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Animal behavior is largely influenced by the seeking out of rewards and avoidance of 

punishments. Positive or negative reinforcements, like a food reward or painful shock, impart 

meaningful valence onto sensory cues in the animal’s environment. The ability of animals to 

form associations between a sensory cue and a rewarding or punishing reinforcement permits 

them to adapt their future behavior to maximize reward and minimize punishments. Animals rely 

on the timing of events to infer the causal relationships between cues and outcomes –– sensory 

cues that precede a painful shock in time become associated with its onset and are imparted with 

negative valence, whereas cues that follow the shock in time are instead associated with its 

cessation and imparted with positive valence. While the temporal requirements for associative 

learning have been well characterized at the behavioral level, the molecular and circuit 

mechanisms for this temporal sensitivity remain incompletely understood.   

 

Using the simple architecture of the mushroom body, an olfactory associative learning center in 

Drosophila, I examined how the relative timing of olfactory inputs and dopaminergic 

reinforcement signals is encoded at the molecular, synaptic, and circuit level to give rise to 

learned odor associations. I show that in Drosophila, opposing olfactory associations can be 

formed and updated on a trial-by-trial basis depending on the temporal relationship between an 

odor cue and dopaminergic reinforcement during conditioning. Additionally, both negative and 



positive reinforcements equivalently instruct appetitive and aversive olfactory associations –– 

odors preceding a negative reinforcement or following a rewarding reinforcement acquire an 

aversive valence, while odors instead following a negative reinforcement or preceding a 

rewarding reinforcement become attractive. Furthermore, functional imaging revealed that 

synapses within the mushroom body are bidirectionally modulated depending on the temporal 

ordering of odor and dopaminergic reinforcement, leading to synaptic depression when an odor 

precedes dopaminergic activity or synaptic facilitation when dopaminergic activity instead 

precedes an odor. Through the synchronous recording of neural activity and behavior, I found 

that the bidirectional regulation of synaptic transmission within the mushroom body directly 

correlates with the emergence of learned olfactory behaviors. This temporal sensitivity arises 

from two dopamine receptors, DopR1 and DopR2, that couple to distinct second-messengers and 

direct either synaptic depression or potentiation.  Loss of either receptor renders the synapses of 

the mushroom body capable of only unidirectional plasticity and prevents the behavioral 

flexibility of writing opposing associations depending on the temporal structure of conditioning.  

 

Together, these results reveal how the distinct intracellular signaling pathways of two dopamine 

receptors can detect the order of events within an associative learning circuit to instruct opposing 

forms of synaptic and behavioral plasticity, providing a mechanism for animals to use both the 

onset and offset of a reinforcement signal to instruct distinct associations. Additionally, this 

bidirectional modulation allows animals to flexibly update olfactory associations on a trial-by-

trial basis when temporal relationships are altered, permitting them to contend with a complex 

and changing sensory world.  
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Chapter 1 

 

Introduction 

 

1.1 The Timing of Learning and Memory 

Our ability to learn from our past experiences is a central feature shaping who we are as 

individuals and the fabric of our civilizations. The remarkable capacity to acquire new 

knowledge and skills in the form of memories molds our personality over a lifetime and enables 

us to learn societal values and adapt appropriate behaviors within a given cultural framework. 

However, this ability to learn and form meaningful memories is not a unique skill observed only 

in humans; it is conserved across a wide variety of animals, ranging from those with simple 

nervous systems containing only hundreds of neurons to highly intricate nervous systems 

possessing billions of neurons and even more recently apparent in computers through the advent 

of machine learning. In fact, it has recently been suggested that single-celled organisms have the 

capacity to habituate behavioral responses, raising the question of the key biological element 

involved in learning and memory and the role of a centralized nervous system in these processes 

(Boisseau et al., 2016). This shared capacity for learning and memory permits adaptive strategies 

for contending with changes in the environment over time.  

 

The complexity of learning ranges from simple non-associative learning in the form of 

habituation, in which a reflexive response dwindles with repeated stimulation, to more complex 

forms such as observational learning, where animals learn new behaviors simply through 
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observing the behavior of peers. Underlying all forms of learning and memory in both biological 

and artificial systems is an experience-dependent change, or plasticity, between the connections 

within a network that persists for some period of time. While some of these changes are fleeting, 

lasting on the order of milliseconds only long enough for turnover of cellular machinery and de-

phosphorylation of proteins, other memories persist for a lifetime. In fact, our memory systems 

are fine-tuned to learn and retain memories on different timescales depending on their emotional 

saliency. While this calibration of learning and memory is ideal for forgetting irrelevant 

information while retaining important events in one’s life, it also lends itself to emotional 

anguish in the diseased state. Emotional distress from memory loss can be appreciated in the 

agony suffered by those in the early stages of dementia, whereas distress from a forgetting-

deficit constitutes the intrusive symptoms of post-traumatic stress disorder.   Therefore, 

understanding the biological and neural basis for how animals extract meaningful information 

from their past to inform future behaviors is a central question in modern neuroscience research.  

 

One of the simplest and most conserved forms of learning within the animal kingdom is 

associative learning, in which animals use the relative timing and order of events in their 

environment to extract the causal relationship between a sensory stimulus and a rewarding or 

punishing outcome. Across both invertebrates and vertebrates, the neural circuits involved in 

associative learning integrate sensory signals with rewarding or punishing reinforcement cues 

(Aso et al., 2014b; Bromberg-Martin et al., 2010; Lerner et al., 2015; Schultz et al., 1997a; 

Waddell, 2016). This convergence of sensory and reinforcement pathways is thought to induce 

the circuit plasticity that underlies adaptive changes in behavior (Cohn et al., 2015; Hige et al., 

2015; Owald et al., 2015; Reynolds and Wickens, 2002; Shen et al., 2008).  
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A strict temporal relationship between a sensory signal, such as an auditory tone or an odor, and 

a reinforcement is required to drive learning: in order for the tone to predict an ensuing positive 

or negative outcome, it must consistently precede the reinforcement in time. This tight temporal 

contiguity represents a basic tenant of classical conditioning (Brunelli et al., 1976; Carey and 

Lisberger, 2002; Kandel et al., 1983; Mauk and Donegan, 1997; Pavlov, 1927; Rescorla, 1967; 

1988; Tully and Quinn, 1985), as it permits animals to understand the causal structure of the 

world around them.  

