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Summary 

Dendritic spines are the major excitatory postsynaptic compartment in the brain. Despite its 

essential function in synaptic transmission and plasticity, we are still lacking a comprehensive 

and quantitative understanding of its molecular composition. However, this knowledge is 

crucial to appreciate the minute regulatory details that affect learning and memory. Here, I 

investigated the molecular architecture of dendritic spines in absolute quantitative terms and 

on the nanoscale. I report the localization and abundance of 105 postsynaptic proteins, 

differentiating between spine classes. Surprisingly, the investigated spine types show highly 

similar morphology as well as molecular composition. I found that proteins belonging of the 

same pathway do localize with each other and that their abundance is equally correlated. Using 

pharmacological treatment, I also show that the organization of dendritic spines is relatively 

stable during homeostatic plasticity, with only minor changes. Interestingly, the copy number 

of a given protein on the postsynapse correlated with its copy number in the presynapse, 

corroborating a tight link between both compartments. In addition, I report the neuronal 

proteome of pure hippocampal excitatory neurons in absolute values. This revealed that the 

abundance of a protein decreases with its size, probably because larger proteins do attract 

damage faster, or because it is energetically costly to produce large proteins. Also, the copy 

number distribution of mitochondria is highly different to all other investigated compartments, 

most likely due to its highly specialized function and prokaryotic origin. In total, the database I 

provide is the most extensive quantitative description of dendritic spines to date. It provides 

the foundation for highly detailed in silico modelling approaches and will be an important 

reference tool for synaptic function. 

  



4 

  



5 

Introduction 

The postsynapse – In need of a quantitative understanding 

Understanding the brain is one of the fundamental goals of our century. It is currently tackled 

on many levels, ranging from whole-brain perspectives such as connectomics or 

transcriptomics, to minute details of individual pathways and proteins. Many of these efforts 

are quantifying the brain on the systems level, for example by elucidating the ultrastructure of 

brain regions or even whole brains (Bock et al., 2011; Oh et al., 2014; Zheng et al., 2018) , 

measuring protein expression on the cell level (Hawrylycz et al., 2012; Kang et al., 2011; Lein 

et al., 2007) or following its activity in real time (Dombeck et al., 2007; Glasser et al., 2016). 

However, we are still lacking a quantitative understanding of the individual neuron and of the 

location where it receives input, its dendrites and the postsynapses located thereon. This is 

especially aggravating, as it has been shown that even tiny perturbations to the protein 

composition of its corresponding presynaptic side or their localization can affect its function. 

For example, we know that changes as small as the addition of a handful of SNAP25 copies 

to the synaptic vesicle (SV) will inactivate it (Truckenbrodt et al., 2018), that the positioning of 

SVs in relation to calcium channels is crucial for efficient fusion (Jahn and Fasshauer, 2012), 

and that presynaptic release zones need to be precisely placed opposite to postsynaptic 

receptors, to ensure accurate synaptic function (Tang et al., 2016).  

 

Accordingly, the neuron tightly regulates probably many quantitative aspects of presynaptic 

function, such as molecule and organelle positions or copy numbers, to ensure proper 

neurotransmitter release. It is reasonable to assume that it is similarly controlling postsynaptic 

function just as strictly, and in as much detail. This regulation, however, has been more difficult 

to investigate on the postsynaptic side, whose composition is far less understood than that of 

the presynaptic bouton. Therefore, it is essential that we gain a quantitative understanding of 

the postsynaptic compartment, especially since many aspects of learning and plasticity are 

thought to be primarily realized there (Herring and Nicoll, 2016a; Turrigiano, 2008). For this 

reason, I set out to chart a comprehensive, quantitative description of the postsynapse, with a 

special focus on the main excitatory compartment, the dendritic spine. I determined the 

nanoscale architecture of dendritic spines by measuring the location and copy number of 105 

proteins and analyzed the changes of key proteins during homeostatic plasticity. In addition, I 

report an extensive proteome of pure hippocampal neurons with absolute quantification, 

revealing general regulatory principles of protein homeostasis. Finally, this database is the 

most extensive quantification of a subcellular compartment to date and will serve as the basis 

for in silico studies of dendritic spine function.  
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The postsynapse has a multitude of functions 

Dendritic spines bridge the gap between neurons 

In the late 1800s, Ramon y Cajal showed that the brain is made up of individual neurons, which 

exhibited many spiny protrusions (Ramón y Cajal, 1888). He also already argued that these 

dendritic spines are the location where the individual neurons receive their input from other 

neurons (Cajal, 1894). It took over 60 years until synapses at the central nervous system could 

be observed in detail for the first time (Gray, 1959), and to discover that neurotransmitters 

released by SVs are the medium by which neurons send signals (Heuser and Reese, 1973). 

The opposed postsynaptic membrane showed a protein dense area, which was further on 

termed the postsynaptic density (PSD). 

The PSD is the central active zone on dendritic spines 

The most important function of a synapse is the transformation of the presynaptic electrical 

signal to a chemical signal, the release of neurotransmitter. This chemical signal then needs 

to be recognized by the receiving neuron, via receptors, and transformed back to an electrical 

signal. The receptors that perform this function on the postsynapse are located mostly within 

the PSD. The signaling can either be excitatory or inhibitory, I will focus here exclusively on 

the excitatory synapse, as this is the topic of my presented work. 

 

When glutamate is released into the synaptic cleft, it is recognized by α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors. These are 

heterotetrameric ionotropic receptors, which conduct mostly potassium and sodium ions, 

thereby depolarizing the postsynapse upon activation. The second important glutamate 

receptors class, N-methyl-D-aspartic acid (NMDA) type glutamate receptors are blocked by 

magnesium at resting potential (Mayer et al., 1984). Only when the postsynaptic compartment 

is sufficiently depolarized is this block released and NMDA receptors (NMDAR) open. They 

are therefore often referred to as coincidence detectors and usually only open upon the 

synchronous release of multiple SV, whereas asynchronous release does not activate NMDAR 

(Citri and Malenka, 2008). In addition to potassium and sodium, they are also permeable for 

calcium. This influx of calcium depolarizes it further, but also triggers many signaling cascades 

within the postsynapse. The depolarization of the postsynapse then propagates mostly 

electrotonically, although dendritic spikes have also been demonstrated (Jarsky et al., 2005; 

Sabatini et al., 2001). 

The positioning of these receptors is crucial for synaptic function and the localization of the 

receptors in relation to the presynaptic release site heavily influences the strength of the 

synapse (MacGillavry et al., 2013; Raghavachari and Lisman, 2004). It is therefore controlled 

by many different scaffolding proteins that bind AMPA receptors (AMPAR) and NMDAR 



7 

directly or indirectly. The best studied one is PSD95, which binds NMDAR, among others 

(Sheng and Kim, 2011). AMPAR do not directly interact with PSD95, but they have associated 

proteins, the transmembrane AMPA receptor regulating proteins (TARP), which in turn can 

bind to PSD95 (Schnell et al., 2002; Schwenk et al., 2012). The alignment of the presynaptic 

release site and the postsynaptic PSD is brought about by a transsynaptic nanocolumn, 

involving PSD95 and RIM1 (Tang et al., 2016). Other scaffolds, such as PSD93, Homer and 

Shank proteins connect the receptor complexes to the cytoskeleton, signaling molecules or 

kinases (for review see Foa and Gasperini, 2009; Frank and Grant, 2017; Monteiro and Feng, 

2017). This complex network of interactions causes the typical electron dense appearance in 

electron microscopy (EM).  

Dendritic spines differentiate between inputs from many sources – Electrochemical 

compartmentalization 

Using EM, it quickly became clear that many excitatory presynaptic terminals signal onto these 

spiny protrusions, called dendritic spines. They can have vastly different morphologies and the 

exact implications of this variability is still not completely understood. Most of the times, they 

are made up of a spherical head that is connected to the dendritic shaft by a thin neck. In the 

hippocampus, the volume of the head varies between 0.003-0.55 µm³, whereas the neck 

diameter is between 0.038 and 0.46 µm (Harris and Stevens, 1989). The length of the neck is 

equally variably, typically between 0.160 and 2.13 µm. They can be classified, based mostly 

on the relation between the head and neck of the spine, most often dividing them into stubby, 

thin, mushroom and branched spines (Harris et al., 1992), others also include filopodia as a 

separate group (Figure 1A; Berry and Nedivi, 2017). This classification remains controversial 

though. Several studies have shown that spine morphology is stable, especially in vivo 

(Grutzendler et al., 2002; Zuo et al., 2005). This is supported by the observation that PSD area 

is correlated to presynaptic number of SVs, the spine head volume and the amplitude of 

excitatory postsynaptic currents (Chicurel and Harris, 1992; Harris and Stevens, 1989; 

Matsuzaki et al., 2001; Noguchi et al., 2011; Spacek and Harris, 1997). Live-imaging studies 

have shown that a strong stimulation often leads to an increase of the spine head and it 

assumes a more rounded shape (Korkotian and Segal, 2001; Lendvai et al., 2000; Matsuzaki 

et al., 2004a; Schiffelholz and Aldenhoff, 2002). Similarly, the neck often increases its diameter 

upon strong stimulation (Tønnesen et al., 2014). Therefore, it is widely believed that mushroom 

type spines are a morphological analogue to learning. Conversely, other live-imaging 

experiments revealed that spines can change their morphology continuously and show a wide 

variety of shapes (Dunaevsky et al., 1999; Fischer et al., 2000; Parnass et al., 2000; Tønnesen 

et al., 2014). Also, the large variability in spine morphology lead to classes that in themselves 

still have large variability. All dendritic spines though, fulfill two basic functions: 
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First, they dramatically increase the possible complexity of neural networks (Sorra and Harris, 

2000). By virtue of having a longer connection to the dendritic shaft, dendritic spines enable 

the postsynaptic neuron to receive input also from axons not directly adjacent to the shaft 

(Figure 1B). This is important in the brain, as space is highly limited. 

 

Second, the morphology of dendritic spines electrochemically isolates the postsynapse from 

the shaft (Tønnesen and Nägerl, 2016). Therefore, the depolarization generated at the PSD is 

effectively amplified locally, allowing strong depolarizations to occur with only few released 

SVs. Also, the diffusion of proteins in and out of the spine is limited (Guthrie et al., 1991; Müller 

and Connor, 1991), generating a confined space where signaling can take place without 

affecting other postsynapses (Figure 1C). This input-specificity is important, because the 

neuron does need to differentiate between the different inputs it receives (Citri and Malenka, 

2008). Only then it can adjust the strength of synapses independently, a process essential to 

learning.  

Dendritic spines adapt to the input – Hebbian plasticity 

For learning to occur, synapses need to have a molecular counterpart to information storage. 

To do so, synapses can change their efficiency in signal transduction, often also referred to as 

a synapses’ strength. This change in strength can be on short or long timescale, and can either 

be brought about by presynaptic changes, i.e. a higher probability of SV release per action 

potential, or a stronger depolarization in the postsynapse per SV released (Malenka and Bear, 

2004). I will only cover the postsynaptic mechanisms here: 

The classical mechanism for learning requires long term changes in a synapses’ characteristic. 

Depending on the frequency and amplitude of the signal a dendritic spine receives, it either 

increases its strength upon high frequency stimulation, a mechanism known as long-term 

potentiation (LTP), or it decreases its strength if it receives low frequency stimulation, long-term 

depression (LTD). Sometimes, multiple spines work together to reach the depolarization 

necessary for LTP. This mechanism is known as cooperativity, when multiple synapses are 

receiving weak stimuli at the same time, or associativity, when one synapses receives weak, 

another one strong input (Citri and Malenka, 2008). The input specificity is still maintained, as 

only the involved dendritic spines are potentiated. 

Several different forms of LTP exist, the prototypical one being NMDAR-dependent LTP. Here, 

the influx of calcium through NMDAR activates several calcium dependent proteins and 

kinases, which induce a significant remodeling of the dendritic spine. One of the major players 

is calmodulin dependent kinase II (CaMKII; Hell, 2014). The changes in synaptic strength can 

be caused by different adjustments: 
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Figure 1: Dendritic spines fulfill a multitude of functions. A) Dendritic spines have many different morphologies 

that can be divided into 5 classes. B) Dendritic spines enable the dendrite to form synapses with more axons, 

increasing the complexity of the neural network. C) Dendritic spines compartmentalize the cytosol. Especially the 

thin neck limits diffusion of proteins in and out of the spine head, but it also has a high resistance, creating an 

electrically isolated compartment as well. D) The composition of dendritic spines changes during Hebbian plasticity. 

At resting conditions, AMPAR are present in equilibrium between the PSD, intracellular stores and extrasynaptic 

membranes (upper panel). Upon LTP induction, AMPAR are transported from endosomes to the membrane and 
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the diffusion into the head is increased (left panel). Conversely, during LTD AMPAR are internalized and released 

from the PSD, resulting in their diffusion away from it. E) Homeostatic plasticity prevents excitotoxicity in neurons. 

When enough synapses undergo LTP, the firing of the postsynaptic neuron can increase significantly. To reset it 

back to its set point, the neuron globally scales down all input it receives, retaining relative synaptic strength. F) 

Dendritic spines house many organelles. The PSD is filled with glutamate receptors that receive the incoming signal 

(blue rods). The spine head is mostly shaped by actin filaments, whereas the dendritic shaft contains microtubules. 

Within the head, endosomes are present, as well as the spine apparatus. The ER tubules traverse the dendritic 

shaft but can also invade into the neck. Ribosomes are mostly present at the base of the dendritic neck, 

Mitochondria are in the dendritic shaft as well. Golgi outposts often are present at dendritic arbors. 

First, the dendritic spine can change the number of receptors at its PSD (Figure 1D). During 

LTP, it increases the number of AMPAR receptors at its PSD (Lin et al., 2009; Park et al., 2004; 

Shi et al., 2001; Yudowski et al., 2007), therefore increasing its ability to depolarize, creating 

stronger excitatory postsynaptic potentials (EPSP). This increase in AMPAR is thought to 

mainly occur by exocytosis of GluR1/GluR2 AMPAR receptor at perisynaptic sites, which are 

subsequently diffuse into the PSD and are trapped there by scaffolding proteins such as 

PSD95. How fusion is initiated is not yet understood, although myosin motors are involved in 

the delivery of AMPAR containing endosomes (Wang et al., 2008). It is likely that SNARE 

proteins are involved as well, as infusion of dendritic spines with botulinum neurotoxin blocks 

LTP (Lledo et al., 1998). Which SNARE proteins exactly are involved in AMPAR exocytosis is 

not completely known, but several have been suggested (Jurado et al., 2013; Kennedy et al., 

2010; Suh et al., 2010). Especially, no Synaptotagmin-like calcium sensor has yet been 

identified for this process.  

In addition, the diffusion of AMPAR already on the postsynaptic membrane can be changed 

by the phosphorylation of their TARPS through CaMKII, to facilitate their binding to PSD95 

(Bats et al., 2007; Opazo et al., 2010; Schnell et al., 2002).  

Similarly, during LTD the number of AMPAR receptors is decreased (Figure 1D; Carroll et al., 

1999; Ribrault et al., 2011). This endocytosis is even less understood, only very recently a 

synaptotagmin isoform responsible for GluR2 internalization has been reported (Awasthi et al., 

2018). 

 

Second, dendritic spines can change the conductance of the AMPAR it already has. This is 

either brought about by phosphorylation of the AMPAR subunits, also mediated by CamKII 

(Benke et al., 1998; Lee et al., 2000), or by the interaction of AMPAR with TARPs that modulate 

its characteristics (Shaikh et al., 2016; Tomita et al., 2005). 

 

Third, the spine can change its morphology. During LTP, dendritic spines have been shown to 

increase their size and PSD, widen their neck transiently and the growth of new spines occurs 

(Bosch et al., 2014; Kopec et al., 2006; Okamoto et al., 2004; Tønnesen et al., 2014). The 

cytoskeleton of dendritic spines is mainly composed of actin, which is highly dynamic. This 
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actin cytoskeleton is regulated by several Rho type GTPases, the main mediators being Rac1 

and CDC42 for spine enlargement, and RhoA for spine shrinkage Their respective guanine 

nucleotide exchange factors (GEF) are equally controlled by phosphorylation through CaMKII. 

(Herring and Nicoll, 2016b; Jaudon et al., 2015; Murakoshi et al., 2011; Nakayama et al., 2000). 

 

Fourth, to ensure that the changes in synaptic strength are stable, protein translation is 

necessary. Although how translation is regulated in the spine is not fully understood and the 

translated proteins are largely unknown (Citri and Malenka, 2008), it has been shown that 

blocking translation does occlude the late phase of LTP (Krug et al., 1984). 

 

Recently, also short-term changes in synaptic strength have been attributed to postsynaptic 

mechanisms. Up until then, it has been thought that short-term changes in synaptic strength 

are exclusively mediated by changes in the presynaptic release probability, mainly by an 

accumulation of calcium. Now, elegant experiments tracking AMPAR and manipulating their 

diffusion revealed that also the postynapse is involved in these processes (Constals et al., 

2015; Heine et al., 2008). AMPAR undergo desensitization after they have been activated by 

glutamate. It has been proposed that these desensitized receptors are released from the PSD 

and replaced by other AMPAR receptors, that have not been stimulated yet. Therefore, when 

another SV is released within a short time frame, they can now respond to the released 

glutamate, whereas desensitized AMPAR could not. When this exchange is blocked or slowed, 

short term plasticity is equally affected.  

Dendritic spines are controlled by the neuron as a whole – Homeostatic plasticity 

Once LTP is triggered in a synapse, it is easy to imagine that this would cause a positive 

feedback loop: Since the synaptic strength is increased, the same stimulation more easily 

would trigger a further increase in synaptic strength, ultimately leading to hyperexcitation of 

the postsynaptic neuron. This hyperexcitation would eventually lead to the death of the neuron 

(Turrigiano, 2008). The question therefore arises how neurons escape this loop. The discovery 

of homeostatic plasticity answered parts of this question, although it is still incompletely 

understood (Lissin et al., 1998; O’Brien et al., 1998; Turrigiano et al., 1998). In homeostatic 

plasticity, it is hypothesized that a neuron can sense its own activation pattern. At the same 

time, it has a set frequency of activation that it wants to maintain (Turrigiano and Nelson, 2004). 

Once LTP is induced on a sufficient amount of postsynapses, the neuron’s firing rat increases 

(Figure 1E). To reverse to its target activity, one mechanism is to decrease the synaptic 

strength of all excitatory input it receives. This is known as synaptic scaling and can happen 

on a global (Turrigiano et al., 1998), as well as local levels (Ju et al., 2004; Sutton et al., 2006; 

Thiagarajan et al., 2005). This elegant solution resets its firing rate back to the set point, while 

also maintaining the relative synaptic strength of the input it receives.  
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Synaptic scaling often involves changes in the AMPAR and NMDAR content in the PSD (Lissin 

et al., 1998; O’Brien et al., 1998; Stellwagen and Malenka, 2006; Turrigiano et al., 1998; Watt 

et al., 2000). When a neuron is excited too much, it retrieves these receptors from its 

membranes, when it is stimulated too little, it adds more to the PSD. How the neuron senses 

its own activation pattern, and how the signal to scale up or down is transmitted to the synapses 

is poorly understood though. One prime candidate is the somatic calcium level, that could be 

recognized by calcium binding proteins, such as CaMKIV. But also other molecules have been 

shown to be involved in synaptic scaling, for example Arc or BDNF, or also TNFα released 

from glia (Turrigiano, 2008).  

Dendritic spines respond to and modulate the input – Retrograde signaling 

Upon stimulation, the postsynapse also communicates back to the presynapse, a process 

termed retrograde signaling. This signaling is mostly brought about by the release of chemical 

factors, for example brain derived neurotrophic factor (BDNF), endocannabinoids or nitric 

oxide (Bon and Garthwaite, 2003; Korte et al., 1995; Minichiello et al., 2002). These are then 

recognized by presynaptic receptors and likely induce the concerted growth or shrinkage of 

the presynaptic active zone with the postsynaptic PSD. This is further supported by the finding 

that both structures often correlate in their size (Harris and Stevens, 1989; Harris et al., 1992). 

Dendritic spines sustain themselves – Local translation and organelles 

All above mentioned processes together put high demands on the dendritic spine. It is 

therefore not surprising that dendritic spines have an equally complex organelle composition 

(Figure 1F). First, dendrites have the ability to locally translate proteins (Hanus and Schuman, 

2013). Ribosomes and mRNA have been found throughout the dendrite (Cajigas et al., 2012), 

where ribosomes usually are at the base of the dendritic neck (Ostroff et al., 2002). Upon 

stimulation of the dendrite, and often a concomitant increase of translation, ribosomes can 

move into the head. Also, local regulation of translation on the mRNA level has been 

demonstrated, for example Dicer, a protein involved in miRNA production, is also present in 

the dendrite (Lugli et al., 2005; Sambandan et al., 2017). 

 

Since many of the crucial postsynaptic proteins are inserted in the membrane, the biosynthetic 

pathway for transmembrane proteins is also present in dendrites. The endoplasmic reticulum 

(ER) is found in tubules stretching along the dendritic shaft, where it sometimes also 

invaginates into dendritic spines (Spacek and Harris, 1997). There, it also forms stacked 

tubules, the spine apparatus. The function of this peculiar structure is still not fully understood, 

although it has been implicated in the calcium regulation and protein biosynthesis (Bourne and 

Harris, 2008; Holbro et al., 2009; Jedlicka et al., 2008; Pierce et al., 2000). Additionally, 

organelles similar to the Golgi apparatus have been found in dendrites, preferentially at 
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dendrite branching points. These compartments have therefore been termed Golgi outposts. 

Beyond their function in posttranslational protein modification, they also regulate dendrite 

morphology and arborization by acting as microtubule nucleation sites (Gardiol et al., 1999; 

Horton and Ehlers, 2003, 2004; Jan and Jan, 2010). 

 

The trafficking between these organelles and the plasma membrane occurs via endosomes. 

All regular endosomal compartments, early, late, sorting and recycling endosomes have been 

reported in the dendrite as well as the dendritic spine (Spacek and Harris, 1997). In addition, 

multivesicular bodies, lysosomes and the proteasome have also been described, 

complementing the translation machinery with the degradation pathways (von Figura and 

Hasilik, 1986; Hamilton and Zito, 2013; Spacek and Harris, 1997). 

