engine
for network control that supports graph-based algorithms.

27 4.3. Use of Graph Modeling in Networks

4.3. Use of Graph Modeling in Networks

Our approach is not the first system to exploit graph modeling for network management.
Researchers have indeed recognized the opportunities of graph libraries in network man-
agement before. Especially, in Netgraph [54], the authors presented new primitives to sup-
port network management in cloud computing. Later on, other supporting libraries are also
developed, such as [55, 56]. As a consequence, Some solutions take advantages of these
libraries and presented more efficient solutions such as [57] which enhanced path finding
in distributed controllers environment to scale up properly comparing to standard shortest
path algorithms. The main advantage using these primitives is easing graph-based opera-
tions and routines where programmers will make abstractions of their implementations on
the graph level instead of directly perform actual implementations on code-specific data
structures (e.g., matrix or trees). However, these libraries still play a passive role in the
controller memory.

What we propose, on the other hand, builds the entire network model on a graph database
and exploits the graph database engine to facilitate network control so statistics and infor-
mation will be saved on the desk after the controller is off. Such statistics could be used
later on for further analysis after a sudden shutdown or enhancing machine learning module
to take better decisions. Assuming that these graph libraries could implement regular back
up operations, they still lack other database features such as state synchronization and a
descriptive query language [58] which our approach presents as it will be described later.

Chapter5
Software-defined network control with
graph databases: Gavel

In this chapter, we present our graph database defined networking approach. We show
in details how we use a graph database to present a plain data representation and provide
a high-performance northbound interface to compose different network policies. We first
justify our design choices and then elaborate on the detailed architecture of our approach.
After that, we evaluate our system and compare its performance to the state-of-the-art.

5.1. Introduction

To address the challenges that presented in Chapter 3, we propose Gavel: an SDN controller
that utilizes a graph database management system to provide a more natural plain data
representation that can be easily queried by network applications. More specifically, our
contributions are as follows:

• We systematically investigate how graph databases can help to provide plain data
representations and present several options for this purpose. Specially, we propose
Gavel which exploits the graph nature of the computer networks and consequently
employs a graph database instead of a relational database. The result is a much
simpler network model that yields substantial reductions in programming complexity
and query latency.
• We enhance Gavel to be able to connect to underlying data-plane devices via an Open-

Flow composer directly.
• We show our system’s capabilities by presenting different application types starting

from simple routing to complex Service Function Chaining (SFC) application and
network slicing.

Software-defined network control with graph databases: Gavel 30

• We conduct extensive evaluations on Gavel’s components and compare their perfor-
mance and impact.
• We provide a public repository [59] that contains the source code of Gavel infrastruc-

ture and applications. The repository also includes all testing scripts that were used
in the evaluation section to help reproduce the results or investigate further scenarios.

5.2. The Case for the Use of Graph Databases

One major obstacle to integrate different abstractions is the diversity of the data represen-
tations within these abstractions. Here, any integration would involve translating one (or
several) representation(s) to another. In this work, we aim to provide a plain data repre-
sentation of the network. Any networking application can then query this representation.
In this section, we first elaborate different available data representations then explain the
choice for a graph database representation.

5.2.1. Data Representations

The integration and data exchange between different abstractions on the same network re-
quires an understanding of how each abstraction internally handles data. Here, exploiting
the abstraction-specific APIs for data exchange would lead to a substantial delay in internal
processing due to massive routine calls. One approach for a more efficient and flexible data
representation relies on exploiting relational databases [2]. Here, the data is stored in dif-
ferent tables and can then be queried by any arbitrary application to retrieve information of
interest. Such plain data representations would thus be the same for each abstraction.

Employing an RDBMS for representing data also yields additional benefits, such as the
ACID properties of these systems. For example, atomicity can be utilized to ensure that all
database entries corresponding to a freshly installed path are installed or updated success-
fully; consistency can ensure the integrity of the database and, once a network program tries
(by accident or intention) to break the consistency, the database management system will
stop executing this application and reject the faulty query. Isolation and durability would
contribute to the availability of the database to multiple-access and the availability of an
update for future usage respectively.

31 5.2. The Case for the Use of Graph Databases

5.2.2. Drawbacks of Relational Databases

State-of-the-art solutions of plain data presentation currently employ a relational database,
where these operations are provided by creating tables that can later be queried, aggregated,
updated, and so on. However, the more complex applications become and the more appli-
cations we deploy in our network, more tables are needed, and more complex dependencies
among tables become. This increases the programming effort required by the network ad-
ministrator.

For example, as depicted in Figure 5.1, a representation based on a relational database
will need to keep track of different network entities (such as hosts, switches, or links) in
different tables. A routing application that tries to find the shortest path between two hosts
will have to query and combine needed data from all these different tables, and then insert
the result in other tables that maintain the routing information. If another application (e.g.,
a firewall) is running in parallel, this application may have to modify the database schema
(as, e.g., in Ravel [2] firewall rules cannot be represented by the existing topology’s tables)
or even existing applications (e.g., in Ravel [2] the routing application has to be modified to
also respect firewall rules when querying tables). Although in a general case, the database
scheme could be designed to keep the need to add new tables to its minimum, this would
require a competent prediction of any network application that could be run in the future.

At the same time, the increasing complexity also results in reduced performance. If more
applications are deployed in the network, more (and likely more complex) tables will need
to be queried to retrieve an answer. Similarly, when updating network information, this
information has to be made consistent across all tables. As network control is time-critical,
this processing overhead can become prohibitive.

5.2.3. Advantages of Graph Databases

To overcome the drawbacks mentioned above, we propose Gavel which employs a graph
database as the main component of the control plane architecture (GDBMS in Figure 5.1).
Graph databases, such as Neo4j [60], have been mainly considered as an alternative for
handling the exponential growth and high complexity of social networks, as they offer sig-
nificant advantages for modeling networks over traditional relational databases [39].

In this thesis, we advocate to exploit these advantages when modeling SDNs. Since a
graph in nature best represents networks, graph databases are a much more natural fit for
them. In general, we can model each device in the network as a node in the graph database,
and then easily manipulate its attributes. These advantages are best shown by illustrating
examples.

Software-defined network control with graph databases: Gavel 32

FW

LB

RTRT FW

Data Plane

Control Plane

Application Plane

RDBMS GDBMSGDBMS

OpenFlow OpenFlow

SQL Cypher

Figure 5.1.: Database management systems as SDN controllers

33 5.2. The Case for the Use of Graph Databases

• Inserting a new switch into a relational database model requires the query first to be
disassembled into basic data types, then each of these data types mapped to an appro-
priate table. In particular, the information of a new switch, all its ports, and all the
neighbors that it is connected to, have to be stored in the corresponding tables [2]. In a
graph database, on the other hand, inserting a switch only requires adding a node and
one edge to each of its neighbors in the graph structure. It is not necessary to query or
insert further information about neighbors connected to the newly inserted switch be-
cause the graph database management system can update and link neighboring nodes
with the inserted edge and node.
• Similarly, requesting data from a relational database (e.g., finding a route between

two hosts) will require first to collect the relevant nodes, their attributes and connec-
tivity information from different tables in an RDBMS [61]. In a graph database such
as Neo4j, such operations are natively supported. That is, we can query the graph
structure for the shortest path between the two nodes (e.g., shortestpath function
in Neo4j).
• As a result of adopting the RDBMS network model, network administrators will have

to consider two different topology schemes every time they write a policy. The First
scheme is the physical network topology and the second is the mapping to relational
database tables(i.e. the database scheme). In other words, administrators will have to
design and implement their applications with respect to RDBMS rules and network
topology logic. This is not the case in the graph database, where the network topology
will be most likely the same as the database connectivity due to network graph nature
(i.e. Gavel). It is good to highlight here that there could be other graph schemes and
they may not preserve the advantage of the single view of the network in physical and
logical schemes. However, part of this work contribution is to keep the advantage of
this scheme design.
• Finally, the orchestration of applications (explicitly talking about Ravel and Gavel), in

particular keeping network data consistent, is more relaxed with graph databases. For
instance, when implementing a firewall, we need to modify node labels or attributes
in the graph to restrict access for certain hosts or interfaces, instead of manipulating
a routing application and the database scheme.

While these are simple examples, we believe they generalize well relating to more com-
plex scenarios. Complexity in relational databases increases with increasing network sizes
or more complex topologies, as table complexity increases. Besides, running SQL queries to
do graph related functions will result in a worse execution performance compared to graph
database [62]. The main reason behind that is the functional mismatch between a traversal
algebra and the relational algebra [63]. Moreover, SQL query optimizer is unaware of the
graph nature of the data; hence, it builds a sub-optimal execution plan, a side effect that
would have a significant impact in a network topology with a high number of interconnec-

Software-defined network control with graph databases: Gavel 34

Switch SwitchHost

Connected_toConnected_to Connected_to

Path_to

Host

Slice
Member_of Member_of

Member_of Member_of

Figure 5.2.: Basic network topology model in Gavel

tions. However, Graph databases have proven to scale well in complex multi-million nodes
networks and handle graph-based functions better [64].

5.3. Gavel Architecture and Design Choices

We start in describing Gavel’s architecture with the direct mapping between real network
entities and graph elements (i.e., nodes and edges). Later, we model the detailed specifica-
tions of the network entities by adding them as proprieties to graph elements. Finally, we
conclude by employing the graph database engine to function as an SDN controller.

5.3.1. Network Model

Graph databases usually use two entities to model environments; Nodes and Edges. As
shown in Figure 5.2, we employed these entities to model the main network environment
components such as switches, links, and policies.

• Nodes represent either forwarding devices, hosts, or any added function (e.g., middle-
boxes). They keep information that suits the object they represent (e.g., IP addresses
for hosts and OpenFlow Data Path ID (dpid) for switches).
• Edges represent the relationship between the nodes, which could be a physical con-

nection (e.g., a physical link between two switches) or a virtual connection (e.g., a
path installed between two hosts or membership of a network slice). Edges can hold

35 5.3. Gavel Architecture and Design Choices

Table 5.1.: Graph databases comparison matrix
Database Graph Algorithms Query Languages Open Source
AllegroGraph [69] Yes SPARQL, RDFS++, PROLOG No
ArangoDB [66] Yes AQL Yes
DEX [70] Yes Traversal No
GraphBase [71] No - No
HyperGraphDB [72] No HGQuery, Traversal Yes
InfinteGraph [73] No Gremlin No
InfoGrid [74] No - Yes
Neo4j [60] Yes Cypher, Gremlin Yes
OrientDB [75] No Extended SQL, Gremlin Yes
Titan [67] No Gremlin, Yes

information based on the type of the relationship (e.g., an edge describing a link be-
tween two switches can keep track of the connected ports from each device).

Compared to complex table structures where information is dissembled in many tables,
this simplicity in modeling the network helps administrators to write network applications
that follow graph logic easier as it exists in the network topology.

5.3.2. Selecting a Graph Database Engine for Gavel

There are many graph database engines available to realize our network model, and it is
worth noting that Gavel can be implemented on several of them. In Table 5.1 we list several
potential candidates. Our implementation uses Neo4j, as it offers three major benefits [55]
that are in-line with our requirements: First, it provides native support to graph functions
(such as path computation) that are called frequently through network management tasks.
Second, in Cypher it implements a fast query language which is a good interface to write
network applications [65]. Finally, Neo4j is an open-source software that offers more flexi-
bility regarding adding plugins and extends its functions.

The only other graph database with similar characteristics is ArangoDB [66]; however, it
has a much smaller developing community. More well-known alternative solutions such as
Titan [67] do not implement essential functions, and the Gremlin query language is shown
to perform worse than Cypher [68].

Software-defined network control with graph databases: Gavel 36

CREATE (:Switch {id: idvalue1, layer: layervalue2,

dpid: dpid1});

CREATE (:Switch {id: idvalue2, layer: layervalue2,

dpid: dpid2});

MATCH (s2:Switch {dpid: dpid2})

MATCH (s1:Switch {dpid: dpid1})

MERGE (s1)-[r:Connected_to]->(s2)

ON CREATE SET r.port1 = s1port, r.port2 = s2port,

r.node1 = s1.dpid, r.node2=s2.dpid

MERGE (s2)-[r:Connected_to]->(s1)

ON CREATE SET r.port1 = s2port, r.port2 = s1port,

r.node1 = s2.dpid, r.node2=s1.dpid

Figure 5.3.: Cypher snippets to add two switches and their connections to each other to the
network topology

5.3.3. Native Graph Functions and Cypher

Native graph support is a critical feature that affects overall performance. When the engine
can perform a graph related call using built-in functions, we can usually expect optimized
performance compared to user-defined functions.

Neo4j has implemented many functions and algorithms that are used natively in graph
structures. For instance, Neo4j can significantly improve the computation times of route cal-
culations in an SDN. Routing is mostly finding the shortest path between two nodes, which
is a built-in function in Neo4j. Relational databases cannot perform such functions natively
and always need third-party libraries to carry out the same task. For instance, PostgreSQL
uses pgRouting [76] for routing, which requires a database redesign to be compatible with
the pgRouting library. Further, retrieving the path will require significant processing of
tables.

Besides processing native graph functions, Neo4j in Cypher [65] offers its declarative
query language. Cypher is simple, easy to read and has a flat learning curve. It could be
used not only in manipulating the database but also to create the new nodes and edges as de-
picted in Figure 5.3. With the help of Cypher, Neo4j can natively traverse paths in the graph
via the connected to property as shown in Figure 5.2. Despite its simplicity, Cypher is

37 5.3. Gavel Architecture and Design Choices

strong enough to manipulate a large-scale graph data store in an efficient way [68]. Another
advantage of utilizing Cypher is its flexibility towards the combination with other program-
ming languages (e.g., Python or Java; we will later present an example for applications
which employ both Cypher and Python).

5.3.4. Gavel Architecture

Following our discussion about graph databases and network model, we elaborate here more
about the architecture details. Gavel consists mainly of a graph database engine in the core,
interface to end-users, and a composer to translate management decisions into OpenFlow
rules.

Starting with the core of Gavel, the graph database, Neo4j is used to store the network
topology and also to execute network routines whenever needed. The database could be
used later on to keep track of statistics and could be integrated with network applications to
carry on some decisions making based on these statistics. For our proof of concept work,
we kept the network model information as showed in Figure 5.2.

To allow users and admins to interact with Gavel, there is Cypher as described earlier.
Users could run Cypher scripts using different tools. They could either use standard shipped
web interface or the command line tool. They could as well embedded these scripts in a
high-level language to allow reusing network data and also to ease the automation of such
scripts. The network applications covered in this work follows the second way where we
embedded them in a Python code file to allow the automation and reuse features.

Finally, to enable real-world Gavel deployments, we implemented an OpenFlow com-
poser component. This component as shown in Figure 5.4 discovers the switches and the
connecting links in the forwarding plane and reports them back to Gavel. It is also respon-
sible for flow rules installation in forwarding switches. For the ease of implementation, we
used some low-level POX controller [77] libraries to implement the low-level events, such
as the discovery of underlying network devices and changes in their state. Gavel will react
to these discoveries and updates by triggering appropriate Cypher commands.

The composer further translates Gavel management decisions to OpenFlow entries passed
to corresponding switches. Whenever Gavel decides to install a flow rule in the network, this
component will traverse all switches related to that flow and install the correct OpenFlow
entries that ensure the success of physical connectivity in both directions.

Software-defined network control with graph databases: Gavel 38

OVSwitch

POX

Lib

Figure 5.4.: Gavel interaction with forwarding plane to learn the topology and install the
new forwarding rules

5.4. Gavel and Network Application Programming

As proof of concept, we next implement a variety of applications on top of Gavel. In this
section we show that Gavel can i) indeed profit from native graph functions (by implement-
ing a functional routing application), ii) handle different types of applications (by imple-
menting a stateful access control firewall as a finite state machine application), iii) offer
functionality to combine Cypher with different programming languages (by implementing
a load balancer in combination with Python), and iv) employ Cypher to implement some
popular network applications such as Service Function Chaining and Network Slicing. All
source code of these applications including Gavel itself is publicly available online 1.

Additionally, we show that these applications can be run in isolation of each other without
the need to be modified (e.g., routing does not need to be modified to work with the firewall),
and the changes needed in the database scheme are small.

5.4.1. Routing

As shown in Figure 5.5a, assume two hosts (h1, h2) are trying to reach each other. First,
Gavel will have to locate the two hosts with the help of their IP addresses by querying the
graph database using a Match statement. Afterwards, using the find-route routine built into
Neo4j, it calculates and retrieves the shortest path between the two hosts and as a result, it

1https://github.com/engbarakat/Gavel

39 5.4. Gavel and Network Application Programming

MATCH (h1:Host{ip:srcip}), (h2:Host{ip:dstip})

MATCH p=shortestPath((h1)-[:Connected_to*]->(h2))

WITH h1,h2, p

CREATE (h1)-[pa:Path_to

{switches:[n in nodes(p)[1..-1]| n.dpid],

 ports:[r in rels(p)[1..]| r.port1]}]->(h2)

RETURN pa.switches, pa.ports;

(a) Cypher code snippet for finding a route between two hosts

MATCH (h1:Host{ip:srcip})-[r:Connected_to]->(s2:Switch)

REMOVE h1:Host SET h1:blockedHost

RETURN DISTENCT s2.dpid;

(b) Cypher code snippet for blocking a host fix distinct

Figure 5.5.: Cypher code snippets

also collects all relevant path information (switches with ports that connect them ordered
from source to destination). To reuse this information in future operations, Gavel stores it in
the database as a relationship between the two hosts with a path to label (cf. Figure 5.2).

This yields two advantages. First, installing a reverse path will be easy for Gavel by
reversing the original returned switch list. Second, further optimization can be applied so
that all forwarding rules for hosts that are connected to the same switch are summarized into
a single forwarded message, using route summarizing techniques. This results in a lower
number of OpenFlow rules in each switch and consequently saves TCAM space.