 

It is generally accepted that a sensory cue, such as sound that precedes, and therefore predicts, a 

shock in time will be imparted with the same negative valence as the painful shock. This kind of 

associative conditioning, or classical conditioning, was first described experimentally through, 

Russian psychologist, Ivan Pavlov’s research into the reflexive behavior of salivation in dogs 

(Pavlov, 1927). Pavlov theorized that learning entailed the acquisition of new behaviors to a 

previously ineffective stimulus and that this kind of learning could be achieved through the 

temporal association of stimuli in an animal’s environment. His work on classical conditioning 

demonstrated that a previously ineffective stimulus (the conditioned stimulus, CS+), which 

elicited no overt behavioral response, could elicit a new behavioral response after it was paired 

with a reinforcement, such as food or a painful shock (the unconditioned stimulus, US) (Kandel 

et al., 2000; Pavlov, 1927). The reinforcement by food or shock provokes an innate, 

unconditioned behavioral response, such as salivation or freezing behavior. The repeated pairing 

of the conditioned stimulus with the reinforcement stimulus imparts the CS+ with predictive 

value: if the reinforcement is a food reward, the CS+ becomes an appetitive cue, whereas, a 
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painful shock, would reinforce the CS+ as being noxious or aversive. The central feature of 

Pavlov’s work of associative conditioning rests on the temporal contiguity of the conditioned and 

unconditioned stimulus.  

 

The role of timing in shaping the formation of associative memories during classical 

conditioning was expanded through the research of American psychologist, Robert Rescorla who 

showed that these memories were heavily influenced by the contingency or likelihood of the two 

stimuli occurring repeatedly together (Rescorla, 1967). This dependence on contingency is 

adaptive in ensuring animals distinguish truly predictive and causal relationships in their 

environments from those that are only randomly associated at any single time. Classical 

conditioning, therefore, likely evolved to enable animals to use the temporal relationships 

between events in their environment to predict causal relationships.  

 

In addition to learning what sensory cues are predictive of the onset of a reinforcement, it is 

equally important for animals to learn which sensory cues can be associated with the offset of the 

reinforcement. Research in the 1950s demonstrated that cues contiguous with the end of shock 

would acquire a rewarding reinforcement value, and elicit future approach behavior (Smith and 

Buchanan, 1954). Additional work in sea slugs, flies, rodents, monkeys, and humans supported 

this theory that relief from pain served as a rewarding reinforcement (Andreatta et al., 2012; 

2015; Baxter and Byrne, 2006; Bergado Acosta et al., 2017; Davis et al., 2008; Davis, 2011; 

Dubnau and Tully, 2001; Gerber et al., 2004; 2019; Heisenberg, 2003; Lechner and Byrne, 1998; 

Mayer et al., 2018; Tanimoto et al., 2004). Furthermore, conditioning using an appetitive, 

unconditioned stimulus leads to the opposite effect, whereby animals avoid odors associated with 
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the offset of reward (Felsenberg et al., 2013).  Together these data suggest that animals can form 

opposing associations with a sensory stimulus depending on whether it precedes or lags a 

reinforcement in time. Despite these observations at the behavioral level, the underlying 

molecular or circuit basis for how this temporal sensitivity is achieved in associative learning 

circuits to give rise to these bidirectional behavioral responses remains incompletely understood.  

 

 

1.2 The Synapse: A Site for Learning and Memory 

Understanding how neural circuits are transformed through associative learning to form and 

maintain memories remains a central question in neuroscience research. The complexities of 

nervous systems observed across animals that are capable of learning associative memories span 

an immense spectrum: ranging from a nervous system of 302 neurons in the adult C. elegans to 

86 billion neurons in the human brain (Azevedo et al., 2009; Herculano-Houzel, 2009)—a 

number on par with a rough estimate for the number of stars in the Milky Way galaxy. This 

diversity in nervous system complexity contrasts with the shared capacity for learning and 

memory, raising the interesting question of where learning occurs in the brain and where 

memories are stored.  

 

For example, the cell body or soma has been suggested to serve as the hub of memory formation 

and storage in associative learning circuits (Technau and Heisenberg, 1982; Tully et al., 1994). 

Alternatively, epigenetic markers have been proposed to act as a regulator in memory storage in 

post-mitotic neurons across a diversity of animals, allowing for stable, experience-dependent 

changes in gene expression that shape neural and behavioral responses to stimuli (Zovkic et al., 
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2013). Furthermore, experimental evidence suggests the synapses between neurons is the 

relevant site for memory formation and storage (Bolshakov and Siegelbaum, 1994; Kandel et al., 

1976; Zucker et al., 1971).  Indeed, the idea of the synapse as the site of learning and memory 

dates back to the prescient Spanish neuroscientist, Ramón y Cajal who, in his Croonian Lecture 

to the Royal Society in 1894, posited that the strength of synaptic connections between neurons 

was not immutable and that such flexibility in synaptic weights could underlie learning and the 

storage of memories (Cajal, 1894). Although there likely exist numerous redundant sites for 

memory formation and regulation in the nervous system, my thesis focuses on the role of the 

synapse in learning and memory.  

 

Despite Cajal’s proposal of synaptic re-weighting as the basis of learning and memory, the 

question of how the close temporal pairing of an unconditioned and conditioned stimulus could 

alter the weight between synapses within a neural circuit remained unresolved for decades. In 

1949, a mechanistic basis for Cajal’s theory was proposed by Canadian psychologist, Donald 

Hebb, in his book The Organization of Behavior (Hebb, 1949). Hebb postulated that neurons that 

are synchronously activated undergo a gain in their synaptic connections. This form of plasticity, 

coined Hebbian plasticity, provided a basis for how the connections between cell assemblies 

could be strengthened as a result of experiencing a tight temporal pairing between two input 

signals, such as a tone and painful shock. Hebb’s theory gave rise to research into the biological 

process of spike-timing dependent plasticity (STDP). In 1983, Levy and Steward found that the 

temporal contiguity between inputs within the dentate gyrus of the mouse brain determines the 

direction of synaptic plasticity—with bidirectional plasticity observed in the post-synaptic 

neuron depending on the ordering of input neuron activity (Levy and Steward, 1983). The 
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biphasic curves for STDP reveal that synapses within learning circuits undergo bidirectional 

plasticity depending on the relative timing of spikes in pre- and post-synaptic neurons—an 

observation that mirrors the behavioral modulation dependent on the ordering of the conditioned 

and unconditioned stimulus during training (Bell et al., 1997; Bi and Rubin, 2005; Cassenaer and 

Laurent, 2012; Dan and Poo, 2004). However, STDP requires nearly coincident firing patterns 

on a millisecond timescale, far more rapid than the temporal relationships between stimuli 

typically required for associative learning, which has made the timescales of STDP-dependent 

neural plasticity and learned, associative behaviors difficult to reconcile. Furthermore, 

electrophysiological recordings in associative circuits have demonstrated that neural responses to 

the conditioned stimulus during learning generally end before the delivery of reward, suggesting 

that STDP cannot explain the re-weighting of synaptic connections that occurs during associative 

conditioning (Meeks and Holy, 2008). Instead, experiments suggest that neuromodulators, such 

as dopamine and serotonin, play a central role in sculpting the synaptic plasticity of associative 

learning (Cassenaer and Laurent, 2012; Kandel et al., 1976).  