 

To provide the energy necessary for this multitude of functions, mitochondria are found 

throughout the dendritic shaft. They are only rarely present in dendritic spines themselves, this 

mostly occurs at large mushroom or branched spines (Chicurel and Harris, 1992). An 

interesting observation is that glycolytic enzymes are present in the PSD directly, which 

suggests local ATP production in this compartment (Wu et al., 1997). The majority of ATP is 

probably still produced by the mitochondria in the shaft and diffuses into the dendritic spine. 

Quantitative biology reveals intricate details of synaptic function 

Tiny changes, that are difficult to pick up during qualitative work may heavily influence synaptic 

function. For example, it has been shown that the position of AMPAR strongly determines 

synaptic strength (MacGillavry et al., 2013; Raghavachari and Lisman, 2004). This is largely 

due to the low affinity of AMPAR to glutamate, which causes them to only get activated when 

they are close to the presynaptic release site. Once AMPAR receptors are over 100 nm away 

from the release site, their open probability starts to drop. Because this difference is beyond 

the regular diffraction limit of light microscopy, it has been difficult to assess without modelling. 

Using super resolution microscopy, it has been shown that AMPAR do indeed form 80 nm 

large clusters, meaning that most of these receptors will get activated if the release site is 

aligned with it (MacGillavry et al., 2013; Nair et al., 2013). Consistently, it has recently been 

found that the presynaptic release site is aligned with these postsynaptic receptor clusters, 

forming a ‘transsynaptic nanocolumn’ (Tang et al., 2016). This discovery has only been able 

through the quantitative analysis of PSD95 and RIM1 distribution in super resolution. 

 

Besides analyzing the nanoscale distribution using super resolution, the absolute number of 

proteins present is of equal interest. However, many biochemical or mass spectrometric 

studies have been limited to report relative amounts(Cheng et al., 2006; Collins et al., 2006; 
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Lowenthal et al., 2015; Peng et al., 2004a). Also, an inherent problem to western blotting or 

quantitative imaging is the nature of antibody binding (Ehlen et al., 2014). For the vast majority 

of antibodies, their affinity is not known, making the comparison of signal between proteins 

virtually impossible. This restricts many works to comparisons of a protein to itself, for example 

during different treatments. A comparison between proteins is only seldomly done. 

 

Two major studies have attempted to quantify protein distribution and number of organelles in 

absolute terms. In 2006, Takamori and colleagues published the molecular anatomy of SV, 

using quantitative western blotting (Takamori et al., 2006). They found that exocytotic soluble 

NSF attachment protein receptors (SNAREs) are present in excess on the average vesicle, 

most likely to ensure fast release upon stimulation. On the other hand, some proteins were 

present in very low numbers, for example CSPα was found to be present in only 2.8 copies 

per vesicle. Later, this was found to have important implications for SV aging, as they pick up 

SNAP25 from the plasma membrane during recycling, which sequesters CSPα in a cis 

complex, preventing fusion (Truckenbrodt et al., 2018). Understanding this process was only 

possible through the quantitative knowledge of protein abundance on SVs. 

 

Taking this one step further, Wilhelm and colleagues studied the quantitative composition of 

the presynapse with quantitative western blotting and mass spectrometry, but also determined 

the position of the counted molecules using stimulated emission depletion (STED) microscopy 

(Wilhelm et al., 2014). Interestingly, they also found exocytotic SNAREs to be much more 

abundant than needed for efficient SV fusion, similar to the situation on SV themselves, 

whereas endocytosis is limited by the number of clathrin molecules present (4000 molecules 

accounting for a maximum of ~20 simultaneous endocytosis events). In addition, they also 

revealed the fine architecture of the presynaptic active zone.  

The current understanding of dendritic spines is insufficient 

Because of the intricacy of dendritic spines, its different functions are often analyzed 

independently from another. For example, some groups focus on AMPAR trafficking, others 

on structural plasticity or calcium dynamics in spines. Even for individual proteins, such as 

CamKII with its many functions, only parts of their signaling cascades are considered by 

individual groups. This is understandable to reduce the complexity, but it leads to isolated 

viewpoints of spines. On the other hand, many of the proteins are involved in various pathways, 

information which is rarely considered at the moment. Also, apart from electrophysiology, most 

research done on dendritic spines is of qualitative nature, which is at odds with the observation 

that especially in small and highly specialized compartments, such as the synapse, quantitative 
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changes on the nanoscale can result in large functional changes. Therefore, it is essential that 

we arrive at an integrated and quantitative understanding of the synapse.  

 

In addition to that, the large variability in morphology of dendritic spines have so far made it 

difficult to grasp the functional implications of changes in protein abundance and localization, 

because it is virtually impossible to control for all the different conditions. This can only be 

achieved in modelling approaches, where one is in full control over all parameters. However, 

modelling dendritic spines has been challenging because of the lack of quantitative 

information. Because of the complexity of dendritic spines, it is not possible to simulate long 

time steps and the models rely on good initial estimates for their parameters, but we are lacking 

these. Because of these problems, in silico approaches tackling major function in spines, such 

as plasticity are rare.  

 

On example is the work by Gallimore and colleagues, studying the regulation of LTP and LTD 

in the cerebellum (Gallimore et al., 2018). They studied the regulation of AMPAR at the 

postsynaptic membrane by phosphatases and kinases, constructing a molecular model that 

comprised both the post- as well as parts of the presynapse. For the initialization of their model, 

they had to set the concentration of almost 100 proteins and molecules, many of which they 

needed to estimate ab initiio, because no measurements where available. Also, they had to 

assume a well-mixed system, as the nanoscale localization of many of the proteins where not 

known. On the other hand, this assumption does not resemble in vivo spines, which do show 

strong compartmentalization (Tønnesen and Nägerl, 2016). If better data on protein numbers 

and localization were available, this would first, create models that do represent real spine 

much closer, and second, free up computing time that could be used to take additional 

molecules or parameters, such as compartmentalization and diffusion, into account. One could 

then also start to vary the conditions the spine is faced, for example changing the morphology, 

ion concentration, stimulation frequency and amplitude to really understand their influence on 

the function of dendritic spines. 

Aim of this thesis 

Therefore, it is clear that we need to know the quantitative architecture of the whole synapse 

to understand its function in all aspects. Especially dendritic spines are not equally well 

understood as their presynaptic counterpart. This is in part due to its inaccessibility to 

subcellular fractionation techniques; so far, no pure dendritic spine compartment could be 

isolated in large quantities. In this study, I set out to determine the absolute quantity and 

nanoscale distribution of 105 proteins in dendritic spines. To circumvent the lack of subcellular 

fractionation, I developed new methods, enabling me to study the quantify the synaptic 
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proteome without the need to isolate this compartment. This is the first comprehensive 

description of not only the PSD but also the cytosol in dendritic spines and also extends into 

the dendritic shaft. Because the PSD has repeatedly been shown to exhibit a modular 

organization, elucidating it molecular architecture will prove to be widely applicable, both in 

vitro as well as in vivo.  

 

Second, I investigated how the composition of dendritic spines changes during plasticity and 

determine whether its organization is stable or fragile. 

 

Third, I addressed whether spine classes do indeed show different molecular composition and 

I will study if there are distinct, yet unknown spine subtypes with unique molecular 

compositions. 

 

Finally, this exploratory study generates a database available to the neuroscientific community 

in general, which can be used and extended easily by other researchers according to their own 

needs. With the molecular anatomy of dendritic spines revealed, synaptic neuroscience is 

ready for the transition to a quantitative age. 
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Materials and Methods 

Antibodies 

 

Table 1: Primary antibodies, Nanobodies and small molecules used to detect proteins. 

Target protein Species Dilution Manufacturer Catalogue 

Number 

ADAM22 mouse 500 Novus Biologicals NBP2-22425 

Akt (pan) rabbit 400 Cell Signaling 4691 

α/β SNAP mouse 100 Jahn Laboratory 77.2 

α-internexin rabbit 500 LSBio LS-B10413 

AP 180 rabbit 100 Synaptic Systems 155 003 

APP mouse 100 Millipore MAB-348 

Arc rabbit 1000 Synaptic Systems 156 003 

BDNF rabbit 100 Biorbyt orb38809 

β 2 spectrin  mouse 100 BDBiosciences 612562 

β3-Tubulin rabbit 500 Cell Signaling 5568 

β-Actin mouse 100 Sigma-Aldrich A1978 

Calbindin-D28K rabbit 500 Synaptic Systems 214 002 

Calcineurin A rabbit 1000 Synaptic Systems 387 002 

Calmodulin rabbit 100 Abcam ab45689 

Calreticulin rabbit 200 Cell Signaling 12238 

Calretinin rabbit 250 Novus Biologicals NBP1-88220 

CaMKII mouse 500 Abnova MAB6627 

CAPS1 rabbit 500 Abcam ab69797 

Cav1.3  rabbit 50 Alomone Labs ACC-311 

Cav2.1 rabbit 500 Synaptic Systems 152 203 

CDC42 rabbit 100 Thermo Scientific PA1-092 

Chromogranin A rabbit 500 Synaptic Systems 259 003 

Chromogranin B rabbit 500 Synaptic Systems 259 103 

Chromogranin C rabbit 250 Abcam ab12241 

Clathrin heavy chain mouse  100 BD Biosciences 610499 

Clathrin light chain mouse  1000 Synaptic Systems 113 011 

Cortactin mouse 500 Synaptic Systems 313 111 

DLGAP1 rabbit 50 Novus Biologicals NBP1-76911 

Dopamine receptor 1 rabbit 1000 Abcam ab40653 
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Dopamine receptor 2 rabbit 500 Merck AB5084P 

Drebrin1 mouse 100 Novus Biologicals NB100-1951 

Dynamin 1/2/3 mouse 100 BDBiosciences 610245 

ERp72 rabbit 100 Cell Signaling 5033 

GluK1 rabbit 100 Alomone AGC-008 

GluN1 mouse  1000 Synaptic Systems 114 011 

GluN2A mouse 100 NeuroMab 75-288 

GluN2B mouse  100 NeuroMab 75-101 

GluR1 rabbit 500 Synaptic Systems 182 003 

GluR2 rabbit 100 Alomone Labs AGC-005 

GluR3 mouse 100 Invitrogen 32-0400 

GRIP1/2 rabbit 100 Synaptic Systems 151 003 

Homer 1 mouse  500 Synaptic Systems 160 011 

Homer 1 rabbit 500 Synaptic Systems 160 003 

Homer 2 rabbit 500 Synaptic Systems 160 203 

Homer 3 rabbit 250 Synaptic Systems 160 303 

HSC70 mouse  100 Santa Cruz sc-7298 

IGF-1 Receptor rabbit 300 Cell Signaling 3027 

KCNJ2 rabbit 100 Novus Biologicals NBP1-95482 

Kv1.1  rabbit  100 Thermo Scientific PA5-19593 

Kv2.1 rabbit 500 Synaptic Systems 231 002 

LNGFR rabbit 1000 Cell Signaling 8238 

m-AChR-1  rabbit 100 Novus Biologicals NBP1-87466 

MAP2 rabbit 1000 Synaptic Systems 188 002 

mGluR1α rabbit  250 Abcam ab51314 

mGluR2 rabbit  100 Abcam ab150387 

mGluR5 rabbit  100 Abcam ab76316 

myosin 5a rabbit 200 Sigma-Aldrich M5062 

Na β 1 rabbit 50 Alomone Labs ASC-041 

Na+/K+ ATPase mouse  1000 Thermo Scientific MA3-915 

Nav1.1 rabbit  100 Merck 06-811 

Nav1.3  rabbit 250 Alomone Labs ASC-004 

Neurofilament H rabbit 1000 LSBio LS-C143052 

Neurofilament L rabbit 500 Synaptic Systems 171 002 

Neurogranin rabbit 1000 Synaptic Systems 357 003 

nicotinic AChR β2 rabbit 100 Alomone Labs ANC-012 
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nNOS rabbit 100 Thermo Scientific PA1-033 

NSF rabbit 500 Synaptic Systems 123 002 

Parvalbumin rabbit 500 Swant PV25 

Phalloidin-ATTO647N Small 

molecule 

1000 Sigma-Aldrich  65906-10NMOL 

Phosphodiesterase  rabbit 100 Cell Signaling 3501 

PSD93 rabbit  300 Invitrogen 34-4700 

PSD95 rabbit 100 Cell Signaling 3450 

PSD95 mouse 200 Thermo Scientific MA1-046 

Rab11 rabbit 100 Cell Signaling 3539 

Rab3 mouse 100 BD Biosciences 610379 

Rab4 mouse 100 BD Biosciences 610888 

Rab5 mouse 100 Jahn Laboratory cl. 621.3 

Rab7 rabbit  100 Cell Signaling 9367 

Rab9 rabbit 100 Cell Signaling 5118 

Rapsyn rabbit  100 Atlas Antibodies HPA039475 

Ribosomal protein 

L7a 

rabbit 100 Cell Signaling 2403 

Ribosomal protein S3 rabbit 50 Cell Signaling 9538 

Ribosomal protein S6 rabbit 100 Cell Signaling 2217 

Sec22b rabbit 100 Synaptic Systems 186 003 

Septin7 rabbit  50 Atlas Antibodies HPA029524 

Shank1 rabbit 500 Synaptic Systems 162 013 

Shank2 rabbit 500 Synaptic Systems 162 202 

Shank3 rabbit 500 Synaptic Systems 162 302 

SNAP23 rabbit 100 Synaptic Systems 111 202 

SNAP25 mouse 100 Synaptic Systems 111 011 

SNAP 29 rabbit 500 Synaptic Systems 111 302 

SNAP 47 rabbit 200 Synaptic Systems 111 403 

β tubulin nanobody  llama 100 Self-made na 

Synaptophysin guinea pig 1000 Synaptic Systems 101 004 

Synaptotagmin 4 rabbit 1000 Synaptic Systems 105 143 

Synaptotagmin 5/9 rabbit 100 Synaptic Systems 105 053  

Synaptotagmin 7 rabbit 250 Synaptic Systems 105 173 

SynGAP1 rabbit 1000 Thermo Scientific PA1-046 

Syntaxin1 mouse 200 Synaptic Systems 110 011 
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Syntaxin13 mouse 100 Jahn Laboratory cl. 151.1 

Syntaxin16 rabbit 100 Synaptic Systems 110 162 

Syntaxin2 rabbit 100 Synaptic Systems 110 022 

Syntaxin3 rabbit 100 Synaptic Systems 110 033 

Syntaxin4 rabbit 100 Synaptic Systems 110 042 

Syntaxin5 rabbit 100 Synaptic Systems 110 053 

Syntaxin6 rabbit 100 Cell Signaling 2869 

Syntaxin8 rabbit 100 Synaptic Systems 110 083 

TGN38 rabbit 100 Sigma-Aldrich T9826 

TOM20 mouse 200 Sigma-Aldrich WH0009804M1 

Transferrin Receptor rabbit 100 Abcam ab84036 

TrkB rabbit 500 Abcam ab33655 

vAChT rabbit 100 Synaptic Systems 139 103 

Vamp1 rabbit 500 Synaptic Systems 104 002 

Vamp2 mouse 1000 Synaptic Systems 104 211 

VAMP7 rabbit 100 Abcam ab68776 

Vti1a mouse 100 BDBiosciences 611220 
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Table 2: Antibodies used as cell-type markers 

Target protein Species Dilution Manufacturer Catalogue 

Number 

GAD65 mouse 500 Synaptic Systems 198 111 

GFAP mouse 500 Synaptic Systems 173 011 

Iba1 guinea pig 500 Synaptic Systems 234 004 

Olig2 rabbit 500 Synaptic Systems 292 003 

SMI310 mouse 200 Abcam 24570 

 

 

Table 3: Secondary antibodies and labels 

Target protein Species Dilution Manufacturer Catalogue 

Number 

ATTO647N anti mouse goat 500 Rockland 610-156-121 

ATTO647N anti rabbit goat 500 Rockland 611-156-122 

Alexa488 anti guinea pig goat 100 Dianova  

Cy3 Fab anti mouse goat 100 Dianova 715-166-150 

Cy3 Fab anti rabbit goat 100 Dianova 711-166-152 

STAR635P nanobody 

anti guinea pig  

lama 1000 Nanotag N0602 

Hoechst NA 1:2000 Thermo Scientific 62249 
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Buffers and Solutions 

 

Table 4: Buffers and Solutions used in this study 

Name Used for Composition Manufacturer 

PBS pH 7.4 (in 

ddH2O) 

Cell culture, 

Immunostaining 

137 mM NaCl Merck, 1.06404.1000 

2.7 mM KCl Merck, 1.04936.0250 

10 mM Na2HPO4 Merck, 1.06580.1000 

1.8 mM KH2PO4 Merck, 

1.04873.10000 

Glia Medium Cell culture MEM Life Technologies, 

51200-046 

0.6% (wt/vol) D-glucose Sigma, G8769 

1% (vol/vol) L-glutamine Biozym, 882027 

100 U/ml penicillin Biozym, 882082 

100 µg/ml Streptomycin Biozym, 882082 

10% (vol/vol) horse serum Biochrom, S9135 

Neuronal Plating 

Medium 

Cell culture MEM Life Technologies, 

51200-046 

0.6% (wt/vol) D-glucose Sigma, G8769 

1% (vol/vol) L-glutamine Biozym, 882027 

10% (vol/vol) horse serum Biochrom, S9135 

Neuronal 

Maintenance 

Medium 

Cell culture MEM Life Technologies, 

51200-046 

0.6% (wt/vol) D-glucose Sigma, G8769 

1% N2 supplement Life Technologies 

17502-048 

CMF-HBSS Cell culture CMF-HBSS Invitrogen, 14175-095 

1% 1M HEPES Invitrogen, 15630-056 

Neurobasal-A Cell culture Neurobasal-A Invitrogen, 10888-022 

2% (vol/vol) B27 

Supplement 

Life Technologies, 

17504-044 

20 U/ml Penicillin  Biozym, 882082 

0.02‰ (wt/vol) 

Streptomycin 

Biozym, 882082 

1% (vol/vol) Glutamax-I 

Supplement 

Life Technologies, 

35050-038 
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Plating Medium Cell culture MEM Life Technologies, 

51200-046 

3.3 mM D-Glucose Sigma, G8769 

2 mM L-Glutamine Biozym 882027 

10% (vol/vol) Horse serum Biochrom, S9135 

Borate buffer Cell culture Boric acid Sigma, B0252 

Sodium tetraborate 

decahydrate 

Sigma, S9640 

Enzyme solution Cell culture DMEM Biozym, 880026-12 

0.2‰ (wt/vol) Cysteine Sigma, 30090 

1 mM CaCl2 Merck, 1.02382.1000 

0.5 mM EDTA Merck, 1.08418.1000 

20-25 U/ml Papain (100 µl) Cell Systems, 

LS003124 

Inactivating solution Cell culture DMEM Biozym, 880026-12 

10% (vol/vol) FCS Biochrom, S0415 

2% (vol/vol) Glutamine Biozym 882027 

20 U/ml Penicillin  Biozym, 882082 

0.02‰ (wt/vol) 

Streptomycin 

Biozym, 882082 

2.5‰ (wt/vol) Bovine serum 

albumin 

Applichem, 

A1391,0250 

2.5‰ (wt/vol) Trypsin-

Inhibitor 

Sigma, T9253 

Glyoxal solution pH 

4 

Immunostaining 7.15 ml ddH20 - 

1.99 ml 100% Ethanol Merck, 1.00983.1011 

0.79 ml 40% Glyoxal Sigma, 128465 

0.08 ml 100% Acetic acid Roth, 3738.2 

Mowiol solution Immunostaining 68% (wt/wt) ddH2O AriumPro, Sartorius 

100 mM TRIS (pH 8.5) Sigma, 252859 

23% (wt/wt) glycerol Sigma, G5516 

9% (wt/wt) Mowiol 4-88 Merck, 475904 

Floxuridine stock Cell culture DMEM Biozym, 880026-12 

Uridine Sigma, U-3003 

5-Fluoro-2’deoxyuridine Sigma, F-0503 
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Chemicals 

Table 5: Chemicals used in this study 

Name Manufacturer Used for 

Nitric acid Sigma, 695033-2.5L Cell culture 

Poly-L-Lysine hydrochloride Sigma, P2658 Cell culture 

2.5% (wt/vol) Trypsin Invitrogen, 15090-046 Cell culture 

DNase Roche, 10104159001 Cell culture 

Paraffin Merck, 1.07158.1000 Cell culture 

Bovine serum albumin Applichem, A1391,0250 Immunostaining 

NH4Cl Merck, 1.01145.1000 Immunostaining 

Paraformaldehyde (PFA) Sigma, P6148 Immunostaining 

Bicuculline Sigma, 14340 Plasticity Induction 

Tetrodotoxin (TTX) Tocris, 1069 Plasticity Induction 

6-cyano-7-nitroquinoxaline-2,3-

dione (CNQX) 

Sigma, C127 Plasticity Induction 

(2R)-amino-5-phosphonovaleric 

acid (AP5) 

Abcam, ab144498 Plasticity Induction 

LiChrosolv grade Water Merck, 115333 Mass spectrometry 

LiChrosolv grade Acetonitrile 

(ACN) 

Merck, 100030 Mass spectrometry 

Ammonium bicarbonate (ABC) Sigma Aldrich, 09830 Mass spectrometry 

Sequencing Grade Modified 

Trypsin 

Promega, V5111 Mass spectrometry 

Trifluoroacetic acid (TFA) Fluka, 302031 Mass spectrometry 

Pierce BCA Protein Assay kit Thermo Fisher Scientific,  

23225 

Mass spectrometry 

UPS2 protein standard Sigma Aldrich, UPS2 Mass spectrometry 

 

Neuronal culture 

Hippocampal neuron culture were prepared from E18 Spragley-Dawley rats and grown in a 

sandwich configuration as described before using an N2 supplemented medium (Kaech and 

Banker, 2006). The following modifications were made: Glia were seeded at 10000 cells per 

well in 12 well plates, 3 days before dissection day. Neurons were seeded at 30000 cells on 

18 mm coverslips with paraffin dots. The culture was fed by exchanging 500 µL of medium 

twice a week. 
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For mass spectrometry analysis I did not use paraffin dots as spacers, as they impair mass 

spectrometric analysis. Instead, I punched C-shaped Teflon rings with a 14 mm inner diameter, 

20 mm outer diameter and 1 mm thickness from Teflon sheets (Alt Industriebedarf, Neresheim, 

Germany). They were rinsed thoroughly in 70% ethanol and autoclaved before use. 