Note that in comparison to an RDBMS scheme (i.e.Ravel), Gavel reduces the query over-
head significantly. For reverse path installation, a relational database approach will need to
issue an additional explicit query for the same source-destination hosts, which is expected
to accrue due to TCP three-way handshake to initiate the communication channel. While
Ravel controller could implement route summarizing by finding all routes that are installed
and share the same source and destination, this would introduce substantial query overhead.
Additionally, before actually calculating a routing path, the request must be inserted into
several tables to trigger relevant routines. After inserting the calculated route into another
table, the information required to install OpenFlow rules along the path needs to be queried
for. This involves each switch on the path to query the database again.

Software-defined network control with graph databases: Gavel 40

5.4.2. Access Control Firewall

Next, to test Gavel’s ability to handle a finite state machine application we have imple-
mented a simple stateful firewall application similar to the one implemented in [2].

Our firewall generally allows for access control in the network by managing the visibility
of resources to applications. For instance, as described above, the routing application finds
the shortest paths between two host entities in the graph. Disabling a host can be achieved
by simply changing the label of the node from host to blockedHost as depicted in Fig-
ure 5.5b. In general, by changing the type or attributes of a node or edge in the graph, we
can alter its visibility to applications.

Importantly, this concept yields isolation of the firewall from other applications. While
the firewall needs to alter the database scheme and the routing application itself in state of
the art (before finding a route, the routing application needs to check for blocked resources
in a distinct table), in Gavel, resources are hidden by the firewall and directly not visible
to the routing application. For instance, once the firewall blocks an edge in the graph by
changing its type, the routing application will not find that edge again and will instead route
a request via a different edge, if available, or return a no-route error if unavailable.

Moreover, to enforce the policy on any previously installed path, the application con-
tinues to locate all switches connected directly to that host and then installs the respective
OpenFlow rules (drop packets targeted at that host) in these switches. As a result, no device
will be able to reach the blocked host until a reverse (unblock) routine is called. Slightly
more challenging is a scenario in which we want to block a path that is not installed yet.
Here, the firewall will first compute the relevant path, and then change its type to blocked.

Applying these concepts using a relational DB based controller Ravel would require
adding a column to the hosts’ table to indicate each host status (i.e., blocked or not), and
thus an alteration of the database schema is not avoided.

5.4.3. Load-Balancer

To demonstrate the ability to combine a high-level language (e.g., Python) and Cypher, we
also present a load-balancer application. The application cycles through a list of servers by
picking one as a destination each time a path to the service is required. Each path is installed
with a balance in mind, so the application needs to track the assigned servers in one cycle
to assure this feature. Again, implementing the load-balancer does not require any change
in the database schema or any other application.

41 5.4. Gavel and Network Application Programming

Ingress Egress

Ingress Egress

Function 1

Function 2

Function 3

Function 1

Function 2

Function 3 Stage 1

Stage 2

Ingress Egress

Ingress Egress

Stage 3

Stage 4

Figure 5.6.: ARS algorithm [1] chooses the shortest path for every next network function
until it reaches egress point

5.4.4. Service Function Chaining

Service Function Chaining (SFC) [78] applies a series of network functions (NFs) to a flow.
Assuming that the location of NFs is already known, Gavel can also support the ability to
route flow through a series of such functions efficiently.

Essentially, what Gavel needs to do is to find the shortest path through all network func-
tions from the source to the destination. Finding the best path from ingress to egress points
and through specific nodes is an NP-hard problem [79]. For Gavel, we implement ARS [1],
an approximation solution in which the path through the requested NFs is calculated step
by step taking into consideration that path cost is a dynamic function.

Implementing this algorithm in Gavel is straightforward. Our application begins with
predefined assigned locations for each NF (which could be changed based on the allocation
criteria) and assigns NFs to each requested flow based on the policy accompanied each flow.
When the request to steer a flow arrives, Gavel starts to find the shortest path to each switch
connected to the first NF in the chain and keeps only the node with the shortest path. It
iteratively does the same for the remaining NFs in the chain as depicted in Figure 5.6, and
finally returns the path. In the graph database, Gavel creates a relationship for this steered
path between the two endpoints to keep track of the path information. One last thing to
mention here is that Gavel can calculate the shortest path in each step based on a cost
function which could be any predefined value or a dynamic value updated with the help of
the OpenFlow Composer (cf. 5.3.4) component.

Software-defined network control with graph databases: Gavel 42

MATCH (l:Slice{name:{slicename}})

MATCH (h1:Host{ip:srcip})-[]->(l)

MATCH (h2:Host{ip:dstip})-[]->(l)

MATCH p=allshortestpaths((h1)-[:Connected_to*]->(h2))

WHERE All (x in filter (x in nodes(p) where x:Switch)

WHERE (x)-[:Member_of]-(l))

WITH h1,h2,l,p order by length(p) Limit 1

CREATE (h1)-[pa:PathSlice_to{switches:[n in

nodes(p)[1..-1]| n.dpid], fports:[r in rels(p)[1..]|

r.port1],bports:[r in rels(p)[..-1]| r.port2]}]->(h2)

RETURN pa.switches, pa.fports, pa.bports, h1.mac,

h2.mac;

Figure 5.7.: Cypher sample to find a path between two hosts within a single slice l

5.4.5. Network Slicing

Finally, Gavel also supports network virtualization via slicing, which allows multiple appli-
cations or tenants to share and utilize the network infrastructure isolated from each other.

Creating additional nodes in the graph model could easily represent slices. Such a node
would represent each slice, and the resources belonging to the slice would, in turn, have
a member of relationship to that node represented by an appropriate edge in the graph
database. Note that no modification of the original database scheme is required in this case.

Afterwards, every Cypher call within this slice would be restricted to operations on nodes
which have this relationship with as shown in Figure 5.7. Creating slices in Gavel could also
be characterized by dynamic configurations (e.g., link bandwidth). Gavel will keep track
of such constraints dynamically by updating related specification in the graph database and
push it immediately to the forwarding plane. Whenever it is impossible to reserve or comply
with customers’ requirements in the slice creation phase, Gavel will turn down the request.
It is crucial that Gavel keeps enough resources to fulfill installed slices. To solve conflicts
in slice definitions, Gavel can use existing approaches [11, 50].

Implementing such an application on state-of-the-art relational database controller [2]
could be done using views technique. At first glance, that would be an easier and conve-
nient way to implement slices. However things could affect performance when multiple
views needed to be joined as unneeded tables would be queried, and unfortunately, DBMS
optimizers cannot avoid this situation in addition to the problem we mentioned earlier re-

43 5.5. Evaluation

garding SQL optimizers are not aware of the graph nature of the data. Another implemen-
tation possibility would involve creating a new table to track all slice’ memberships and
another one to hold all slices information. Hence, any query would go through these tables
to validate membership that adds more complexity to the running system. These possibil-
ities are without considering adding columns as it would change the database scheme and
bring us back to the first problem we are trying to avoid.

5.4.6. Summary

In summary, we have provided examples of how different types of applications could be
implemented in Gavel based on the Cypher query language. The key advantages of Gavel
over current relational database solutions are that i) applications now follow the logic of
the network topology rather than data organization, ii) there is no need to alter concurrently
running applications, and iii) it is only necessary to update the graph itself and not a multi-
tude of tables. In the next section, we evaluate Gavel and these applications with regards to
their performance.

5.5. Evaluation

In the previous sections, we have shown the Gavel network model and how programming
a wide range of network applications is simplified with our approach. Throughout this
section, we will show and discuss how these network applications perform in a Gavel-
controlled network. We find that depending on the network topologies we deploy Gavel on,
our approach decreases the latency of networking applications by up to several orders of
magnitude.

5.5.1. Methodology

We first describe our evaluation setup before illustrating our results. For all experiments
that follow, we have implemented Gavel components, models and applications in Python.
We then deploy Gavel on an emulated Mininet [80] testbed and evaluate its performance
on different topologies, which are characterized in Table 5.2. In particular, we checked
the performance of Gavel in the context of both data-center topologies (FatTree [81] with
k=16,32,64) as well as in ISP topologies (Geant and Deutsche Telekom topologies [82])
to cover a wide range of different network types and sizes. Our main evaluation metric is
the performance in terms of the latency induced by the controller from the time it receives

Software-defined network control with graph databases: Gavel 44

Table 5.2.: Topologies used to evaluate Gavel
Topology Switches Links Symmetric

FatTree 16 320 3072 Yes
FatTree 32 1280 24576 Yes
FatTree 64 5120 196608 Yes
Geant2012 40 61 No

Deutsche Telekom 39 101 No

the request to the time it ends processing this request. Finally, we compare our solution to
Ravel [2], the current state-of-the-art solution for plain data representations.

5.5.2. Gavel’s Applications

5.5.2.1. Single Routing

As discussed earlier, the routing application is one of the most important network functions
and should benefit significantly from graph support. In a database based controller, finding
the route between two hosts goes through multiple steps. These steps can be summarized
as follows:

1. Path Computation (PC): This step involves calculating the shortest path between
the two nodes. In doing so, it measures from the time the controllers received the
routing request until it finds the path in terms of path nodes and links.

2. Path Writing (PW): After the path has been computed, it needs to be written in the
database. This measures the time needed to write query results back to the hard disk.

3. Port Extraction (PE): Finally, to build the respective OpenFlow messages for all
switches on the path, all port information for these switches needs to be extracted
from the database.

In Figures 5.8a and 5.8b we show our main results. Here, we list the measured delay for
each component of the routing process as well as the total delay introduced.

We observe the following:

• Due to its native support for networks, Gavel’s graph database engine can compute
the path (PC) almost instantly, and almost two orders of magnitude faster than Ravel.
• The cost of all three operations (PC, PW, PE) remains constant within increasing net-

45 5.5. Evaluation

PC PW PE Total

100

101

102

103

Ti
m

e
(m

s)

k=16

PC PW PE Total

k=32

PC PW PE Total

k=64

Gavel
Ravel

(a) Routing performance in a k-ary FatTree network with k=16,32,64

PC PW PE Total

100

101

102

103

Ti
m

e
(m

s)

Geant2012

PC PW PE Total

100

101

102

103 Deutsche Telekom
Gavel
Ravel

(b) Routing performance in ISP network topologies

Figure 5.8.: A comparison of the latency induced on different topologies by routing appli-
cation in Gavel and Ravel, respectively.

Software-defined network control with graph databases: Gavel 46

work size in Gavel, while Ravel significantly suffers from the increased network com-
plexity. For instance, when comparing different scales of FatTree networks, Ravel
performs approximately two orders of magnitude worse in a 64-ary FatTree than in
a 16-ary FatTree. For Gavel, we do not notice any difference in performance across
different topologies. This indicates the ability of Gavel to scale without any major
reported impact on performance.
• We see that path writing (saving to Disk) is faster in relational databases for small

topologies. We believe that this is caused by highly optimized operations available
in these databases (e.g., PostgreSQL), while graph databases have not yet matured to
that point. Future releases should resolve these issues.
• Another key benefit of using a graph database is that it does not need to perform

any port extraction (PE) at all, while this remains a costly step in relational database
controllers. The reason for this advantage is that the quick PC step already yields the
relevant information in Gavel.
• In a FatTree topology with k=16, Ravel is slightly faster for the complete routing

operation. Note that the size of the network does not cause this (as counter-examples
see the performance for the much smaller ISP topologies in Figure 5.8b), but rather
by the tree property of the FatTree topology, which results in comparatively short
paths between most hosts and thus lesser database queries required in Ravel.
• In all other scenarios, Gavel significantly outperforms Ravel, in some cases by one

order of magnitude or more.
• A final note regarding the error bars in Figure 5.8b and in Figure 5.8a are due to the

random delay errors coming from the desk writing step (PW).

5.5.2.2. Service Function Chaining

Similarly, SFC is a concatenation of routing calls, with some additional database queries as
indicated in Section 5.4.

Since Ravel does not support function chaining currently, we were not able to directly
measure its delay. We thus extrapolated our results from the general routing application
implemented in Ravel. We compare the empirical results obtained by the Gavel SFC ap-
plication to a lower bound delay for Ravel. This lower bound includes only the cost of
finding and storing the path between the source and the destination while passing through
the requested middleboxes. It does not include other costs, such as selecting and finding the
appropriate switch data from the database, which can be costly as well. The lower bound
can thus be denoted as

c(sp)∗ (|NFs|+1)

47 5.5. Evaluation

Where c(sp) is the average cost of finding the shortest path from the general routing exper-
iment and —NFs— represents the total number of network functions on the path between
source and destination. Figure 5.9 shows that, although a lower bound estimate for Ravel,
Gavel outperforms the state-of-the-art in all cases except for smaller chains in a 16-ary Fat-
Tree. We again observe routing in larger topologies becomes impractical for Ravel (delay
of 104ms in a 64-ary FatTree), while Gavel is mainly independent of the topology size.
Another observation noted in Figure 5.8b where we plotted Deutsch Telekom results, is
the superiority of routing module in Gavel in asymmetric topologies (e.g. Geant2012 and
Deutsch Telekom). Thus, we kept only Geant Topology as an example for asymmetric
topologies.

5.5.2.3. Firewall

Differently, from routing, another aspect of Gavel is the capability to easily extend the
graph database model in order to represent more entities needed by other applications. This
extension should ideally not influence how Gavel is executing other concurrent applications.
In the following, we will look at two different angles of this isolation feature. First, writing
a new application should not require modification to any running application. This will be
shown in the firewall application. Second, the performance of applications already running
should not be affected by modifying the database scheme. We will show this by comparing
routing time before and after applying slicing.

As we discussed before in Section 5.4, the firewall application will change the type of
a node or edge in the graph structure, while in Ravel, blocking a host means inserting a
rule into the firewall table and a table lookup each time the host is referred to in a rule. In
Figure 5.10 we show the resulting delay for blocking a host (BH) and the reverse operation
of unblocking a host (UbH).

Evaluating the FatTree topologies, we can confirm the trends seen in our previous ex-
periments. Although Gavel is slightly slower for K=16, it performs much better in bigger
networks. There are two factors behind this. The first factor is the writing delay in Gavel.
It was the leading cause for Gavel’s lower performance in K=16 (both systems do the tasks
in ¡5ms). The effect of that result starts to diminish in bigger topologies, whereas other
sources of delay begin to have higher impact and introduce the second factor, the delays
induced by looking tables up for every firewall function call, which are triggered each time
the routing application is called.

Software-defined network control with graph databases: Gavel 48

3
4

5
6

7
Functions' Chain Size

10
0

10
1

10
2

10
3

10
4

Time (ms)
Gavel
Ravel

(a)K
16

FatTree

3
4

5
6

7
Functions' Chain Size

10
0

10
1

10
2

10
3

10
4

Time (ms)

Gavel
Ravel

(b)K
32

FatTree

3
4

5
6

7
Functions' Chain Size

10
0

10
1

10
2

10
3

10
4

Time (ms)

Gavel
Ravel

(c)K
64

FatTree

3
4

5
6

7
Functions' Chain Size

10
0

10
1

10
2

10
3

10
4

Time (ms)

Gavel
Ravel

(d)G
eant2012

Figure
5.9.:A

C
om

parison
ofthe

latency
induced

on
differenttopologies

by
routing

through
differentfunction

chains
in

G
avel

the
low

erbound
forR

avel

49 5.5. Evaluation

BH
 K=16

UbH
 K=16

BH
 K=32

UbH
 K=32

BH
 K=64

UbH
 K=64

0

50

100

150

200

250

300

350

400

Ti
m

e
(m

s)

Gavel
Ravel

Figure 5.10.: A comparison of routing delay in combination with firewall routines for block-
ing hosts (BH) and unblocking hosts (UbH) in both Ravel and Gavel in k-ary
FatTree networks with k=16,32,64

5.5.2.4. Network Slicing

Ideally, the addition of a slicing layer should have no implication on the performance of
other network applications, i.e., the slicing layer should be transparent to these applications.
To evaluate Gavel in this regard, we compare the performance of Gavel’s routing application
running in a network without any slicing present to the performance when different amounts
of network slices have been instantiated. Concretely, we measure the delay of finding a
routing path between the same (random) pairs of hosts in different topologies with and
without the slicing application running and the respective additions to the database being
made.

In order to obtain statistically robust results, we execute this experiment repeatedly for a
large number of host pairs. Concretely, the number of host pairs ranged from 82 (GEANT
topology) to 30000 (FatTree 64).

Figure 5.11 shows the effect of slicing on the computation delay values obtained by the
routing application for an increasing number of slices for four different topologies. We ob-
serve that there is a slight trend towards a higher latency with more slices being introduced.
However, this increase is in the vast majority of cases not statistically significant at the 0.05

Software-defined network control with graph databases: Gavel 50

0
1

2
3

4
5

6
7

8
9

No. of Slices
60 70 80 90

Time(ms)

Geant2012

(a)G
eant2012

0
1

2
3

4
5

6
7

8
9

No. of Slices
60 70 80 90

Time(ms)

FatTree 16

(b)FatTree
16

0
1

2
3

4
5

6
7

8
9

No. of Slices
60 70 80 90

Time(ms)

FatTree 32

(c)FatTree
32

0
1

2
3

4
5

6
7

8
9

No. of Slices
100

120

140

160

Time(ms)

FatTree 64

(d)FatTree
64

Figure
5.11.:A

com
parison

of
different

delay
tim

e
induced

by
routing

application
w

ith(1-9)/w
ithout(0)

slices
in

different
topologies

51 5.5. Evaluation

significance level in a one-sided paired t-test. In most cases, we observe a stable delay with
deviations (note that in some cases we also observe a decrease in the delay) ranging within
2-3ms.