 

 

1.3 Neuromodulation in Learning Circuits 

Associative learning circuits are heavily innervated by neuromodulatory neurons. This 

innervation permits a fixed set of neurons to undergo rapid and reversible modulation, creating a 

potential for wide diversity of neural activity states (Bargmann, 2012). The rapid and reversible 

nature of neuromodulation within a circuit is an ideal driving force for learning and memory, as 

it allows for a flexible reconfiguration of anatomically static neuronal circuits.   
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Across a diversity of animals dopaminergic neurons represent the presence of a reward or 

punishment and serve as a crucial regulator in the learning instructed by appetitive and aversive 

experiences. In the mammalian brain, the dopamine-releasing neurons in the subcortical regions 

of the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) serve as the 

major source of dopamine input to cortical and subcortical regions (Björklund and Dunnett, 

2007).  Behavioral experiments by Olds and Milner suggested a key role for dopamine in driving 

motivated behaviors by demonstrating that animals continuously press a lever that leads to the 

stimulation of brain areas heavily innervated by rewarding dopamine neurons (Corbett and Wise, 

1980; Olds and Milner, 1954). Over the following decades, electrophysiological recordings of 

dopamine neurons further refined our understanding for the role of dopamine in neural plasticity 

and associative learning. 

 

Within the striatum, a brain center that receives convergent input from SNc projecting dopamine 

neurons and thalamic and cortical projecting sensory neurons, dopamine release induces synaptic 

plasticity thought to play a central role in driving reward-seeking behaviors (Reynolds et al., 

2001; Roseberry et al., 2016). Recalling Pavlov’s dogs, the conditioned stimulus of the tone is 

imbued with positive salience after repeatedly pairing the tone with food reward, prompting 

salivation upon the tone’s presentation in the future. Seminal work by Wolfram Schultz 

demonstrated that reward-responsive dopamine neurons within the mammalian brain acquire 

responses to the conditioned stimulus (Schultz et al., 1997) during associative conditioning. 

After repeatedly pairing the CS+ and US, dopamine neurons shift their response profile from 

responding strongly to the unconditioned reward to instead responding to the now predictive 

CS+, suggesting a mechanism for the acquisition of the learned, salivation response (Schultz et 
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al., 1997; Waelti et al., 2001; Watabe-Uchida et al., 2017). Furthermore, the omission of the 

reward induces depression in dopamine neurons, whereas a reward greater than predicted by the 

CS+ elicits a stronger dopamine response (Hollerman et al., 1998; Watabe-Uchida et al., 2017). 

Based on these key observations, Schultz proposed that dopamine neurons represent the 

difference between expected and experienced outcomes and serve as a reward-prediction error 

(RPE) signal. The activation or depression of dopamine neurons in situations where the reward is 

better or worse than expected is thought to interact with two distinct signaling pathways in the 

striatum to modify synaptic strength related to reward-seeking behaviors (Bromberg-Martin et al., 

2010; Montague et al., 1996). In this way, dopamine neurons are able to make predictions about 

the likelihood of a conditioned stimulus to give rise to reward and enable the animal to 

continuously track the correlation between events in the environment and update incorrect 

associations. RPE signals encoded by dopamine neurons have been observed in monkeys, 

rodents, humans, and suggested to exist in flies (Bayer and Glimcher, 2005; Cohen et al., 2012; 

D'Ardenne et al., 2008; Eshel et al., 2015; Felsenberg et al., 2017; Flagel et al., 2011; Hollerman 

et al., 1998; Roesch et al., 2007; Waelti et al., 2001), highlighting a conserved strategy for 

dopamine neurons in representing the statistics of reward and driving reward-related changes in 

behavior.  

 

Research over the past two decades, however, has revealed a more complex and heterogeneous 

picture for the role of dopaminergic neurons within the mammalian brain, suggesting that 

encoding RPE is not the single function of dopamine neurons in associative learning. While 

indeed there is strong evidence supporting the role of dopamine in reward-related behaviors, 

recent technological advances allowing for cell-type specific functional imaging with higher 
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spatial resolution revealed two populations of striatal-projecting SNc dopamine neurons that 

respond differentially to aversive electrical shock (Lerner et al., 2015). In addition, 

electrophysiological recordings in the VTA dopamine neurons reveal strong excitation to a 

painful tail pinch and attenuation of this response minimizes the behavioral response to aversive 

conditioning (Zweifel et al., 2011). Furthermore, the heterogeneity of dopamine neurons is 

complicated by the observation that populations of midbrain dopamine neurons show 

bidirectional responses to reward and punishment (Matsumoto et al., 2016). Together, these 

results suggest that some populations of dopamine neurons are able to represent reward and 

punishment along a single axis, whereas other populations of dopamine neurons exhibit phasic 

activation to either unexpected reward or punishment.  

 

 

1.4 Dopamine-Dependent Modulation in Neural Activity 

In addition to the multiplexed encoding of signals by heterogeneous dopaminergic populations, 

the release of dopamine on downstream neural circuits regulates their activity in diverse ways. 

This includes altering the pre-synaptic release probability by adjusting the size of the reserved 

vesicle pool, the localization of proteins to the active zone, and the influx of presynaptic calcium 

in axon terminals (Higley and Sabatini, 2010; Logsdon et al., 2006; McKay et al., 2007; Nadim 

and Bucher, 2014; Regehr et al., 2009; Tritsch and Sabatini, 2012). Furthermore, dopamine can 

tune post-synaptic activity via the modulation of expression and properties of neurotransmitter 

receptors (Sun et al., 2005). In addition to the effects on protein function and localization, 

dopamine can influence synaptic tone over a multitude of timescales and distances (Arbuthnott 

and Wickens, 2007; Matsuda et al., 2009). The activity level of mesolimbic dopamine neurons is 



 11 

thought to be consistently low, supplying a near constant tonic level of dopamine release. This 

tonic activity is briefly interrupted by strong, phasic bursts or pauses in dopamine activity 

thought to convey the surprising presence or absence of reward (Schultz, 2002). Therefore, 

neural circuits innervated by dopamine neurons are constantly influenced by activity patterns of 

dopaminergic neurons. However, how this ongoing tonic and infrequent phasic input of 

dopamine influences information flow within neural circuits to influence goal-directed behavior 

is an ongoing question of much interest. 

 

The release of dopamine is translated into neural modulation by way of a diversity of G-protein 

coupled receptors (GPCRs). The mammalian brain expresses five dopamine receptors (D1-D5), 

which can be subdivided into two groups of receptors, D1-like and D2-like. The D1-like class of 

receptors include D1 and D5 and have been shown to preferentially couple to the stimulatory G-

protein, Gαs, while the D2-like receptors, which include D2-D4, instead preferentially couple to 

the inhibitory G-protein, Gαi. The stimulatory and inhibitory nomenclature refers to the G-

proteins regulation of downstream enzymes involved in the production of the second messenger, 

cyclic adenosine monophasphate (cAMP) (Beaulieu and Gainetdinov, 2011; Neve et al., 2004). 