Homeostatic plasticity induction 

The hippocampal cultures were treated for 72h, using either 20 µM Bicuculline to increase 

network activity and induce synaptic upscaling, 1 µM TTX to block synchronous release and 

induce downscaling or 10 µM CNQX + 50 µM AP5 to block AMPA and NMDAR, also inducing 

downscaling but to a higher extent (Turrigiano, 2008). Cells were then processed for 

immunostaining. 

Electron Microscopy 

Sample Preparation 

Samples and imaging for electron microscopy was performed by Thomas Schikorski 

(Universidad Central Del Caribe, Bayamon, PR, USA). Briefly, standard hippocampal neuronal 

cultures were grown and embedded in Epon according to published protocols (Schikorski and 

Stevens, 1997). Then, the samples were cut into 70 nm consecutive sections and analyzed 

using a Zeiss EM902 (Zeiss, Jena, Germany) equipped with a 1024x1024 CCD-detector 

(Proscan CCD HSS 512/1024; Proscan Electronics, Schering, Germany).  

Reconstruction and Analysis 

Excitatory synapses were identified in the images by the presence of a PSD and a region 

around the synapse was selected. The consecutive images were aligned using Photoshop 

(Adobe Systems, San Jose, CA, USA), the membrane and organelles were traced and 

analyzed using custom written functions in Matlab (MathWorks, Natick, MA, USA), written by 

Silvio Rizzoli. Image alignment and tracing were performed by Christina Koerbs and Vanessa 

Salimi during their medical dissertations (Koerbs, 2017; Salimi, 2017), which I supervised (with 

Silvio Rizzoli as official supervisor, or Erstbetreuer, according to the medical dissertation 

system). 

Immunostaining 

Neurons were fixed at DIV21-23 with glyoxal as described (Richter et al., 2017), using pH 4 

for the glyoxal solution, or PFA. Briefly, the fixed cells were quenched for 30 min using PBS 

containing 100 mM NH4Cl and then permeabilized for 3x 5 min in PBS with 0.3% Tween and 

2.5% BSA. Antibodies were diluted in the same solution and incubated for 1h each in a humid 

chamber. The cells were washed 3x with high-salt PBS (containing 500 mM NaCl) and 2x in 
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normal PBS. Meanwhile, DiO was diluted in PBS to a concentration of 20 µg/ml and the DiO 

crystals sonicated for 30 min in a water bath sonicator. Afterwards, DiO was diluted further to 

2 µg/ml in PBS and 1 ml of the solution was added per well. The cells were incubated at 37°C 

for 20 min, washed once and incubated overnight. The following day, they were washed 2x 

with PBS, embedded in Mowiol and dried for 1h at 37°C. 

 

Fluorescence Microscopy 

In all images, DiO was used as a membrane marker, while the PSD was identified using 

Homer1 antibodies, recognized by Cy3-labeled secondary antibodies. The protein of interest 

was identified with ATTO647N labeled secondary antibodies. 

 

Epifluorescence images were acquired with a Nikon Eclipse Ti-E (Nikon Instruments, Tokyo, 

Japan), using a 100x 1.4 NA UPlanSApo oil immersion objective. The signal was detected with 

a DS-Qi 2 CMOS camera (Nikon Instruments, Tokyo, Japan). 

 

Confocal and STED images were acquired with a Leica TCS STED system (Leica 

Microsystems GmbH, Mannheim, Germany) equipped with a 100x objective (1.4 numerical 

aperture, NA, 100x HCX PL APO CS oil; Leica Microsystems). For confocal imaging of DiO 

and Homer1, a helium-neon laser was used to excite DiO (using 488 nm excitation 

wavelength), Alexa 488 (488 nm) or Cy3 (543 nm or 561 nm) while using acusto-optic tunable 

filters to select appropriate emission wavelengths. For STED imaging of the protein of interest, 

ATTO647N was excited with a 635 nm diode laser and a Spectra-Physics MaiTai multiphoton 

laser (Newport Spectra-Physics, Santa Clara, CA, USA) at 750 nm was used as depletion 

beam. Confocal images were acquired using photomultiplier tubes or Hybrid detectors, 

whereas ATTO 647N in STED mode was detected with an avalanche photodiode (Leica 

Microsystems). For analyzing the nanoscale localization of proteins, a pixel size of 20.21 nm 

was chosen. For each protein, two neuronal cultures were analyzed, with at least 10 images 

taken per replicate. The number of spines used for an average image was between 72 and 

276 for mushroom spines (Mean= 175 images) and 44 to 248 for stubby spines 

(Mean= 134 images). 

Image Analysis 

All image analysis was done using custom written functions in Matlab 2017b (MathWorks, 

Natick, MA, USA). All functions are written by me, except the initial spot selection function and 

EM analysis functions, which were written by Silvio Rizzoli. The initial synapse alignment tool 

was written by Tal Dankovich.  
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Calculating the average protein distributions in dendritic spines 

To calculate the average distribution of a protein in dendritic spines, several steps needed to 

be performed: Identification and classification of synapses, alignment of synapses and removal 

of signal outside of the dendritic spine: 

 

After aligning the STED image to the confocal image stack (using the confocal ATTO647N 

image) the spine was selected using DiO as a mask and all Homer spots within this mask were 

selected by manual thresholding. For each selected putative synapse, a 6x6 µm sub-image, 

centered on the synapse was saved. All synapses were then manually curated and assigned 

a spine class based on their morphology and the presence of strong Homer1 staining 

(Mushroom, Stubby, Other). Then, several morphological landmarks were selected: Top, 

bottom, left edge and right edge of the head, position of the neck/shaft junction. Additionally, 

a rectangle on the shaft was selected to later calculate enrichment of proteins over the shaft, 

and the neck was traced. Using these landmarks, the spines for each protein were aligned to 

each other. Taking advantage of the single cell labeling with DiO, I removed fluorescence 

outside the spine using DiO as a mask. To combine the two replicates, I normalized all spines 

belonging to the same replicate by the maximum intensity observed in this replicate, to remove 

any bias due to different staining conditions between replicates. Finally, the signal was filtered 

and averaged over both replicates. 

Zone Enrichment Analysis 

To quantify the location and intensity of the staining, the dendritic spine was segmented into 

zones (Figure 2A). For each protein, the fraction of signal within a given zone was calculated 

and normalized by the size of the zone (Figure 2B). Then, the fold difference to the fraction of 

signal within the same zone from an average protein distribution was calculated (1)). The latter 

average distribution was determined by averaging across all investigated proteins.  

 

 
𝐹𝑜𝑙𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

% 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛 𝑧𝑜𝑛𝑒 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 % 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛 𝑧𝑜𝑛𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 % 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛 𝑧𝑜𝑛𝑒
 (1) 

 

This results in an enrichment score I used for assessing where a protein is predominantly 

localized. 
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Individual spine analysis 

In addition to the average analysis, I aimed to look at the individual spines and extract their 

morphological parameters and information on the protein signal within them. Also, these 

measurements served as the basis for morphologically clustering the spines to detect 

additional subclasses in the population. 

Using the landmarks selected above, I could automatically reconstruct the different 

compartments of the spine, head, neck and shaft region, from the DiO signal (Figure 3). 

Figure 2 Zone Analysis explanation. A) Definitions for Mushroom and Stubby 

synapses. Darker colors represent zones closer to the PSD. B) For each protein 

the fraction of signal in a given zone was calculated. All proteins were also averaged 

and the average fraction of signal within a given zone was determined. The fold 

difference between the two was then calculated according to (1). 
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Figure 3: Automatic morphology detection of dendritic spines. In the compartment definitions, light blue 

corresponds to head, yellow to neck and green to shaft. 

Individual STED spots were detected using wavelet transformation with the Spot Detector 

plugin for icy (De Chaumont et al., 2012; Olivo-Marin, 2002) using scale 2 with a threshold of 

80%. For Homer I mostly used the FWHM of the signal, which is a good estimate of its 

localization in super-resolution (Li and Blanpied, 2016). I then extracted the following 

parameters: 

Table 6: Individual spine parameters measured. 

Parameter name 

Classification Neck Area 

Head Area Neck Length 

Head Center Column Root Area 

Head Center Row Spot Compartment 

Head Eccentricity Spot File 

Head Height STED Area 

Head Major Axis Length STED Background Intensity 

Head Major Minor Axis Orientation STED Centroid X 

Head Minor Axis Length STED Centroid Y 

Head Width STED DiO Distance 

Homer Area STED Distribution 

Homer Center Angle STED Eccentricity 

Homer Center Distance STED Head Bottom Distance 

Homer Centroid X STED Head Center Distance 

Homer Centroid Y STED Head Enrichment 

Homer DiO Distance STED Head Intensity 

Homer Eccentricity STED Head Top Distance 

Homer Major Axis Length STED Homer Enrichment 

Homer Major Minor Axis Orientation STED Homer Intensity 

Homer Max Intensity STED HomerFWHM Distance 

Homer Mean Intensity STED HomerFWHM Enrichment 

Homer Minor Axis Length STED HomerFWHM Intensity 

Homer Number STED Laterality 

HomerFWHM Center Angle STED Major Axis Length 
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HomerFWHM Center Distance STED Max Intensity 

HomerFWHM Centroid X STED Mean Intensity 

HomerFWHM Centroid Y STED Minor Axis Length 

HomerFWHM DiO Distance STED Neck Bottom Distance 

HomerFWHM Eccentricity STED Shaft Intensity 

HomerFWHM Major Axis Length STED Spot Number 

HomerFWHM Major Minor Axis Orientation STED Total Intensity 

HomerFWHM Max Intensity  

HomerFWHM Mean Intensity  

HomerFWHM Minor Axis Length  

 

In the presented analysis, I used the following parameters, which I explain in more detail here: 

• Distance to membrane: The distance of every spot to its closest membrane is 

measured.  

• Distance to PSD: The distance of spots to the PSD is measured. Only spots within the 

head/synaptic regions for stubby, are considered here.  

• Enrichment in head: The fluorescence signal within the head is averaged and 

compared to the average fluorescence signal in the shaft. For each spine an individual 

rectangle was drawn on the shaft, which is used here. 

• Enrichment in PSD: Same as enrichment in PSD, but the signal in the PSD, determined 

by Homer1 FWHM signal, is calculated. 

• Eccentricity: The position of all spots in the head on the top-bottom axis is determined. 

This is normalized, 1 is the top of the head, -1 the bottom of the head ((2) 

 
𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 =

𝐷𝐵𝑜𝑡𝑡𝑜𝑚 − 𝐷𝑇𝑜𝑝

𝐷𝐵𝑜𝑡𝑡𝑜𝑚 + 𝐷𝑇𝑜𝑝
 (2) 

With DBottom = the distance of the spot to the bottom of the head and 

DTop = the distance to the top of the head. 

• Laterality: The position of all spots in the head on the left-right axis is determined. 

Because of the assumption of rotational symmetry, left and right are treated equally, 

reducing the dimension to central - left/right. The position is normalized, where 0 is the 

center of the spine, 1 is the most left/right position (3). 

 
𝐿𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑡𝑦 =

|𝐷𝐿𝑒𝑓𝑡 − 𝐷𝑅𝑖𝑔ℎ𝑡|

𝐷𝐿𝑒𝑓𝑡 − 𝐷𝑅𝑖𝑔ℎ𝑡
 (3) 

 With DLeft = the distance of the spot to the left extreme of the head and 

 DRight = the distance of the spot to the right extreme of the head 

• Diameter: To each spot in the head an ellipse is fitted, the length of the major axis is 

shown. 

• Distribution: For every spot in the head, the distance of this spot to all other spots in 

the head is calculated. 
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Mass Spectrometry 

Sample preparation 

All samples were subjected to protein estimation using standard BCA protocol (Smith et al. 

1985) as provided by Thermo Scientific online. First, 10 μl of 1% RapiGest was added to 20 

ug of protein sample (dendritic or UPS2 standard protein) and heated to 95°C for 5 min. All 

subsequent steps were performed at 300 rpm on a thermomixer at room temperature. Then, 

10 μl of 100 mM ammonium bicarbonate solution was added to the sample and incubated for 

5 min. To reduce the cysteines, 10 μl of 10 mM dithiothreitol in 100 mM ammonium bicarbonate 

was added and incubated for 1 hour. Reduced cysteines were alkylated by adding 10 μl of 

100 mM iodoacetamide in 100 mM ammonium bicarbonate and incubated for 20 min in the 

dark. To lower the detergent percentage to 0.1%, 180 ml of 100 mM ammonium bicarbonate 

was added. Finally, trypsin (1:50, ProMega) was added to the sample for digestion. For the 

long gradient, protein samples were digested for 12, 14, 16 and 18 hours, while for high pH 

fractionation, 30 ug of protein sample was digested using Trypsin for 16 hours. The trypsination 

was stopped by adding 20 ml of 5% formic acid solution. The samples were incubated in 20 μl 

of 5% trifluoro-acetic acid for 2 hours to deteriorate the RapiGest molecules. The samples were 

further desalted using StageTips. Briefly, at least four C18 plugs were filled in a micropipette tip 

to make one column. Prior to use, the column was washed twice with 50 μl of methanol. The 

column was equilibrated by passing 50 μl of 0.1% formic acid solution twice. The supernatant 

containing the peptides was loaded on the pre-equilibrated column, where the peptides bound 

to the C18 matrix. The column was washed four times with 50 μl of 0.1% formic acid solution to 

remove ions. Finally, the bound peptides were eluted with 50 μl of 80% acetonitrile, 0.1% formic 

acid solution twice. The eluted peptide solution was dried using a SpeedVac concentrator. 

 

The samples were either directly processed for LC-MS on long gradient of 4 hours on Orbitrap 

Fusion Lumos Tribrid Mass Spectrometer or fractionated using high pH fractionation and 

subsequently processed for LC-MS for a short gradient of 1 hour on a Q-Exactive HF Mass 

Spectrometer.  

 

For high pH fractionation, 40 μg of protein digest was injected on a reversed phase column 

(XBridge Waters C18 column of dimension 3.5μm, 1.0x150mm) connected to an Agilent 1200 

high performance liquid chromatography (HPLC) system for 60 min. A linear gradient was 

generated using dual highly basic buffer system (Buffer A: 100% 10 mM Ammonia, Buffer B: 

90% acetonitrile containing 10 mM ammonia). The peptides were loaded on the column using 

buffer A for 5 min, followed by linear gradient of 0 to 50% of buffer B for 45 min. Finally, the 

column was washed using 95% of buffer B and switched back to 100% of buffer A for 5 min 
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each. The flow rate was set to 50 μl/min. A total of 60 fractions were collected and pooled to 

12 fractions in a staggered manner (Table 7). The pooled fractions were dried using SpeedVac. 

Prior to MS, each fraction was resuspended in 25 μl of sample loading buffer and 8μl injected 

thrice. 1 μg of digested UPS2 standard protein mixture was analyzed between the samples to 

estimate the abundance of protein in the sample by label-free iBAQ approach.  

 

Table 7: High pH fractionation pools 

Fraction number after pooling High pH fractionation fractions (used for pooling) 

1 1, 13, 25, 37, 49  

2 2, 14, 26, 38, 50 

3 3, 15, 27, 39, 51 

4 4, 16, 28, 40, 52 

5 5, 17, 29, 41, 53 

6 6, 18, 30, 42, 54 

7 7, 19, 31, 43, 55 

8 8, 20, 32, 44, 56 

9 9, 21, 33, 45, 57 

10 10, 22, 34, 46, 58 

11 11, 23, 35, 47, 59 

12 12, 24, 36, 48, 60 

 

Liquid chromatography mass spectrometry 

The resuspended peptides in sample loading buffer (5% acetonitrile and 0.1% trifluoroacetic 

acid) were fractionated and analyzed by an online UltiMate 3000 RSLCnano HPLC system 

(Thermo Fisher Scientific) coupled online to the Q-Exactive HF or Orbitrap Fusion Lumos 

Tribrid Mass Spectrometer (Thermo Fisher). Firstly, the peptides were desalted on a reverse 

phase C18 pre-column (3 cm long, 100μm inner diameter 360 mm outer diameter) for 

3 minutes. After 3 minutes the pre-column was switched online with the analytical column 

(30 cm long, 75 μm inner diameter) prepared in-house using ReproSil-Pur C18 AQ 1.9 μm 

reversed phase resin (Dr. Maisch GmbH). The peptides separated with a linear gradient of 

5-30% buffer B (80% acetonitrile and 0.1% TFA acid) at flow rate of 10 nl/min either on a long 

gradient of 238 min on Lumos or a short gradient of 58 min on Q-Exactive HF. The pre-column 

and the column temperature were set to 50°C during the chromatography.  

For long gradients on the Lumos spectrometer, the scan-range of precursors was set from 

350-1500 m/z at resolution of 120,000 in Top Speed mode. The top intense precursors were 
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fragmented in HCD cell and analyzed at resolution 30,000. The AGC target and the isolation 

window was set at 5e4 and isolation window of 1.6 m/z. 

 

For the short gradient on Q-Exactive HF, the precursors were scanned in the mass range from 

350 to 1600 Da at a resolution of 60,000 at m/z 200. Top 30 precursor ion were chosen for 

MS1 by using data-dependent acquisition (DDA) mode at a resolution of 15,000 at m/z 200 

with maximum IT of 50 ms. For MS2, HCD fragmentation was performed with the AGC target 

fill value of 1e5 ions. The precursors were isolated with a window of 1.4 Da. The lock mass 

option (m/z 445.1200; Olsen et al., 2005)) was used for internal recalibration. 

Database search and data analysis 

Proteins were identified using MaxQuant software (Cox and Mann, 2008) version 1.5.3.8 or 

1.6.0.16 using the Andromeda search engine (Cox et al., 2011) with rat SwissProt (December 

2016; containing 29795 entries) and Human Universal Proteome Standard (UPS2, Sigma-

Aldrich) protein databases. For the database search, tolerance of 6 ppm (for MS) and 10 ppm 

(for MS/MS) were set. Oxidation of methionine and carbamidomethylation of cysteines were 

set as variable and fixed modifications respectively. Tryptic specificity with no proline restriction 

and up to 2 missed cleavages was used. False discovery rate (FDR) was set at 1%. 

Additionally, the iBAQ option was enabled for quantification (using the log10 fit). 

 

Absolute quantification can be acquired accurately 1) when a protein is fully digested and 2) 

no post-digestion modification has taken place to the peptides (Shuford et al., 2012). This is 

the reason why I chose to digest the four biological replicates for 8, 12, 16, 24 and 48 hours. 

In addition, the high pH fractionation enables efficient fragmentation due to a simplification of 

the MS spectrum, as less proteins are injected into the spectrometer per time. Thus, the 

maximum iBAQ value (from long and short gradient) was chosen to determine the absolute 

abundance of a protein. 

 

The amount of a protein (in moles) is directly proportional to its iBAQ value (Schwanhäusser 

et al., 2011). Therefore, the logarithms of known amounts of UPS2 proteins were plotted 

against the logarithm of iBAQ values. For determination of accurate absolute abundance, the 

slopes and intercepts of UPS2 proteins was calculated. Later, the slope value was used to 

determine absolute value of protein in the sample by linear regression. Next, the number of 

cells present in the sample was determined. To do so, for each biological replicate used, I 

stained coverslips from this replicate for their nuclei using Hoechst. I then counted the number 

of nuclei in random areas of the coverslips and extrapolated the number of neurons in the 

sample (Table 8).  
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Table 8: Number of neurons for each biological replicate. 

Replicate Number of neurons 

A 6226 

B 2392 

C 14850 

D 24987 

 

The copy numbers of proteins per cell were calculated by dividing the number of proteins in 

the sample by the number of cells present in the used samples. The contaminants were 

removed from the protein list. To combine the regular and high-pH fractionation dataset, I took 

the maximum observed copy number of each protein for separate replicate, a principle that is 

also within the iBAQ algorithm. The data were then median-normalized and the mean across 

all replicates was calculated. Gene ontology analysis was done using the DAVID Functional 

Annotation Bioinformatics Microarray Analysis (Huang et al., 2007). 

Calculation of synaptic copy numbers 

To calculate synaptic copy numbers, I employed two different imaging steps. First, I took large 

epifluorescence images of the protein counterstained with Homer1 as a postsynaptic marker. 

For each protein, two independent cultures were analyzed and 20 images per replicate were 

acquired. The Homer images were thresholded and the percentage of signal within this homer 

mask to total signal was calculated for the protein of interest. Additionally, I calculated the R² 

of the protein of interest to Homer from the central synaptic region of the STED images already 

acquired. Because the increased resolution of STED inherently causes the correlation to drop, 

I normalized the R² by the R² of Homer1 STED to Homer1 confocal. This step is intended to 

remove presynaptic contamination, as they correlate very weakly, or anticorrelate with Homer. 

For example, Synaptophysin shows a weak anticorrelation of normalized R²= -0.005±0.024 

whereas PSD95 strongly correlates with Homer1 (R²= 0.408±0.030). The final synaptic copy 

number was then calculated as follows: 

 

 

𝑁𝑠𝑦𝑛𝑎𝑝𝑠𝑒 =

𝑁𝑤ℎ𝑜𝑙𝑒𝑐𝑒𝑙𝑙 ∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑖𝑛 𝐻𝑜𝑚𝑒𝑟 𝑚𝑎𝑠𝑘 ∗  
𝑅𝑃𝑂𝐼

2

𝑅𝐻𝑜𝑚𝑒𝑟1
2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑛𝑎𝑝𝑠𝑒𝑠 𝑝𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛
 (4) 

 

with the number of synapses per neuron = 299 (Sebastian Jähne, Institute for Neuro- and 

Sensory Physiology, University Medical Center Göttingen, personal communication). 
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Statistics 

Statistic were done in Matlab 2017b (The MathWorks, Natick, MA, USA) or GraphPad Prism 8 

(GraphPad, San Diego, CA, USA). All data shown is mean ± SEM, if not otherwise noted. If 

the data was normal distributed, significance was assessed using a two-tailed t-test for single 

comparisons or one-way ANOVA with Bonferroni correction for multiple testing. If the data was 

not normal distributed, single comparisons were done using Whitney rank-sum test or Kruskal-

Wallis with Dunn’s correction for multiple comparisons. Whether data was normal distributed 

was assessed with Kolmogorov-Smirnov test.  