5.5.3. Writing Network Applications on Gavel

In Section 5.4 we have shown that Gavel supports different types of applications to be
quickly developed in a few lines of code in the Cypher programming language on top of its
network model. Thus network administrators can keep only the network logic during writ-
ing network application on top of Gavel. We have demonstrated this ability with exemplary
results in routing, access control (firewall), load-balancing, service functions chaining, and
network slicing applications. We have shown that the programming complexity is signif-
icantly reduced over state-of-the-art solutions using relational databases as fewer and less
complex queries are needed (especially with increasing application complexity). We inter-
pret the reason behind the reduction of orchestration complexity as applications do not need
to alter the logical flow of other applications, and all applications will automatically have
access to the same network state. Recalling routing application from section 5.4, although
four lines of code are enough for both Gavel and Ravel to find and store the path, Ravel
needs more lines to iterate each switch in the path to retrieve the ports information to install
the path.

Chapter6
Future Prospects

In this chapter, we talk about the prospects of Gavel. We investigate the possibility to
operate Gavel either with other northbound interfaces or in a different SDN environment
(i.e., SR). After that, we analyze the current limitations of Gavel and suggest some ideas for
future extension.

6.1. Applicability of Gavel with Other SDN Environments

6.1.1. Gavel and SR

One of the advantages of Gavel is its flexibility to fit into different SDN technologies. In
Part II, we show how we can adapt Gavel to work as a network controller in an SR environ-
ment. Although the core components are unchanged, other components that communicate
with data plane have been updated to reflect the new SR environment. Gavel worked per-
fectly in the SR environment as presented in Part II.

6.1.2. Gavel and other Northbound Interfaces

As mentioned in Chapter 5, Cypher is used to query the database and send requests to the
network controller in Gavel. Additionally, Java could be used as well to do the same tasks.
Gavel uses Neo4j as a database management engine, and it offers a Java API as well. When
there is a need to use another northbound interface, Java programming language could be
used to integrate the desired abstract with Gavel.

Another form of integration could be realized if the needed routines are coded as stored

Future Prospects 54

procedures and then plugged into the database engine itself. Cypher could be used after that
to call these procedures. In this way, any new functions that are not available in Cypher’s
library could be added to Gavel.

6.2. Current Limitations and Prospects of Extensions

Gavel provides simple data representation that delivers higher network controller perfor-
mance. Nevertheless, there are still challenges that need to be addressed. In this section, we
discuss some of these challenges and suggest some extensions to enhance Gavel. Giving the
results presented in Figure 5.8b, we can see how writing path information back to the desk
takes more time than the relational database approach (i.e., Ravel). As pointed in results’
discussion in Section 5.5, the superiority of the relational database writing module could be
explained by the maturity of relational database management systems.

To enhance writing to desk module in Neo4j, we could either customize the writing
module or restructure the installation of the database engine. In the first suggestion, the
customization would convert the database engine from general purpose database engine to
a specific one, because any unneeded operations will be omitted and keep those that are
related to the networking environment. The second suggestion could be realized by config-
uring the database engine to save its data on a RAM-based disk and write a tool to dump
the data to the physical disk periodically. In this way, the rate to access the hard disk will be
fewer which enhance writing speed and keep a version of the data saved for backup when it
is needed.

Part II.

Addressing Northbound Interface
Challenges in IPv6 Segment Routing

Chapter7
Problem Statement

7.1. Introduction

As introduced in Chapter 2, SR is a variation of source routing that was presented not
only to solve MPLS manageability problems but also to introduce networking programming
to current network infrastructures [8, 20]. In Chapter 1 we elaborated on the importance
of network programming in the current time and how it will play an important role soon
regarding connecting people and services around the globe. Therefore, as SR introduced
itself as future network technology, we have to study the current competencies it has in
programming aspects.

In the IETF standard draft [20], network programming was introduced as a new feature
in the IPv6 variation of SR. Commands that would steer and process traffic in the network
are encoded as IPv6 addresses and stacked in the SRH as segments. Any router receives
a packet with a destination address that matches any predefined function will be processed
according to that. However, this is not enough yet to claim that end users can start writing
their network programs on top of SRv6 networks. In this chapter, we explain the challenges
and problems that are not solved with current approaches.

7.2. Challenges in Segment Routing Policy Composition

Even with all of these programming capabilities enabled by SRv6, network administrators
still face the difficulty of manually constructing segments lists that fulfill their intents and
policies. Taking a closer look at latest works, where SRv6 is in its ecosystem, such as [22–
26], segments lists were composed manually. Such methodology would work simply in
these projects giving the fact that network topologies used in the evaluation tended to be

Problem Statement 58

small, however, in real operated network topologies manual composition presents various
challenges in the context of composing network policies.

The first challenge comes from the manual operation itself as it is prone to human errors.
Typing manually a list of SIDs (128 bits each) in the command line every time a user wants
to send a policy entry to an edge router could increase the resulting probability of manual
errors even when a network controller collects the SIDs. The second challenge is observed
when certain network events trigger a change in the network topology. The response from
network administrators, to update the segments lists which implement the various policies
cannot be completed in real time. Even if we assume that IGP protocol would sufficiently
handle such failure events due to its high reliability and convergence time, other events such
as migrating network functions need immediate response to update affected policies as IGP
protocols cannot help in such cases.

Other challenges could also raise due to improper SRv6 behavior usage. Decapsulation
before encapsulation or process in order but with different protocols (IPv4 instead of IPv6
and vice versa) are good examples of what could happen when segments lists are composed
manually. Also, more challenges with SRv6 behavior usage could be present when param-
eters are needed to be manually calculated, retrieved, and passed with SRv6 behaviors (e.g.
tenant’s ID).

Finally, running and managing networks in the presence of tenants can introduce further
complexity in segments list management. Assuming that overlay service or VPN is already
configured in the corresponding edge routers, administrators would need to attach related
behaviors for encapsulation (e.g. T.Encaps) and decapsulation (e.g., End.DT6) keeping
parameters also incorrect value for each customer or tenant.

To summarize the challenges mentioned above, manual composing and management
of segments lists are unrealistic given the new advancements in the field of computer
networks (e.g. SDN). To make SR networks ready for Self-Driving technology [83], at
least composing and managing segments lists and SR policies should be automated. This
part of the thesis answers the question raised in the first chapter regarding automation and
portability in 1.3.2 and in 1.3.3.

Chapter8
Related Work

We show in this chapter other work that could share with our framework either the environ-
ment or the objectives. We start with SRv6 related works and highlight our work among
others who are building systems on top of SRv6. Later, we discuss other works that share
some objectives with Busoni, but they operate only with OpenFlow.

8.1. Segment Routing on IPv6

Since the introduction of SRv6 [8], the focus of researchers was mainly in the data-
plane [22, 24–26]. They solved many problems regarding integration with existing net-
works, dataplane performance, or SR procedures optimizations. For example, in [22] re-
searchers showed how to support SR-unaware network functions to reserve segment list
integrity. Also, in [26] where the researchers proposed a new SRv6 behavior to ease writ-
ing custom functions. Other researchers were focusing on providing added-value services
as in [24] or investigating a better way to send segments list to edge routers based on
Linux [25]. Only a single work is close to what we propose in this paper: Software Re-
solved Networks (SRN) [21]. SRN presented an SDN-like architecture to enable network
operators to specify policies to control the network. While they allowed end users to ex-
press their requirements, the authors used DNS service to convey these requests. If the end
users start to use the real IP address instead, there is no guarantee that policy will be en-
forced. Additionally and in comparison to our framework, SRN’s policy tools cannot be
easily extended and need to be built from scratch to support other scenarios while in Busoni
besides its support to multi-tenancy and VPN related policies, it could be extended given its
software architecture is flexible to support different scenarios. Therefore, our framework is
more appealing in real-world scenarios.

Another essential difference is in the operations: the process of finding and installing

Related Work 60

path in SRN is triggered each time a new host tries to reach service in the network (reactive
actions), while Busoni offers the possibility to configure the network proactively. Consider-
ing internal operations in the two approaches, we found that SRN almost follows the same
steps and algorithms to handle path requests. Both frameworks use Dijkstra for finding the
shortest path and minseg for encoding the path as segments. Therefore, the type of database
used to store network information is the key to differentiate the performance of these two
approaches. SRN uses a relational database to store network topology information while
Busoni uses a graph database. Looking at the comparison results of the two databases
in [27] and considering the networking environment, we can conclude that OVSDB, which
is a relational database, would impact the total performance in SRN negatively. The graph
database used in Busoni scales well with bigger topologies as it designed to handle massive
complex graphs (e.g., social networks).

Continuing our comparison to SRN, we can see that the management of dynamic events
is also different; our framework responds to various events, including network functions mi-
gration and not only router/link failures. While SRN can react to changes in the bandwidth
of the infrastructure links (this feature could be addressed in the future release of Busoni).

8.2. Northbound Interfaces in SDN

After the introduction of SDN in [7], researchers started to develop different solutions on
top of SDN. Direct management of the southbound interface (i.e. OpenFlow) was one of
the main challenges during the early stages. Researchers responded early to this issue and
presented many approaches to ease OpenFlow handling (i.e. northbound interfaces). These
approaches could be categorized based on their end objectives. Some were focusing on
optimizing resources reservation [16, 17], some supporting multiple composition [10, 15,
18], and others minimizing the number of forwarding rules in the dataplane [19]. However,
all of these solutions were designed for OpenFlow devices, and the idea of reusing them for
SR would require a redesign from scratch. The operation of OpenFlow and SR differs from
each other. While OpenFlow protocol requests the controller to find the path for each new
packet, SR involves only constrained shortest path requests and only communicates with
edge routers. Other difference, each device in the OpenFlow data plane needs to keep rules
for every packet traverses the device. SR keeps matching rules at edge routers which yields
in fewer routing rules in the core routers which means better scalability.

Chapter9
A Northbound Interface for IPv6 Segment
Routing: Busoni

In this chapter, we present our SRv6 policy management and a northbound interface frame-
work. We elaborate in details the design choices and the architecture of our framework.
After that, we show the operation of the framework using three different use cases. The
chapter concludes with profiling experiments to show the scalability and response time of
the framework under various loads.

9.1. Introduction

To resolve the challenges outlined in Chapter 7 we present Busoni, a framework to com-
pose and manage network policies on top of SRv6 networks. Busoni provides the needed
programming functions for network administrators as a northbound interface on top of a SR
controller. End-users can use Busoni to automate the generation of their policies. They can
define endpoints in flexible terms as we show later, and write their functions or any special
behavior that they want to apply to the flow between the defined endpoints. In the case of
network dynamics or failure events, the framework will automatically update the affected
policies and report any events for which Busoni failed to find enough resources that satisfied
the policy’s goals. Busoni makes the following contributions:

• Automate segments list management: Busoni exploits the benefits of the network
controllers and utilizes a data store to keep track of the SIDs announced in the net-
work. This feature allows the administrators to focus on network management goals
rather than focusing on physical details of segments and their location. For example,
an administrator can create a service network chain using network functions names
instead of exact segment identifiers. This provides an opportunity for the network

A Northbound Interface for IPv6 Segment Routing: Busoni 62

controller to find a suitable path that implements this chain and thereby eliminate the
overhead of administrators’ efforts in finding the desired network functions that can
produce a shorter path and use their SIDs.
• SR policy management: Network administrators can choose to utilize the predefined

policies provided by Busoni or build a new policy on top of it. Busoni provides dif-
ferent tools to compose SR policies ranging from packet matching rules to functions
that attach SRv6 behaviors to segments lists.
• Responding to network dynamics: Busoni updates any affected policy whenever

there is a failure or updates in the network topology. This feature complements
SR built-in reaction functions and keeps the installed policies resilience to dynamic
events.
• Multi-tenancy support: Carrier grade networks or cloud service providers deliver

overlay services to end-users. Busoni supports multi-tenancy as it embeds tenants
IDs in any related SRv6 commands.
• A prototype implementation and use cases: Busoni is an open-source framework

implemented on top of an SRv6 network running by Linux based routers. We also im-
plemented different use cases, which present how Busoni’s libraries could be utilized
and further extended to support different policies on top of SRv6.

9.2. Requirements for Segment Routing Policy Framework and
Target Scenarios

Current Segment Routing standardization efforts consider various scenarios; however, the
current implementation of Busoni supports a subset of these scenarios. A modification to
the source code would be required to run Busoni in other scenarios. The assumptions made
in Busoni are:

• Single SR domain: Busoni assumes a single domain which is responsible for deliv-
ering packets from ingress to egress points within the domain’s borders. Interdomain
routing and passing service information between different domains would be possible
with some modifications.
• Basic Policies: This refers to any policy when there are no multi-tenancy related

constraints. Traffic engineering and SFC are good examples of what we refer here as
basic policies.
• Overlay Policies: In different network types, tenants expect to manage their net-

working infrastructure independently. This translates to the possibility of applying
different policies on the same router.

63 9.3. Busoni Architecture

In other considerations, designing the policy framework should account for:

• Simplicity: The idea behind providing northbound interfaces on top of network data
plane is to ease policy writing. Such interface should hide ugly details of forwarding
devices and provides enough means for end users to write, manage and validate
policies.

• Automation: As discussed earlier, manual intervention is a major contributor of
time wastage, and it is prone to human errors. Automation should minimize such
interventions and allow network administrators to focus on management aspects.

• Expressiveness: Libraries and functions provided by the framework should help
network administrators express different scenarios and conditions. Although a north-
bound interface is not a purely human language, it is still possible that high-level
computer programming language expresses end-users needs.

• Extensibility: The framework should provide means to allow future extensions with-
out any need to do a complete re-writing to the source code. Network policies are
evolving [27], thereby administrators should be able to simplify the process of ex-
tending the framework to implement new policies.

9.3. Busoni Architecture

In this section, we describe the architecture of Busoni followed by the design details of
our framework. We begin by positioning Busoni in a normal SDN operating environment
including its internal design. Then, we elaborate on the high-level APIs that end-users
and/or network administrators can use to compose their policies. This is followed by a
more in-depth explanation of how Busoni compiles the users’ policies to generate segments
lists followed by how these policies are pushed to the related routers.

9.3.1. Overall Architecture

Busoni is a northbound interface for SRv6 networks. A normal network environment, where
Busoni operates, is similar to a network depicted in Figure 9.1. This is similar to the SDN [6]
reference architecture, which includes network controllers, protocols to communicate with
end-users (i.e. northbound interface) and data plane (i.e. southbound interface). Busoni
should be able to communicate with a network controller to query and save needed infor-

A Northbound Interface for IPv6 Segment Routing: Busoni 64

gRPCOSPF
BGP-LS

Busoni

B

A

D F

C
E G

Net 1

Net 3

Net 2

SRv6 Domian

SR Network Controller

Basic
Policy

Overlay
Policy

Figure 9.1.: The position of Busoni framework in a SRv6 network

mation for its policy management functions. It is crucial to expose network topology in-
formation to Busoni in order to run network management-related tasks (e.g. finding paths).
Busoni also needs a data store to track installed policy information and to empower itself
with the capability to respond to any raised events. To eliminate the overhead and to save
time in moving the data between the two data stores (e.g. Busoni and the controller), we
moved Busoni’s datastore to the controller.

The networks controller should be able to collect the network’s statistics from an SRv6
data plane using available southbound interfaces (e.g. OSPFv3 or BGP-LS). The controller
also has to push the commands or segments lists to the edge routers using the available
protocol [25] (e.g. gRPC or SSH). Although in our implementation we used a single choice
for each of the functions mentioned above (OSPFv3 and gRPC as SBI), other choices can
easily be incorporated in Busoni with minor code modifications. Using a specific protocol
(e.g. OSPFv3) to run one of the corresponding tasks does not affect how Busoni processes
and installs policies. There is a clear separation between layers in the SDN architecture.
Busoni interacts with the network controller without knowing how the controller learns the
network topology. In order to understand the internal structure of Busoni’s operation and
its mechanism in handling policies, we elaborate on the internal structure of its individual
software components. As shown in the Figure 9.2, there are three main subsystems in
Busoni, SRtypes, Path Computation, and Database Middleware. They interact between

65 9.3. Busoni Architecture

Basic
Policy

Overlay
Policy

SRtypes

Path
Computation

Database
Middleware

SR Network Controller

Busoni

Figure 9.2.: Major software subsystems of Busoni

each other to provide the full fledged functionality of Busoni.

The first component is SRtypes which is the entry point to the framework. It contains
the main policy class which users would use to build their policies. It also contains the
basic types needed by Busoni to hold policy’s components (e.g. SRv6 Behaviors) including
the class Match definition which is used to define matching criteria for incoming packets.
This component interacts with the other two subsystems to perform its functions. It uses
Path Computation to calculate and retrieve a possible shortest path according to policy’s
conditions. The SRtypes also communicates with Database Middleware when it needs to
save or retrieve any policy information to/from the data store.

Path computation functions are implemented in the second component. It first checks
what type of path is requested (e.g., SFC) and calls the appropriate functions accordingly.
Whenever it needs to save the computed path to the data store, it communicates with
Database Middleware. Busoni, for now, allows four different variations of path finding
queries: a simple path, a path with QoS only requirements, a path with SFC only require-
ments, and path with both QoS and SFC requirements. In a simple path case, Busoni would
find the shortest path between all ingress and egress points, and it could give the same path
as the IGP routing protocol. In the second path finding query, when a QoS requirement
should be considered, Busoni would query all possible paths which fulfill the QoS require-

A Northbound Interface for IPv6 Segment Routing: Busoni 66

def __init__(self, match, qos=None, networkfunctionslist=None, nflistordered=True,matchonsrc

= False,id=0)

Listing 9.1: The construction function of class PolicySR

Match(srcIP=IPSet(IPRange('C:1::1', 'C:5::1')), dstIP=IPSet(IPRange('C:6::1', 'C:A::1')))

Figure 9.3.: Using Match class to define source and destination addresses

ments and retrieve the path with a minimum cost. However, in the case where some network
functions should be included in the path, finding the shortest path would be an NP-Hard
problem [79]. Therefore, Busoni uses a heuristic algorithm proposed in [1], the ASR algo-
rithm, where the final path is composed of shortest paths between waypoints (e.g. routers
that host the network functions). In the latter path query type, where QoS and SFC should
be considered while finding the path between ingress and egress points, Busoni combines
both queries described in the second and third cases.