In the mammalian brain, D1- and D2-like receptors act antagonistically on downstream signaling 

pathways by way of opposing effects on PKA activity levels. D1-like receptor activation of PKA 

promotes phosphorylation of the neuronal phosphoprotein, DARPP-32, while D2-like receptors 

act to dephosphorylate DARPP-32 (Flores-Hernandez et al., 2000). DARPP-32, therefore, acts as 

an integrator of neuromodulation and influences a variety of ligand- and voltage-gated channels 

to bidirectionally alter synaptic transmission within downstream circuits (Flores-Hernández et al., 

2002; Greengard, 2001; Yan et al., 1999).  
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Expression patterns reveal that D1 and D2 receptors are the most highly expressed dopamine 

receptors in the mammalian brain with the greatest expression in the dorsal and ventral striatum 

and the olfactory tubercle. D1 and D2 receptors are both expressed in the GABAergic striatal 

projection neurons as well as in cholinergic interneurons within the striatum and in subcategories 

of pyramidal and interneurons within cortical regions (Tritsch and Sabatini, 2012). Despite the 

observed overlap in expression pattern within brain regions, transcriptional analysis, 

pharmacological experiments and advances in the use of cell-type reporters revealed a dichotomy 

in the striatal projection neurons, with the direct striatonigral projection neurons expressing the 

D1 receptor while the indirect striatopallidal projection neurons express the D2 receptor (Gerfen, 

1992; Gerfen et al., 1990; Gerfen and Surmeier, 2011). This segregation of D1 and D2 receptors 

into these distinct streams is thought to drive differential modulation on downstream circuits 

through the fine balance of inhibition and excitation on cortical circuits involved in the 

regulation of animal behavior. However, recent work using cell-type specific markers and in vivo 

imaging has revealed a great diversity of response profiles across these mesolimbic dopamine 

pathways, with some dopamine neurons encoding reward, punishment, and locomotion, either 

exclusively or in combination (Coddington and Dudman, 2018; Engelhard et al., 2018; Lammel 

et al., 2014; Lerner et al., 2015). Together these results raise the question of how the D1 and D2 

receptors are selectively engaged during different tasks and how the engagement of the direct 

and indirect pathway influence downstream circuits to ultimately drive changes in animal 

behavior. While this question remains a central focus of mammalian neuroscience, addressed 

through the use of novel and elegant genetic and functional imaging tools, the simple and well-

characterized neural architecture of the Drosophila brain provides the unique opportunity to link 
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conserved signaling molecules to the emergence of neural and behavioral plasticity at the same, 

identifiable synapses across individual animals.  

 

 

1.5 The Mushroom Body: A Simple Learning Circuit 

1.5.1 The Mushroom Body Anatomy 

The mushroom body (MB) brain structure, an associative learning center in the insect brain, was 

first identified in 1850 by French biologist Félix Dujardin, who argued that this brain structure 

was the seat of free will and intelligence based on correlative comparisons between MB size and 

behavioral complexity in solitary and social honeybees (Dujardin, 1850). He even went so far as 

to compare the MB to the vertebrate cerebral cortex in terms of both structure and function. 

While the MB seems a unique neuropil present in all annelids and anthropods except 

crustaceans, analogous circuits can be seen in the anatomical structure of the vertebrate 

cerebellum and cerebellar-like circuits suggesting convergent organization of learning circuits 

(Strausfeld et al., 1998).  

 

The MB has long been known to be an essential neural locus for olfactory learning.  In the MB 

of Drosophila, odor information is carried by the intrinsic Kenyon Cells (KCs) whose parallel 

axon bundles form output lobes. The KCs receive olfactory information from projection neurons 

originating from the antennal lobe that synapse onto the dendrites of KCs within a neuropil 

called the calyx. Each mushroom body contains roughly 2,000 KCs whose axons fasciculate to 

form 5 output lobes of the MB: the α and α’ lobes project dorsally while the γ, β,  and β’ project 
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medially. The lobes of the MB are segmented into discrete compartments defined by the 

innervation patterns of extrinsic neurons including the efferent neurons regulating animal 

behavior and the afferent, neuromodulatory neurons encoding valence such as reward or 

punishment.  

 

Functional and behavioral experiments suggest that the three classes of KCs ( γ, α/β,  and α’/β’) 

have distinct physiological properties and play different roles in short- versus long-term 

memories (Groschner et al., 2018). An individual KC samples from converging input from, on 

average, 7-10 second-order projection neurons, and a given odor activates only 5% of KCs 

(Campbell et al., 2013; Caron et al., 2013; Murthy et al., 2008; Turner et al., 2008), creating a 

sparse sensory representation of olfactory information. In addition, anatomic tracing of 

glomerular inputs onto KCs reveals stochastic wiring, implying the activity pattern of KCs for a 

given odor vary across individual animals (Caron et al., 2013). This kind of sparse and 

combinatorial code is ideal for ensuring sensitivity to a vast array of olfactory stimuli and offers 

animals the capacity to contextualize a rich diversity of odors as a result of experience. 

 

The KC axons form en passant synapses onto the spatially compartmentalized dendrites of a 

small repertoire of mushroom body output neurons (MBONs) that innervate the output lobes of 

the MB. These MBONs exhibit diverse innervation patterns with spatially restricted dendrites 

that tile the lobes, distinct axonal projection patterns, use of neurotransmitters, and effects on 

behavior (Aso et al., 2014a; Aso et al., 2014b). Activation of individual MBONs biases animals 

towards either attraction or avoidance behavior (Figure 1A). Based on this anatomical lay out, it  
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Figure 1.1, Cellular Anatomy of Compartmentalized Mushroom Body Architecture. 
(A-B) Schematized structure of mushroom body architecture, focusing specifically on the 
gamma output lobe involved in short-term memory regulation. (A) Compartmentalized 
organization of γ2-γ5 mushroom body output neurons (MBONs). Activation of γ2/γ3 lead to odor 
attraction while γ4/γ5 lead to odor avoidance (Aso et al., 2014b). (B) The logic of valence coding 
by dopamine neurons (DANs) innervating the γ2-γ5 compartments of the MB. The proximal 
γ2/γ3 DANs respond to painful shock punishment while the distal γ4/γ5 DANs respond to 
reward-related experiences like sugar ingestion. (C) Mushroom body neuropil in the Drosophila 
brain with KCs labeled in blue. The images on the right highlight the compartmentalized and 
overlapping architecture of the MBONs and DANs innervating a single compartment of the MB.  
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is thought that these MBONs encode the valence of a learned odor and work in concert to guide a 

fly’s behavior towards odor attraction or odor avoidance as a result of learning (Aso et al., 

2014b; Owald et al., 2015). 

 

The axon terminals of dopamine neurons (DANs) overlap with the MBON dendrites creating a 

compartmentalized architecture in which DAN activity can locally modify KC-MBON synapses 

to drive learned changes in odor attraction (Figures 1.1B-C). The acquisition of olfactory 

memories depends on DAN activity, and indeed, exogenous stimulation of a subset of DANs is 

sufficient to induce fictive olfactory memory formation (Aso and Rubin, 2016; Aso et al., 2012; 

2010; Burke et al., 2012; Claridge-Chang et al., 2009; König et al., 2018; Liu et al., 2012). 