Data Visualization 

All data was visualized using Matlab 2017b (The MathWorks, Natick, MA, USA), GraphPad 

Prism 8 (GraphPad, San Diego, CA, USA), Adobe Illustrator or InDesign (Adobe, San José, 

CA, USA), or Excel (Microsoft, Redmond, WA, USA). The contrast of images was adjusted 

using ImageJ (Schneider et al., 2012). 

3D Model Generation 

To generate a representative 3D model, I needed to combine the super-resolution images with 

EM and mass spectrometry data. I chose one representative mushroom and stubby spine, 

which optimally matched the average parameters calculated for their class. Using the zones 

defined for the super-resolution data (Figure 2) I defined the same zones in EM data of these 

spines and assigned the organelle identities (Figure 4).  

 

Via this method, I could link the super-resolution data to the EM images and also take the 

known localization of proteins into account, e.g. transmembrane proteins will only be placed 

on the membrane, ER resident proteins only on the ER. To generate the model, I used my 

calculated synaptic copy number and placed them in the spine volume according to the 

distribution measured from STED imaging. The reconstructed spines and the molecular 

images of the single proteins were rendered by Burkhard Rammner with Autodesk Maya 

(Autodesk Inc., Mill Valley, CA, USA) and I-Tasser (Roy et al., 2010; Zhang, 2008). Using 

these images, I made preliminary 3D models in Matlab. In brief, the models represent a 

maximum projection of the shown volume, but without the size of the protein adjusted 

according to its z-axis position.  
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Figure 4: Assignment of organelle and zone identities for the construction of the 3D model. A) To apply the 

super resolution data on the EM ultrastructure, I needed to define the organelles and zones in the EM data. This 

way, membrane proteins could be mapped on the membrane, or organelle specific proteins only on their organelle. 

The EM data was binned and identities were assigned. The cytosol was also defined, depicted by the light blue 

color (left panel). Identical to the zone definitions of the super resolution data (Figure 2) the same zones were also 

assigned in the EM volume. B) This assignment was done for every layer of the EM reconstructions.  
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Results 

The Banker culture is a well-defined model to study dendritic spines 

Deriving the quantitative information on protein copy numbers and localization requires an 

easy and well reproducible system. I could not use in vivo brain samples, as they are 

composed of many different neuron and glia types, making the biochemical analysis virtually 

impossible. Brain slices are also difficult to stain and image. I therefore opted to primary 

hippocampal neuron cultures, prepared in a Banker culture system (Kaech and Banker, 2006). 

It has several advantages: 

• The neurons can easily be separated from the supporting glia, resulting in a pure 

neuronal sample. This way, I can eliminate glia contamination from the mass 

spectrometric analysis, which would otherwise confound our results. 

• The majority of neurons in this type of culture are excitatory glutamatergic neurons, 

with only few inhibitory neurons present (Benson et al., 1994), yielding a well-defined 

neuronal population for the model. Additionally, the neurons can be grown in large 

quantities for biochemical analysis, single cells can be labeled with DiO (Figure 5A), 

and the preparation is easy to access for microscopy.  

To confirm the purity of the culture I stained it for biomarkers of different neuronal populations 

or glia and compared it to the common coculture of neurons with astrocytes (Figure 5B). Both 

cultures showed little GABAergic neurons but large populations of glutamatergic neurons. I did 

also not detect appreciable populations of microglia or oligodendrocytes in either culture type. 

The most remarkable difference is in the content of astrocytes, marked by GFAP, which were 

present in large numbers in the coculture, whereas the Banker-type culture was almost 

completely devoid of them. 
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Figure 5: The Banker culture is a well-defined model. A) Using DiO labeling, I could label individual neurons, 

enabling me to visualize their spines in clear detail. B) Regular rat hippocampal neurons cocultured with astrocytes 

and the Banker type culture were stained for biomarkers of different neuron and glia populations. All neurons were 

either stained with β3-tubulin, the antibody SMI310, labeling NF-H and NF-M. Cells were stained against GAD65 

for GABAergic neurons, vGluT for glutamatergic neurons, GFAP for astrocytes, Iba1 for microglia and Olig2 for 

oligodendrocytes. 
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In addition, I checked for the presence of glia biomarkers in our mass spectrometry dataset 

and compared it to numbers derived from whole-brain lysates (Figure 6). I did not detect most 

of the biomarkers in our culture, only GFAP was present in relatively larger amounts but 

markedly decreased compared to whole-brain lysates (reduced to 16.6%). As GFAP is the 

major intermediate filament in astrocytes and abundantly expressed there, a few astrocytic 

cells can lead to a large number of proteins identified (Eng, 1985). In summary, the Banker 

type rat hippocampal cultures are a pure system with only few non-glutamatergic cells. 

 

 

Figure 6: Biomarker analysis of neuronal cultures. In rat brain homogenate I could detect GFAP, glutamine 

synthetase, MBP and MOG in large quantities, but these were drastically reduced in neuron cultures. No statistical 

analysis was performed as only 1 experiment was done. 
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The ultrastructure of dendritic spines and its organelles in Banker cultures 

Next, I set out to measure the basic morphology of dendritic spines in the culture. Note that 

the presented analysis here is a recapitulation of the work done by Christina Koerbs and 

Vanessa Salimi during their medical dissertations under my supervision in our lab (Koerbs, 

2017; Salimi, 2017). Mushroom class spines were traced from the head until the junction of 

the neck to the dendritic shaft. Stubby synapses usually showed a triangular protrusion from 

the shaft and were traced up to the point where this protrusion blended into the shaft (Figure 

7). In total, I analyzed 30 mushroom and 34 stubby class synapses (Figure 8). 
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Figure 7: Representative serial sections. A) A mushroom class spine. The PSD is marked with an arrow. A 

continuous ER tubule is running along the dendrite, marked with an asterisk. Mitochondria are clearly identified by 

their dark stain and were often seen below the neck of the spine, but rarely invaginated into the neck or head. B) A 

stubby class spine with two presynapses and two corresponding PSDs side by side. The postsynapses are located 

on a bump-like protrusion from the dendritic shaft. The PSDs are marked with arrows, also here an ER tubule 

running along the shaft can be seen (marked with asterisks). In the upper portion of the shaft is a region with 

membrane ruffles, marked by arrowheads, of unknown identity. 
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Figure 8: Representative 3D Reconstructions of dendritic spines. A) A Mushroom class spine is shown, with 

the PSD highlighted in red (left panel). The inside contains various organelles, in the dendritic shaft a large 

mitochondrion can be seen (middle panel). Many more organelles reside in the shaft and also in the spine itself, 

including ER, endosomes and vesicles (left panel) B) A stubby class spine is shown, looking at the face of the PSD. 

The dendritic shaft is not visualized, but it runs from left to right on the bottom of the spine (left panel). The back of 

the stubby spine does not have a PSD (middle panel). The cytosol of the stubby spine does show a few postsynaptic 

vesicles, as well as an ER tubule. 

Interestingly, the morphology of the two classes were very similar in all the analyzed 

parameters, with no significant differences. Still, some variations could be observed: The PSD 

area of stubby synapses was on average 50% larger than those of mushroom synapses 

(0.106±0.066 µm² vs 0.14±0.090 µm²). The PSD area of stubby postsynapses also showed a 

higher variability than those for mushroom class synapses, and it made up a larger fraction of 

the total surface of the synapse (9.2±3.2% vs 6.6±1.4%). Also, the size of the PSD correlated 

with the postsynaptic volume for stubby synapses but did not for mushroom class synapses 

(r=0.5016, p= 0.0025 and r=0.3, p=0.173 respectively). When I grouped the synapses by 

volume, I observed that there was a separate population of mushroom synapses with large 

volumes of >0.4 µm³, which is not present for stubby synapses. Interestingly, the number of 

vesicles per postsynapse was very variable: Many did not contain any vesicles, but some did 

contain up to 60. The nature of these vesicles is unclear, they could be AMPAR containing 

postsynaptic vesicles, which have also been reported by others (Hussain and Davanger, 

2015). 

 



43 

 

Figure 9: The quantitative morphological parameters of mushroom and stubby spines in culture are similar. 

The distribution of the different measured parameters is shown, green is mushroom, orange are stubby spines. The 

PSD area follows a normal distribution, Surface and Volume are lognormal distributed (Kolmogorov-Smirnov test). 

None of the shown parameters were significantly different between the two classes. The continuous line shows the 

median, whereas the dotted lines are the quartiles. Stubby spines showed a correlation of their PSD area to their 

volume, which was not the case for mushroom spines (r=0.5016, p= 0.0025 and r=0.3, p=0.173 respectively). The 

table shows the mean ± SEM of the measured parameters. 
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The quantitative neuronal proteome 

Synaptic copy numbers for the dendrite are not easily obtainable, because there is no 

subcellular fractionation for dendritic spines available. It is possible to purify the PSD itself or 

synaptoneurosomes, but these contain the presynapse as well (Carlin et al., 1980; 

Hollingsworth et al., 1985), which will contaminate the analysis. I therefore devised an 

alternative strategy, where I first determined the average quantitative proteome of a complete 

hippocampal neuron using the label-free mass spectrometry technique iBAQ (Schwanhäusser 

et al., 2011). I then calculated the copy number per dendritic spine using imaging techniques. 

So far, most mass spectrometric analysis has focused on individual sub compartments (Cheng 

et al., 2006; Lowenthal et al., 2015; Peng et al., 2004a; Takamori et al., 2006; Wilhelm et al., 

2014), whereas the whole neuron is seldomly analyzed. This is also the first quantitative 

description of the neuronal proteome in absolute terms, as so far only relative datasets are 

available for the neuron, which usually focus on the effect(s) of a specific treatment on the 

neuronal proteome (Schanzenbächer et al., 2016). 

Label-free mass spectrometry reveals the quantitative neuronal proteome 

I initially set out to determine the neuronal proteome using regular iBAQ mass spectrometry. 

Here, a standard protein mixture is analyzed before and after the sample in the mass 

spectrometer. The intensity for each peak is calculated and normalized by the number of 

theoretically observable peptides, derived from in silico digestion. Using the known protein 

numbers in the standard sample, one can then calculate a standard curve that relates peak 

intensity to copy number. This can then be used to calculate the copy number for each 

identified protein in the sample.  

 

After optimizing the digestion and run times, I realized that several key proteins where not 

detected in the mass spectrometer, probably because the complexity of the sample was too 

high and because several important neuronal targets are proteins with extensive 

transmembrane domains, which are particularly difficult to tackle with mass spectrometry 

(Barrera and Robinson, 2011). I therefore introduced a high pH fractionation step right before 

the sample was injected into the mass spectrometer, to decrease sample complexity and 

increase the coverage of the neuronal proteome. To this purpose, I analyzed 4 biological 

replicates that showed a high correlation of their copy numbers (Figure 10A). The copy number 

per neuron showed a typical sigmoidal distribution (although not being normal or lognormal 

distributed, p<0.0001 for both tests), with many cytoskeleton or glycolytic proteins among the 

most abundant proteins (Figure 10B).  
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Figure 10: A general description of the quantitative neuronal proteome. A) I analyzed 4 biological replicates, 

which all showed a good correlation to each other. B) The distribution of the copy numbers showed few high or low 

abundant proteins, with most proteins in the range of 104 to 107 copies 

In total, I was able to identify 6194 genes, which represents a very high coverage of pure 

hippocampal neuronal cultures. Because the rat proteome is not as highly curated as mouse 

or human, almost 2/3 of the identifications were unreviewed entries (Figure 11A). Notably, 

VAMP2 was among the most abundant proteins with 7.5x108 ± 9.4x107 copies. 
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Figure 11: Quantitative mass spectrometry of neuronal cultures. A) In total I was able to identify 6194 protein 

groups. Using GO analysis, I assigned the proteins to the major subcellular compartments. B) The copy number 

distribution within each compartment was investigated. The mean copy number per subcellular compartment differs 

from the median (Mean ± SEM, Median ± quartiles are shown; Note the logarithmic scale of the violin plot). C) 

Summing up all protein numbers, the total molarity and protein content per neuron was calculated. The volume of 

the neuron was estimated to be 5000 µm³. D) Two obligate protein interactions were checked for their occurrence 

in the data. E) Protein size shows a significant negative correlation with abundance (Spearman rho = -0,51, 

p<0.001), that can also be fitted with a linear relationship (R²=0.16). 

I also calculated the total protein number and amount per neuron and estimated the molarity 

and protein concentration (Figure 11C). Because there is no information in the literature on 

neuronal volumes in cultures, I estimated the volume to be 5000 µm³, a value derived from 

mammalian cell culture volumes (Bohil et al., 2006; Cohen and Studzinski, 1967; Krombach et 

al., 1997; Luby-Phelps, 2000; PUCK et al., 1956; Zhao et al., 2008). I did so because neurons 

have many processes, that will increase the total volume. Neurons in vivo though can have 

much larger volumes, for example Purkinje cells have a volume of about 13700 µm³ (Andersen 

et al., 2003).  
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Using gene ontology analysis, I assigned the proteins to a subcellular compartment. The 

protein fraction within the compartment is similar to other studies (Schanzenbächer et al., 

2016). Interestingly, the mean copy number between subcellular compartments was not 

significantly different, whereas the median copy number mitochondria was significantly 

different to those of the other compartments (Figure 11B). The lower median than mean 

indicates, that the data is skewed to higher values. This is more prominent for the 

non-mitochondrial compartments, which can also be seen from the violin plot. I checked the 

quality of the quantification by comparing two known obligate protein complexes with my 

measured data, the vATPase subunits and the rab geranylgeranyl transferase (Kitagawa et 

al., 2008; Zhu et al., 2006). These proteins are highly unstable when they are not bound by 

their interaction partner. Therefore, the whole cell copy numbers should represent the 

stochiometric ratio of the complex, which it did (Figure 11D). Intriguingly, the protein copy 

number showed highly significant anti-correlation with the mass of a protein (Figure 11E), a 

phenomenon that has also been observed in vivo (Mandad et al., 2018).  

Subcellular copy numbers can be derived using imaging methods 

As the goal of this study is to analyze the quantitative composition of dendritic spines, I devised 

a two-step method to calculate the copy number for a protein of interest in a dendritic spine. 

First, I needed to calculate the fraction of the protein of interest that is inside synapses. To do 

so, I used Homer1 as a postsynaptic marker, and coimmunostained against the protein of 

interest. Using Homer1 as a mask I calculated how much of the protein is within dendritic 

spines. I used epifluorescence imaging to cover large areas of the culture, but this has a lower 

resolution. Because of this, also some presynaptic regions are picked up within the homer 

mask. To correct for this, I used the super-resolution images already acquired. Here, I 

calculated the correlation coefficient of the protein of interest to Homer1. Together with the 

number of spines per neuron I can calculate the synaptic copy number for each protein 

analyzed this way (4).  

 

The copy number within a dendritic spine followed a similar distribution as the neuronal copy 

numbers (Figure 12A). There were a few proteins that were only present in very few copies, 

suggesting that these are present only in a minor subset of dendritic spines. Interestingly, the 

postsynaptic copy number correlated with their presynaptic counterpart (Spearman rho = 0.68, 

p<0.0001; Figure 12B), showing also that postsynaptic proteins are on average less abundant 

than in the presynapse (Presynaptic data from Wilhelm et al., 2014). In addition to the average 

postsynaptic copy number, I was interested whether different spine classes have different 

protein composition. I therefore calculated the synaptic copy number for mushroom and stubby 

synapses by comparing the immunofluorescence signal from the STED images between the 

two classes. Surprisingly, stubby synapses had more protein copy numbers on average (1.44 
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± 0.34; Mean ± SD) and several proteins showed a preferential enrichment in one class (Figure 

12C). The proteins enriched in stubby synapses were mainly trafficking associated proteins, 

but also Homer1 showed an increased abundance in stubby synapses. Mushroom spines had, 

among others, more Actin and Drebrin, as well as PSD95.  
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Figure 12: Dendritic spine copy numbers. A) The distribution of postsynaptic copy numbers. 

B) Pre- and postsynaptic copy numbers of the same protein are correlated (Spearman 

rho = 0.68, p<0.0001; presynaptic data from Wilhelm et al., 2014). The postsynaptic protein 

is present in lower copies on average. Please note that the results are shown on logarithmic 

scales. C) Several proteins show a preference to either Stubby or Mushroom class spines. 

The line indicates the mean ratio, the dotted lines are mean ± 1 SD. D) General parameters 

of the dendritic proteome. Spine means the whole dendritic spine, values are Mean ± SEM. 
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The quantitative average distribution and abundance of 105 postsynaptic 

proteins 

After determining the synaptic copy number of the proteins of interest, I determined their 

nanoscale localization with dendritic spines. To do so, I used STED super-resolution 

microscopy. In total, I analyzed 40604 spines, of which 18429 were classified as mushroom, 

14093 were stubby (Table 9). An additional class, termed ‘Other’, was also classified, that 

contains synapses that do not fit the two categories but show strong Homer1 signal. This class 

had 8082 entries but was not considered in the presented analysis. 

 

Table 9: Distribution of the spine classes over the whole dataset. 

Spine class Number Percentage of total spines 

Mushroom 18429 45.39% 

Stubby 14093 34.71% 

Other 8082 19.90% 

Total 40604 

 

As this is a large dataset, and to make the comparison between proteins easier, I present it in 

a standardized form (Figure 13). For each protein, I briefly describe its known function, 

organization and interaction partners within this dataset, followed by representative 

microscopy images, together with the average distribution of the protein. Please note that the 

average image does only show the protein of interest. The violet color is not coming from 

mixing the homer signal in blue and the STED signal in red but is part of the used colormap. 

The color map extends from black over violet to red-white (Hunter, 2007).  

 

Because the interpretation of the average images per se is difficult, and to extract more 

quantitative information about the localization of the protein, I performed an enrichment 

analysis.  By analyzing each spine individually, I was also able to extract more detailed 

information on the protein localization and enrichment. This is presented as violin plots, which 

fits a frequency distribution to the data. The bold line indicates the median, the thin lines the 

lower and upper quartile respectively. The green plots correspond to Mushroom, the orange 

plots to Stubby class synapses.  

 

The second page shows the copy number in the whole cell, the copy number in the whole 

spine or the PSD for both classes. I also calculated %of total protein in the whole that a given 

protein constitutes and calculated the molarity. Finally, where available I show the Molecular 

model of a mushroom spine. 
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Figure 13: Description of the standardized figure. Continued on next page. 
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Cytoskeleton and associated proteins 

The cytoskeleton fulfills many functions in the dendrite and spines. In the following section, I 

analyze the main components of the dendritic spine and shaft cytoskeleton.  

 

 

Figure 14: Depiction of the cytoskeleton in dendritic spines. 
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Figure 15: Actin nanoscale localization and abundance. Continued on next page. 
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Figure 16: α-Internexin nanoscale localization and abundance. Continued on next page. 
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Figure 17: β-2-spectrin nanoscale localization and abundance. Continued on next page. 
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Figure 18: β3-tubulin nanoscale localization and abundance. Continued on next page. 
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Figure 19:pan-β-tubulin nanoscale localization and abundance. Continued on next page. 
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Figure 20: Cortactin nanoscale localization and abundance. Continued on next page. 
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Figure 21: Drebrin nanoscale localization and abundance. Continued on next page. 
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Figure 22: MAP2 nanoscale localization and abundance. Continued on next page. 
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Figure 23: Myosin5a nanoscale localization and abundance. Continued on next page. 



73 

Correia et al., 2008; Lisé et al., 2006; Miyata et al., 2000; Rudolf et al., 2011 



74 

 

Figure 24: Neurofilament heavy nanoscale localization and abundance. Continued on next page. 
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Figure 25: Neurofilament light nanoscale localization and abundance. Continued on next page. 
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Figure 26: Septin7 nanoscale localization and abundance. Continued on next page. 
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Scaffold proteins 

Scaffold proteins are essential to the construction of the PSD density. In this section, I study 

members of the Membrane-associated guanylate kinase family, Homer and Shank proteins, 

as well as DLGAP1. 

 

 

Figure 27: Depiction of scaffold proteins in dendritic spines. 
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Figure 28: DLGAP1 nanoscale localization and abundance. Continued on next page. 
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Figure 29: Homer1 nanoscale localization and abundance. Continued on next page. 
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Figure 30: Homer2 nanoscale localization and abundance. Continued on next page. 



87 

Dani et al., 2010; Hayashi et al., 2006, 2009; Kato et al., 1998; Lu et al., 2007; MacGillavry et 

al., 2013; Newpher and Ehlers, 2008; Roche et al., 1999; Tao-Cheng et al., 2014; Tu et al., 

1998; Xiao et al., 1998 



88 

 

Figure 31: Homer3 nanoscale localization and abundance. Continued on next page. 
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Figure 32: PSD93 nanoscale localization and abundance. Continued on next page. 
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Figure 33: PSD95 nanoscale localization and abundance. Continued on next page. 
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Figure 34: Shank 1 nanoscale localization and abundance. Continued on next page. 
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Figure 35: Shank2 nanoscale localization and abundance. Continued on next page. 
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Figure 36: Shank3 nanoscale localization and abundance. Continued on next page. 
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Receptors 

The most important function of dendritic spines is the recognition of neurotransmitter. This is 

brought about by several different types of receptors, AMPAR, NMDAR, kainate and 

metabotropic glutamate receptors. Several other receptor types exist on dendritic spines, here 

I investigated also dopamine and neurotrophin receptors. 