Finally, the third component (Database Middleware) holds all functions and event han-
dling methods that need to interact with the datastore directly. It operates as an interface to
ease database interaction with other components. It also listens to any dynamic events and
responds by calling the corresponding handler, and whenever it needs to update a policy, it
communicates with SRtypes to launch finding path function for the update procedure.

9.3.2. API Policies Composing

Busoni provides a standard policy class SRpolicy which contains the necessary functions
needed to compile submitted policies. End-users inherit this class, define their class, and
mainly extend the eval function which is automatically called when users instantiate an
object from their defined class. Before executing the eval function, Busoni needs to do
two things. First, it finds a corresponding path that represents the requested policy (e.g.
adhere to QoS or go through network functions). Second, Busoni will have to encode the
path using available SIDs.

In Listing 9.1, we see that init function takes many arguments that help in defining
customized policies. The first argument defines the matching criteria that relate to source
and destination network layer 3 and layer 4 specifications. For example, both source and
destination could be determined using a range of IP addresses. Match class is flexible and
provides through defined keywords (e.g., dstIP, dstport etc.) a powerful tool to define custom
matching rules like exclude a specific IP address. Users would use native python libraries
to define their criteria without a need to learn any specific syntax.

67 9.3. Busoni Architecture

The second argument holds Quality of Service (QoS) specifications defined by the user’s
policy. It could relate to any QoS metrics (e.g. bandwidth or latency), where the user has the
flexibility to define what is needed in the policy. In the implementation of Busoni, we used
a score metric where high score value reflects low latency and vice versa. Any other metrics
or a combination of them would be used with some query updates to maintain which con-
dition is preferred, low or high value. It is also an optional argument, and thereby it is not
mandatory that policy has some QoS specifications. After that, there are some arguments
related to service function chaining and whether they should be visited in order or not. An
NFV management framework should provide beforehand which network functions are run-
ning in the network and feed the network controller with functions related information such
as functions name and SIDs. Data-plane routers on their side, using the IGP protocol, broad-
cast network functions they host (virtualized or stand-alone). The last arguments determine
if routers should match incoming packets against the source IP address or not, tenant ID if
any (VPN user) for unique routing table matching when packets exit the network domain,
and a policy id which is used internally for dynamic updates.

Users after passing the above inputs, need to declare any special handling needed for their
packets. To understand what ”special” means in this context, we elaborate in Section 9.3.4
how the basic class compiles the policy requirements to generate related segment commands
including the special handling requested.

9.3.3. Encoding Path Nodes as Segments

One of the fundamental problems in SR is how to represent any calculated path using seg-
ments. The idea in SR compared to other source routing protocols is to attach only the
needed detours to reflect policy’s requirements rather than attaching all path nodes. As
a practical example, in the case, we discussed in Section 2.2 where a controller needs to
find a path between sites A and B passing through an SFC. In such a case, the path would
be A,FnIA,C,E,FnIIE,F,Net3 and hence the minimum number of segments that would
represent the path correctly is FnIA,FnIIE,F-Net3.

Even though most of proposals [84–87] address the problem for MPLS-SR, minseg al-
gorithm [87] considers adjacency segment [8] and SRv6, thereby fits with our framework.
The main idea of the algorithm is to check if the shortest path between two nodes belonging
to the current path, will traverse any middle points in the same path. The minseg algorithm
was modified to fit in our network model by ignoring network functions’ relationships and
use only routers’ to calculate the correct shortest path between routers.

A Northbound Interface for IPv6 Segment Routing: Busoni 68

self.insert_behavior_first_segment("T_Encaps")

self.insert_behavior_end_segment("End_DT6",self.vpnuser)

Figure 9.4.: Using eval function to add custom packet handling

9.3.4. Busoni in Action

To generate a correct list of segments that represents what a user wants from the network,
Busoni has to perform some functions. These functions begin with finding a path then
encode it as segments (i.e. SIDs) and ends with performing special routines defined by the
user (e.g. adding some SRv6 behaviors).

Busoni starts working just when the basic class PolicySR is inherited, and its constructor
function is called. It first tries to find a path between source and destination addresses that
satisfies the policy’s conditions, and thereby it sends a request to the Path Computation
subsystem.

The second step after finding the path is to encode it using segments. In this step, Busoni
calculates the minimum number of segments needed to represent the whole path. As de-
scribed earlier in the algorithm description, middle waypoints that represent network func-
tions are also considered.

After that, when the segment list is available, Busoni calls the eval function which con-
tains any custom actions that should be executed before sending the segment list to ingress
routers. For example, end users could choose a behavior, from available SRv6 behaviors,
which are supported by data plane routers, to be added and concatenated to the segments
list. A practical example we can mention here in the multi-tenancy management where
users would attach T.Encaps and END.DT6 at the beginning and end of the segments list
respectively to get VPN service. Such addition to the segments list would trigger a flag
to let Database Middleware subsystem to generate proper southbound interface commands
and ensure that policy is executed correctly in the data plane.

In the last step, Busoni will store the policy information in the database. This information
contains matching criteria composed by the user, the calculated path, the optimized segment
list, any path requirements specified by the user (either QoS or SFC related), and the pol-
icy ID. Maintaining this information is essential to allow any future updates that could be
triggered as a response from network dynamics.

69 9.3. Busoni Architecture

9.3.5. Data Store

To keep data integrity, track installed policies, and to respond to network events, Busoni
uses a data store (i.e. Database). Busoni uses a graph database [39] to model and save
network environment data. This option allows Busoni to recover from an outage and reload
the database and synchronize any network updates. In this database model, nodes represent
main network components either physical (e.g. routers) or virtual (e.g. policies), and edges
represent the connection between the nodes.

Whenever a path is calculated between two points, it is stored to be used later as one of
the policy information. Moreover, when Busoni saves a policy in the database, it makes
sure that all network functions and routers that are part of the policy path are connected to
the policy node. Thereby, if any event regarding these components is raised, Busoni would
find it easy to update the policy according to the raised event.

9.3.6. Responding to Network Dynamics

As mentioned before, Busoni responds automatically to network topology changes and up-
dates any affected policies. In SR there are two ways of responding to dynamic events espe-
cially router or link state changes. First one is the default IGP related response where routers
in the data plane will update their routing tables to reflect the new change in the topology.
The second way is using Fast Re-Route (FRR) technique in which a pre-computed backup
segment list takes action in less than 50 ms [32].

However, depending on IGP features only to adapt with network dynamics is not enough,
and in many occasions, the new shortest path would fulfill the connectivity requirement
but fail to comply with other possible requirements such as minimum bandwidth or any
other QoS requirement. Additionally, there are other dynamic events where IGP nor FRR
cannot be helpful such as these events related to moving some network functions around
the topology or spawn new network functions to respond to high demands. In such cases,
although packets would arrive the old hosting nodes (FRR will not be triggered due to
NFV events), these nodes would either not able to locate the network function in case of
migration and eventually drop these packets, or route them to overloaded network functions
which leads to overloaded states and dropping packets eventually.

As discussed earlier, manually responding to such situations is impractical, thereby au-
tomating the response is crucial by listening to network fired events and act accordingly. The
network controller will handle the physical implementation of the listening procedures and
use available protocols to detect any related topology change. When an event is detected,
the controller will update the data store and send a signal reporting the event’s information.

A Northbound Interface for IPv6 Segment Routing: Busoni 70

from SRtypes import PolicySR

class BasicPolicy(PolicySR):

def __init__(self, match, qos, vnfs, nflistordered=True, matchonsrc=False,id=0):

super(BasicPolicy, self).__init__(match, qos, vnfs, nflistordered, matchonsrc, id)

def eval(self):

pass

class OverlayPolicy(PolicySR):

def __init__(self,match,qos,vnfs,nflistordered=True,matchonsrc = False,id=0,vpnuser=0):

self.vpnuser = vpnuser

super(OverlayPolicy,self).__init__(match,qos,vnfs,nflistordered,matchonsrc, id)

def eval(self):

self.insert_behavior_first_segment("T_Encaps")

self.insert_behavior_end_segment("End_DT6",self.vpnuser)

Listing 9.2: The definition of the classes used in the use cases

Listening to such signals, Busoni will query the database to find the affected policies and
then updates them according to their conditions. In case it is not possible to find a path
that fulfills policy’s requirements giving the updated network topology, the framework will
remove the policy and report back to the user.

9.4. Use Cases

In this section, we show the functionality of our framework, Busoni, using three realistic
use cases. The first use case is similar to the scenario described in Section 2.2, while the
other two use cases highlight the use of the framework under multi-tenancy and responding
to network changes situations. In all three use cases, we assume an SRv6 SDN-based en-
vironment as a single domain and the initial network configurations in addition to network
functions settings have been processed before the framework could be used. This initial
configuration process also involves installing SRv6 behaviors in each node hosting a net-
work function. We also assume that no requests would arrive from Busoni until the network
controller has finished fetching the whole topology. Although any requests that arrive while
the topology view is not complete would go through several updates cycle until the topology
view at the network controller converges, we prefer to give the network controller enough
time to load all topology information and set initial values. For the sake of demonstration,
all scenarios are based on a simple network topology depicted in Figure 9.5a.

In the topology, there are two types of network functions Function 1 (firewall) and Func-
tion 2 (deep packet inspection) each hosted on a separate router. There are also two network
sites; site A connected to the domain using router A and site B connected to the domain
through router F. We assign bandwidth values for the links (in megabits) which will be used
later to demonstrate a QoS based policy.

71 9.4. Use Cases

10
0

10
0

10
0

20
0

10
0

20
0

B

A

D

F

C
E

G
20

0

H

I

10
0 20

0
20

0

20
0

10
0

Si
te

 A

Si
te

 B

20
0

10
0

SR
v6

 D
o

m
ia

n

20
0

20
0

FW D
P

I

(a
)I

ni
tia

ls
ta

te
of

th
e

ne
tw

or
k

to
po

lo
gy

10
0

10
0

10
0

20
0

10
0

20
0

B

A

D

F

C
E

G
20

0

H

I

10
0 20

0
20

0

20
0

10
0

Si
te

 A

Si
te

 B

20
0

10
0

20
0

20
0

(b
)B

as
ic

po
lic

y
w

ith
SF

C

10
0

10
0

10
0

20
0

10
0

20
0

B

A

D

F

C
E

G
20

0

H

I

10
0 20

0
20

0

20
0

10
0

Si
te

 A

Si
te

 B

20
0

10
0

20
0

20
0

(c
)O

ve
rl

ay
w

ith
Q

oS
po

lic
y

10
0

10
0

10
0

20
0

10
0

20
0

B

A

D

F

C
E

G
20

0

H

I

10
0 20

0
20

0

20
0

10
0

Si
te

 A

Si
te

 B

20
0

10
0

20
0

20
0

(d
)R

es
po

nd
in

g
to

a
V

N
F

m
ig

ra
tio

n

Fi
gu

re
9.

5.
:I

llu
st

ra
tio

n
of

di
ff

er
en

tu
se

ca
se

s
in

cl
ud

in
g

in
iti

al
st

at
e

of
th

e
ne

tw
or

k
to

po
lo

gy

A Northbound Interface for IPv6 Segment Routing: Busoni 72

m = Match(srcIP=siteAIP, dstIP=siteBIP)

Figure 9.6.: Instantiating match object for the use cases

p1 = BasicPolicy(m, None,[NF['FW'],NF['DPI']])

Figure 9.7.: Instantiating an object for the first use case

9.4.1. Basic policy with SFC

As we defined earlier in Chapter §7, Basic Policy is any policy that does not have any
multi-tenancy requirements. In this use case, we assume a situation where a network admin
would like to steer the traffic between site A and B through two network functions (e.g.
firewall and deep packet inspection). The starting point in Busoni is to define a class to
hold the policy description. As shown in Listing 9.4, we defined a class Basic Policy to
represent a container for such type. After the class definition, the network admin should start
by defining the match object to specify the source and destination addresses as depicted in
Figure 9.6. After that, she/he would instantiate an object from the class and pass the network
function names (FW, DPI) as shown in Figure 9.7. Here, it is not necessary to determine
which host is hosting the network function. This means, Busoni will choose the hosting
router that makes the total route better according to what we discussed earlier about path
computation in Busoni (Section 9.3). There is no need to call or define further functions
as the path gets calculated and installed automatically after instantiating an object from the
policy class. The Figure 9.5b shows the computed path between the two sites which traverse
the two functions as requested by the users. Although the path would be A, C, E, FWE,

G, DPIG, F, Site B, the segment list will be FWE, DPIG, Site B. This shows the gain
in header size achieved with SR. The segment list would be sent to router A only, as it is the
only ingress point for site A.

9.4.2. Overlay with QoS Policy

Let us consider the network topology in Figure 9.5a, a network admin would like to imple-
ment a quality of service policy where packets between the two sites must use only links
with a minimum bandwidth of 200 Mb/s. In this use case also, the traffic belongs to one
tenant where it has a special lookup service at the egress router. Therefore, the SRv6 behav-

73 9.4. Use Cases

p2 = OverlayPolicy(m, QoS(bw=200), None, vpnuser=102)

Figure 9.8.: Instantiating an object for the second use case

iors T.encaps and End.DT6 are needed at ingress and egress nodes respectively. Setting
up the decapsulation and the tenant routing table at the egress points should be done during
the VPN installation phase.

Following the same steps we did earlier, the network admin would first define the policy
class (Overlay Policy) as shown in Listing 9.4. Then, giving that reason, which we need to
apply two SRv6 behaviors, the network admin will use the eval function to define these
actions. As shown in the code, T.encaps will be inserted in the top of the segments list and
the End.DT6 with tenant ID as a parameter will be attached at the end of this list. Once the
admin creates an object from this class passing the tenant’s ID in addition to other inputs
as it is shown in Figure 9.8, Busoni will start processing this policy. The path in this case
according to the input topology would be A, B, I, F, Site B as shown in Figure 9.5c
and therefore the segments are T.encaps, I, End.DT6(102)F. We can notice that adding
the node I to the segment list will force the packet to go from A to D following links with
the minimum required bandwidth. Also the End.DT6 behavior takes the name of the table
or the tenant ID 102 which will be used to do the special look up that reflects the tenant’s
settings.

9.4.3. Responding to a VNF Migration

We show in this use case how Busoni will respond automatically to a VNF migration. Once
an event took place, the controller will get the event and trigger Busoni to update any af-
fected policies.

Considering the first use case in Figure 9.5b, the network function FW hosted in router E
will be migrated to router D. The controller will be notified of this event and hence will
trigger Busoni to respond. First, Busoni will have to find affected policies and retrieve its
match conditions and their information. Busoni will find that there is an already installed
policy that uses the function which was hosted in router E. Then, it deletes the policy from
the database and starts the update procedure immediately by calculating a new path that
satisfied SFC conditions and the match conditions. The path as shown in Figure 9.5d would
be A, B, D, FWD, F, DPIF, Site B and hence the segments list that represents the up-
dated path is FWD, DPIF, Site B.

A Northbound Interface for IPv6 Segment Routing: Busoni 74

Summarizing this section, the use cases show how it is simple to define policies using
service names instead of worrying about low-level details like the actual SIDs for the net-
work functions and behaviors. Busoni takes care of the necessary hard work to keep policies
updated and will respond to network events that affect the installed policies.

9.5. Evaluation and Discussion

In this section, we present the details of the implementation of our framework and evaluate
it. We first show our implementation’s choices and elaborate on the lab setup and settings
which were used for the experiments in these evaluations. After that, we explain the eval-
uation of our framework concerning its scalability and its response to dynamic events. We
follow up by discussing our findings from the results.

9.5.1. Implementation and Lab Setup

Busoni is implemented on top of an SDN controller and an emulated Geant-2012 network
topology [82]. We wrote the core components of Busoni using Python in around 880 lines
of code excluding the supporting files for use cases and evaluation scenarios. Busoni uses
Gavel [27, 88] which have been introduced earlier in Part I. Busoni uses built-in functions
provided by Gavel which are graph-native functions, and thereby it presents highly scalable
network functions. These functions support and contribute to Busoni’s scalability. To make
Gavel manage SRv6 networks, we updated the datastore by implementing SRv6 informa-
tion like SID.

Regarding our evaluation environment, we used a VM hosted in a private Xen cloud. The
VM runs Ubuntu 16.04 OS and has 11 GB of RAM with 4vCPUs and 50 GB of storage.
We used an emulated real-world topology (i.e., Geant-2012) to populate the database with
40 nodes and 61 links. We defined eight different policies as shown in Table 9.1 to use them
in the evaluation experiments. To feed the network topology with network functions, we
randomly host three network functions (fn1, fn2, and fn3) at three randomly chosen routers.

9.5.2. Scalability

We start our evaluation study from the first angle, the scalability of the framework. We
study this feature by measuring the compilation time of different policies batches using
wall clock time. We increase the size of the batch and read how much time is needed by

75 9.5. Evaluation and Discussion

Table 9.1.: Summary of the policies used in the evaluation
Policy Type SFC QoS

A Basic No No
B Basic [fn1, fn2, fn3] No
C Basic No Yes
D Basic [fn1, fn2, fn3] Yes
E VPN No No
F VPN [fn1, fn2, fn3] No
G VPN No Yes
H VPN [fn1, fn2, fn3] Yes

Busoni to process the submitted polices and find the correct segments list that represents
each policy.

In Figure 9.9, we show the results obtained after running batches of 1, 10, 100, 1000, and
10000 policies. We plot the mean value (for 1000 runs) which is the time from the batch
submission until Busoni finishes processing all requested policies. From the depicted figure
and reading the summarized results in Table 9.2, we observe the following.