Rewarding and punishing experiences are encoded by distinct subsets of these DANs (Figure 

1.1B), conveying either positive or negative valence information to different KC-MBON 

synapses (Burke et al., 2012; Cohn et al., 2015; Qin et al., 2012; Yamagata et al., 2015). 

Specifically the protocerebral posterior lateral (PPL) DANs carry predominantly aversive 

signals (Aso and Rubin, 2016; Aso et al., 2010; 2012; Claridge-Chang et al., 2009; Mao and 

Davis, 2009) while the protocerebral anterior medial (PAM) DANs convey reward information 

(Aso and Rubin, 2016; Burke et al., 2012; Liu et al., 2012; Yamagata et al., 2015). Such an 

anatomical segregation of valence is reminiscent of the mammalian dopaminergic system, 

highlighting organizational parallels across neuromodulatory systems.  

 
 
1.5.2 Associative Learning and the Mushroom Body 

Drosophila melanogaster have been used as a model for studying learning and memory since the 

1970s when scientists in Seymour Benzer’s lab showed that pairing a neutral odor with a painful 
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electric shock instructed a negative association with the paired odor, driving flies to avoid this 

odor upon future encounter (Quinn et al., 1974). Since then, Drosophila have served as a 

powerful system for studying the molecular and circuit mechanisms underlying learning and 

memory.  

 

The focus on the MB in Drosophila arose from seminal work by German neuroscientist and 

geneticist Martin Heisenberg, who showed olfactory learning deficits that correlate with 

structural and biochemical perturbations to the MB circuitry (de Belle and Heisenberg, 1994; 

Heisenberg et al., 1985). Similar to the dynamics of memories in mammalian circuits, 

Drosophila exhibit both short-term memory that is protein-synthesis independent and long-term 

memory that depends on the synthesis of novel proteins. These distinct forms of memory are 

thought to be anatomically segregated within the mushroom body, with short-term memories 

processing in the medially-projecting γ lobe and long-term memories stored in the dorsal and 

medially-projection α and β lobes (Cervantes-Sandoval et al., 2013; Krashes et al., 2007; 

Trannoy et al., 2011).  

 

The current model for associative learning in the mushroom body suggests that the convergence 

of the conditioned stimulus, coded by the odor-responsive KCs, and the unconditioned stimulus, 

carried by the reward- or punishment-responsive DANs, within the compartment of the MB 

alters KC-MBON synaptic transmission, leading to odor-specific changes in behavior (Cohn et 

al., 2015; Hige et al., 2015; Owald and Waddell, 2015; Owald et al., 2015; Séjourné et al., 2011). 

Behavioral experiments examining the temporal dependence for associative learning in 

Drosophila show that animals will form opposing olfactory associations depending on whether 
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the odor precedes a shock reinforcement or lags the shock reinforcement in time (Tanimoto et al., 

2004). This form of bidirectional modulation of associative memories depending on timing is 

conserved in mammals and can be recapitulated using the artificial activation of the shock-

responsive DANs innervating the MB by way of optogenetics (Aso and Rubin, 2016; König et 

al., 2018). This sensitivity to the timing of events suggests that animals are able to form distinct 

associations depending on the temporal relationships within their environment and suggests a 

synaptic or circuit based mechanism for determining the order of events lies within the MB 

circuitry.  

 

 

1.6 Conservation of Molecular Pathways Involved in Learning 

Over the past four decades, Drosophila behavioral neurogenetic screens have identified several 

proteins, conserved across species, that regulate dopamine signaling and are required for proper 

learning (Berry et al., 2012; Dudai et al., 1976; Kim et al., 2007; Levin et al., 1992; Livingstone 

et al., 1984; Tomchik and Davis, 2013). These proteins include dopamine receptors, adenylate 

cyclases, phosphodiesterases, and kinases among others (Tomchik and Davis, 2013). Two 

dopamine receptors highly expressed in the MB, DopR1 and DopR2, have both been shown to 

increase production of cAMP through in vitro assays (Han et al., 1996; Sugamori et al., 1995). 

However, mutant studies highlight a dual, opposing role for these receptors in regulating 

memory, in which DopR1 acts to promote memory formation (Kim et al., 2007; Qin et al., 2012) 

while DopR2 serves to degrade memory (Berry et al., 2012). The role of DopR2 as a memory 

suppressor suggests an active mechanism underlying the erosion of irrelevant memories that 

opposes the role of DopR1 in memory acquisition. However, how these two receptors work in 
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opposition at the synapse to drive memory acquisition and erosion is unknown and has never 

been probed using functional imaging or electrophysiological experiments.   

 

Another learning mutant, rutabaga, involves a mutation in the calcium/calmodulin-sensitive 

catalytic domain of the type I-like adenylate cyclase protein, which has been suggested to act as 

a coincidence detector and underlie synaptic plasticity both in vertebrates and invertebrates 

(Gervasi et al., 2010; Kandel et al., 1983; Livingstone et al., 1984; Mons et al., 1999; Tomchik 

and Davis, 2009). These early genetic screens implicated additional genes involved in cAMP 

regulation or signaling such as dunce, a gene that encodes a cAMP phosphodiesterase, and the 

catalytic and regulatory domain of the cAMP dependent protein kinase-A (PKA) (Dudai et al., 

1976; Goodwin et al., 1997; Skoulakis et al., 1993).  In addition, a conserved role of NMDA 

receptors and the transcription factor, CREB, have been proposed to play a role in long-term 

memory regulation in Drosophila (Xia et al., 2005; Yin et al., 1994). Although the behavioral 

contribution of these genes in learning has been extensively studied in Drosophila, their 

functional role in synaptic plasticity remains elusive. 

 

 

1.7 Linking Neural Plasticity and Learned Behavior 

A central goal in the study of learning and memory has been to link changes in neural activity to 

the emergence of learned behavior. This has been difficult due to a mismatch in the relevant 

timing for STDP and modulation observed at the behavioral level. Heterosynaptic plasticity 

arising from neuromodulation has been suggested as a mechanism to extend the temporal 

requirements for STDP to a behaviorally relevant timescale (Cassenaer and Laurent, 2012). In 
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addition, recent work has suggested that non-Hebbian plasticity mechanisms, involving multi-

second calcium plateaus, play a role in shaping synaptic plasticity in hippocampal place cells 

(Bittner et al., 2017).  

 

In the last several years, a number of experiments have examined the temporal requirements for 

synaptic plasticity in the MB using conditioning paradigms relevant for animal behavior. The 

compartmentalized organization of the MB means that DANs can independently tune the 

strength of KC-MBON synapses within each compartment (Berry et al., 2018; Cohn et al., 2015; 

Hige et al., 2015; Owald et al., 2015), reweighting the net activity of the output population to 

bias an animal’s attraction to odor through learning. Indeed, pairing of an odor with DAN 

activation has been shown to drive depression of KC-MBON synapses (Berry et al., 2018; Cohn 

et al., 2015; Hige et al., 2015; Owald et al., 2015; Séjourné et al., 2011), weakening the MBON’s 

response to the conditioned odor.  While conditioning with shock-responsive DANs depresses 

the odor responses of MBONs that drive attraction, pairing an odor with activation of the sugar-

responsive DANs depresses the responses of MBONs that mediate avoidance (Aso et al., 2014b). 