 

 

Figure 37: Depiction of receptors in dendritic spines. 
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Figure 38: Dopamine Receptor D1 nanoscale localization and abundance. Continued on next page. 
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Figure 39: Dopamine Receptor D2 nanoscale localization and abundance. Continued on next page. 
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Figure 40: GluK1 nanoscale localization and abundance. Continued on next page. 
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Figure 41: GluN1 nanoscale localization and abundance. Continued on next page. 
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Figure 42: GluN2A nanoscale localization and abundance. Continued on next page. 
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Figure 43: GluN2B nanoscale localization and abundance. Continued on next page. 
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Figure 44: GluR1 nanoscale localization and abundance. Continued on next page. 



115 

MacGillavry et al., 2013; Nair et al., 2013 



116 

 

Figure 45: GluR2 nanoscale localization and abundance. Continued on next page. 
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Figure 46: GluR3 nanoscale localization and abundance. Continued on next page. 
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Figure 47: IGF1R nanoscale localization and abundance. Continued on next page. 
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Figure 48: LNGFR nanoscale localization and abundance. Continued on next page. 
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Figure 49: mAChR1 nanoscale localization and abundance. Continued on next page. 
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Figure 50: mGluR1 nanoscale localization and abundance. Continued on next page. 
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Figure 51: mGluR2 nanoscale localization and abundance. Continued on next page. 
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Figure 52: mGluR5 nanoscale localization and abundance. Continued on next page. 
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Figure 53: TrkB nanoscale localization and abundance. Continued on next page. 
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Ion Channels 

Ion channels are important for the maintenance of the neuronal resting potential. They are 

involved in the propagation of electrical signal as well as calcium entry. 

 

 

Figure 54: Depiction of ion channels in dendritic spines. 
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Figure 55: Cav1.3 nanoscale localization and abundance. Continued on next page. 
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Figure 56: Cav2.1 nanoscale localization and abundance. Continued on next page. 
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Figure 57: Kir2.1 nanoscale localization and abundance. Continued on next page. 
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Figure 58: Kv1.1 nanoscale localization and abundance. Continued on next page. 
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Figure 59: Kv2.1 nanoscale localization and abundance. Continued on next page. 
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Figure 60: Na β 1 nanoscale localization and abundance. Continued on next page. 
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Figure 61: Nav1.1 nanoscale localization and abundance. Continued on next page. 
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Figure 62: Nav1.3 nanoscale localization and abundance. Continued on next page. 
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Figure 63: Na+/K+ ATPase nanoscale localization and abundance. Continued on next page. 
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Signaling proteins 

Within dendritic spines, many signaling cascades are operating in parallel. These are often 

kinase/phosphatase networks, but the spine is also actively sending retrograde signals to the 

presynapse. 

 

 

Figure 64: Depiction of a signaling cascade 
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Figure 65: ADAM22 nanoscale localization and abundance. Continued on next page. 
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Figure 66: Akt nanoscale localization and abundance. Continued on next page. 
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Figure 67: APP nanoscale localization and abundance. Continued on next page. 
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Figure 68: BDNF nanoscale localization and abundance. Continued on next page. 
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Figure 69: Calbindin nanoscale localization and abundance. Continued on next page. 
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Figure 70: Calmodulin nanoscale localization and abundance. Continued on next page. 
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Figure 71: Calretinin nanoscale localization and abundance. Continued on next page. 
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Figure 72: CaMKII nanoscale localization and abundance. Continued on next page. 
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Figure 73: CAPS1 nanoscale localization and abundance. Continued on next page. 
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Figure 74: CDC42 nanoscale localization and abundance. Continued on next page. 
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Figure 75: Chromogranin A nanoscale localization and abundance. Continued on next page. 
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Figure 76: Chromogranin B nanoscale localization and abundance. Continued on next page. 
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Figure 77: nNOS nanoscale localization and abundance. Continued on next page. 
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Figure 78: Secretogranin II nanoscale localization and abundance. Continued on next page. 
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Trafficking proteins 

The manifold subcellular compartments within the dendrite require highly specialized 

trafficking. Here I study mostly endocytosis-related proteins as well as rab proteins as markers 

for endosomal compartments. 

 

 

Figure 79: Depiction trafficking. 
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Figure 80: AP180 nanoscale localization and abundance. Continued on next page. 
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Figure 81: Clathrin heavy chain nanoscale localization and abundance. Continued on next page. 
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Figure 82: Clathrin light chain nanoscale localization and abundance. Continued on next page. 
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Figure 83: Dynamin1-3 nanoscale localization and abundance. Continued on next page. 
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Figure 84: GRIP1/2 nanoscale localization and abundance. Continued on next page. 
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Figure 85: HSC70 nanoscale localization and abundance. Continued on next page. 



197 
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Figure 86: Rab3 nanoscale localization and abundance. Continued on next page. 
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Figure 87: Rab4 nanoscale localization and abundance. Continued on next page. 
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Brown et al., 2007; Gu and Huganir, 2016; Hoogenraad et al., 2010; Mohrmann et al., 2002; 
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Figure 88: Rab5 nanoscale localization and abundance. Continued on next page. 
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Figure 89: Rab7 nanoscale localization and abundance. Continued on next page. 
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Figure 90: Rab9 nanoscale localization and abundance. Continued on next page. 
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Díaz et al., 1997; Ganley et al., 2004; Lombardi et al., 1993 
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Figure 91: Rab11 nanoscale localization and abundance. Continued on next page. 
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Khvotchev et al., 2003; Lazo et al., 2013; Shirane and Nakayama, 2006 
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SNAREs and associated proteins 

Transport between organelles requires fusion, which is often brought about by SNARE 

proteins. In this section, I determine the localization and abundance of almost every known 

SNARE protein known to be present in rat neurons. 

 

 

Figure 92: Depiction of SNARE proteins. 
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Figure 93: α/β SNAP nanoscale localization and abundance. Continued on next page. 
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Figure 94: NSF nanoscale localization and abundance. Continued on next page. 
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Figure 95: Sec22b nanoscale localization and abundance. Continued on next page. 
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Figure 96: SNAP23 nanoscale localization and abundance. Continued on next page. 
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Figure 97: SNAP25 nanoscale localization and abundance. Continued on next page. 



221 
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Figure 98: SNAP29 nanoscale localization and abundance. Continued on next page. 
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Figure 99: SNAP47 nanoscale localization and abundance. Continued on next page. 
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Figure 100: Synaptotagmin 4 nanoscale localization and abundance. Continued on next page. 
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Figure 101: Synaptotagmin 5 nanoscale localization and abundance. Continued on next page. 
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Hudson and Birnbaum, 1995; Iezzi et al., 2004; Saegusa et al., 2002 
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Figure 102: Synaptotagmin 7 nanoscale localization and abundance. Continued on next page. 
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Wen et al., 2010; Wu et al., 2017 



232 

 

Figure 103: Syntaxin1a nanoscale localization and abundance. Continued on next page. 
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Figure 104: Syntaxin2 nanoscale localization and abundance. Continued on next page. 
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Figure 105: Syntaxin3 nanoscale localization and abundance. Continued on next page. 
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Arendt et al., 2015; Jurado et al., 2013 
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Figure 106: Syntaxin4 nanoscale localization and abundance. Continued on next page. 
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Figure 107: Syntaxin 5 nanoscale localization and abundance. Continued on next page. 
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Hay et al., 1997; Hohl et al., 1998; Hong, 2005; Renna et al., 2011 
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Figure 108: Syntaxin 6 nanoscale localization and abundance. Continued on next page. 
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Figure 109: Syntaxin 8 nanoscale localization and abundance. Continued on next page. 
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Figure 110: Syntaxin13 nanoscale localization and abundance. Continued on next page. 
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Figure 111: Syntaxin 16 nanoscale localization and abundance. Continued on next page. 
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Amessou et al., 2007; Antonin et al., 2002; Brandhorst et al., 2006; Chua and Tang, 2008; 

Fischer von Mollard and Stevens, 1998; Ganley et al., 2004; Mallard et al., 2002; McBride et 

al., 1999; Shitara et al., 2013; Simonsen et al., 1998; Tang, 2008; Tang et al., 1998; Zwilling 

et al., 2007 
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Figure 112: VAMP1 nanoscale localization and abundance. Continued on next page. 
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Figure 113: VAMP2 nanoscale localization and abundance. Continued on next page. 
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Figure 114: VAMP7 nanoscale localization and abundance. Continued on next page. 
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Figure 115: Vti1a nanoscale localization and abundance. Continued on next page. 
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Organelle proteins 

The dendrite contains representatives of many organelles, some unique to this compartment. 

I investigate their distribution and the quantity of key proteins within these compartments in the 

following section. 

 

 

Figure 116: Depiction of organelles in dendritic spines. 
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Figure 117: Calreticulin: nanoscale localization and abundance. Continued on next page. 
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Figure 118: ERp72 nanoscale localization and abundance. Continued on next page. 
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Lièvremont et al., 1997; Mazzarella et al., 1990; Rupp et al., 1994 
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Figure 119: Ribosomal protein L7a nanoscale localization and abundance. Continued on next page. 
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Ban et al., 2014; de la Cruz et al., 2015 
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Figure 120: Ribosomal protein S3 nanoscale localization and abundance. Continued on next page. 
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Figure 121: Ribosomal protein S6 nanoscale localization and abundance. Continued on next page. 
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Ban et al., 2014; de la Cruz et al., 2015 
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Figure 122: TGN38 nanoscale localization and abundance. Continued on next page. 



271 
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Figure 123: TOM20 nanoscale localization and abundance. Continued on next page. 
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Synaptic scaling changes the nanoscale localization and abundance of 

key proteins 

The data presented so far demonstrates the molecular architecture of a dendritic spine at rest. 

But the postsynapse is known to undergo various plasticity regimens to adapt its strength. I 

set out to study one of them, synaptic scaling, for a subset of potential key proteins in this 

process. Synaptic scaling is a homeostatic process that neurons employ to keep their firing 

rate at a set constant. When the strength of the input to a neuron increases, it responds by 

reducing the efficiency of its spines globally or locally. Similarly, when the input strength 

decreases, the neuron responds by enhancing spine efficiency (Turrigiano, 2008). I used 

chronic treatment with Bicuculline, a GABA blocker, to increase the baseline network activity 

of the neuronal cultures, causing synaptic downscaling. To elicit synaptic upscaling, I used 

either TTX to block synchronous release (while spontaneous release is still occurring) or 

CNQX+AP5 to block AMPA and NMDA receptors, abolishing almost all glutamatergic 

signaling. The latter is therefore expected to have a more dramatic effect on synaptic upscaling 

than TTX. First, I determined whether the treatments changed the frequency of mushroom or 

stubby dendritic spines (Table 10). Interestingly, the percentage of the spine classes did not 

change for most treatments. Only when blocking glutamate mediated transmission completely 

with CNQX+AP%, the percentage of mushroom spines decreased, which was compensated 

by an increase in ‘other’ class spines. 

 

Table 10: Spine class frequency during homeostatic plasticity. Only during CNQX+AP5 treatment did the 

frequency of spine classes change, showing a decrease in mushroom spines and an increase in other spines. The 

percentage of stubby classes spines was constant throughout all treatments. 

Spine class Untreated Bicuculline TTX CNQX + AP5 

Mushroom 75.37% 74.55% 75.68% 64.36% 

Stubby 24.46% 24.55% 23.46% 23.66% 

Other 0.17% 0.89% 0.87% 11.98% 
 

As the spine class distribution did not show major changes the different treatments can 

compared to each other directly and I present the results in a standardized form, similar to the 

previous section. Again, the average distribution of the protein is shown, as well as the 

percentage change in staining intensity, compared to the untreated control. The lower panel 

shows the zone enrichment analysis, which was performed exactly as for the average 

distribution at rest. 
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Actin 

I found F-Actin to be decreased in Bicuculline, a trend that was interestingly very pronounced 

but not significant for mushroom synapses. The localization also moved toward the center of 

the PSD after bicuculline treatment for both synapse classes, and also after TTX treatment in 

stubby synapses.   

Figure 124: Changes in actin localization and abundance after synaptic scaling. A) The average distribution 

of actin in the treatments. Scale bar is 500 nm. B) The change in total intensity compared to untreated was 

calculated. C) The Enrichment of actin in the different zones for each treatment. Values are Mean ± SEM. Continued 

on next page. 
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Clathrin light chain 

Clathrin abundance was increased after Bicuculline treatment for both synapse classes, 

whereas it was significantly decreased after CNQX+AP5 treatment for mushroom spines. After 

Bicuculline treatment, Clathrin also showed a trend to be positioned at the center of the PSD, 

compared to Untreated. 

Figure 125: Changes in Clathrin LC localization and abundance after synaptic scaling. The figure is organized 

as in Figure 124. Continued on next page. 
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GluN2B 

The NMDA receptor subunit was increased after blocking glutamatergic signaling using 

CNQX+AP5 in Mushroom spines and a showed a centralization of the receptor. Stubby 

synapses also showed an increase, but not to the same extent, and GluN2B was also recruited 

to more perisynaptic regions.  

Figure 126: Changes in GluN2B localization and abundance after synaptic scaling. The figure is organized as 

in Figure 124. Continued on next page. 
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GluR1 

This AMPAR subunit was differentially regulated between mushroom and stubby synapses. 

Mushroom spines decreased the abundance and PSD localization of GluR1 after all 

treatments. As expected, stubby synapses showed an increase in GluR1 after CNQX+AP5 

treatment, which was also accompanied by a recruitment to the PSD. 

Figure 127: Changes in GluR1 localization and abundance after synaptic scaling. The figure is organized as 

in Figure 124. Continued on next page. 
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GluR2 

This constitutively cycling AMPAR did not change its localization in any treatment. Surprisingly, 

it was significantly increased after bicuculline treatment in mushroom spines, but the increase 

itself was very minor. 

Figure 128: Changes in GluR2 localization and abundance after synaptic scaling. The figure is organized as 

in Figure 124. Continued on next page. 
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mGluR5 

This metabotropic glutamate receptor showed a dramatic increase in abundance for TTX and 

CNQX+AP5 treated neurons, and also for bicuculline treated stubby synapses. Interestingly, 

its localization was not changed dramatically in both conditions. Synaptic downscaling via 

bicuculline also showed a trend toward increasing mGluR5. 

Figure 129: Changes in mGluR5 localization and abundance after synaptic scaling. The figure is organized 

as in Figure 124. Continued on next page. 
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SNAP47 

This SNARE protein exhibited an interesting phenotype in bicuculline treated mushroom 

spines, where its abundance was decreased, but it was highly localized to the PSD. A similar 

effect was observed in TTX treated stubby synapses. Although it was increased in CNQX+AP5 

treated cells, this effect did not reach significance. 

Figure 130: Changes in SNAP47 localization and abundance after synaptic scaling. The figure is organized 

as in Figure 124. Continued on next page. 
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Tubulin 

Tubulin showed a very consistent localization, that did not change during the treatments. Its 

abundance was increased after TTX or CNQX+AP5 treatment, although this effect was not 

significant in mushroom spines. 

Figure 131: Changes in tubulin localization and abundance after synaptic scaling. The figure is organized as 

in Figure 124. Continued on next page. 
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Discussion 

In this thesis, I present a quantitative analysis of dendritic spines at an unprecedented level of 

detail. To my knowledge this is the most comprehensive database on this organelle to date. 

There are several readily observed results in this thesis: 

1) Mushroom and stubby spines in vitro are almost identical in most of the measured 

parameters of their ultrastructure.  

2) Most proteins showed similar copy numbers and localization in both spine types, 

probably to ensure efficient synaptic transmission and to avoid bottle necks. For 

example, interacting SNARE proteins of are present at similar amounts, whereas 

receptors show low abundance. This also argues for a conserved and probably 

modular architecture of the postsynapse. 

3) I report two large quantitative databases, the dendritic proteome with nanoscale 

localization, which I termed the Dendrite Nanomap, as well as the neuronal 

proteome, providing absolute quantification of over 6000 proteins. These 

databases lay the foundation for future modeling studies, where it is essential to 

use the correct initial protein concentrations and locations for results, resembling 

the in vivo dendritic spine 

The ultrastructure of spines in culture 

To build an accurate model of the dendritic spine in culture, I needed to first study its 

morphology. Most ultrastructural research has been done on brain samples, with only few 

works focusing on neuronal cultures (Boyer et al., 1998; Schikorski and Stevens, 1997). 

Because these studies pooled shaft and spine synapses, I set out to analyze the postsynaptic 

ultrastructure for both classes separately. 

Mushroom and stubby spines have similar morphology 

Surprisingly, the two different spine classes analyzed did not show any significant differences 

in the parameters I calculated. The only difference was the correlation of stubby PSD Area to 

volume, which was not present in mushroom spines. This is at odds with previous studies 

observing this correlation, albeit in vivo (Boyer et al., 1998; Harris and Stevens, 1989). 

Because the brain is densely packed with synapses, they might compete for space. Since the 

cultures are much sparser, this restriction is not present and might explain the uncorrelated 

morphology of spines. Additionally, astrocytes enclosing the synapse might also regulate the 

size. The increased fraction of PSD area to surface of stubby synapses over mushroom spines 

is probably due to the neck of mushroom spines. These add surface, while not containing any 

PSD.  
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Dendritic spines in culture are similar to those in vivo 

The parameters I measured are like those derived from in vivo samples, albeit sometimes 

higher than previously reported cell culture data (Table 11). The difference in the cell culture 

data might be explained by different culturing protocols (although both data are from Banker 

type cultures), especially the density at which the neurons are plated influences spine number 

and probably also spine size (Cullen et al., 2010). Unfortunately, the number of neurons plated 

in the work from Boyer and colleagues is given, but not the area on which they are plated 

(Boyer et al., 1998). I can therefore not compare the densities. Also, the network activity will 

influence the structure of the formed synapses (Alvarez and Sabatini, 2007). 

 

In the cultures I found an almost 1:1 ratio of mushroom to stubby spines, similar to what has 

been reported for hippocampal cultures before (Boyer et al., 1998). This high fraction of stubby 

synapses is reminiscent of the situation in the immature brain, where the majority of synapses 

is formed on stubby spines, while the adult brain only has a small minority of stubby 

postsynapses (Harris et al., 1992). Thus, the culture likely reflects an intermediate state. 

Because I report a separate model for each class, one can apply it to immature as well as adult 

brains.  

 

Still, even in brain samples there is a high variability of spine morphology, from which my model 

does not differ too much. Therefore, the model I derive here for hippocampal cultures may also 

be applicable to in vivo dendritic spines. At any rate, more parameters of the situation in vivo 

could be derived by comparing Banker cultures to slices, using comparative imaging (Richter 

et al., 2018) 
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Table 11: Comparison of measured spine morphology to previously published cell culture and in vivo data. 

Mean±SD; Data extracted from a(Schikorski and Stevens, 1997), b(Boyer et al., 1998), c(Spacek and Harris, 1997), 

d(Harris and Stevens, 1989) and e(Harris et al., 1992). 

 
This study Cell culture Brain 

Mushroom Stubby combined Mushroom Stubby 

PSD Area [µm²] 0.106±0.06
6 

0.142±0.09
0 

0.028±0.020
a 
 

0,043±0,031
a 

0.48c 

0.069±0.08d 

0,21±0,10e 

0.19c 

0,15±0,09e 

Surface Area 
[µm²] 

1.513±0.74
3 

1.387±0.50
9 

 
2.98c 

0.83±0.63d 

1.50±0.62e 

1.95c 

0,95±0,48e 

Fraction PSD 
of Surface Area 

6.6±1.4% 9.2±3.2% 
 

16.11%c 

8,31%d 

14±3%e 

9.74%c 

16±3%e 

Volume [µm³] 0.189±0.15
8 

0.179±0.10
9 

0.058±0.034
b 
 

0,038±0,036
a 

0.43c 

0.062±0.08d 

0.18±0.09e 

0.24c 

0,11±0,07e 

Vacuole 
volume [µm³] 

1.088±2.10
2 

1.139±1.95
9 

 
0.0093c  

(only spine 
apparatus) 

0.0083c  

(only spine 
apparatus) 
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The quantitative neuronal proteome reveals general regulatory principles 

After investigating the ultrastructure of the spines in culture, I determined the quantitative 

proteome of neurons in culture. To do so, I used a label-free, quantitative mass spectrometry 

approach. This work is the most comprehensive description of postsynaptic copy numbers in 

absolute terms. A landmark study of the mouse brain proteome detected 7792 proteins, 

comprising neurons and glia (Wang et al., 2006). I detected 6194 protein groups, but from a 

pure hippocampal culture. To my knowledge, this is the most comprehensive mass 

spectrometry dataset of this model system to date. This is a significant advance in quantitative 

proteomics of rat neurons, as so far only few neuronal proteins have been counted in absolute 

numbers, most studies rather look at relative changes between treatments. But it is equally 

important to also know the absolute abundance of a protein. This allows us, for example, to 

estimate which concentrations of pharmacological interventions are reasonable, or identify 

which proteins might pose bottle necks for a specific process in the cell. Because the scope of 

this thesis was on the dendritic spine, no detailed analysis on the whole-cell copy numbers 

was performed.  

 

During this study, I tried to estimate several key parameters, such as protein molarity for the 

neurons. This was difficult, because no accurate measurements of the volume of neurons in 

culture are available. I projected the neuron volume to be 5000 µm³, which is on the upper end 

of mammalian cell cultures (Bohil et al., 2006; Cohen and Studzinski, 1967; Krombach et al., 

1997; Luby-Phelps, 2000; PUCK et al., 1956; Zhao et al., 2008). Similarly, the protein 

concentration or molarity of neurons is not known. My calculations are above what one would 

estimate from bacteria or cell culture data (Molarity of 20.35 mM vs 4.98 mM; 2.2 ng per cell 

vs. 0.3 ng/cell; Milo, 2013; Wiśniewski et al., 2014). Again, the morphology of cell cultures or 

bacteria is much simpler than neurons, making this comparison difficult. It is surprising how 

little we still know about the basic morphology of this common model system, and we urgently 

need accurate quantifications for further studies. 