• Busoni scales linearly with the submitted load. As long as there are available re-
sources, the relationship between the batch size and total time to process this batch
is linear as shown in Figure 9.9. This finding shows that our framework could scale
up to hardware resources’ limit without any negative effect on the compilation time
complexity.
• The average time to process a single policy in a batch is lower than the processing

time for a single submitted policy. The main reason is that database cache is shared
among different queries which save time needed by the data store to locate nodes and
process their data.
• Adding SFC request to a policy increases the compilation time. For instance, the time

needed to compile policy B is more than A, and the same is also true for policy F and
E. This increase is expected as the path computation complexity gets higher when
waypoints are needed to be traversed (i.e., network functions).
• Adding extra processing request in function eval (i.e., embed tenant information) in-

creases the compilation time. Comparing policies (A, B, C, D) vs (E, F, G, H), shows
the 4̃ ms difference. This increment is also expected due to the extra commands.
• Looking at the coefficient of variation for the different batch sizes we observe a little

variation with batch 10. Other than that, Busoni processes incremental load requests
with stable compilation time.

A Northbound Interface for IPv6 Segment Routing: Busoni 76

Table
9.2.:A

verage
com

pilation
tim

e
(m

s)and
coefficientofvariation

(%
)forevery

policy
w

ith
increm

entalbatch
size

Policy
A

B
C

D
E

F
G

H
B

atch
size

m
ean

C
V

m
ean

C
V

m
ean

C
V

m
ean

C
V

m
ean

C
V

m
ean

C
V

m
ean

C
V

m
ean

C
V

1
4.96

16.53
10.62

14.19
5.08

16.60
10.50

13.16
8.85

14.35
14.89

12.03
8.91

13.47
14.79

11.19
10

37.65
42.74

87.33
33.45

35.82
28.31

87.18
16.86

80.71
31.39

138.40
22.15

79.94
32.57

138.16
21.11

100
311.87

18.87
830.53

12.60
328.60

12.51
828.65

8.77
673.41

5.74
1226.86

6.43
654.55

6.24
1233.30

6.33
1000

3217.12
10.01

8109.55
7.55

3339.43
9.29

8150.13
7.86

6415.46
4.36

11896.34
5.18

6285.12
4.97

11781.75
5.51

10000
30828.53

12.11
80924.88

10.25
33312.29

13.95
82040.82

10.49
64076.63

9.27
117000.68

8.71
63195.48

10.20
119085.60

9.53

77 9.5. Evaluation and Discussion

10
0

10
1

10
2

10
3

10
4

Ba
tc

h
siz

e

10
0

10
1

10
2

10
3

10
4

10
5

Comp. time(ms)

Ba
sic

SF
C

10
0

10
1

10
2

10
3

10
4

Ba
tc

h
siz

e

10
0

10
1

10
2

10
3

10
4

10
5

Qo
S

SF
C+

Qo
S

(a
)B

as
ic

po
lic

ie
s

10
0

10
1

10
2

10
3

10
4

Ba
tc

h
siz

e

10
0

10
1

10
2

10
3

10
4

10
5

Comp. time(ms)

VP
N

VP
N+

SF
C

10
0

10
1

10
2

10
3

10
4

Ba
tc

h
siz

e

10
0

10
1

10
2

10
3

10
4

10
5

VP
N+

Qo
S

VP
N+

SF
C+

Qo
S

(b
)V

PN
po

lic
ie

s

Fi
gu

re
9.

9.
:C

om
pi

la
tio

n
tim

e
fo

rd
iff

er
en

tn
um

be
ro

fp
ol

ic
ie

s

A Northbound Interface for IPv6 Segment Routing: Busoni 78

B D F H

101

102

103

104

Re
sp

on
se

 ti
m

e(
m

s)

A B C D E F G H

1 Policy 10 Policies 100 Policies 1000 Policies

(a) VNF migration (b) Router shutdown

Figure 9.10.: Response time for events affect batches of policies

9.5.3. Reactivity to Network Dynamics

One of the features in our framework is the reactivity to network dynamics where affected
policies are updated to reflect the changes in the network topology as we elaborated in
Section 9.3.6. We measure the response time that Busoni needs to update affected policies.
We define the response time as the wall clock time needed by Busoni to detect which policies
are affected by the triggered event.

Response Time = Tf −Te (9.5.1)

As the equation shows, the response time is the wall clock time elapsed from the moment
an event got triggered by the network controller Te until the framework update all affected
policies Tf.

We assume in our evaluation that two dynamic events are taking place separately and
measure their response time. The first event is a network function migration which is similar
to use case 3 in Section 9.4. We designed the migration to affect different batches of policies
(1, 10, 100,1000). Referring to the same policies defined in the Table 9.1, only policies (B,
D, F, H) are tested as these are the policies with SFC conditions. The second event is a router
shutdown that may have occurred due to a failure or scheduled maintenance. We assume
in this event that only Busoni is responsible to react to such an event, although in typical

79 9.5. Evaluation and Discussion

Table 9.3.: Response time (ms) (95% percentile) for different number of affected policies in
the two dynamic events

Batch size Event A B C D E F G H

1 Network
migration

- 26.44 - 43.72 - 41.49 - 48.99

10 - 226.9 - 245.7 - 206.8 - 231
100 - 1818 - 2164 - 1784 - 2197

1 Router
shutdown

19.42 45.25 22.6 46.34 31.3 47.46 32.99 49.09

10 80.66 212.2 84.6 228.8 139.2 264.8 139.6 265.6
100 610.2 1852 620.7 1847 999.5 2023 1024 2162

situations there are multiple levels of responses in SR as discussed earlier in Section 9.3.6.
We also controlled the simulation so that the event only affects the designated batch sizes
of policies in each run.

Figure 9.10 shows the recorded response time to each event and policy batch. It is ob-
served that response time is growing linearly with respect to the total number of affected
policies. Comparing the response time in the two events, we can notice that they are much
close to each other. Busoni is able to respond in around 2 seconds (95th percentile of 1000
trials) for complex policies (i.e., policy H) as reported in Table 9.3. Taking this conclusion
and considering the reported average compiling time in Table 9.2, we notice that almost half
of the response time is the compilation time for the updated policies.

Summarizing our evaluation, Busoni scales linearly with the incremental size of submit-
ted policies as long as there are enough system resources. In case of dynamic events that
needed a reaction from the framework, it finishes its response with a reasonable delay time.

Chapter10
Future Prospects

In this chapter, we talk about the prospects of Busoni. We investigate the possibility to op-
erate Busoni under different environmental settings including different network technology
(i.e., MPLS). After that, we analyze the current limitations of Busoni and suggest some
ideas for future extension.

10.1. Applicability of Busoni in MPLS-SR Environment

Related to what we discussed earlier in Chapter§2, SR could either operate on top of MPLS
or IPv6 driven networks. However, the current implementation of Busoni assumes IPv6
networks; therefore, the question here is Busoni operable on MPLS networks?.

To answer this question, we have to differentiate between MPLS and IPv6 SR networks.
The main difference is in the detour or SID representation. In MPLS, SID is represented as
MPLS tags; therefore, it is easier to integrate with current MPLS networks. The advantage
here is there is no need for reservation protocols like the Resource Reservation Protocol
(RSVP) [16] or a distribution of tags.

Busoni operates as a northbound interface and by definition should not be affected by
any changes in the data plane layer. However, MPLS variation of SR lacks programming
support; therefore, network applications should take into consideration and try to overcome
such problems and relay on legacy alternatives to behaviors provided in SRv6 programming
framework. Other than this point, Busoni is fine to operate on other SR networks as long as
the network controller keeps the needed information in the data store.

Future Prospects 82

10.2. Applicability of Busoni in SRv6 on non-Linux Routers
Environment

Other SRv6 environments could be encountered when non-Linux routers are used instead
of Linux as assumed by Busoni. Although SRv6 operations and behaviors should not be
affected, the southbound interface is mainly affected. The communication between the
network controller should be updated to utilize different protocols which are supported by
data plane hardware. The remaining components which are related to policy libraries and
management are not affected.

10.3. Current Limitations and Prospects of Extensions

Busoni provides a framework to manage policies on top of SRv6 networks. Nevertheless,
there are still challenges that need to be addressed. In this section, we discuss some of these
challenges and suggest some extensions to enhance Busoni.

10.3.1. Flow Specifications

Busoni provides class Match to determine which packets should be processed by the sub-
mitted policy. In the current version of Busoni, there is no possible way to determine any
layer 4 protocol information such as TCP or UDP port number. End users usually specify
the network flow using this information (i.e., layer 4 protocol) in addition to layer 3 infor-
mation (i.e., source/destination IPv6 addresses). Extending Match class to support these
features should be followed by extending gRPC functions to generate appropriate iptable
rules that reflect layer 4 information. This extension could also support another layer 3 pro-
tocols such as ICMPv6. To summarize, extending the source code which responsible for
network flow specifications will enhance Busoni capabilities and provide end users with a
better tool to customize their target flow.

10.3.2. Rules Conflicts

Another challenge that may affect Busoni accuracy after some running time is the possible
conflict between newly added policy and old routing commands. Each time Busoni accepts
a new policy, it adds policy-related routing entries to the routing table of the ingress routers.
However, with time there will be many entries that related to different policies and conflict

83 10.3. Current Limitations and Prospects of Extensions

between one of them and any newly added routing entry. A possible conflict would result
in rejecting the addition procedure and policy installing process will fail.

To overcome such shortcoming, Busoni should check if there is any possible conflict
with the router’s entries. If the check was positive, Busoni would need to confirm either
the installed entries relate to an active policy or should be deleted. Consequently, the time
needed to install route entries in the edge routers would take longer time.

10.3.3. Complex Network Dynamics

In addition to what we have discussed above, Busoni should add support to handle complex
network dynamics. A complex network dynamic event could be triggered when the running
Interior Gateway Routing Protocol (IGP) changes the shortest path between nodes due to
dynamic cost changes. In SR the default shortest path calculated between nodes is used
to minimize the needed number of segments that should be added to the segments list.
Although the IGP can guarantee this path at calculation time, any changes that affect the
IGP shortest path algorithm would result in a different path that violates the policy. Busoni
could use any traces techniques to validate that every segments list complies with its policy;
therefore, any detected violations could be handled.

To conclude, Busoni implements the essential functions that are needed in any north-
bound interface; however, to ensure its correctness in different environments, some updates
and enhancements should be implemented.

Chapter11
Conclusion

This thesis presents efficient data management and policy composition for Software-defined
Networking frameworks. The key components of this work have addressed different prob-
lems related to the performance and the data representation of the northbound interfaces in
SDN and SR.

11.1. Dissertation Summary

Firstly, we have presented Gavel as a complete ecosystem, a graph database based SDN
controller. Gavel is the first controller to exploit graph databases to produce a plain data
representation of a software-defined network, and thereby removes the need for a trans-
lation between multiple, different and task-specific network policies. Compared to the
RDBMS-oriented state-of-the-art of plain data representations, Gavel significantly reduces
programming complexity and able to scale better in large networks. The key factor for these
achievements is facilitating a much more natural native graph support instead of relying on
an RDBMS table structure. We further implemented a variety of proof-of-concept network
applications on top of Gavel. In our evaluation, we show that Gavel further significantly out-
performs the state-of-the-art of plain data representations and—in contrast to those—scales
well with increasing network sizes.

Secondly, we have presented a policy composer and management framework for SRv6
networks. We have demonstrated the capabilities of the framework and the tools provided
to compose and manage different SRv6 policies. Service providers will be able to use this
tool to write different policies easily and ensure that these policies will be automatically
and dynamically adapted to any network updates. After that, we have presented different
use cases to demonstrate how this framework could be used. We have also presented an

Conclusion 86

evaluation with experiments to show the framework scalability under incremental requests
and gave an upper bound to the needed time to respond to some dynamic network events.

All the corresponding source code and platform implementations are open-sourced and
made available online.
Part I (Gavel):
https://github.com/engbarakat/Gavel

Part II (Busoni):
https://bitbucket.org/engbarakat/srv6_composing_policies

11.2. Thesis Impact

The author of this dissertation was the lead investigator and first author of several research
papers. In particular, the work on designing, implementing, and evaluating Gavel that ap-
peared in Part I has appeared in the following peer-reviewed international publication pro-
ceedings:

• Osamah L. Barakat, David Koll, and Xiaoming Fu. “Gavel: A Fast and Easy-to-Use
Plain Data Representation for Software-defined Networks.” In: IEEE Transaction on
Network and Service Management 2019, Journal Article.
• Osamah L. Barakat, David Koll, and Xiaoming Fu. “Gavel: Software-defined net-

work control with graph databases.” In: Proceedings of the 20th Conference on Inno-
vations in Clouds, Internet and Networks (ICIN) IEEE, 2017.
• Osamah L. Barakat, David Koll, and Xiaoming Fu. “Gavel: Towards a graph

database Defined Network.”. In: Proceedings of the 24th International Conference
on Network Protocols (ICNP) 2016, Poster Session.

The work presented in Part I (i.e., Addressing northbound interface challenges in IPv6
Segment Routing) has been presented in the following articles:

• Osamah L. Barakat, Pier Luigi Ventre, Stefano Salsano, and Xiaoming Fu. “Busoni:
Policy Composition and Northbound Interface for IPv6 Segment Routing Networks”
Submitted to: Proceedings of the 27th International Conference on Network Proto-
cols (ICNP 2019) under submission.
• Osamah L. Barakat, Pier Luigi Ventre, Stefano Salsano, and Xiaoming Fu. “Busoni:

Towards a Northbound Interface for Segment Routing Networks” In: Proceedings of
The 14th International Conference on emerging Networking EXperiments and Tech-
nologies (CoNEXT 2018), Poster Session.

https://github.com/engbarakat/Gavel
https://bitbucket.org/engbarakat/srv6_composing_policies

87 11.2. Thesis Impact

Building on the work listed above, the author has further supervised and identified topics for
a Master project which is published in peer-reviewed international conference proceedings:

• Osamah L. Barakat, Tayyebe Emadinia, David Koll, and Xiaoming Fu. “Paving the
Way towards Enterprise SDN Adoption: New Selection Strategies for Hybrid Net-
works.” In: Proceedings of the 22nd Conference on Innovations in Clouds, Internet
and Networks (ICIN) IEEE, 2019.

Part III.

Appendix

91

The appendix complements the thesis with more detailed descriptions of algorithms and
examples that we felt were too detailed, complicated, or formal for the main text. Never-
theless, the contents are important results of the thesis and form a considerable part of the
overall contribution.

ChapterA
Concepts and Definition of Related Terms

Cypher refers to a declarative graph query language works with Neo4j; a graph database
management system. It allows for expressive and efficient querying and updating of a prop-
erty graph.

gRPC is an open source remote procedure call (RPC) system initially developed at Google.
It allow remote execution of functions without any binding to a programming language.

Middlebox refers to a network component placed in the path between source and desti-
nation and perform functions other than routing. It could be either a software-based or
hardware-based.

Network Function refers to any component within a network infrastructure that processes
packets. NF can be either a physical compute node or a virtual node i.e., Virtual Network
Function (VNF).

OpenFlow is a southbound interface protocol which used in SDN to communicate with
forwarding devices in the data plane.

Segment ID is an identification mark which used to label routing devices and links con-
necting these devices in Segment Routing networks. The ID could be represented either as
IPv6 address or as MPLS tag depending on the Segment Routing variation.

Service Function Chaining refers to a chain of network functions that should process
network traffic first before delivering to the destination.