Together, these experiments suggest that the clear delineation in the valence of DANs and 

MBONs across the MB architecture permits appetitive and aversive experiences to drive either 

odor approach or odor avoidance through a unified plasticity rule of depression within the 

compartment innervated by the activated DANs. The ability to use similar conditioning 

paradigms to induce neural plasticity that also function to drive learned-changes in behavior 

offers the promising opportunity to directly relate changes in neural activity to the emergence of 

learned behaviors. 
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While the coding properties of odors among KCs together with the compartmentalized wiring 

pattern of MBONs and DANs along the output lobes clearly allows Drosophila to contextualize 

a wide-array of odors as a result of conditioning, two significant questions remain: 1) how is 

temporally sensitivity achieved in these learning circuits and 2) how do animal’s update neural 

plasticity and alter their behavior when a learned association is re-contextualized. My thesis aims 

to address these two questions through experiments that combine high-resolution behavioral 

analysis with functional imaging at identifiable synaptic sites to investigate how the Drosophila 

MB detects the precise temporal ordering of events to extract meaningful relationships from the 

environment and update associations as the temporal relationship between events is altered.  The 

work presented in subsequent chapters shows that flies can write opposing olfactory associations 

on a trial-by-trial basis depending on the relative timing of odor cues and a dopaminergic 

reinforcement, recapitulating the bidirectional behavior described earlier. In addition, use of a 

novel closed-loop olfactory system to monitor neural activity as an animal navigates in a virtual 

olfactory environment, reveals that these bidirectional changes in odor tracking correlate with 

bidirectional changes in KC-MBON signaling within a compartment, linking plasticity at 

identified synapses to the emergence of learned behavior. Furthermore, I show that the temporal 

specificity of this circuit relies on two dopamine receptors that couple to distinct intracellular 

signaling cascades and play opposing roles in regulating KC-MBON synaptic strength. Loss of 

either receptor renders the synapses of the mushroom body capable of only unidirectional 

plasticity, preventing this behavioral flexibility. By examining dopamine receptor second 

messenger signaling, neural plasticity, and behavioral plasticity on the same timescales, these 

experiments reveal how biochemical pathways confer temporal sensitivity to this circuit, 

allowing animals to maintain accurate predictions in a changing environment.  
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Chapter 2 

 

Event Timing Instructs Opposing Olfactory Associations 

 

2.1 Introduction 

Despite a half-century of work on associative learning in Drosophila melanogaster, few 

experiments have explored the full range of temporal relationships that give rise to learned 

behaviors. Most often experiments focus on the behavioral effect of presenting an odor and 

reinforcement either synchronously or with the odor slightly preceding the reinforcement in time 

(forward pairing). Forward pairing is used to examine whether an animal is able to learn that the 

CS+ is predictive and correlated with the reinforcement. However, a number of experiments in 

animals have demonstrated that animals are able to use a larger variety of temporal relationships 

to instruct distinct associations (Gerber et al., 2019; 2014). Additionally, most experiments in 

Drosophila measure learning in a preference assay in which the preference for the paired odor 

(CS+) is compared to the preference for an unpaired odor (CS-) as an aggregate value from a 

large number of flies. From these experiments it is difficult to appreciate 1) how individual 

animals change their behavior to the conditioned odor since measurements are only observed at 

the population level, 2) the dynamics for how animal behavior changes due to conditioning since 

preferences are assessed only as an end-point measurement, and 3) how the behavior to the 

conditioned and unconditioned odor is specifically altered in individual animals given these 

assays only measure relative preference between the odor pair.  
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In addition, to contend with a complex and dynamic environment, animals must be able to re-

contextualize an association as the environmental conditions are altered. Experiments across a 

variety of animals have suggested that animals are capable of learning an association after a 

single conditioning trial, a process called single-shot learning (Lee et al., 2015). This type of 

learning is distinct from gradual learning, in which an animal acquires knowledge slowly over 

time as a result of trial and error and repeated exposure. While single-shot learning is ideal in 

allowing animals to rapidly adapt behaviors as a result of a salient or recent experience, it may 

also be detrimental in a complex and dynamic environment causing animals to associate a 

sensory stimulus that is only briefly correlated with the salient experience but is not truly 

causally related. While experiments have explored how the repeated presentation of the CS+ 

without reinforcement leads to extinction, a process believed to involve the re-evaluation of the 

odor and formation of a new association in which the odor is now is associated with a lack of 

reinforcement (Felsenberg et al., 2017; 2018), few experiments have examined how changing the 

temporal relationship between the conditioned and unconditioned stimulus alters a learned 

association. In the following chapter, I describe how the use of a novel chamber design has 

revealed new insights into how the event timing of conditioning instructs bidirectional behavior 

to the conditioned odor. 

 

 

2.2 The Development of a Behavior Chamber for Odor Tracking 

To explore how Drosophila adapt to changes in the temporal structure of their environment, we 

developed methods to monitor the olfactory preferences of flies over long periods of time while 
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precisely varying the timing of odor stimuli and dopaminergic reinforcement. To do this, 

Thomas Graham, a former post-doc in the lab, designed clear chambers, containing a central 

empty chamber (20 mm x 50 mm) flanked by two manifolds. Narrow channels were etched 

between the manifolds, permitting airflow between the chamber and the manifolds while 

confining flies within the central chamber. Two valves were used to control the direction of 

airflow, and additional valves were used to switch between clean air and different odors (Figure 

2.1A). The ability to switch the direction of airflow between odor presentations allowed for 

repeatedly testing odor-tracking behaviors in the same individual animals over multiple trials. 

The chambers were imaged from above with a string of LEDs arrayed below a transparent 

platform, permitting the use of optogenetics in place of using food reward or shock punishment 

as reinforcements.  