Subcellular copy numbers show a highly skewed distribution 

Using GO analysis, the proteome quickly revealed that the mean and median copy numbers 

differ between subcellular compartments. While nuclear proteins showed the highest mean 

copy number, this was not the case when the median was analyzed. There, mitochondrial 

proteins were significantly higher than any other compartment, which showed similar median 

copy numbers. This reveals several things: 

 

First, all compartments showed a smaller median than mean copy number, indicative of a 

skewed distribution towards higher values (i.e. there are few proteins for each compartment 



297 

that are extremely high abundant, compared to the rest). This was most pronounced in the 

nucleus. Second, several nuclear proteins are known to be present in extremely high numbers, 

such as histones. These were also very abundant in my dataset, and together with the 

cytoskeletal proteins in the nucleus caused this skewedness. Third, the high average copy 

number in the cytoplasm is mainly caused by cytoskeletal proteins, as well as several highly 

abundant membrane proteins, such as VAMP2 and SNAP25.  

 

On the other hand, the higher median for mitochondrial proteins also suggests that fewer 

proteins with low copy numbers are present. I could reliably observe this when analyzing the 

distribution of the proteins, where the lower tail of the mitochondria was decreasing 

continuously. One of the main functions of mitochondria is to produce ATP, they provide 

roughly 93% of ATP in the nervous systems (Harris et al., 2012). To do so, it needs high 

numbers of the involved proteins. Most of the proteins that are within the mitochondria are 

produced in the cytoplasm of the cell first and are then inserted into the mitochondria, with only 

a handful of proteins translated in mitochondria themselves (Dudek et al., 2013). Also, many 

of the proteins within mitochondria interact with each other to form the supercomplexes of the 

respiratory chain. This probably explains why the copy numbers in mitochondria are closer 

together than in the other compartments. Conversely, many different mechanisms are running 

in parallel in the other compartments, which have very different requirements regarding their 

copy number. For example, cytoskeletal proteins need to be present in high amounts to 

regulate the morphology and enable efficient trafficking, whereas receptors can be present at 

low number and still fulfill their function. This causes a higher spread of the distribution, and 

the imbalance in the copy numbers required for the different processes increases the 

skewedness. 

 

Finally, I observed an interesting copy number distribution for ER and Golgi proteins, which 

showed a distinct population of proteins at lower levels, roughly between 103 and 105 copies 

per cell. It would be interesting to study which proteins comprise this population and whether 

they have common functions or protein motifs.  

The copy number decreases with protein size 

I confirmed a weak negative correlation of protein copy number to its size (Mandad et al., 

2018). As possible interpretation lies in the energy efficiency of the cell. As protein synthesis 

is an energy-intensive process, it is highly regulated. Still, proteins do not always fold correctly 

after translation and then need to be degraded again (Chen et al., 2011). The longer a protein 

gets, the higher the lost energy is. Therefore, it is favorable to only produce long proteins when 

they are really needed. Usually, translation is one of the highest energy consuming processes 

in cells, mammalian cells use about 20% of their energy for protein biosynthesis (Rolfe and 



298 

Brown, 1997). This ratio is decreased in neurons, probably because they are postmitotic and 

therefore do not need to reproduce proteins they lost after division. It would therefore be 

interesting to study, whether the correlation of protein size to copy number is higher in dividing 

cells. Another explanation is, that larger proteins have higher chance to accumulate damage. 

Their larger surface exposes them to more potentially hazardous interactions, also leading to 

the observed phenotype. 

The quantitative neuronal proteome as a tool 

Since hippocampal neuronal cultures are extensively used to study neuronal function, this 

database itself is of great interest to the neuroscience community. There are several interesting 

questions that one could investigate, using this dataset: 

Are proteins in the same pathway correlated? 

For the presynapse it has been shown that proteins involved in the same pathway are often 

correlated in their abundance (Wilhelm et al., 2014). It would be interesting to study whether 

this is a common regulatory principle within the whole neuron as well. From the cellular copy 

numbers, one can also estimate which proteins might be potential bottlenecks of a given 

molecular function. Equally, I already set up unsupervised learning algorithms to cluster 

proteins that show similar localization. Following the hypothesis that proteins that show similar 

distributions are involved in the same pathway, these data could for example indicate which 

SNAREs are working together in the dendritic spine. 

What are neuronal copy numbers in other compartments? 

Using the whole-neuron dataset, one can easily extend the calculation of subcellular copy 

numbers to other organelles, as the epifluorescence imaging is fast and could also be 

automatized. Any other sub-compartment that has good markers available could in principle 

be studied. This included the membrane enclosed organelles, such as mitochondria, ER, Golgi 

apparatus or the nucleus. Also, finer structures, such as the axon initial segment could be 

investigated, because my method does not rely on fractionation. 

How strong is the molecular crowding effect in neurons? 

The cytoplasm of cells is very dense with proteins, which influences diffusion, translation, 

chromosome condensation and cell shape (Banks and Fradin, 2005; Miyoshi and Sugimoto, 

2008). This effect was termed ‘molecular crowding’ and its influence on the regulation of 

neurons has not been studied fully. Using my dataset, a general density of the neuron could 

be calculated at high fidelity, enabling an unprecedented view inside cells. Apart from the 

physical barrier proteins can pose, their hydrophobicity can also cause them to form droplet 

like phases (Li et al., 2012; Shin et al., 2017; Zeng et al., 2016). Taking advantage of coarse-
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grained simulations, one could study the formation of these phases and how they influence the 

structuring of the cytosol (McGuffee and Elcock, 2010).  

The dendritic proteome 

Although dendritic spines have been studied for decades, we only have scant reports of 

postsynaptic copy numbers. These mostly encompassed receptors or ion channels studied by 

electrophysiological methods or imaging approaches, both of which are very labor intensive 

(Chen et al., 2005; Nusser et al., 1998; Sabatini and Svoboda, 2000; Sugiyama et al., 2005). 

Several semiquantitative mass spectrometry studies have been published, but they only 

describe relative amounts and often are restricted to PSD fractions (Cheng et al., 2006; Distler 

et al., 2014; Peng et al., 2004b; Schanzenbächer et al., 2016, 2018). As the name implies, this 

fraction is comprised of the PSD core and some postsynaptic membrane clinging to the 

scaffold. The dendritic cytosol or peri- to extrasynaptic membranes are completely missing, 

which is a major limitation of these studies, also revealed by the infrequent reports of 

membrane-associated proteins in the current literature (Collins et al., 2006). This is the reason 

why I used the combination of imaging and mass spectrometry. Still, there are some caveats 

of my analysis: 

 

Because I use the R² of the synaptic region, the copy numbers I report have the highest 

confidence for proteins that are present in the spine head at least to some extent. This limits 

my analysis for proteins that are usually found only in the dendritic shaft, as can be seen from 

the low copy number of TOM20. There are two ways one could address this: One could 

estimate the intensity distribution from the super-resolution images to calculate how much 

protein is in the synapse versus the shaft and extrapolate the shaft copy numbers. 

Alternatively, I already measured the enrichment of synapse to shaft for each protein by 

marking a shaft region during the synapse alignment. This value could also be used to estimate 

the abundance in the shaft.  

 

Proteins that are only present in subpopulations of dendritic spines also show reduced copy 

numbers due to the averaging. For example, several of the calcium binding proteins are known 

to be present in only a fraction of neurons, which, in part, explains their low abundance. This 

is a difficult issue to address. Ideally, one would have an additional marker for these 

populations. As most imaging setups can easily use 4 different colors this would be feasible 

but searching for these subpopulations will increase the imaging time profoundly.  

 

Another interesting phenomenon is the general increase of protein abundance in stubby to 

mushroom class spines (Figure 12C). How does this come about? There are two explanations:   
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First, stubby synapses were larger, with the ratio of the median volumes being 1.34. This is 

already very close to the observed 1.44-fold increased copy numbers in stubby synapses. 

Additionally, the epifluorescence imaging might analyze some additional dendritic shaft volume 

for stubby synapses, but not for mushroom synapses. Synapses on mushroom class spine are 

most of the times sufficiently apart from the dendritic shaft that only the synaptic region plus 

the thin neck is picked up during imaging. The remaining area around the mushroom is usually 

devoid of other cellular structures (except for the associated presynapse). Stubby synapses 

on the other hand are, by definition, very close to the shaft. Therefore, some signal from the 

shaft is picked up, because of the low lateral and axial resolution. Thus, the synaptic copy 

number reported for stubby synapses probably present a slight overestimation.  

 

Intriguingly, postsynaptic copy numbers seem to correlate with their presynaptic counterpart 

(Figure 12B). The postsynaptic proteins showed a general trend to be less abundant than in 

the presynapse. Again, the observed volume differs, with the synaptosome volume being 

2.43 fold larger than the postsynaptic (Wilhelm et al., 2014). Because the slope of the linear 

regression is only 0.72, this suggests that the postsynaptic protein density is higher than the 

presynaptic. Also, I studied hippocampal neurons, whereas the presynaptic numbers were 

derived from cortical synaptosomes, which one should keep in mind for this comparison. 

Probably, the observed correlation is caused by common pathways operating in both 

compartments. For example, microtubules and their associated transport machinery are 

present in both compartments, also endosomal recycling takes place at both sides of the 

synapse. Still, several proteins are specifically enriched in one compartment. For example the 

SNARE proteins responsible for SV release are present in much higher copies in the 

presynapse than they are in the postsynapse, whereas SNAP23, that has been described to 

be mostly postsynaptic, also shows this behavior here (Suh et al., 2010). 
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The Nanomap is a window to dendritic spines at unprecedented detail 

Cytoskeleton and associated proteins 

Actin and tubulin are the main cytoskeleton components. Many studies have shown that actin 

is primarily abundant in the head of mushroom spines, whereas tubulin is rarely invading into 

the spine head and is more prominent in the shaft (Chazeau and Giannone, 2016; Kaech et 

al., 2001). In line with these observations, I found actin to be highly enriched in the head and 

less abundant in the shaft, while tubulin was showing the opposite distribution. Mushroom 

spines showed a higher actin copy number than stubby class synapses, which is most likely 

due to their more elaborate and larger morphology. Because of the averaging, the periodic 

actin structure cannot be identified in the average images anymore. Interestingly, tubulin was 

even more abundant in the average dendritic spines than actin, but I found a much higher copy 

number in stubby class synapses than mushroom spines. This is probably due to the more 

shaft-like morphology of stubby synapses and in line with the observation, that tubulin is not 

often invading into mushroom spines (Jaworski et al., 2009). Surprisingly, I did not detect β-3-

tubulin to be present in the spines, due to its negative correlation with Homer1. This suggests 

that this specific tubulin isoform is excluded from the spines and not present on the dynamic 

microtubules invading the PSD.  

 

The other important structural elements are intermediate filaments, consisting of the 

Neurofilament light, medium and heavy chain triplet, as well as α-internexin. They have 

been largely thought to be presynaptic, but lately also postsynaptic functions have been 

identified (Jordan et al., 2004; Yuan et al., 2015a). In my work I did only detect low amounts of 

the neurofilaments, which were mostly present in non-PSD areas. These low amounts make 

the proposed lattice of α-internexin with tubulin in the PSD unlikely (Suzuki et al., 2018). The 

high standard error comes from the fact, that the distribution correlation of α-internexin with 

Homer was centered around 0. This means that several synapses do not contain α-internexin 

at all and also explains why neurofilaments have been often difficult to detect in the 

postsynapse. The lower abundance of Neurofilament H, in comparison with Neurofilament L, 

is in agreement with its late expression that mostly starts in postnatal stages (Benson et al., 

1996; Shaw and Weber, 1982). 

 

Drebrin, β-2-spectrin and Cortactin are actin associated proteins. Drebrin mirrored the 

distribution of actin very well, showing a high enrichment in the PSD areas. It is present in high 

amounts in a 1:6 ratio to actin, which is very close to the reported 1:5 ratio reported from in 

vitro studies (Ishikawa et al., 1994). Therefore, most actin is probably bound by drebrin in 

dendritic spines, with the remaining actin molecules either being free actin, or interacting with 
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other actin-binding proteins. The typical actin rings that shape the morphology of the dendritic 

shaft and neck use β-2-spectrin as spacers (Bär et al., 2016; Sidenstein et al., 2016; Xu et al., 

2013). I found it to be mostly localized to the neck and shaft regions as well, but surprisingly it 

was present in very low numbers in the synapse only. This is most likely because the rings are 

largely absent from the spine head, which I use for the calculation of the copy numbers (Bär 

et al., 2016). Finally, Cortactin showed a very unspecific signal, with a de-enrichment in the 

PSD areas. This is in contrast to the studies by MacGillavry and colleagues, which found it to 

be highly enriched in the PSD (MacGillavry et al., 2016). Taking the low quality of my Cortactin 

images into account, my antibody, which differs from the one used by MacGillavry and 

colleagues, is probably less specific. 

 

MAP2 showed a similar distribution as its interaction partner, the tubulins, being mostly present 

in the shaft areas. It also showed a complementary distribution across synapse classes, with 

more MAP2 being present in stubby class synapses than in mushroom spines. However, its 

low abundance for a cytoskeleton-associated protein makes it difficult to assess its role in the 

synapse. The stabilization of microtubules seems not to play a high role in dendritic spines, 

which is in line with the observation that only dynamic microtubules enter spines, whereas the 

stable bundles are mostly in the shaft (Jaworski et al., 2009; Kaech et al., 2001; Landis and 

Reese, 1983).  

 

The motor protein Myosin5a, which acts along actin filaments, localized primarily to 

perisynaptic regions. This localization was similar to these of the ER-resident proteins ERp72, 

Calretinin and Calreticulin, which is in agreement with its role to position the ER in the synapse 

(Miyata et al., 2000; Rudolf et al., 2011). It was present in large amounts, with almost double 

the amount in stubby class synapses than in mushroom class synapses. This suggests a much 

higher volume of transport happening in stubby class synapses, probably because the synapse 

is still under development.  

 

Finally, Septin7 has been reported to control the diffusion across the spine neck by forming 

arc- or ring-like domains on the base of the neck (Ewers et al., 2014; Kinoshita et al., 2002). 

According to this function, I observe it to be mostly localized to the neck regions. I also found 

it to be present in perisynaptic regions, which is probably because of its regulation of PSD95 

(Yadav et al., 2017). Again, its low abundance makes it difficult to assess to what extent the 

proposed rings are really able to limit the diffusion across the neck membrane. Maybe it acts 

hand in hand with actin to fulfill its function. 
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Scaffold proteins 

As expected, all scaffold proteins were highly enriched in the PSD, with only DLGAP1 showing 

an actual decrease in enrichment in the PSD, compared to the average localization. This was 

true mostly for the mushroom class synapses, which also show an increased distance of 

DLGAP1 spots to the PSD compared with the other scaffold proteins.  

 

Shank2 was not as specifically localized to the PSD as the other Shank isoforms. It also shows 

distinct populations with higher distance to the PSD, a low eccentricity and high laterality. This 

suggests that it has an additional hotspot at the bottom of the spine head. As it interacts with 

the cytoskeleton, it might be involved in the formation and stability of the head to neck junction, 

or it might position specific molecules there. 

 

All of the scaffold proteins showed a spot diameter close to 80 nm, corroborating the recently 

discovered nanomodule organization of postsynapses (Broadhead et al., 2016; Hruska et al., 

2018; MacGillavry et al., 2013). In addition, I observed similar protein numbers between 

mushroom and stubby class spines, further supporting a modular organization of synapses. 

 

In several works, it was proposed that the PSD is layered, with PSD95 being at the top, 

DLGAP1 beneath it, followed by Shank and Homer proteins (Dani et al., 2010; Valtschanoff 

and Weinberg, 2001). Comparing their average distribution, I could see that Shank is indeed 

lower than PSD95, but Homer1 was in between both proteins. This is more in line with other 

observations using immunogold EM, which find Homer1 to be very central and close to the 

PSD (Tao-Cheng et al., 2014). Because the localization of DLGAP1 was not as specific as for 

the other proteins, a comparison is difficult, although it seems that there is at least a pool of 

DLGAP1 proteins in between PSD95 and Shank.  

 



304 

 

Figure 132: Observed layering of the PSD. Shank1 was found below PSD95, Homer1 was similarly distributed 

as PSD95, albeit being more central. The position of DLGAP1 was not as specific as for the other proteins. Scale 

bar 500 nm.  

For the formation of the mesh of Homer1b and Shank1, a ratio of 1:1 is optimal (Hayashi et 

al., 2009). In my data, I observe roughly 6x more Homer1 than Shank1 proteins 

(686.35 ± 200.68 Homer1 vs. 112.21 ± 5.14 Shank1). Other works focusing on isolated PSDs 

did find lower numbers, probably an effect of the fractionation (Cheng et al., 2006; Lowenthal 

et al., 2015; Peng et al., 2004c), whereas the only other paper reporting copy numbers from 

intact spines is close to my data (Sugiyama et al., 2005). However, the mesh is formed only 

by the isoform Homer1b, whereas Homer1a is actually inhibiting the formation of the mesh 

(Hayashi et al., 2009). Since I do not discriminate between these isoforms, I cannot conclude 

whether the proteins do indeed exist in the optimal ratio.  

Recently, a trans-synaptic nanocolumn was described, that aligns presynaptic release sites 

with postsynaptic receptor complexes, involving PSD95 and RIM1 (Tang et al., 2016). Despite 

the fact, that they are organized together, there is not direct correlation of their copy numbers 

(38.63 ± 4.23 RIM1 proteins vs. 299.10 ± 67.48 PSD95 proteins; RIM1 number from Wilhelm 

et al., 2014). 
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Receptors 

Dopamine receptor types showed differing localization pattern. In accordance with published 

data, I found the Dopamine D1 receptor to be mostly extrasynaptic, whereas the D2 receptor 

was also found on the head (Garzón et al., 2013; Ladepeche et al., 2013a). There, it was 

present mostly on perisynaptic regions. Unfortunately, I could not detect any of the dopamine 

receptors in the mass spectrometry, either because they ionize poorly, as is often the case for 

membrane proteins, or they are only very sparsely present in the hippocampus. 

 

The AMPA receptors GluR1 and GluR2 were both found mostly central on the PSD, with 

another population in extrasynaptic regions, whereas GluR3 was only found extrasynaptically. 

The second pool is most likely AMPAR not bound by PSD proteins or AMPAR on endosomes, 

since AMPAR are highly mobile in the dendritic membrane and they, especially GluR3, are 

also cycled (Borgdorff and Choquet, 2002; Passafaro et al., 2001). Using the synaptic copy 

numbers, I calculated that an average synapse contains ~46 assembled AMPAR tetramers, 

with GluR2 being the dominant subunit. This is in line with other studies using cell culture or 

tissue (Antal et al., 2008; Cheng et al., 2006; Masugi-Tokita et al., 2007; Nusser et al., 1998; 

Tanaka et al., 2005), and the observation that spines contain -4 postsynaptic nanodomains, 

which each contain 20-25 receptors (Broadhead et al., 2016; Compans et al., 2016; Hruska et 

al., 2018; Levet et al., 2015; Nair et al., 2013). Neuroproteomic data using isolated PSDs report 

lower numbers (Cheng et al., 2006; Peng et al., 2004a). The lower number in neuroproteomic 

data is caused by the subcellular fractionation for PSDs, which loses all diffusing or trafficking 

receptors (Carlin et al., 1980). 

 

For NMDA receptors, GluN2B was very specifically present at the very center of the PSD, 

whereas GluN2A was much more dispersed. The current literature is not clear on whether 

GluN2A or GluN2B are more central in the PSD, with two studies reporting central GluNA2 in 

vivo (Shinohara et al., 2008; Zhang and Diamond, 2009), whereas two other in vitro studies 

report a central GluN2B localization (Dani et al., 2010; MacGillavry et al., 2013). I also 

observed that GluN2B is present in higher numbers than GluN2A on postsynapses. As GluN2B 

is the dominant prenatal isoform of the GluN2 family, this shows that the cell culture has not 

undergone the GluN2B/GluN2A switch, suggesting a network in a prenatal, or early postnatal 

stage (Sheng et al., 1994b). This also suggests that the nanoscale localization of GluN2A and 

GluN2B interchange during the switch. The subunit GluN1 showed a more homogenous 

localization on the head. As GluN1 is present in all assembled NMDA receptors, this is 

probably reflecting the combined localization of GluN2A and GluN2B.  
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Kainate receptor and the metabotropic glutamate receptors were localized on the PSD for 

mushroom class synapses, whereas they were mostly perisynaptic on stubby synapses. 

Probably, metabotropic signaling is not as important for these classes of synapses, maybe 

because they are not fully mature yet. This is also reflected by the low PSD enrichment of 

GluR2 in stubby synapses.  

 

The neurotrophin receptors LNGFR and TrkB showed a differential localization, with 

LNGFR being within the PSD, whereas TrkB was positioned mostly on peri- and extrasynaptic 

regions. This is an interesting phenomenon, because LNGFR has much lower affinity for all 

four neurotrophins, while LNGFR has high affinity for BDNF and neurotrophin 4, but not the 

others (Leal et al., 2015). The central localization of LNGFR might make up for some of its lack 

of binding specificity, as the concentration of the release neurotrophins is higher in the synaptic 

cleft than in the areas surrounding the spine. TrkB was detected at very low copy numbers and 

LNGFR was not detected at all in the mass spectrometric analysis. This suggests either a low 

abundance of these receptors in hippocampal cultures, or a bad ionization of the peptides, 

which is a common problem of transmembrane proteins. IGF1R showed a similar distribution 

as TrkB but could also not be quantified. I am currently performing quantitative WB 

experiments to calculate the copy numbers of both missing growth factor receptors in my 

cultures. 

 

Finally, mAChR1 was present in very low copies, which localized to the center of mushroom 

class synapses, whereas this was less pronounced in stubby class synapses. Acetylcholine 

probably plays a minor role in cultures though, as I did not detect any vAChT, suggesting that 

there is actually very little to none cholinergic signaling happening in the cultures. This is 

probably different in vivo as there are cholinergic neurons enervating the hippocampus as well. 

These are probably cut away and their axons die during the culture preparation, which explains 

the missing vAChT signal, whereas the postsynaptic neurons are retained. 
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Ion Channels 

Without ion channels neurons would not be able to propagate their signals. Whereas 

presynaptic channels are well studied, postsynaptic ion channels are less well understood. 