ChapterB
Gavel Internals

B.1. Representation of Network Topologies in Graph Database

"Node": [{

 "id": "284263",

 "labels":["Switch"],

 "properties": {

 "dpid":

 "0000000000001c01",

 "id": "0_28_1",

 "layer": 0}}]

"Node": [{

 "id": "284263",

 "labels":["Switch"],

 "properties": {

 "dpid":

 "0000000000001901",

 "id": "0_25_1",

 "layer": 0}}]

"Edge": [[{

 "dpid":

 "0000000000001c01",

 "id": "0_28_1",

 "layer": 0 },

 {

 "node2":

 "0000000000001901",

 "node1":

 "0000000000001c01",

 "port1": 5,

 "port2": 9},

 {

 "dpid":

 "0000000000001901",

 "id": "0_25_1",

 "layer": 0}]]

Figure B.1.: Exemplary specification of two switches (left) and an edge between these
switches (right) in Gavel’s graph database. Green coloring indicates the re-
spective endpoints of the edge

Gavel Internals 96

B.2. Comparison of Routing Application Implementation
between Gavel and Ravel

INSERT route request INTO reachability table
INSERT route request INTO rm_delta table
Calculate shortest path
INSERT returned path INTO configured flow table
FOR each switch on path:

SELECT ports FROM topology table
ENDFOR

Figure B.2.: Peusodo code for processing a routing request in Rave [2]

MATCH (h1:Host{ip:srcip}), (h2:Host{ip:dstip})

MATCH p=shortestPath((h1)-[:Connected_to*]->(h2))

WITH h1,h2, p

CREATE (h1)-[pa:Path_to

{switches:[n in nodes(p)[1..-1]| n.dpid],

 ports:[r in rels(p)[1..]| r.port1]}]->(h2)

RETURN pa.switches, pa.ports;

Figure B.3.: Code to implement a routing application in Gavel

B.3. ASR Algorithm Implementation

1 def getsubroute (session , src , srctype , dst , dsttype) :
2 if src == dst :
3 return Subpath(src ,[0],[0], dst)
4 else :
5 if (srctype == 0):
6 result = session . run(’’’ MATCH (h1:Host {ip:{firstip}}) , (h2:Switch {dpid:{secondip}})

Match p= allshortestPaths ((h1)−[:Connected to∗]−>(h2)) return
7 reduce(cost=0, r in relationships (p) | cost+r . cost) AS cost ,[n in nodes(p) [1..]| n.dpid

] as switches ,
8 [r in relationships (p) [1..]| r . port1] as ports , h2.dpid as node order by cost ASC limit

1; ’’’ ,{” firstip ”: src , ”secondip”: dst})

97 B.3. ASR Algorithm Implementation

9 for pathins in result :
10 return Subpath(pathins [”switches”], pathins [” ports ”], pathins [”cost”], pathins [”node”])
11 elif (dsttype == 0):
12 result = session . run(’’’ MATCH (h1:Switch {dpid:{firstip}}) , (h2:Host {ip:{secondip}})

Match p= allshortestPaths ((h1)−[:Connected to∗]−>(h2)) return
13 reduce(cost=0, r in relationships (p) | cost+r . cost) AS cost ,[n in nodes(p) [1..−1]| n.

dpid] as switches ,
14 [r in relationships (p) [0..]| r . port1] as ports , h2. ip as node order by cost ASC limit 1;

’’’ ,{” firstip ”: src , ”secondip”: dst})
15 for pathins in result :
16 return Subpath(pathins [”switches”], pathins [” ports ”], pathins [”cost”], pathins [”node”])
17 else :
18 result = session . run(’’’ MATCH (h1:Switch {dpid:{firstip}}) , (h2:Switch {dpid:{secondip}})

Match p= allshortestPaths ((h1)−[:Connected to∗]−>(h2)) return reduce(cost=0, r in
relationships (p) | cost+r . cost) AS cost ,

19 [n in nodes(p) [1..]| n.dpid] as switches , [r in relationships (p) [0..]| r . port1] as ports ,
h2.dpid as node order by cost ASC limit 1; ’’’ ,{” firstip ”: str (src) , ”secondip”: str (dst)}
)

20 for pathins in result :
21 return Subpath(pathins [”switches”], pathins [” ports ”], pathins [”cost”], pathins [”node”])
22

23 def getallhostingSwitches (session , listofFun) :
24 for fn in listofFun :
25 result = session . run(’’’ Match (s1:Switch)−[hosting MB]−(mb:MiddleBox{dpid:{fnID}})

return s1 as hosting ’’’ ,{”fnID”,fn})
26 for switches in result :
27 fn . setlistofhostednodes (switches [”hosting”])
28

29

30 def asrroutecalculation (session , srcIP , dstIP , listofFun) :
31 fullpath = Subpath ([],[],0, ””)
32 lastvisitednode = None
33 for index in range (len (listofFun)) :
34 listofsubpath = []
35

36 if (index ==0):# if it is the first fn
37 for mb in listofFun [index]. listofhostednodes :
38 a = getsubroute (session , srcIP , 0, mb,1)
39 listofsubpath .append(a)
40 templist = min(listofsubpath ,key= attrgetter (”cost”))
41 fullpath . switcheslist . extend(templist . switcheslist)
42 fullpath . portslist . extend(templist . portslist)
43 fullpath . cost += templist . cost
44 fullpath . lastnode = templist . lastnode
45 lastvisitednode = fullpath . lastnode # to get last visited node
46 elif (listofFun [index]== listofFun [−1]):# if it is the last fn
47 for mb in listofFun [index]. listofhostednodes :
48 a = getsubroute (session , lastvisitednode , 1, mb,1)
49 listofsubpath .append(a) #fix how to get the last node before asking for subpath
50 templist = min(listofsubpath ,key= attrgetter (’ cost ’))

Gavel Internals 98

51 fullpath . switcheslist . extend(templist . switcheslist)
52 fullpath . portslist . extend(templist . portslist)
53 fullpath . cost += templist . cost
54 fullpath . lastnode = templist . lastnode
55 lastvisitednode = fullpath . lastnode
56 else :
57 for mb in listofFun [index]. listofhostednodes :
58 a = getsubroute (session , lastvisitednode , 1, mb,1)
59 listofsubpath .append(a) #fix how to get the last node before asking for subpath
60 templist = min(listofsubpath ,key= attrgetter (’ cost ’))
61 fullpath . switcheslist . extend(templist . switcheslist)
62 fullpath . portslist . extend(templist . portslist)
63 fullpath . cost += templist . cost
64 fullpath . lastnode = templist . lastnode
65 lastvisitednode = fullpath . lastnode #to get last visited node
66 tempsubpath = getsubroute (session , lastvisitednode , 1, dstIP ,0)
67 fullpath . switcheslist . extend(tempsubpath. switcheslist)
68 fullpath . portslist . extend(tempsubpath. portslist)
69 fullpath . cost += tempsubpath.cost
70 installpathasr (session , fullpath , srcIP , dstIP)
71 updatelinkcost (session , srcIP , dstIP , fullpath)
72

73 def installpathasr (session , path , srcIP , dstIP) :
74 result = session . run(’’’ MATCH (h1:Host {ip:{firstip}}) , (h2:Host {ip:{secondip}})
75 create (h1)−[pa:SFC Path{switches:{ listofswitches }, ports :{ listofports }, SFCID:{sfcid}, cost

:{ cost}}]−>(h2)
76 return pa. cost ; ’’’ ,{” firstip ”: srcIP , ”secondip”: dstIP , ” listofswitches ”:path . switcheslist ,

” listofports ”:path . portslist , ” sfcid ”: srcIP , ”cost”: path . cost})
77

78 def updatelinkcost (session , srcIP , dstIP , path) :
79 result = session . run(’’’ MATCH (h1:Host {ip:{firstip}})−[r]−> (h2:Switch {dpid:{secondip}})

set r . cost = r . cost+1; ’’’ ,{” firstip ”: srcIP , ”secondip”: path . switcheslist [0]})
80 for index in xrange (1, len (path . switcheslist) ,1) :
81 if (index==len(path . switcheslist)−1):
82 result = session . run(’’’ MATCH (h1:Switch {dpid:{firstip}})−[r]−> (h2:Host {ip:{secondip

}}) set r . cost = r . cost+1; ’’’ ,{” firstip ”: path . switcheslist [−1], ”secondip”: dstIP})
83 else :
84 result = session . run(’’’ MATCH (h1:Switch {dpid:{firstip}})−[r]−> (h2:Switch {dpid:{

secondip}}) set r . cost = r . cost+1; ’’’ ,{” firstip ”: path . switcheslist [index], ”secondip”:
path . switcheslist [index+1]})

Listing B.1: Code snippets of ASR algorithm implementation

Busoni Algorithms and Work flow 100

ChapterC
Busoni Algorithms and Work flow

C.1. Busoni’s work flow

Start

Path
Finding

Call eval
function

Report to the
user

Store policy
information

Stop

No

Yes

Write
policy’s class

Instantiate
Object from
policy class

Convert the
path into
segments

Call
corresponding
gRPC routines

Figure C.1.: A flowchart of Busoni’s work flow

101 C.2. SRtypes Code Snippets

C.2. SRtypes Code Snippets

1 class PolicySR:
2 metaclass = ABCMeta
3 counter = 0
4 def init (self , match, qos=None, networkfunctionslist =None, nflistordered =True,

matchonsrc = False , id=0):
5 if not any(elem in match.map dict .keys() for elem in [”srcIP”,”dstIP”]) :
6 raise KeyError
7 # self . id = str (timeit . default timer ())
8 PolicySR.counter = PolicySR.counter +1
9 self . id = id if id else PolicySR.counter

10

11 self . networkfunctionslist = networkfunctionslist
12 self . nflistordered = nflistordered
13 self .qos = qos
14 self . controller = ”Gavel”
15 self .segments = []
16 self . path=[]
17 self .matchpkt = match
18 self .matchonsrc = matchonsrc
19 self . behaviorlist = []
20 self . adj sid to VNFs = []
21 if networkfunctionslist :
22 for adj in self . networkfunctionslist :
23 self . adj sid to VNFs . extend(adj . adjconnections)
24 self . qosscore = qos. getcost () if qos else −1
25 self . findpath ()
26 # self . get path as segments ()
27 for a in self . path :
28 logger .debug(a)
29 self . get path as segments ()
30 self . eval ()
31 if self . send segements to edgeRouters () :
32 self . insertIntentSRDB ()
33 else :
34 logger . error (”Error happened during send segments to routers ”)
35

36 @abstractmethod
37 def eval (self) :
38 pass
39

40 def edge in dag(self , dag root , u, v) :
41 from Gavel.DatabaseEngine import ADJ, DIST, EDGES
42 return DIST[dag root][u] + ADJ[u][v] == DIST[dag root][v]
43

44 def dag indegree (self , dag root , v) :
45 from Gavel.DatabaseEngine import ADJ, DIST, EDGES
46 indeg = 0

Busoni Algorithms and Work flow 102

47 # print EDGES
48 # print EDGES[v]
49 for u, in EDGES[v]:
50 if self . edge in dag(dag root , u, v) : indeg += 1
51 return indeg
52 def prepare adj (self) :
53 self .pro segments = []
54

55 for singlepath in self . path :
56 adjdict = OrderedDict()
57 for adj in singlepath . portslist :
58 adjdict [adj] = int (adj . split (”:”) [1], 16) −1
59 self .pro segments .append(adjdict)
60 # print adjdict
61

62 def get path as segments (self) :
63 self . prepare adj ()
64 for i in range(len (self .pro segments)) : # iterate over paths stored for this policy
65 dag root = self .pro segments[i][self . path[i]. portslist [0]]
66 seg = []
67 seg weight = 0
68 for j in range(len (self . path[i]. portslist) − 1): # iterate for every node
69 u = self .pro segments[i][self . path[i]. portslist [j]]
70 v = self .pro segments[i][self . path[i]. portslist [j+1]]
71 # if v is mb
72 if self . path[i]. portslist [j+1] in self . adj sid to VNFs :
73 seg .append(self . path[i]. portslist [j+1])
74 seg weight += 1
75 dag root = v
76 elif self . path[i]. portslist [j] in self . adj sid to VNFs :
77 pass
78 elif not self . edge in dag(dag root , u, v) or self . dag indegree (dag root , v) >

1:
79 if self . dag indegree (u, v) == 1:
80 # there is no ECMP from u to v, we add node segment u
81 seg .append(self . path[i]. portslist [j])
82 seg weight += 1
83 dag root = u
84 else :
85 # there is ECMP from u to v, we need adjacency segment (u, v)
86 seg .append(self . path[i]. portslist [j+1])
87 seg weight += 2
88 dag root = v
89 # add source and destination , if necessary
90 if len (seg) == 0 or self . path[i]. portslist [0] != seg [0]:
91 seg = [self . path[i]. portslist [0]] + seg
92 seg weight += 1
93 if len (seg) == 0 or self . path[i]. portslist [−1] != seg[−1]:
94 seg .append(self . path[i]. portslist [−1])
95 seg weight += 1

103 C.2. SRtypes Code Snippets

96 self .segments.append(SegmentsList(seg , self . path[i]. srcIP , self . path[i]. dstIP))
97 # print seg
98 logger .debug(seg)
99 # return seg weight , seg

100 def send segements to edgeRouters (self) :
101 for p in self .segments:
102 return send segmentslist edgerouter (p, self .matchpkt, self .matchonsrc)
103 def updateIntentSRDB(self) :
104 if not self .segments:
105 logger . error (”An error is accured . The segments are empty means either no path

found or problem in system”)
106 else :
107 if self . controller == ”Gavel”:
108 update policy DB(self . class . name , self . id , self .matchpkt, self .segments

[0]. segs , self . path [0]. ID,
109 self . qosscore , [f . nfid for f in self . networkfunctionslist] if

self . networkfunctionslist else [], self . nflistordered , self .matchonsrc, self .vpnuser)
110 def insertIntentSRDB(self) :
111 if not self .segments:
112 logger . error (”An error is accured . The segments are empty means either no path

found or problem in system”)
113 else :
114 if self . controller == ”Gavel”:
115 insert policy DB (self . class . name , self . id , self .matchpkt, self .segments

[0]. segs , self . path [0]. ID,
116 self . qosscore , [f . nfid for f in self . networkfunctionslist] if

self . networkfunctionslist else [], self . nflistordered , self .matchonsrc, self .vpnuser if
hasattr (self , ’vpnuser’) else 0)

117 def findpath (self) :
118 srcIPset = self .matchpkt.map dict[”srcIP”]
119 dstIPset = self .matchpkt.map dict[”dstIP”]
120 # lists 1 = [srcIPset , dstIPset]
121 list of src dst = [(srcIPset , dstIPset)]
122 #for element in itertools . product(∗ lists 1) :
123 # list of src dst .append(element)
124 # print type(srcIPset)
125 logger .debug(”a list of src , dst pairs created from %s and %s is : %s” % (srcIPset ,

dstIPset , list of src dst))
126 for pair in list of src dst :
127 logger .debug(” finding the path between src {} and dst {}”.format(pair [0], pair [1]))
128 self . path .append(SR.findpathinSRv6(pair [0], pair [1], self . qosscore , self .

networkfunctionslist))
129 logger .debug(self . path)
130 def add (self , other) :
131 pass
132 def mul (self , other) :
133 pass
134 def insert behavior first segment (self , behavior ,argument=0):
135 for p in self .segments:
136 segbehavoir = isbehavioravailable (p. segs [0], behavior)

Busoni Algorithms and Work flow 104

137 if segbehavoir :
138 if argument:
139 segbehavoir = self . attchargument to behavior (segbehavoir , argument)
140 p. segs . insert (1, segbehavoir)
141 p. behavior first = True
142 else :
143 p. segs . insert (1, segbehavoir)
144 p. behavior first = True
145 else :
146 logger . error (’Behavior {} is not offered by the router {}’ . format(behavior ,p

[0]))
147

148 def attchargument to behavior (self ,b,a) :
149 temp = ””
150 for s in b. split (”:”) [:3]:
151 temp = temp + s+”:”
152 return temp+”%X”%a+”::”
153

154 def insert behavior end segment (self , behavior ,argument=0):
155 for p in self .segments:
156 segbehavoir = isbehavioravailable (p. segs[−1],behavior)
157 if segbehavoir :
158 if argument:
159 segbehavoir = self . attchargument to behavior (segbehavoir ,argument)
160 p. segs[−1]= segbehavoir
161 p. behavior end = True
162 else :
163 p. segs[−1] = segbehavoir
164 p. behavior end = True
165 else :
166 logger . error (’Behavior {} is not offered by the router {}’ . format(behavior ,p.

segs[−1]))
167 def str (self) :
168 return ’This is a Segment Routing policy the source address is : {0} and the destination

address is : {1}. \nThe Qos needed is {2} and the NFs that must be in the path are : {3} ’ .
format(

169 self .matchpkt.map dict[”srcIP”], self .matchpkt.map dict[”dstIP”], self . qosscore , [
str (n) for n in self . networkfunctionslist])

170 @staticmethod
171 def delete policy (policyID) :
172 delete policy DB (policyID)
173

174 class Match():
175 ’’’
176 This class should help users define their match
177 ’’’
178 def hascomplexrules(self) :
179 return False
180 def init (self ,∗ args , ∗∗kwargs):
181 self .map dict = dict (∗args , ∗∗kwargs)

105 C.3. Path finding in Busoni Code Snippets

Listing C.1: Code snippets of SRtypes

C.3. Path finding in Busoni Code Snippets

1 def installpathasr (session , path , srcIP , dstIP) :
2 try :
3 result = session . run(’’’ Merge (p: Policy path {from:{srcip }, to :{ dstip }, links :{adj} })

with p
4 Match (r :Router) where r .sequence in { routers }
5 Merge (r)−[:rMemberofP]−>(p) return distinct id (p) ’’’ ,{” srcip

”: srcIP ,” dstip ”: dstIP ,” routers ”:path . switcheslist ,”adj”:path . portslist }) . single () . value ()
6

7 path . setID(result)
8 if path .ID >0:
9 return path .ID

10 except :
11 logger . error (”Writing path information to the DB failed !”)
12 return −1
13 def updatelinkcost (session , srcIP , dstIP , path) :
14 result = session . run(
15 ’’’ MATCH (h1:Host {ip:{firstip}})−[r]−> (h2:Switch {dpid:{secondip}}) set r . cost = r .

cost+1; ’’’ ,
16 {” firstip ”: srcIP , ”secondip”: path . switcheslist [0]})
17 for index in xrange (1, len (path . switcheslist) , 1) :
18 if (index == len(path . switcheslist) − 1):
19 result = session . run(
20 ’’’ MATCH (h1:Switch {dpid:{firstip}})−[r]−> (h2:Host {ip:{secondip}}) set r .

cost = r . cost+1; ’’’ ,
21 {” firstip ”: path . switcheslist [−1], ”secondip”: dstIP})
22 else :
23 result = session . run(
24 ’’’ MATCH (h1:Switch {dpid:{firstip}})−[r]−> (h2:Switch {dpid:{secondip}}) set r

. cost = r . cost+1; ’’’ ,
25 {” firstip ”: path . switcheslist [index], ”secondip”: path . switcheslist [index +

1]})
26

27 def unconditionedroute (session , srcIP , dstIP) :
28 result = session . run(’’’ MATCH (h1:Host {ip:{firstip}}) , (h2:Host {ip:{secondip}})
29

30 Match p= allshortestPaths ((h1)−[rc:Connected to∗]−>(h2))
31 return reduce(cost=0, r in relationships (p) | cost+r . cost) AS

cost ,[n in nodes(p) [1..−1]| n.sequence] as switches ,[r in relationships (p) [1..]| r . port1]
as ports order by cost ASC limit 1; ’’’ ,

32 {” firstip ”: srcIP , ”secondip”: dstIP})
33 p = None

Busoni Algorithms and Work flow 106

34 for i in result :
35 p = Subpath(i [’ switches ’], i [’ ports ’], None,0,None)
36 p. srcIP = srcIP
37 p. dstIP = dstIP
38 if p. portslist :
39 p. setID(installpathasr (session ,p, srcIP , dstIP))
40 if p.ID>0:
41 return p
42 logger . error (”Error finding path”)
43