 

A common navigational strategy many animals employ is to reorient and increase their upwind 

velocity when they encounter an attractive olfactory plume (Cardé and Willis, 2008), as this will 

lead them to the odor source. Indeed, we see that an individual animal will exhibit robust upwind 

tracking in response to the appetitive odor, apple cider vinegar (ACV), evident from visualizing 

the animal’s trajectory prior to and after the onset of the odor (Figure 2.1B). A distinct advantage 

of this chamber design and assay, in contrast to traditional paradigms like the T-maze, is that it 

allows for repeated training and testing of the same individuals over several hours, permitting 

longitudinal examination of how odor attraction is altered in response to an animal’s ongoing 

experience. In addition, high-resolution behavioral tracking allows us to specifically explore how 

animal behavior is altered to the conditioned odor. 
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Figure 2.1, Novel Behavioral Assay for Tracking Odor Behaviors 
(A) Illustration of chamber assay showing how airflow switches across manifolds between odor 
presentations to come from the top or bottom of chamber on alternating odor presentations.  
Additional valves were used to switch air flow from glass bottle containing water to an odor-
containing bottle. (B) Behavior of an individual animal in a chamber. Odor and wind direction is 
marked by the white arrow. The trajectory of the animal from 3 seconds prior to odor onset to 3 
seconds following odor onset was plotted. When the animal is presented with the appetitive odor 
apple cider vinegar, it re-orients and tracks the odor plume upwind.  
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2.3 Timing of Events Tunes Punishment and Reward 

We began by asking whether we could suppress the innate attraction to ACV by pairing it with 

optogenetic activation of the PPL dopaminergic neurons that are responsive to punitive cues, 

such as electric shock, and are sufficient to drive aversive memory formation (Aso and Rubin, 

2016; Aso et al., 2010; 2012; Claridge-Chang et al., 2009; König et al., 2018).  To assess how 

odor tracking behavior was altered as a result of the timing of associative conditioning, we 

placed a small cohort of 4-7 flies in a chamber in constant laminar air flow and analyzed their 

walking trajectories in response to a brief (2 sec) pulse of the inherently appetitive odor, apple 

cider vinegar (ACV). We used an intersectional genetic strategy (Aso and Rubin, 2016) to 

selectively express the light-activated ion channel, CsChrimson, in a subset of PPL neurons 

innervating six compartments of the mushroom body (Figure 2.2A), allowing for temporally 

precise, light-evoked dopaminergic reinforcement. After just a single forward conditioning trial, 

in which the ACV stimulus preceded the onset of PPL activation, flies showed significantly 

reduced upwind tracking to the odor in a subsequent test trials (Figure 2.2B). This aversive 

conditioning resulted in both fewer flies tracking upwind in response to the odor and an overall 

decrease in their upwind velocity (Figures 2.2B-C).  While a majority of olfactory memory 

experiments use neutral odors as the CS+, the strong decrease in attraction to the ‘innately’ 

appetitive food odor, ACV, suggests that associative conditioning in the MB is sufficient to 

suppress and override innately attractive cues whose valence is thought to be determined by 

processing in the distinct neural circuitry of the lateral horn in the Drosophila brain. This 

suggests an interesting interplay between hard-wired and learned behaviors in the regulation of 

odor behaviors (Keene and Waddell, 2007; Masse et al., 2009). 
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The attenuated attraction to ACV after forward conditioning persisted for at least 20 minutes—a 

short-term memory in the life of a fly—with little erosion due to passive decay or extinction by 

repeated presentation of the conditioned odor without reinforcement (Figure 2.2D). The strength 

of this association further underscores that a single aversive reinforcement can drive lasting 

behavioral modulation.  

 

However, we found that if the same animals subsequently experienced a single backward 

conditioning trial, in which ACV instead followed PPL stimulation, the weakened attraction was 

immediately reversed, rendering flies strongly attracted to the odor again (Figures 2.2B-C and 

2.2E).  This suggests that the MB is incredibly plastic, instructing rapid changes in animal 

behavior depending on the current temporal relationships in the environment. This reversible 

plasticity provides an adaptive mechanism allowing animals to rapidly re-contextualize an 

olfactory association as temporal relationships are altered. Without this capacity for updating 

associations animals may be stuck with an association that does not properly reflect meaningful 

relationships in their environment.  

 

Indeed, interleaving forward and backward pairing reliably modulated the animals’ attraction to 

ACV for 50 conditioning trials. Plotting the upwind displacement of animals over time generated 

a saw-tooth pattern, as their upwind tracking was alternately suppressed or enhanced with each 

conditioning trial (Figures 2.3A-B). This systematic behavioral modulation was not evident in 

control animals, in which light alone had a minimal effect on behavior (Figures 2.3C-D). Flies 

therefore have the capacity to write and update odor associations on a trial-by-trial basis if the  
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Figure 2.2, Timing of Punishment Leads to Rapid Reversals in Odor Attraction 
(A) Anatomy of PPL (teal; MB504B split-Gal4 line) (left). Innervation within mushroom body 
neuropil and schematic of compartmentalized innervation in the mushroom body lobes (right). 
(B) Top: behavioral protocol to compare tracking of apple cider vinegar (ACV) odor after 
forward pairing (FP) and backward pairing (BP) with optogenetic activation of PPL DANs (top). 
In baseline, post-forward pairing, and post-backward pairing trials, animals experienced two 
odor presentations—one originating from the top of the chamber and one from below and the 
upwind velocities and displacements for these two odor presentations were averaged together. 
Bottom: trajectories of individual flies from one representative experiment, aligned to common 
origin and wind direction. Flies that did not move in response to the odor were positioned at 
origin. The upwind displacement of all flies in the odor measured as change in the center of mass 
is shown at right (teal) (see methods). (C) Upwind velocity of flies in baseline trials, post-
forward pairing trials, and post-backward pairing trials (odor indicated with gray box) measured 
by tracking the change in the center of mass of flies over the course of a trial. Representative 
example from (B) is plotted in teal. N = 8 with 6 animals per experiment; mean in bold and 
individual experiments in thin lines. (D) Left: Average upwind displacement for flies in odor 
(apple cider vinegar, ACV) during 3 baseline trials and 15 trials following a single forward 
pairing (FP) of ACV with optogenetic activation of PPL DANs (post-forward pairing trials 
highlighted with gray background). Right: Raster of average upwind velocity of flies for the 
corresponding trials. 2-s odor presentation noted above raster. (E) Left: Same as in (D) except 
that after a single post-forward pairing trial animals were trained with a single backward pairing 
(BP). Right: Raster of average upwind velocity of flies for the corresponding trials. Significance 
is indicated as follows: *** p ≤ 0.001, ** ≤ 0.01, NS ≥ 0.05, paired t-test with Bonferroni 
correction. For (D-E) n = 11 experiments with 6 animals per experiment, mean ± SEM. Black 
arrowheads mark when forward pairing and backward pairing was performed.  
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Figure 2.3, Forward and Backward Pairing Modulate Behavior on a Trial-By-Trial Basis. 
(A) At left, raster plot of average upwind velocity of flies across trials using the same protocol as 
in Figure 2.2B. The first row in the raster corresponds to the baseline trial. Subsequent rows 
correspond to trials after alternating forward or backward pairing trials (total of 25 forward 
pairing and 25 backward pairing trials across each experiment). At right, upwind displacement 
during odor presentation for the corresponding row in the raster plot, mean ± SEM. (B) Change 
in upwind displacement in odor after forward and backward pairing for PPL conditioned 
animals. The change in upwind displacement was measured relative to the preceding odor trial. 
Each data point represents the mean change in displacement after the 25 forward pairing trials 
(post-FP) or 25 backward pairing trials (post-BP) in each experiment. (C) Raster plot of average 
upwind velocity of flies (left) and mean ± SEM upwind displacement (right) as in (A) except 
using UAS-CsChrimson flies lacking a Gal4 driver. (D) Change in upwind displacement in odor 
same as in (B) except using UAS-CsChrimson flies lacking a Gal4 driver. n = 8 experiments 
with 6 flies per experiment for all genotypes, mean ± SEM. Significance for change in upwind 
displacement post-FP and post-BP across all genotypes is indicated as follows: *** p ≤ 0.001, * 
p < 0.05, NS ≥ 0.05; one-sample t-test against zero with Bonferroni correction. 
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predictive value of an odor changes. Furthermore, the reversal in odor tracking with forward and 

backward conditioning parallels previous observations that animals will avoid odors that predict 

punishment but become attracted to odors associated with its termination (Aso and Rubin, 2016; 

König et al., 2018; Tanimoto et al., 2004).  