Because there is a huge family of possible postsynaptic ion channels I focused on a few 

isoforms of each category. 

 

Calcium channels are an important entry point for calcium in the postsynapse, besides 

NMDAR, calcium-permeable AMPAR and intracellular calcium stores. I did find the channel 

subunit Cav1.3 to be enriched in the center of the PSD for both synapse classes. This is 

probably due to its interaction with Shank proteins. Unfortunately, it was not picked up in the 

mass spectrometric analysis, most likely because membrane proteins are inherently difficult to 

ionize and thus are not often detected. I am currently performing quantitative western blotting 

to as an alternative route to estimating its postsynaptic copy number. The subunit Cav2.1 did 

not show a very specific enrichment, except for an absence in the PSD of mushroom class 

synapses. On the other hand, it was very lowly abundant, with a copy number of only 6.11 per 

PSD. It is currently estimated that a spine contains a total of 1-20 VGCCs, with the calcium 

signal being dominated by R type channels (Sabatini and Svoboda, 2000). Therefore, a low 

number of Cav2.1, a P-Q channel, is not very surprising, although it has been implicated to be 

involved in LTP. Maybe it exerts its function more on the shaft, which was not studied in detail 

here. 

 

Potassium channels are the driving force for the negative resting potential of neurons, which 

is maintained by inwardly rectifying channels. The Kir2.1 and Kv1.1 rectifiers were located at 

the center of the PSD, which is in line with their interaction with PSD95 (Fomina et al., 2011; 

Frank et al., 2016; Kim et al., 1995). The Kv2.1 on the other hand was very sparse at the PSD. 

Its reported presence at the soma, and its low abundance in spines reported here match very 

well. Kv2.1 is present in two distinct subpopulations, large clusters of 1-2 µm diameter that are 

non-conduction, or single, conducting channels (Misonou et al., 2005; Murakoshi and Trimmer, 

1999). I only observed small spots on the dendrites, showing that only the conducting single 

channels are present there. Surprisingly, only a few hundred Kv2.1channels are present on the 

whole neuron, which is at odds with its reported function as the dominant delayed rectifier in 

the hippocampus (Murakoshi and Trimmer, 1999). Probably its distinct and specific localization 

to the soma enables it to fulfill this function even at low numbers. 

 

Sodium channels are the main depolarizing channels in the axon during action potentials. 

Their role in dendrites is controversial. For a long time, it has been thought that signal 

propagation in dendrites is only electrotonic, but the discovery of dendritic spikes changed this 



308 

(Hausser et al., 2000). By now, several postsynaptic sodium channels have been reported, 

albeit at much lower density than in the axon (Lorincz and Nusser, 2010). I found the subunits 

Nav1.1 and Nav1.3. as well as Na β 1 to be present mostly at the base of synapses. Nav1.1 

was much more abundant than Nav1.3, congruent with its reported high expression (Goldin, 

1999), while Nav1.3 showed a very low copy number. Interestingly, Na β 1 is even more 

abundant. Its localization to the same regions as the other sodium channel subunits suggests 

that it mainly acts as a modulator of sodium channel function, not as an adhesion molecule 

here, but the high copy number makes it likely that there are additional sodium channel 

subunits. One candidate is Nav1.6, which has already been reported to be present on 

postsynapses (Lorincz and Nusser, 2010). 
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Signaling proteins 

Within dendritic spines a complex signaling machinery is essential to appropriately respond to 

the binding of glutamate to its receptors. Especially calcium signaling is essential for synaptic 

plasticity. To elucidate the function of these machineries I studied several key regulators, but 

these can only by the start of a complete understanding of the signaling happening in the 

postsynapse. 

 

The Akt pathway is involved in many different functions throughout different tissues (Kennedy 

et al., 1997, 1999). In spines it is, among others, involved in the regulated expression of 

AMPAR (Gobert et al., 2008; Karpova et al., 2006; Man et al., 2003; Pen et al., 2016; Qin et 

al., 2005). I found it to be localized primarily to shaft regions, where also its target proteins of 

the translation machinery are found. This is also in line with another immunogold EM study, 

that found it primarily in the dendritic shaft (Znamensky et al., 2003). Interestingly, it was 

present in low copy numbers only, but this might be enough to exert its effect as a kinase. 

 

APP is the precursor of Aβ, one critical protein of Alzheimer’s disease. It was not enriched in 

the PSD but was more present in the mushroom head than in the shaft. For Stubby synapses, 

the distribution was more ubiquitous. Interestingly, it was present at much lower copies than in 

the presynapse (47.28±11.33 vs 6283.6± 584.51;Wilhelm et al., 2014), but other super 

resolution studies have shown that APP often colocalizes with SV, which might explain the 

predominant presynaptic localization (Groemer et al., 2011).  

 

Many different calcium-binding proteins have been described in dendritic spines. The most 

important one is calmodulin, which has over 100 target proteins (Xia and Storm, 2005). It was 

enriched in perisynaptic regions. In the membrane areas, it is most likely in the calcium 

unbound form and interacts with Neurogranin (Baudier et al., 1991; Prichard et al., 1999). The 

interaction with PSD95 is only transient and keeps it at perisynaptic sites, which explains why 

I did not detect it at the center of the PSD in my images (Chowdhury et al., 2017). Calmodulin 

was also the most abundant calcium binding protein I detected, which is in agreement with its 

central role for calcium signaling in dendritic spines. Calbindin and Calretinin are present on 

only a subset of excitatory hippocampal neurons (Villa et al., 1994). They were mainly localized 

to the lower head or extrasynaptic regions, which is further away from the calcium entry points 

than other calcium binders, such as CaMKII or calmodulin. Also, their copy numbers are very 

low for calcium-binding proteins. Therefore, they most likely play a minor role in calcium 

signaling. 
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CaMKII is the central kinase of dendritic spines with numerous targets and among the most 

abundant proteins in the brain and the synapse (Hell, 2014). As expected, it was positioned 

close to the PSD, an effect that was particularly dramatic in stubby synapses. Some studies 

have shown an interaction of CaMKII with microtubules, which are more abundant in stubby 

class synapses and might explain this phenomenon. Also, CaMKII is subject to dynamic 

relocalization when it is phosphorylated and some studies have shown binding of CaMKII to 

microtubules and MAP2 in its phosphorylated form (Baratier et al., 2006; Baudier and Cole, 

1987; Lemieux et al., 2012; Schulman, 1984). Since the antibody I use is specific for the 

phosphorylated form this might be the reason why I see CaMKII also in perisynaptic regions in 

mushroom spines, as microtubules are rarely reaching close to the PSD (Kaech et al., 2001; 

Landis and Reese, 1983). 

As expected, CaMKII is among the most abundant postsynaptic proteins. It makes up 4.43% 

of the mushroom protein content, and 4.69% of the flat class protein content, which is in 

agreement with other studies, showing that CaMKII constitutes 2-6% of the total spine protein 

(Chen et al., 2005). In both spine classes, it was present at a molarity of approximately 300 µM, 

which is higher than previously reported values using fluorescence microscopy (138µM, 

Otmakhov and Lisman, 2012). This discrepancy of might be explained by the two different 

methods used. Otmakhov and colleagues used two-photon microscopy and selected circular 

ROIs over the spine head, which probably also include regions outside the spine head. This 

might lead to an underestimation of the copy number. 

 

The neurotrophin BDNF is essential for the proper development of the brain (Leal et al., 2015). 

In my study it did not show a specific enrichment to a region within the dendritic spine and it 

was present only at low numbers. Although BDNF signaling is present in axons as well as 

dendrites of the hippocampus (Adachi et al., 2005; Kohara et al., 2001; Matsuda et al., 2009), 

BDNF containing vesicles are only rarely detected in dendrites (Cooney et al., 2002; Harward 

et al., 2016) and super-resolution microscopy found that most of these vesicles are presynaptic 

(Andreska et al., 2014). Therefore, a minority of dendritic spines probably contains BDNF 

granules, which then also will have higher copy numbers. Also, BDNF is a very potent signaling 

molecule that can even act in an autocrine fashion, so even the release of few molecules is 

probably enough to bind its target receptors (Harward et al., 2016). 

 

The core of secretory granules consists of proteins of the Chromogranin/Secretogranin 

family and their exocytosis involves CAPS1. Chromogranin A and B show similar distribution, 

ubiquitous distribution and low abundance, in agreement with the low number of secretory 

granules in dendrites (Cooney et al., 2002). On the other hand, Secretogranin II is enriched at 

the PSD of mushroom spines and is present in much higher copy numbers. As they are cleaved 
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into different hormones, this suggests that Secretogranin II mediated signaling is more 

pronounced in hippocampal neurons than Chromogranin mediated signaling. CAPS1 mimics 

the distribution of Secretogranin II, suggesting that it is preferentially associated with these 

vesicles as well. 

 

CDC42 is one of the actin regulating GTPases in the dendritic spine. I found it mostly in the 

spine head and neck for mushroom synapses, whereas it showed a ubiquitous distribution 

outside the PSD of stubby synapses. It was present in fairly high copy numbers, but the actin 

cytoskeleton of spines is also very high, which might necessitate also high copy numbers of 

its regulating proteins. 

 

The neuronal NO synthetase was positioned within the PSD of both synapse classes, 

through its interactions with PSD95 and NMDAR (Aarts et al., 2002; Aoki et al., 1997). This 

positioning is crucial for its function, as the produced NO diffuses in all directions and also 

across membrane barriers. In order to reach its targets, for example NMDAR, or to act as an 

efficient retrograde signal to the presynapse (Bon and Garthwaite, 2003), it needs to be close 

to these locations. 
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Trafficking proteins 

Within dendritic spines, many different compartments exist, which necessitates highly 

regulated trafficking. In this study I analyzed the essential parts of the classical clathrin-

mediated endocytosis pathway and determined the position of the different endosomal 

compartments. 

 

The exact location of endocytosis on the postsynapse is currently under debate. Several 

groups have found endocytic zones adjacent to the PSD (Blanpied et al., 2002; Lu et al., 2007; 

Rácz et al., 2004; Rosendale et al., 2017), whereas others hypothesize that endocytosis takes 

place at the base of the spine (Cooney et al., 2002; Tao-Cheng et al., 2011). In my work, I 

found the endocytic machinery (AP180, Clathrin, Dynamin) localized mostly at the perisynaptic 

regions in mushroom spines, corroborating endocytic zones close to the PSD. This was less 

pronounced for the stubby class synapses.  

 

The clathrin molecules are the key proteins for clathrin-mediated endocytosis. They form 

triskelia in a 1:1 ratio of heavy and light chain (Ungewickell and Branton, 1981), my 

postsynaptic copy numbers are not exactly matching this, showing 3x more light chain 

molecules than heavy chain. This mismatch is not due to my analysis, as clathrin light chains 

are more abundant in the whole cell in general (61754332.85 ± 7545013.76 vs 9863953.46 ± 

1883721.98). Because clathrin heavy chains alone can already form assemblies, it has been 

hypothesized that the light chains act as regulators of the coat assembly (Ybe et al., 1998). 

Maybe they need to be present in larger quantities to fulfill this function. 

To investigate the maximally possible, simultaneous endocytosis events, I used the mean of 

the two copy numbers, which is 9122.65 for mushroom class spines and 12500.47 for stubby 

spines. Roughly 165 clathrin molecules are needed for the endocytosis of a vesicle (Cheng et 

al., 2007; McMahon and Boucrot, 2011), which yields a total of 55 simultaneous events in 

mushroom spines, and 76 events in stubby spines. As the postsynapse does not have as high 

recycling demands as the presynapse, this is most likely not a bottle neck for endocytosis. 

 

Similarly, dynamin is the GTPase responsible for pinching off the endocytosed structures from 

the PM (Takei et al., 1996). To fulfill this function, at least 52 molecules are needed (Shnyrova 

et al., 2013), which results in a maximum of a maximum of 37 events in mushroom spines and 

43 events in stubby spines. Although this is less than the maximum events possible from 

clathrin, it still does not pose a significant bottleneck to endocytosis, as we never observed 

above 10 endosomes or vesicles in one spine (Figure 9). 
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Surprisingly, the clathrin uncoating ATPase HSC70 was not colocalized with clathrin on 

average, but rather showed an opposite distribution. It was preferentially located to the PSD, 

especially in stubby synapses. Because the postsynapse has less endocytic events than the 

presynapse, HSC70 might also perform other functions there, which is also exemplified by its 

lower copy number in the postsynapse (8210.1 ± 404.50 vs 50.48 ± 13.52). Given its 

localization it maybe acts more as a chaperone for receptors or scaffold proteins, to ensure 

that they are always properly folded.  

 

The two GRIP proteins control AMPAR trafficking, GRIP1 promotes AMPAR cycling, whereas 

GRIP2 inhibits it (Hanley and Henley, 2010). Because the antibody does recognize both 

proteins, inferring function from the observed localization is difficult, but I observed an 

avoidance of the PSD. While initially GRIP was thought to stabilize AMPAR at the PSD (Dong 

et al., 1997, 1999), several studies now showed that GRIP proteins rather control the cycling 

of AMPAR containing vesicles (Braithwaite et al., 2002; Hanley and Henley, 2010). Therefore, 

the localization in more perisynaptic regions makes sense, as this is where GluR2, the AMPAR 

subunit bound by GRIP, vesicles are mostly found (Hussain et al., 2015). 

 

Rab proteins control the trafficking of endosomal compartments and are used as markers for 

their function. Rab3 is found mostly on SVs and neuroendocrine vesicles. In mushroom class 

synapses, it was found mostly at lower regions of the head, or at the base of synapses, 

whereas it was more central in stubby synapses. Assuming that Rab3 is on neuroendocrine 

vesicles, this would suggest that stubby class synapses are undergoing more retrograde 

signaling than mushroom synapses. Because the localization of Rab3 does not match those 

of BDNF or the Chromogranins, it is probably not present on the same vesicles though. 

 

Both Rab4 and Rab5 are involved in basal AMPAR trafficking. I found both to be present 

mostly the head regions, with Rab4 being closer to the PSD. This fits well with the normal 

AMPAR recycling pathway, which is Rab5 to Rab4 (and then sometimes Rab11) endosomes, 

followed by exocytosis (Hausser and Schlett, 2017).  

 

Rab9 marked endosomes are responsible for endosome to TGN trafficking. In dendritic spines, 

the spine apparatus is probably the destination organelle for these endosomes, which is often 

found more distant to the PSD (Spacek and Harris, 1997). In agreement with this, Rab9 

organelles were found more in the lower head regions of mushroom classes, or on the shaft. 

 

Concomitantly, recycling endosomes marked by Rab11 were found both inside the head as 

well on the shaft. As endosomal recycling is not only taking place for receptor molecules, it is 
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very reasonable that recycling endosomes are also present at both locations. In fact, Rab11 

has been shown to be part of the AMPAR and TrkB recycling pathway, and its localization 

matches well with these function (Brown et al., 2007; Huang et al., 2013; Lazo et al., 2013). 
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SNAREs and associated proteins 

SNARE proteins are essential for intracellular transport and trafficking. In this study, I analyzed 

almost all SNAREs present in the rat, which is, to my knowledge, the most comprehensive, 

simultaneous description in dendritic spines to date. Because the full biosynthetic pathway, 

with all involved organelles, is present in the postsynapse, the trafficking from one to the other 

needs to be happening as well (Cooney et al., 2002; Horton et al., 2005; Spacek and Harris, 

1997). It is therefore not unsurprising, that I found a high number of SNAREs also to be present 

postsynaptically. This postsynaptic function of SNARE proteins is now started to getting 

appreciated by several research groups, mainly studying the trafficking of receptors and 

retrograde signaling (Arendt et al., 2015; Gu and Huganir, 2016; Gu et al., 2016b; Jurado et 

al., 2013; Kennedy and Ehlers, 2011; Suh et al., 2010).  

 

All SNAREs were mostly localized to the more caudal lateral regions of the head for mushroom 

spines, or peri- and extrasynaptic regions for both classes. Exceptions include SNAP47, 

VAMP1 and Syntaxin6 in mushroom class spines, as well as VAMP7 in stubby synapses. The 

mostly peri- or extrasynaptic localization of SNARE proteins is in line with their presence on 

various intracellular organelles, like endosomes, ER, Golgi, which I also found predominantly 

in the shaft (Hong, 2005; Koerbs, 2017; Salimi, 2017). Because the distribution of the SNARE 

proteins is so similar, it is difficult to draw conclusions on their endosomal compartment or 

function in the postsynapse. This is even exacerbated by the fact, that I analyze the average 

of several hundred spines for each SNARE, because trafficking is an inherently dynamic 

process. Therefore, detailed studies focusing on specific SNAREs are needed to determine 

their specific function.  

 

Since SNAP47 is involved in the insertion of AMPAR into the PM during LTP (Jurado et al., 

2013), its localization right to the PSD is probably to facilitate a fast insertion once LTP is 

triggered. This has also been observed using immunogold EM (Münster-Wandowski et al., 

2017). For a few other SNARE proteins, their postsynaptic localization was also determined 

using immunogold EM. Interestingly, SNAP47 showed an almost 1:1:1 stoichiometry with 

Synaptotagmin7 and Syntaxin3, both of which are also involved in AMPAR exocytosis during 

LTP (Jurado et al., 2013; Wu et al., 2017). This strongly suggests that they are all present on 

the same vesicles. The low copy number of all three proteins also indicates that the pool of 

AMPAR containing vesicles is very small, which also might explain why they are so difficult to 

detect in EM (Hussain and Davanger, 2015). It is difficult to answer the question whether 

SNARE proteins working together are in general present in correlated copy numbers, because 

they often take part in multiple fusion steps. 
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I did reproduce the lateral localization of Syntaxin4 and SNAP23 (Kennedy et al., 2010; Suh 

et al., 2010), whereas I did not detect VAMP2 to be enriched close to the PSD (Hussain and 

Davanger, 2015). The enrichment close to the PSD might be masked by the location of 

endosomes of constitutively trafficking AMPAR, because VAMP2 is involved in AMPAR 

delivery during basal activity and LTP (Jurado et al., 2013). 

 

Looking at the copy numbers of postsynaptic SNAREs, VAMP2 sticks out as the most 

abundant postsynaptic SNARE. Its copy number is almost double than the next SNARE 

protein, SNAP23. A similar situation can be observed in the presynapse, although with 

SNAP25 as the second most abundant protein (Wilhelm et al., 2014). There, it is suggested 

that the high abundance of exocytotic SNAREs is to ensure fast SV release. Because AMPAR 

containing vesicles and endosomes are not as frequent as presynaptic SV (Hussain and 

Davanger, 2015), the high postsynaptic copy number cannot be explained just by the fact that 

the AMPAR release needs to be fast for LTP. Therefore, VAMP2 is either so abundant because 

it is involved in other, yet unknown trafficking steps, or because of the complicated control of 

its localization. It has been shown that VAMP2 is first trafficked to both axon and dendrite. In 

the dendrite, it is then selectively endocytosed again, whereas it is retained in the axon 

(Pennuto et al., 2003; Sampo et al., 2003). The fact that VAMP2 is among the top 10 most 

abundant proteins for the whole neuron make it likely that this initial unpolarized transport 

results in the high observed copy number in dendritic spines. 

 

Synaptotagmins showed a differential distribution within spines. While Synaptotagmin4 was 

not present directly at the PSD, Synaptotagmin5 and especially Synaptotagmin7 were 

enriched there in mushroom spines (whereas all isoforms where not present at PSDs in stubby 

synapses). Synaptotagmin 7 shows a similar distribution as SNAP47, both of which are 

involved in regulated AMPAR exocytosis during LTP (Jurado et al., 2013; Wu et al., 2017). As 

mentioned above, this, together with their highly similar copy numbers, suggests that they are 

located on the same vesicles. The other isoforms, Synaptotagmin 4 and 5, are both implicated 

in LDCV release, which has slow release kinetics (Kennedy and Ehlers, 2011; Ohnuma et al., 

2001; Saegusa et al., 2002; Yoshihara et al., 2005). The localization to extrasynaptic areas 

might explain this delay in release, as the vesicles need to be transported to the PSD before 

they are released. The fact, that all three isoforms are not enriched in stubby class synapses 

also suggests that they do not employ LDCV or retrograde signaling. 

 

Alpha/beta SNAP and NSF showed a strikingly similar distribution in mushroom class 

synapses, concurrent with their collective function. They were both enriched in the PSD, as 

well as the lower lateral cytosol of the head. As these are probably the two main release sites 
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of dendritic spines (Kennedy and Ehlers, 2011), the disassembly machinery is also located at 

both sites to ensure a fast replenishment of functional SNAREs. This is underscored by the 

fact that they are also relatively high abundant, compared with most SNARE proteins.  
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Organelle proteins 

The Dendrite and dendritic spines possess many different organelles, some specific to this 

region, like Golgi outposts or the spine apparatus. To elucidate the position of these organelles 

in my model, I localized them using specific markers. 

 

Calreticulin is an abundant ER resident protein. I found it to be localized mainly to the neck 

and shaft regions, which is in agreement with the localization of the SER in dendrites (Spacek 

and Harris, 1997). Interestingly, there was also a peak at the PSD, which might be indicative 

of spine apparati. These are found in the head regions, but only in a subset of mushroom 

spines. In agreement with this, this peak was absent in the Stubby class synapses. The copy 

number of Calreticulin was much higher in Stubby synapses, which again suggests a higher 

presence of ER tubules there. Using a total calcium concentration in the ER of 1 mM and the 

volume of the ER at the spines (Michalak et al., 2009), the molar ratio of calcium to calreticulin 

is at 2.5:1 for mushroom class spines and 1:1 for stubby synapses. Since calreticulin is able 

to bind up to 25 mol of calcium per mol of protein, the concentration of calreticulin is sufficiently 

high to efficiently buffer the ER luminal calcium, in agreement with the reports that over 50% 

of ER luminal calcium is bound by calreticulin (Nakamura et al., 2001). 