44 def qosroute (session , srcIP , dstIP , score) :
45 result = session . run(’’’ MATCH (h1:Host {ip:{firstip}}) , (h2:Host {ip:{secondip}})
46 Match p= allshortestPaths ((h1)−[rc:Connected to∗]−>(h2))
47 where all (wwr in relationships (p) where wwr.cost>{micscore})
48 return reduce(cost=0, r in relationships (p) | cost+r . cost) AS cost

,[n in nodes(p) [1..−1]| n.sequence] as switches ,[r in relationships (p) [1..]| r . port1] as
ports order by cost ASC limit 1; ’’’ ,

49 {” firstip ”: srcIP , ”secondip”: dstIP , ’micscore’ : score})
50 p = None
51 for i in result :
52 p = Subpath(i [’ switches ’], i [’ ports ’], None,i[’ cost ’], None)
53 p. srcIP = srcIP
54 p. dstIP = dstIP
55 if p. portslist :
56 p. setID(installpathasr (session ,p, srcIP , dstIP))
57 if p.ID>0:
58 return p
59 logger . error (”Error finding path”)
60

61 def findpathinSRv6(srcIP , dstIP , score , SFClist) :
62 if score>−1 and SFClist:
63 logger .debug(” calling routing for intent with SFC and QoS from source {} to destination

{}”.format(srcIP , dstIP))
64 return asrrouteOptimized (getsession () , srcIP , dstIP , SFClist , score)
65 elif score>−1:
66 logger .debug(” calling routing for intent with QoS only from source {} to destination {}

”.format(srcIP , dstIP))
67 return qosroute (getsession () , srcIP , dstIP , score)
68 elif SFClist :
69 logger .debug(” calling routing for policy with SFC only from source {} to destination {}

with SFClist {}”.format(srcIP , dstIP ,[f . nfid for f in SFClist]))
70 return asrrouteOptimized (getsession () , srcIP , dstIP , SFClist , score)
71 else :
72 #normal path
73 logger .debug(” calling routing for basic policy (no QOS, SFC) from source {} to

destination {}”.format(srcIP , dstIP))
74 return unconditionedroute (getsession () , srcIP , dstIP)
75

76 def asrrouteOptimized (session , srcIP , dstIP , listofFun , cost) :
77 fullpath = Subpath ([], [],[], 0, ””)

107 C.3. Path finding in Busoni Code Snippets

78 fullpath . srcIP=srcIP
79 fullpath . dstIP=dstIP
80 lastvisitednode = None
81 for index in range(len (listofFun)) :
82 if (index == 0): # if it is the first fn
83 logger .debug(” calling getsubroute with src {} and dst {} and Fn {} and cost {}”.

format(srcIP , listofFun [index]. nfid , listofFun [index]. nfid , cost))
84 a = getsubroute host mb (session , srcIP , listofFun [index]. nfid , cost)
85 fullpath . switcheslist . extend(a . switcheslist)
86 fullpath . portslist . extend(a . portslist)
87 # fullpath . portslist . insert (−1,”MB”)
88 fullpath . cost += a. cost
89 fullpath . lastnode = a. lastnode
90 lastvisitednode = fullpath . lastnode # to get last visited node
91 logger .debug(”The Final path construction is starting now {}”.format(fullpath))
92 # print ”the last visited node after fn 100 is ” + str (lastvisitednode)
93 else :
94 if lastvisitednode in listofFun [index]. listofhostednodes :
95 fullpath . switcheslist . extend(lastvisitednode)
96 logger .debug(”Trying to find path between router space {} and middelBox sid {}

hosted in {}”.format(lastvisitednode , listofFun [index]. nfid , listofFun [index].
listofhostednodes))

97 result = getsession () . run(’’’ Match (r :Router{space:{ routerspace }})−[re]−>(mb
:MiddelBox {sid:{mbsid}}) return re.port1 ’’’ ,{” routerspace ”: lastvisitednode ,”mbsid”:
listofFun [index]. nfid})

98 for pathins in result :
99 fullpath . portslist .append(str (pathins [”re . port1”]))

100 # fullpath . portslist . insert (−1,”MBB”)
101 fullpath . cost+=listofFun [index]. cost
102 else :
103 logger .debug(” calling getsubroute with src {} and dst {} and Fn {} and cost {}”

.format(lastvisitednode , [str (jk) for jk in listofFun [index]. listofhostednodes], listofFun
[index]. nfid , cost))

104 a = getsubroute router mb (session , lastvisitednode , listofFun [index]. nfid , cost)
105 if a:
106 fullpath . switcheslist . extend(a . switcheslist)
107 fullpath . portslist . extend(a . portslist)
108 # fullpath . portslist . insert (−1,”MB”)
109 fullpath . cost += a. cost
110 fullpath . lastnode = a. lastnode
111 # print a . lastnode
112 lastvisitednode = fullpath . lastnode # to get last visited node
113 logger .debug(”The Final path construction status is {}”.format(fullpath))
114 # now get the path from last MB to dstIP
115 logger .debug(” calling getsubroute enhanced with src {} and dst {} from last router hosting

last Fn to dst and cost{} ”. format(lastvisitednode , dstIP , cost))
116 tempsubpath = getsubroute router host (session , lastvisitednode , str (dstIP) , cost)
117 fullpath . switcheslist . extend(tempsubpath. switcheslist)
118 fullpath . portslist . extend(tempsubpath. portslist)
119 fullpath . cost += tempsubpath.cost

Busoni Algorithms and Work flow 108

120 logger .debug(”The Final path construction is finished and it is : {}”.format(fullpath))
121 installpathasr (session , fullpath , srcIP , dstIP)
122 # updatelinkcost (session , srcIP , dstIP , fullpath)
123 return fullpath
124 def getsubroute host mb (session , srcIP , mb, cost) :
125 logger .debug(”getsubroute from host {} to mb {} called and mincost {}”.format(srcIP , mb,

cost))
126 result = session . run(’’’ MATCH (h1:Host {ip:{firstip}}) , (h2:MiddelBox {sid:{mbsid}})
127 Match p= allshortestPaths ((h1)−[rc:Connected to∗]−>(h2))
128 where all (wwr in relationships (p) where wwr.cost>{mincost})
129 return reduce(cost=0, r in relationships (p) | cost+r . cost) AS cost ,[n in

nodes(p) [1..−1]| n.sequence] as switches , [n in nodes(p) [1..−1]| n.space] as lastnode ,
130 [n in nodes(p) [1..]| labels (n)] as typeofnodes ,[r in relationships (p)

[1..]| r . port1] as ports order by cost ASC limit 1; ’’’ ,
131 {” firstip ”: srcIP , ”mbsid”: mb, ”mincost”: cost})
132 for pathins in result :
133 return Subpath(pathins [”switches”], pathins [” ports ”], pathins [”typeofnodes”], pathins [”

cost”], pathins [” lastnode ”][−1])
134 def getsubroute router mb (session , routerIP , mb, cost) :
135 result = session . run(’’’ MATCH (h1:Router {space:{firstip}}) , (h2:MiddelBox {sid:{mbsid}})
136 Match p= allshortestPaths ((h1)−[rc:Connected to∗]−>(h2))
137 where all (wwr in relationships (p) where wwr.cost>{mincost})
138 return reduce(cost=0, r in relationships (p) | cost+r . cost) AS cost ,[n

in nodes(p) [1..−1]| n.sequence] as switches , [n in nodes(p) [1..−1]| n.space] as lastnode ,
139 [n in nodes(p) [1..]| labels (n)] as typeofnodes ,[r in relationships (p)

[0..]| r . port1] as ports order by cost ASC limit 1; ’’’ ,
140 {” firstip ”: str (routerIP) , ”mbsid”: str (mb), ”mincost”: cost})
141 for pathins in result :
142 try :
143 # when the last node is the same node that host the mb then this would be null
144 return Subpath(pathins [”switches”], pathins [” ports ”], pathins [”typeofnodes”],

pathins [”cost”], pathins [” lastnode ”][−1])
145 except :
146 return Subpath(pathins [”switches”], pathins [” ports ”], pathins [”typeofnodes”],

pathins [”cost”], pathins [” lastnode ”])
147 def getsubroute router host (session , routerIP , dstIP , cost) :
148 result = session . run(’’’ MATCH (h1:Router {space:{firstip}}) , (h2:Host {ip:{secondip}})
149 Match p= allshortestPaths ((h1)−[rc:Connected to∗]−>(h2))
150 where all (wwr in relationships (p) where wwr.cost>{mincost})
151 and NONE(n IN nodes(p) WHERE n:MiddelBox)
152 return reduce(cost=0, r in relationships (p) | cost+r . cost) AS cost ,[n

in nodes(p) [1..−1]| n.sequence] as switches , [n in nodes(p) [1..−1]| n.space] as lastnode ,
153 [n in nodes(p) [1..]| labels (n)] as typeofnodes ,[r in relationships (p)

[0..]| r . port1] as ports order by cost ASC limit 1; ’’’ ,
154 {” firstip ”: routerIP , ”secondip”: dstIP , ”mincost”: cost})
155 for pathins in result :
156 return Subpath(pathins [”switches”], pathins [” ports ”], pathins [”typeofnodes”], pathins [”

cost”], None)

Listing C.2: Code snippets of Path finding in Busoni

Bibliography

Bibliography

[1] A. Dwaraki and T. Wolf, “Adaptive Service-Chain Routing for Virtual Network Func-
tions in Software-Defined Networks,” in Proceedings of the 2016 Workshop on Hot
Topics in Middleboxes and Network Function Virtualization, ser. HotMIddlebox ’16.
New York, NY, USA: ACM, 2016, pp. 32–37. (Cited on xiii, 41, 66.)

[2] A. Wang, X. Mei, J. Croft, M. Caesar, and B. Godfrey, “Ravel: A Database-Defined
Network,” in Proceedings of the Symposium on SDN Research - SOSR ’16. New
York, New York, USA: ACM Press, 2016, pp. 1–7. (Cited on xiv, 5, 6, 22, 26, 30, 31,
33, 40, 42, 44, 96.)

[3] T. Benson, A. Akella, and D. Maltz, “Unraveling the complexity of network
management,” in Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, ser. NSDI’09. Berkeley, CA, USA: USENIX
Association, 2009, pp. 335–348. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1558977.1559000 (Cited on 1.)

[4] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven wan,”
in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, ser.
SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 15–26. [Online]. Available:
http://doi.acm.org/10.1145/2486001.2486012 (Cited on 1, 2, 11.)

[5] A. Pathak, M. Zhang, Y. C. Hu, R. Mahajan, and D. Maltz, “Latency
inflation with mpls-based traffic engineering,” in Proceedings of the 2011
ACM SIGCOMM Conference on Internet Measurement Conference, ser. IMC
’11. New York, NY, USA: ACM, 2011, pp. 463–472. [Online]. Available:
http://doi.acm.org/10.1145/2068816.2068859 (Cited on 1.)

[6] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Pro-
ceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015. (Cited on 1, 11, 26, 63.)

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “OpenFlow,” ACM SIGCOMM Computer Communication

http://dl.acm.org/citation.cfm?id=1558977.1559000
http://dl.acm.org/citation.cfm?id=1558977.1559000
http://doi.acm.org/10.1145/2486001.2486012
http://doi.acm.org/10.1145/2068816.2068859

Bibliography 112

Review, vol. 38, no. 2, p. 69, Mar. 2008. (Cited on 2, 6, 60.)

[8] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois, “The Segment
Routing Architecture,” in 2015 IEEE Global Communications Conference (GLOBE-
COM), Dec. 2015, pp. 1–6. (Cited on 2, 13, 57, 59, 67.)

[9] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, K. N. B., C. Bhagat, S. Jain,
J. Kaimal, S. Liang, K. Mendelev, S. Padgett, F. Rabe, S. Ray, M. Tewari, M. Tierney,
M. Zahn, J. Zolla, J. Ong, and A. Vahdat, “B4 and after: Managing hierarchy,
partitioning, and asymmetry for availability and scale in google’s software-defined
wan,” in Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’18. New York, NY, USA: ACM, 2018, pp.
74–87. [Online]. Available: http://doi.acm.org/10.1145/3230543.3230545 (Cited on
2.)

[10] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular SDN Program-
ming with Pyretic,” USENIX ;login:, vol. 38, pp. 40–47, 2013. (Cited on 2, 6, 21, 22,
25, 26, 60.)

[11] A. Abhashkumar, J.-M. Kang, S. Banerjee, A. Akella, Y. Zhang, and W. Wu, “Sup-
porting Diverse Dynamic Intent-based Policies Using Janus,” in Proceedings of the
13th International Conference on Emerging Networking EXperiments and Technolo-
gies, ser. CoNEXT ’17. New York, NY, USA: ACM, 2017, pp. 296–309. (Cited on
5, 21, 22, 25, 42.)

[12] C. Prakash, Y. Zhang, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee, C. Clark,
Y. Ma, and P. Sharma, “PGA: Using Graphs to Express and Automatically Reconcile
Network Policies,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 5,
pp. 29–42, Aug. 2015. (Cited on 6, 21, 22, 25, 26.)

[13] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark, “Kinetic : Verifi-
able Dynamic Network Control,” in 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), 2015, pp. 59–72. (Cited on 6, 21, 22, 25, 26.)

[14] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and A. Arefin, “A Network-state
Management Service,” in Proceedings of the 2014 ACM Conference on SIGCOMM,
ser. SIGCOMM ’14. New York, NY, USA: ACM, 2014, pp. 563–574. (Cited on 6,
22, 26.)

[15] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A Compositional Hypervi-
sor for Software-Defined Networks,” Proceedings of the 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pp. 87–101, 2015. (Cited on
6, 22, 26, 60.)

http://doi.acm.org/10.1145/3230543.3230545

113 Bibliography

[16] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils, T. Telkamp, and
P. Francois, “A Declarative and Expressive Approach to Control Forwarding Paths
in Carrier-Grade Networks,” in Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, ser. SIGCOMM ’15, 2015, pp. 15–28. (Cited
on 6, 60, 81.)

[17] V. Heorhiadi, S. Chandrasekaran, M. K. Reiter, and V. Sekar, “Intent-driven Compo-
sition of Resource-management SDN Applications,” in Proceedings of the 14th In-
ternational Conference on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’18, 2018, pp. 86–97. (Cited on 6, 60.)

[18] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and
D. Walker, “Frenetic: A network programming language,” in Proceedings of the
16th ACM SIGPLAN International Conference on Functional Programming, ser.
ICFP ’11. New York, NY, USA: ACM, 2011, pp. 279–291. [Online]. Available:
http://doi.acm.org/10.1145/2034773.2034812 (Cited on 6, 21, 25, 60.)

[19] A. Voellmy, S. Chen, X. Wang, and Y. R. Yang, “Magellan: Generating Multi-Table
Datapath from Datapath Oblivious Algorithmic SDN Policies,” in Proceedings of the
ACM SIGCOMM Conference, 2016, pp. 593–594. (Cited on 6, 60.)

[20] C. Filsfils, P. C. Garvia, J. Leddy, D. Voyer, S. Matsushima, and Z. Li, “SRv6
Network Programming,” IETF Secretariat, Internet-Draft draft-filsfils-spring-srv6-
network-programming-06, Oct. 2018. (Cited on 7, 15, 57.)

[21] D. Lebrun, M. Jadin, F. Clad, C. Filsfils, and O. Bonaventure, “Software Resolved
Networks: Rethinking Enterprise Networks with IPv6 Segment Routing,” in Proceed-
ings of the Symposium on SDN Research, ser. SOSR ’18. ACM, 2018, pp. 6:1–6:14.
(Cited on 7, 59.)

[22] A. Abdelsalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and L. Veltri, “Imple-
mentation of virtual network function chaining through segment routing in a linux-
based NFV infrastructure,” in 2017 IEEE Conference on Network Softwarization, Net-
Soft, 2017, pp. 1–5. (Cited on 7, 57, 59.)

[23] Y. Desmouceaux, P. Pfister, J. Tollet, M. Townsley, and T. Clausen, “6lb: Scalable and
Application-Aware Load Balancing with Segment Routing,” IEEE/ACM Trans. Netw.,
vol. 26, no. 2, pp. 819–834, Apr. 2018. (Cited on 7, 57.)

[24] F. Aubry, S. Vissicchio, O. Bonaventure, and Y. Deville, “Robustly Disjoint Paths with
Segment Routing,” in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’18, 2018, pp. 204–216.
(Cited on 7, 57, 59.)

http://doi.acm.org/10.1145/2034773.2034812

Bibliography 114

[25] P. L. Ventre, M. M. Tajiki, S. Salsano, and C. Filsfils, “SDN Architecture and South-
bound APIs for IPv6 Segment Routing Enabled Wide Area Networks,” IEEE Trans.
Netw. Service Manag., vol. 15, no. 4, pp. 1378–1392, Dec. 2018. (Cited on 7, 57, 59,
64.)

[26] M. Xhonneux, F. Duchene, and O. Bonaventure, “Leveraging eBPF for Programmable
Network Functions with IPv6 Segment Routing,” in Proceedings of the 14th Inter-
national Conference on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’18, 2018, pp. 67–72. (Cited on 7, 57, 59.)

[27] O. L. Barakat, D. Koll, and X. Fu, “Gavel: Software-defined network control with
graph databases,” in 2017 20th Conference on Innovations in Clouds, Internet and
Networks (ICIN), Mar. 2017, pp. 279–286, c©2017 IEEE. (Cited on 8, 60, 63, 74.)

[28] H. Freeman and R. Boutaba, “Networking industry transformation through softwariza-
tion [the president’s page],” IEEE Communications Magazine, vol. 54, no. 8, pp. 4–6,
2016. (Cited on 11.)

[29] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Presented as part of
the 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12). San Jose, CA: USENIX, 2012, pp. 323–336. [Online]. Available: https:
//www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar (Cited on
12.)