 

ERp72 is another ER luminal protein, that acts as a protein disulfide isomerase (Rupp et al., 

1994). It showed a different localization than calreticulin, being enriched in the lower parts of 

the mushroom head. Maybe it is present in smooth ER, that sometimes invaginates into the 

neck, where it could be involved in protein quality control. The reported low copy number 

makes an important function unlikely though. Since there are many other PDI proteins present 

in mammals, other proteins of this class might be more important in dendritic spines.  

 

Ribosomes are also present in the dendrite, where local translation is happening. They have 

often been reported to be mainly localized to the base of the dendritic neck, where they form 

rough ER, or sometimes also in the head as free polyribosomes. Especially after LTP, they are 

thought to redistribute into the head (Bourne et al., 2007; Ostroff et al., 2002; Steward and 

Levy, 1982; Steward and Reeves, 1988). I used three different ribosomal proteins as markers 

for their localization, one of the 40S subunit (Rpl7a) and two of the 60S subunit (Rps3 and 

Rps6). All three of them showed a similar distribution, which showed a slight trend to localize 

at the dendritic shaft. The number of the different ribosomal proteins were highly variable, as 

exemplified by the high SEM of both quantified proteins. Together with the finding that the 

composition of ribosomal proteins on the ribosome differs between functional states makes an 

assessment difficult. The high number of Rps6 make an efficient translation likely though. 
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The trans-golgi marker TGN38 was mainly localized to the lower head regions of mushrooms, 

as well as the dendritic shaft, which is consistent with the localization of golgi outposts (Gardiol 

et al., 1999; Zhou et al., 2014). On the other hand, it’s very low copy number indicate that it is 

not very important for the local trafficking in dendrites. 

 

Mitochondria are an important source of ATP and usually found in the dendritic shaft, where 

they also localize in my data (Bourne and Harris, 2008). My calculated copy numbers for 

TOM20 are relatively low, which is most likely because of their localization further away from 

the synapse. 
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Synaptic scaling influences the molecular composition 

Having measured the molecular architecture of dendritic spines, I wanted to see how much it 

changes during activity. To this end, I used homeostatic plasticity to investigate the quantitative 

changes for key proteins during synaptic scaling. Surprisingly, the overall morphology of the 

dendritic spines, as measured by the spine class frequencies, did show few changes. Only 

CQNX+AP5 treatment induced a decrease in mushroom spines, with an increase in ‘other’ 

spines. These other spines are mostly composed of strong homer signal at the base of 

mushroom spines or filopodia. Contrary to TTX, where spontaneous release is still possible, 

and therefore synapses participate in limited signaling, CNQX+AP5 completely block 

glutamatergic transmission. This deprivation might cause mushroom spines to deteriorate and 

pull back into the dendritic shaft. At the same time, the neuron is looking for input and tries to 

form new synapses. An interesting hypothesis explaining the phenotype is that mushroom 

spines do indeed pull back into the dendritic shaft, bringing their PSD with them. They then 

start looking for new input, probably forming filopodia, with the PSD still at their base.  

 

Like the morphology, I found the molecular composition of dendritic spines to be rather stable 

during homeostatic plasticity. In turn, this means that my previous quantification of the dendritic 

spines at resting conditions is applicable to many different culturing conditions. In the following, 

I will discuss the differences during the treatments, where I found them.  

 

First, the actin cytoskeleton that shapes dendritic spines, was decreased when network 

activity was increased and vice versa. As the changes in network activity were long, chronic 

treatment, this is not due to an acute rearrangement of the cytoskeleton. Rather, it suggests 

that the size of the synapses per se changes, decreasing their volume when scaling down 

occurs, and vice versa. As receptors have been shown to follow the same behavior (Ibata et 

al., 2008; O’Brien et al., 1998; Turrigiano et al., 1998; Watt et al., 2000; Wierenga, 2005), the 

size of the PSD most likely shrinks as well, which in turn is correlated with the spine volume 

(Harris and Stevens, 1989; Nusser et al., 1998). Interestingly, only TTX showed a slight but 

significant increase in mushroom spine head width, measured from the DiO staining. 

Therefore, the volume of the spine head does not change during homeostatic plasticity. 

Whether its fine ultrastructure does change could not be assessed, as the membrane labeling 

was only observed in regular confocal imaging. 
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Figure 133: Synaptic scaling does not change the size of mushroom dendritic spines. 

 

Alternatively, the density of the cytoskeleton could change, because fewer molecules need to 

be positioned within downscaled synapses (Schanzenbächer et al., 2016). Many receptors and 

signaling molecules are linked to actin (Du et al., 1998; Hell, 2014), directly or indirectly, 

therefore this is a viable hypothesis, but further studies are necessary to elucidate this effect. 

 

Tubulin showed very constant localization, but its abundance changed in the same way as 

actin. As tubulin is the major cytoskeletal element in the dendritic shaft, the stable localization 

was not surprising (Kaech et al., 2001). The decrease in bicuculline treated neurons might 

suggest decreased trafficking along the dendrite, which is in line with the observed decrease 

in receptor proteins, as well as probably scaffolds, in dendritic spines. The opposite trafficking 

effect would also explain the increased microtubule network after synaptic upscaling. 

 

Interestingly, Clathrin light chain was dramatically increased in cultures with elevated activity. 

This suggests a high amount of endocytosis occurring in these synapses. The increased firing 

rate of likely fewer receptors might cause them to be damaged faster, which in turn would 

require a higher rate of endocytosis. Very little is known about the quality control of glutamate 

receptors. From the presynapse we know that SV are under tight quality control (Truckenbrodt 

et al., 2018). The postsynapse could follow a similar stringent paradigm, whereby AMPAR 

subunits such as GluR2 are continuously recycled, and eventually removed after a 

predetermined number of cycling events. Such a mechanism may lead to the observed 

phenotype. 

 

The other trafficking protein that was investigated, SNAP47, did not show the same phenotype 

as Clathrin LC. Its function is largely unknown, and it has only recently been shown to be 

involved in the delivery of AMPAR during LTP (Jurado et al., 2013). Its abundance during 

synaptic scaling did change however, showing a decrease in bicuculline treated neurons. I 

also observed that it relocalized to the PSD in these neurons. It is possible that this change in 
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localization entails a repositioning of AMPAR containing vesicles, waiting to be released in 

response to an LTP-triggering stimulus. However, this is unlikely, since AMPA and NMDA 

receptors did not exhibit the same relocalization. Surprisingly, the relative abundance of 

SNAP47 was increased by almost 50%, in CNQX+AP5 treated mushroom spines, but this 

effect was not significant. This suggests an increase in AMPAR endocytosis, but not in clathrin-

mediated endocytosis. It has recently been reported that homeostatic plasticity relies on 

clathrin-independent pathways for AMPAR recycling, which may resolve this conflicting finding 

(Glebov et al., 2015). 

 

Glutamate receptors are among the best studied molecules in homeostatic plasticity 

(Turrigiano, 2008). Most work has focused on AMPAR, where the exact mechanisms are still 

controversial with some observing GluR1 to be the predominantly regulated subunit (Gainey 

et al., 2009; Hou et al., 2008; Sutton and Schuman, 2006; Thiagarajan et al., 2005), while 

others suggest that GluR2 is the main effector (Cingolani et al., 2008; Gainey et al., 2009; 

O’Brien et al., 1998; Wierenga, 2005). This disparity is further complicated by the fact, that 

there are global, as well as local synaptic scaling mechanisms. I did not find any drastic 

changes in GluR1 during homeostatic plasticity induction, except for TTX-treated mushroom 

samples. Here, its synaptic abundance was unexpectedly decreased, the same was true for 

GluR2. How can this supposed misregulation be explained? Many of the studies so far used 

mixed cultures of glia and neurons and it has been shown that glia secreted factors are also 

involved in synaptic scaling (Kaneko et al., 2008; Stellwagen and Malenka, 2006). Since I used 

pure neuronal cultures where the contact of neurons and glia is limited, this signaling might be 

missing, which could cause the aforementioned effects. To control for this, I will need to repeat 

these experiments in mixed cultures, but this is out of the scope of this thesis.  

In my work I found NMDA receptors to be primarily regulated following a blockade of 

glutamatergic signaling with CNQX+AP5. This increased their abundance and localization to 

the PSD, as expected. Metabotropic glutamate receptors showed even higher increases in 

synaptic abundance, in line with previously described observations (Hu et al., 2010), but stubby 

spines actually showed an increase in bicuculline treated stubby neurons. Since mGluR5 has 

various roles, among them controlling intracellular calcium concentrations, it might be 

mediated in all three treatments to adequately adjust the changing environment of the spine 

and to be primed to react to any potential changes. However, more detailed studies would be 

needed to unravel this effect. 
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Limitations of this study 

The detection of Homer1 and DiO was limited to confocal resolution 

When I started this project, I only had access to a 1 color STED system. Therefore, I needed 

to image Homer1 and DiO in confocal resolution, which limits the resolution for these two 

markers. I could circumvent the confocal resolution by using the FWHM of the Homer1 signal, 

which has been shown to be a good proxy of the Homer1 structure obtained by super-

resolution microscopy (Li and Blanpied, 2016). There is no such approximation for the DiO 

signal though, which does limit my resolution, especially in the neck area. I therefore did not 

analyze the morphology of the neck in detail. Using deconvolution, I might be able to improve 

the DiO signal, which could enable me to look at the distribution of proteins in the neck in more 

detail. If one chooses more conservative deconvolution parameters, it could be run without 

supervision. Because of the highly annotated nature of my dataset, which also already includes 

a tracing of the neck, the following analysis of the neck could be fully automatized.  

 

Unfortunately, I am missing a model for thin spines, the dominant dendritic form in the adult 

brain (Harris et al., 1992), but the differentiation between thin and mushroom spines is difficult 

in confocal images. Reinvestigating the imaging classification with improved analysis methods 

based on the large database I have now accumulated might enable me to extract also a 

separate thin class. 

 

My data is also limited in axial resolution, because I only had confocal resolution in z-axis. With 

the advance of 3D STED, an increased axial resolution is possible, but this comes with highly 

increased imaging time, since one needs to sample the spines at least at a step size of half 

the axial resolution. Assuming a z-resolution of 80 nm, the step size would be 40 nm, which 

will require me to at least have 12+ slices per spine. Because of the number of proteins I 

investigated, this increase in imaging time would make the project unfeasible. On the other 

hand, the membrane label DiO, is not usable in STED microscopy, because it is not very 

photostable. Alternatively, one could use 3D STORM imaging that ideally would also be able 

to use 3 colors. But like 3D STED z-stack imaging, STORM is inherently slower in its image 

acquisition time. During this study I tried to implement a 3-color 3D STORM imaging scheme 

at the laboratory of Bo Huang, using simultaneous detection of the fluorophores (similar to 

Bossi et al., 2008; Lampe et al., 2012), rather than sequential (Bates et al., 2007). The 

separation of the used fluorophores was difficult though and the resolution decreased 

dramatically. For both approaches, 3D STED and 3D STORM, an increase in z-resolution 

always comes with a decrease in lateral resolution. Because I average over many spines per 

protein in this study, the axial distribution differences of a protein cancel each other out. The 
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model is then constructed assuming rotational symmetry along the head-neck axis. This is a 

good compromise to make this average model feasible. For single proteins, more detailed 

analysis using sequential multicolor 3D STORM would be possible. This would especially be 

interesting for scaffold proteins, to elucidate their structure in more detail. 

The in vitro culture misses some elements present in the brain 

All work in this study was done on cultures, which lack several elements present in the brain. 

The density of neurons and synapses is lower than in the brain, there is no fully mature 

extracellular matrix, low number of inhibitory neurons and low network activity. Still, 

hippocampal neuron cultures are a widely used model systems and DIV21 cultures are similar 

in function and structure to synapses in situ, making my work relevant for many applications 

(Kaech and Banker, 2006; Papa et al., 1995). Furthermore, it has been shown multiple times 

that dendritic spines are made up out of PSD ‘building blocks’ that are aligned with the 

presynaptic active zone (Broadhead et al., 2016; Hruska et al., 2018; MacGillavry et al., 2013; 

Nair et al., 2013; Tang et al., 2016). The structure of these blocks is most likely highly 

conserved even between neuronal cultures and in vivo, my model of the dendritic spine is 

therefore equally well applicable to dendritic spines in living animals. 

 

Also, I specifically chose a Banker style culture, which limits the contact of glia and neurons. 

Although this might slightly change the structure of the synapses formed, it was essential for 

the analysis carried out here. Only this in vitro approach enabled us to perform quantitative, 

unlabeled mass spectrometry on a pure neuronal sample (Figure 6), something which cannot 

be done using mixed cultures, slices or whole-brain samples. 

The manual morphology assessment is limiting protein throughput 

To average the dendritic spines, they needed to be aligned according to their morphology. I 

tried different correlation-based approaches, but the complex morphology of especially 

mushroom spines impaired an easy, automated alignment algorithm. Therefore, I had to resort 

to manual annotation of spine landmarks, which always introduces a small subjective element 

to the analysis. After I had annotated about 2000 spines for both classes, I tried to train a 

convolutional neural network to automate this task. Unfortunately, I only achieved ~70% 

accuracy with both training from scratch and retraining different network architectures. This 

required me to manually curate every spine detected, which was very labor intensive. On the 

other hand, the large curated database that I have now could serve as a basis to again try to 

train a neural network. This would greatly accelerate the further study of dendritic spines. 
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The Nanomap as a quantitative foundation for further studies 

The Dendrite Nanomap is an extensive collection of localization and abundance data of many 

proteins. Naturally, it can be used as the starting point for many more studies.  

Integrate known interactions 

First, the presented data does so far not include known interactions between the proteins 

included in this study. Although I have already done extensive literature research to find the 

data describing the known protein complexes, integrating these into the model was not 

achievable within the time frame. The interaction data also needs to be carefully assessed, 

because often it is only known that two proteins can interact, but not how many of the proteins 

in the spine actually do so. Nonetheless, this data is exciting, but challenging to build into the 

model. One could try to reduce the complexity by only implementing the interactions of key 

proteins, such as the scaffolds, to make this more feasible. 

Investigating spine subclasses 

Within the two defined spine classes, a large variability still exists. It would be interesting to 

investigate whether I can describe finer subclasses, for example differentiating between 

Mushroom spines with long neck and short neck. Using the large database, I could then further 

study whether a given protein shows a preferential enrichment in one of these subclasses, 

using the fluorescence signal intensity. In addition, I will investigate whether the nanoscale 

localization of the protein is different between the subclasses, by making subclass-specific 

average distributions. I already set up the analysis routines to do so, using fuzzy c-means 

clustering (Bezdek, 1981), but the interpretation of the results could not be finished during the 

time of this thesis. 

What is the function and composition of synapses at the base of mushroom spines? 

During this study, I regularly observed synapses on the base of mushroom spines. So far, I did 

not investigate these synapses, but the analysis can easily be extended to them. Another study 

has also found these synapses and proposes that initially these shaft synapses are formed at 

the contact site of axons and dendrites (Reilly et al., 2011). Subsequently, dendritic spines 

emerge from adjacent sites of this shaft synapse and form their own synapse with the close by 

axon. It would interesting to study, whether these initial shaft synapses have their own 

molecular composition, distinct from the other spine classes. Also, it would be exciting to 

explore whether the shaft and spine synapses show associated signaling or not, using for 

example calcium imaging. 
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Extending the model to the dendritic shaft 

So far, the nanomap mainly describes the dendritic spines, whereas the dendrite shaft has not 

been studied in detail. Since the acquired average images also contain this area, I plan to 

extend the model also the dendritic shaft. This will reveal the basic organization, mostly 

encompassing protein concentrations or molarity, which is important trafficking or translation 

in dendrites. Using the organelle markers, I could also estimate which volume is occupied by 

mitochondria and ER. 

Diffusion of proteins in and out of spines 

My model describes a static snapshot of an average dendritic spine. In vivo, the spine is a 

dynamic system where proteins are constantly cycled, produced and degraded. It is highly 

interesting to study these dynamic processes within spines as well. For a handful of proteins, 

the diffusion has been studied in detail, but for many other proteins, their transport in- and out 

of spines is not known (Harvey et al., 2008; Lee and Yasuda, 2009; Lee et al., 2009; Sabatini 

et al., 2001). The dendritic model I present would benefit these studies immensely, as one 

could use it as the equilibrium state to which the diffusion converges. We also know, that the 

diffusion is additionally regulated by activity, the effect of which I observed in the homeostatic 

plasticity experiments (Bloodgood and Sabatini, 2005).  

Hebbian plasticity 

Learning is based on the strengthening (LTP) or weakening (LTD) of synapses after stimuli. 

The hippocampus has long been the model organism for these two synaptic plasticity 

schemes. However, the induction of LTP in cultures is challenging, and many different 

treatments to do so have been proposed (Molnár, 2011). Therefore, I chose not to include LTP 

as a separate treatment in this study, but one can use my model as the baseline from which a 

synapse is either potentiated or depressed. One would then only need to quantify relative 

changes, which could be calculated to absolute numbers with the known baseline copy number 

provided in this thesis. 

Is a protein’s half-life related to its location? 

The half-life of many proteins have been determined in culture (Cohen et al., 2013; Dörrbaum 

et al., 2018; Heo et al., 2018; Mathieson et al., 2018), as well as also in vivo (Fornasiero et al., 

2018), and it has been shown that they differ between subcellular compartments in the brain. 

Taking this one step further, I can speculate that it is not only different between compartments, 

but also between the location on this compartment. Interestingly, the amino acid sequence 

itself accounts for a large part of the lifetime already (Mandad et al., 2018). Given the fact that 

proteins colocalizing on the nanoscale in dendritic spines share common sequences and 

domains, such as the PDZ domain, nanoscale differences in lifetime become even more likely. 
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Combining these datasets with my localization information would reveal whether proteins 

indeed show differential turnover based on their nanoscale localization. For example, it  is 

conceivable that proteins close to the glutamatergic signaling machinery, and therefore close 

to drastic changes in ion concentrations or secondary messengers such as NO, would have 

shorter lifetimes than proteins further away from these mechanisms. I could then construct a 

map of the protein’s lifetime in 3D, investigating which other processes might underlie this 

regulation. 

A sound quantitative base for in silico approaches 

Dendritic spines are an exciting candidate for modelling and simulation studies. Its small 

volume and interesting morphology lend itself to many different analyses, mostly studying 

diffusion of proteins, often AMPAR, or the generation of the EPSP in the postsynapse. Usually 

these models are based on highly simplified assumptions (Gulledge et al., 2012; Maio et al., 

2017): 

1. The spine has a spherical head, with a linear tube connecting it to a shaft compartment. 

When complex processes are considered, the model sometimes is even represented 

as a cube, because the simulations are otherwise too computationally expensive 

(Gallimore et al., 2016) 

2. Free diffusion within membrane and cytosol, except for the PSD. Alternatively, a 

well-mixed system is considered, which assumes the instantaneous equilibration of the 

protein concentrations across the whole volume. 

3. Receptor numbers are unknown and often placed uniformly distributed with the PSD. 

 

All these assumptions are disparate from the real situation in real spines and are often simply 

because there is no available data on the nanoscale distribution or number of the proteins in 

question. But it has been shown repeatedly that these factors have a strong influence on 

synaptic function. For example, AMPAR positioning in relation to the release site is crucial for 

synaptic strength, because of their low affinity for glutamate (Franks et al., 2002; MacGillavry 

et al., 2013; Nair et al., 2013; Raghavachari and Lisman, 2004; Savtchenko and Rusakov, 

2014; Tarusawa et al., 2009). My model provides important parameters for several situations 

frequently investigated in silico: 

 

AMPAR diffusion is highly important for the regulation of synaptic strength. It has long been 

known that AMPAR are dynamically moving in and out of synapses. This mobility, as well as 

their position and number is essential for postsynaptic function (reviewed in Choquet and 

Triller, 2013; Compans et al., 2016). To adequately model this, one needs a quantitative 

understanding of several key parameters: 
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• Number of AMPAR 

• Number and location of scaffold proteins that can bind them (i.e. ‘open slots’) 

• The structure of the membrane, possible diffusion barriers such as septin or actin 

fences 

• Intra- and extracellular crowding  

 

I provide quantitative measurements for these, and many more proteins, often for the first time, 

with the exception of extracellular crowding. But because most of these studies are done in 

vitro, the effect of extracellular crowding is negligible, and the medium composition is known. 

Now, these studies can also incorporate the effect of diffusion barrier, such as septin or actin 

fences, which have been neglected so far. 

 

Molecular crowding also controls the diffusion of proteins. Like the crowding one can model 

in the neuronal cytosol, this can also be extended to dendritic spines. It has already been 

reported that AMPAR diffusion is also influences by molecular crowding (Li and Blanpied, 

2016; Li et al., 2016; Santamaria et al., 2010). So far, this effect was only studied in the PSD, 

now I can also study it in the other regions of the dendritic spine. 

 

Electrical signaling within dendritic spines is heavily influenced by its morphology. Especially 

the thin neck has a high resistance of several hundred MΩ and electrically isolates the spine 

head from the dendrite (Beaulieu-Laroche and Harnett, 2018; Yuste, 2013). This poses the 

question how exactly EPSP traverses across the spine neck to reach the shaft. My presented 

data can extend the current modelling approaches by supplying the number and location of 

many of the relevant proteins for ions, namely ion channels, calcium buffers, calcium stores 

and the Na+/K+ ATPase, which needed to be estimated so far (Bartol et al., 2015). I also provide 

detailed data on the morphology of the spine, which is important for electrodiffusion (Holcman 

and Yuste, 2015). 

Towards a quantitative understanding of the neuron 

Besides the information we can gain on postsynaptic function, with this study, we now have 

comprehensive quantitative information on the dendritic spine, as well as the associated 

presynapse (Wilhelm et al., 2014). We can therefore now combine both compartments, 

enabling a holistic view on the synapse, the main functional unit of the brain. At the next level, 

we need to understand how these synapses together influence the behavior of an individual 

neuron. To do so, we need additional information on the morphology of neurons, their ion 

regional ion buffering capacities and their molecular composition. Some of this information can 

be extracted from my work here, for example combining the quantitative neuron proteome copy 
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with further imaging studies to calculate protein numbers in other compartments, whereas 

others, such as the overall morphology of neurons, need independent studies. We could then 

start to understand, model and predict neuronal function in yet unknown detail.  
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