[30] C. Filsfils, S. Previdi, G. Dawra, W. Henderickx, and D. Cooper, “Interconnecting Mil-
lions Of Endpoints With Segment Routing,” Internet Engineering Task Force, Internet-
Draft draft-filsfils-spring-large-scale-interconnect-12, Aug. 2018, work in Progress.
(Cited on 13.)

[31] “Source packet routing in networking (spring),” Jan. 2019. [Online]. Available:
https://datatracker.ietf.org/wg/spring/about/ (Cited on 13.)

[32] A. Bashandy, C. Filsfils, B. Decraene, S. Litkowski, P. Francois, D. Voyer, F. Clad,
and P. C. Garvia, “Topology Independent Fast Reroute using Segment Routing,” Dec.
2018, work in Progress. (Cited on 13, 69.)

[33] P. C. Garvia, C. Filsfils, H. Elmalky, S. Matsushima, D. Voyer, A. Cui,
and B. Peirens, “SRv6 Mobility Use-Cases,” Internet Engineering Task
Force, Internet-Draft draft-camarilloelmalky-springdmm-srv6-mob-usecases-01, Jan.
2019, work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-camarilloelmalky-springdmm-srv6-mob-usecases-01 (Cited on 13.)

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
https://datatracker.ietf.org/wg/spring/about/
https://datatracker.ietf.org/doc/html/draft-camarilloelmalky-springdmm-srv6-mob-usecases-01
https://datatracker.ietf.org/doc/html/draft-camarilloelmalky-springdmm-srv6-mob-usecases-01

115 Bibliography

[34] C. Filsfils, S. Previdi, J. Leddy, S. Matsushima, and D. Voyer, “IPv6 Segment Routing
Header (SRH),” Internet Engineering Task Force, Internet-Draft draft-ietf-6man-
segment-routing-header-16, Feb. 2019, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-16 (Cited on
13, 14.)

[35] G. Naik, F. Iqbal, B. Peirens, N. Kumar, Z. Ali, C. Pignataro, S. Matsushima, C. Fils-
fils, J. Leddy, and R. Raszuk, “Operations, Administration, and Maintenance (OAM)
in Segment Routing Networks with IPv6 Dataplane (SRv6).” (Cited on 15.)

[36] S. Deering and B. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,”
Internet Engineering Task Force, Tech. Rep. 8200, Jul. 2017. [Online]. Available:
https://rfc-editor.org/rfc/rfc8200.txt (Cited on 15.)

[37] D. Lebrun and O. Bonaventure, “Implementing IPv6 Segment Routing in the Linux
Kernel,” in Proceedings of the Applied Networking Research Workshop, ser. ANRW
’17, 2017, pp. 35–41. (Cited on 16.)

[38] “The Fast Data Project (FD.io),” Jan. 2017. [Online]. Available: http://www.
segment-routing.net/open-software/vpp/ (Cited on 16.)

[39] R. Angles and C. Gutierrez, “Survey of Graph Database Models,” ACM Computer
Survey, vol. 40, no. 1, pp. 1–39, Feb. 2008. (Cited on 17, 31, 69.)

[40] C. Schlesinger, M. Greenberg, and D. Walker, “Concurrent NetCore: From Policies
to Pipelines,” in Proceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming, ser. ICFP ’14. New York, NY, USA: ACM, 2014, pp.
11–24. (Cited on 21, 25.)

[41] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined networking -
HotSDN ’13. New York, New York, USA: ACM Press, 2013, p. 109. (Cited on 21,
25.)

[42] R. Soule, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer, and N. Foster,
“Merlin: A Language for Provisioning Network Resources,” in Proceedings of the
10th ACM International on Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’14. New York, NY, USA: ACM, 2014, pp. 213–226.
(Cited on 21, 25.)

[43] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and
D. Walker, “NetKAT: Semantic Foundations for Networks,” in Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-16
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-16
https://rfc-editor.org/rfc/rfc8200.txt
http://www.segment-routing.net/open-software/vpp/
http://www.segment-routing.net/open-software/vpp/

Bibliography 116

ser. POPL ’14. New York, NY, USA: ACM, 2014, pp. 113–126. (Cited on 25.)

[44] D. Kozen, “Kleene Algebra with Tests,” ACM Trans. Program. Lang. Syst., vol. 19,
no. 3, pp. 427–443, May 1997. (Cited on 25.)

[45] Davide Sanvito, Daniele Moro, Mattia Gulli, Ilario Filippini, Antonio Capone, and
Andrea Campanella, “ONOS Intent Monitor and Reroute service: enabling plug&play
routing logic,” in NETSOFT 2018, 4th IEEE Conference on Network Softwarisation,
25-29 June 2018, Montreal, Canada, 2018. (Cited on 25.)

[46] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, and B. Lantz,
“ONOS: towards an open, distributed SDN OS,” Proceedings of the third workshop
on Hot topics in software defined networking - HotSDN ’14, pp. 1–6, 2014. (Cited on
25.)

[47] F. Chen, C. Wu, X. Hong, and B. Wang, “Easy Path Programming: Elevate Abstraction
Level for Network Functions,” IEEE/ACM Transactions on Networking, vol. 26, no. 1,
pp. 189–202, Feb. 2018. (Cited on 25.)

[48] D. Comer and A. Rastegarnia, “OSDF: A framework for software defined network
programming,” in 2018 15th IEEE Annual Consumer Communications Networking
Conference (CCNC), Jan. 2018, pp. 1–4. (Cited on 25.)

[49] W. Kellerer, A. Basta, P. Babarczi, A. Blenk, M. He, M. Klugel, and A. M. Alba, “How
to measure network flexibility? a proposal for evaluating softwarized networks,” IEEE
Communications Magazine, vol. 56, no. 10, pp. 186–192, October 2018. (Cited on
26.)

[50] W. Wang, W. He, and J. Su, “Redactor: Reconcile network control with declarative
control programs In SDN,” in 2016 IEEE 24th International Conference on Network
Protocols (ICNP), Nov. 2016, pp. 1–10. (Cited on 26, 42.)

[51] M. Trevisan, I. Drago, M. Mellia, H. H. Song, and M. Baldi, “AWESoME: Big Data
for Automatic Web Service Management in SDN,” IEEE Transactions on Network
and Service Management, vol. 15, no. 1, pp. 13–26, Mar. 2018. (Cited on 26.)

[52] C. Sieber, A. Blenk, A. Basta, D. Hock, and W. Kellerer, “Towards a programmable
management plane for sdn and legacy networks,” in 2016 IEEE NetSoft Conference
and Workshops (NetSoft), June 2016, pp. 319–327. (Cited on 26.)

[53] B. Davie, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. Gude, A. Padmanabhan,
T. Petty, K. Duda, and A. Chanda, “A Database Approach to SDN Control Plane De-
sign,” SIGCOMM Comput. Commun. Rev., vol. 47, no. 1, pp. 15–26, Jan. 2017. (Cited

117 Bibliography

on 26.)

[54] R. Raghavendra, J. Lobo, and K.-W. Lee, “Dynamic graph query primitives for SDN-
based cloudnetwork management,” in Proceedings of the first workshop on Hot topics
in software defined networks - HotSDN ’12. New York, New York, USA: ACM Press,
2012, p. 97. (Cited on 27.)

[55] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “STINGER: High performance
data structure for streaming graphs,” in 2012 IEEE Conference on High Performance
Extreme Computing (HPEC), 2012, pp. 1–5. (Cited on 27, 35.)

[56] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri, D. Ongaro,
S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang, “The RAM-
Cloud Storage System,” Journal ACM Transactions on Computer Systems, vol. 33,
no. 3, pp. 1–55, Sep. 2015. (Cited on 27.)

[57] K. Qiu, S. Huang, Q. Xu, J. Zhao, X. Wang, and S. Secci, “ParaCon: A Parallel Control
Plane for Scaling Up Path Computation in SDN,” IEEE Transactions on Network and
Service Management, vol. 14, no. 4, pp. 978–990, Dec. 2017. (Cited on 27.)

[58] R. C. McColl, D. Ediger, J. Poovey, D. Campbell, and D. A. Bader, “A Performance
Evaluation of Open Source Graph Databases,” in Proceedings of the First Workshop
on Parallel Programming for Analytics Applications, 2014, pp. 11–18. (Cited on 27.)

[59] O. L. Barakat, “Gavel,” https://github.com/engbarakat/Gavel/releases/tag/v1.0, 2018.
(Cited on 30.)

[60] “Neo4j Database.” [Online]. Available: https://neo4j.com/ (Cited on 31, 35.)

[61] M. Hassan, T. Kuznetsova, H. C. Jeong, W. Aref, and M. Sadoghi, “Extending In-
Memory Relational Database Engines with Native Graph Support,” in EDBT: 21st In-
ternational Conference on Extending Database Technology. Vienna, Austria: Open-
Proceedings.org, 2018. (Cited on 33.)

[62] M. Paradies, W. Lehner, and C. Bornhövd, “GRAPHITE: An Extensible Graph Traver-
sal Framework for Relational Database Management Systems,” in Proceedings of the
27th International Conference on Scientific and Statistical Database Management, ser.
SSDBM ’15. New York, NY, USA: ACM, 2015, pp. 29:1–29:12. (Cited on 33.)

[63] M. A. Rodriguez and P. Neubauer, “A path algebra for multi-relational graphs,” in
2011 IEEE 27th International Conference on Data Engineering Workshops, Apr.
2011, pp. 128–131. (Cited on 33.)

https://github.com/engbarakat/Gavel/releases/tag/v1.0
https://neo4j.com/

Bibliography 118

[64] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan, “LinkBench: A
Database Benchmark Based on the Facebook Social Graph,” in Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, 2013, pp.
1185–1196. (Cited on 34.)

[65] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plan-
tikow, M. Rydberg, P. Selmer, and A. Taylor, “Cypher: An Evolving Query Language
for Property Graphs,” in Proceedings of the 2018 International Conference on Man-
agement of Data, ser. SIGMOD ’18. New York, NY, USA: ACM, 2018, pp. 1433–
1445. (Cited on 35, 36.)

[66] “ArangoDB - highly available multi-model NoSQL database.” [Online]. Available:
https://www.arangodb.com/ (Cited on 35.)

[67] “Titan: Distributed Graph Database.” [Online]. Available: http://titan.thinkaurelius.
com/ (Cited on 35.)

[68] F. Holzschuher and R. Peinl, “Performance of graph query languages,” in Proceedings
of the Joint EDBT/ICDT 2013 Workshops, 2013, p. 195. (Cited on 35, 37.)

[69] “Franz Inc. - Semantic Web Technologies.” [Online]. Available: https://franz.com/
agraph/ (Cited on 35.)

[70] N. Martinez-Bazan, S. Gomez-Villamor, and F. Escale-Claveras, “DEX: A high-
performance graph database management system,” in Data Engineering Workshops
(ICDEW), 2011 IEEE 27th International Conference on. IEEE, Apr. 2011, pp. 124–
127. (Cited on 35.)

[71] “Graphbase AI Technology.” [Online]. Available: https://graphbase.ai/ (Cited on 35.)

[72] “HypergraphDB - A Graph Database.” [Online]. Available: http://www.hypergraphdb.
org/ (Cited on 35.)

[73] “InfiniteGraph.” [Online]. Available: http://www.objectivity.com/products/
infinitegraph/ (Cited on 35.)

[74] “InfoGrid Web Graph Database.” [Online]. Available: http://infogrid.org/trac/ (Cited
on 35.)

[75] “Multi-Model Database | Graph Database | OrientDB.” [Online]. Available:
http://orientdb.com/ (Cited on 35.)

[76] A. Patrushev, “Shortest path search in real road networks with pgRouting,” Free and
Open Soruce Software For Geospatial, 2007. (Cited on 36.)

https://www.arangodb.com/
http://titan.thinkaurelius.com/
http://titan.thinkaurelius.com/
https://franz.com/agraph/
https://franz.com/agraph/
https://graphbase.ai/
http://www.hypergraphdb.org/
http://www.hypergraphdb.org/
http://www.objectivity.com/products/infinitegraph/
http://www.objectivity.com/products/infinitegraph/
http://infogrid.org/trac/
http://orientdb.com/

119 Bibliography

[77] “pox: The POX Controller,” Nov. 2017. [Online]. Available: https://github.com/
noxrepo/pox (Cited on 37.)

[78] J. M. Halpern and C. Pignataro, “Service Function Chaining (SFC) Architecture,”
Oct. 2015. [Online]. Available: https://rfc-editor.org/rfc/rfc7665.txt (Cited on 41.)

[79] N. Deo and C.-Y. Pang, “Shortest-path algorithms: Taxonomy and annotation,” Net-
works, vol. 14, no. 2, pp. 275–323, Jun. 1984. (Cited on 41, 66.)

[80] “Mininet: An Instant Virtual Network on your Laptop (or other PC) - Mininet.”
[Online]. Available: http://mininet.org/ (Cited on 43.)

[81] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity Data Center Net-
work Architecture,” in Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication, 2008, pp. 63–74. (Cited on 43.)

[82] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The Internet Topol-
ogy Zoo,” Selected Areas in Communications, IEEE Journal on, vol. 29, no. 9, pp.
1765 –1775, Oct. 2011. (Cited on 43, 74.)

[83] P. Kalmbach, J. Zerwas, P. Babarczi, A. Blenk, W. Kellerer, and S. Schmid, “Em-
powering Self-Driving Networks,” in Proceedings of the Afternoon Workshop on Self-
Driving Networks, ser. SelfDN 2018, 2018, pp. 8–14. (Cited on 58.)

[84] F. Lazzeri, G. Bruno, J. Nijhof, A. Giorgetti, and P. Castoldi, “Efficient label encoding
in segment-routing enabled optical networks,” in 2015 International Conference on
Optical Network Design and Modeling (ONDM), May 2015, pp. 34–38. (Cited on
67.)

[85] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano, “Traffic Engineering
with Segment Routing: SDN-Based Architectural Design and Open Source Imple-
mentation,” in 2015 Fourth European Workshop on Software Defined Networks, Sep.
2015, pp. 111–112. (Cited on 67.)

[86] A. Cianfrani, M. Listanti, and M. Polverini, “Translating Traffic Engineering outcome
into Segment Routing paths: The Encoding problem,” in 2016 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), Apr. 2016, pp. 245–
250. (Cited on 67.)

[87] F. Aubry, D. Lebrun, S. Vissicchio, M. T. Khong, Y. Deville, and O. Bonaventure,
“SCMon: Leveraging segment routing to improve network monitoring,” in IEEE IN-
FOCOM 2016 - The 35th Annual IEEE International Conference on Computer Com-
munications, Apr. 2016, pp. 1–9. (Cited on 67.)

https://github.com/noxrepo/pox
https://github.com/noxrepo/pox
https://rfc-editor.org/rfc/rfc7665.txt
http://mininet.org/

Bibliography 120

[88] O. L. Barakat, D. Koll, and X. Fu, “Gavel: A fast and easy-to-use plain data repre-
sentation for software-defined networks,” IEEE Transactions on Network and Service
Management, pp. 1–12, c©2019 IEEE, 2019. (Cited on 74.)

	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	High Level Research Problems
	Thesis Challenges
	Performance
	Portability
	Expressiveness and Automation

	Thesis Contributions
	Performance
	Portability
	Expressiveness and Automation

	Thesis Outline

	Background
	Network Softwarization
	SDN
	NFV

	Segment Routing
	Overview
	Segment Routing on IPv6: SRv6
	SRv6 Programming

	Graph Database

	A Fast and Easy-to-Use Plain Data Representation for Software defined Networking
	Problem Statement
	Introduction
	Challenges in SDN Northbound Abstractions

	Related Work
	Abstractions
	Databases in SDN Controllers
	Use of Graph Modeling in Networks

	Software-defined network control with graph databases: Gavel
	Introduction
	The Case for the Use of Graph Databases
	Data Representations
	Drawbacks of Relational Databases
	Advantages of Graph Databases

	Gavel Architecture and Design Choices
	Network Model
	Selecting a Graph Database Engine for Gavel
	Native Graph Functions and Cypher
	Gavel Architecture

	Gavel and Network Application Programming
	Routing
	Access Control Firewall
	Load-Balancer
	Service Function Chaining
	Network Slicing
	Summary

	Evaluation
	Methodology
	Gavel's Applications
	Writing Network Applications on Gavel

	Future Prospects
	Applicability of Gavel with Other SDN Environments
	Gavel and SR
	Gavel and other Northbound Interfaces

	Current Limitations and Prospects of Extensions

	Addressing Northbound Interface Challenges in IPv6 Segment Routing
	Problem Statement
	Introduction
	Challenges in Segment Routing Policy Composition

	Related Work
	Segment Routing on IPv6
	Northbound Interfaces in SDN

	A Northbound Interface for IPv6 Segment Routing: Busoni
	Introduction
	Requirements for Segment Routing Policy Framework and Target Scenarios
	Busoni Architecture
	Overall Architecture
	API Policies Composing
	Encoding Path Nodes as Segments
	Busoni in Action
	Data Store
	Responding to Network Dynamics

	Use Cases
	Basic policy with SFC
	Overlay with QoS Policy
	Responding to a VNF Migration

	Evaluation and Discussion
	Implementation and Lab Setup
	Scalability
	Reactivity to Network Dynamics

	Future Prospects
	Applicability of Busoni in MPLS-SR Environment
	Applicability of Busoni in SRv6 on non-Linux Routers Environment
	Current Limitations and Prospects of Extensions
	Flow Specifications
	Rules Conflicts
	Complex Network Dynamics

	Conclusion
	Dissertation Summary
	Thesis Impact

	Appendix
	Concepts and Definition of Related Terms
	Gavel Internals
	Representation of Network Topologies in Graph Database
	Comparison of Routing Application Implementation between Gavel and Ravel
	ASR Algorithm Implementation

	Busoni Algorithms and Work flow
	Busoni's work flow
	SRtypes Code Snippets
	Path finding in Busoni Code Snippets

	Bibliography