 

Similar to reinforcement circuits in the mammalian brain, the DANs of Drosophila are 

heterogeneous in their response profiles to punishing and rewarding experiences. While 

experiments in Drosophila have explored how punishment can instruct both avoidance and 

attraction behavior depending on the temporal structure of conditioning, the question of whether 

dopamine neurons that convey reward to the MB are able to similarly instruct opposing 

associations depending on timing has not yet been explored.   

 

To examine this we asked whether olfactory associations could be similarly reversed via 

optogenetic activation of the PAM cluster of dopaminergic neurons that encode rewarding 

stimuli and drive appetitive learning (Aso and Rubin, 2016; Burke et al., 2012; Liu et al., 2012) 

(Figure 2.3A). Forward pairing of ACV with PAM activation modestly enhanced the upwind 

tracking of ACV in naïve animals (Figure 2.3B). However, a single backward conditioning trial 

after forward pairing or even from a naïve state suppresses odor tracking far below the baseline 

of naïve animals (Figures 2.3B and D). This suggests that backward pairing can overwrite the 

innate attraction to ACV if the odor becomes associated with the cessation of reward. In 

addition, this suggests the backward pairing does not simply modulate behavior by eroding a 

prior association, but instead instructs a new association with a valence opposite to that of the  
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Figure 2.4, Timing of Events Turns Reward Into Punishment 
(A) Anatomy of PAM (teal; MB042B split-Gal4 line) (left). Innervation within mushroom body 
neuropil and schematic of compartmentalized innervation in the mushroom body lobes (right). 
(B) At left, raster plot of average upwind velocity of flies across trials using PAM DANs 
expressing CsChrimson for training. The first row in the raster corresponds to the baseline trial. 
Subsequent rows correspond to trials after alternating forward or backward pairing trials (total of 
25 forward pairing and 25 backward pairing trials across each experiment). Timing of forward 
and backward pairing same as indicated in Figure 2.2B. At right, upwind displacement during 
odor presentation for the corresponding row in the raster plot, mean ± SEM. (C) Change in 
upwind displacement in odor same as in (Figure 2.3B) except using PAM > CsChrimson flies. n 
= 8 experiments with 6 flies per experiment for all genotypes, mean ± SEM. Significance for 
change in upwind displacement post-FP and post-BP across all genotypes is indicated as follows: 
*** p ≤ 0.001, * p < 0.05, NS ≥ 0.05; one-sample t-test against zero with Bonferroni correction. 
(D) Upwind displacement in odor in a single baseline trial and following a single backward 
pairing (post-BP) trial of ACV paired with optogenetic activation of PAM DANs. n = 8 
experiments with 5-7 flies per experiment, mean ± SEM. Statistical significance for difference in 
upwind displacement between baseline and post-BP is indicated as follow ** p ≤ 0.01; paired t-
test. 
  



 36 

 



 37 

reinforcer. As with PPL conditioning, alternating forward and backward pairing of ACV with 

PAM activation modulated odor attraction with each trial, enhancing upwind tracking after 

forward pairing and suppressing tracking after backward pairing (Figures 2.3B-C). Thus both 

PAM and PPL DANs are sufficient to bidirectionally modify behavior such that activation of 

either dopaminergic population can produce appetitive or aversive associations depending on the 

relative timing of the dopaminergic reinforcement to an odor cue. 

 

 

2.4 High-Resolution Analysis of Learned Behaviors 

Associative conditioning allows animals to adapt their behaviors in order to maximize reward 

and minimize punishment. However, the actions that animals take to achieve this goal are varied. 

Animals have evolved behavioral responses to contend with inherently fearful or rewarding 

experiences. For example, when fearful, animals show a startle response and freeze for a period 

of time before deciding to stay in position or run away if an escape route is available (LeDoux, 

1996; Phelps and LeDoux, 2005). Interestingly, it is thought that escape, or active avoidance, is 

mediated through distinct and opposing neural circuits than drive freezing, highlighting the 

complex neural circuit interactions governing these adaptive behaviors (Moscarello and LeDoux, 

2013). On the other hand, when presented with a food reward, animals exhibit enhanced arousal 

and increased locomotion in preparation for the imminent intake of food (Mistlberger, 1994). 

Following associative conditioning, animals express these adaptive behavioral responses to the 

reinforced conditioned stimulus in the anticipation of reward or punishment. In Drosophila, 

appetitive and aversive memories are most often assessed through end-point preference assays in 

which flies are able to choose between the CS+ and CS-. While this analysis provides a simple 
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metric for learning, it obscures insight into the behaviors the animal adopted to the CS+ as a 

result of associative conditioning. 

 

The analysis used in previous figures 2.2-2.4 assessed animal behavior by measuring the upwind 

velocity of the center of mass of the entire population of 4-7 flies within an individual chamber.   

While the use of this single metric offers simplicity and clarity in the analysis of animal 

behavior, we were interested in determining the specific aspects of animal behavior that are 

modulated as a result of conditioning. To more thoroughly examine animal behavior in this 

chamber assay, we analyzed the trajectories of each individual animal within a chamber and 

tracked their speed along the wind axis and the cross-wind axis, the velocity upwind and 

crosswind, as well as the fraction of animals within a chamber walking upwind, downwind, or 

crosswind during the odor and the fraction of animals that remained stationary during the odor 

(Figures 2.5A-H).  

 

In comparing these behavioral parameters, we observe that a number of metrics are bidirectional 

modulated by forward and backward pairing with the most strongly affected parameters being 

speed and velocity along the axis of air and odor (Figures 2.5A and 2.5 C) and the fraction of 

animals walking upwind (Figure 2.5E) and stationary during the odor (Figure 2.5H). Forward 

pairing with PPL activation or backward pairing with PAM activation both decrease the fraction 

of animals walking upwind and increase in the fraction of flies stationary, suggesting that 

animals exhibit a decreased mobilization in situations where they can not escape an unpleasant 
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Figure 2.5, Forward and Backward Pairing Modulate Numerous Behavioral Metrics  
(A-J) Behavioral analysis comparing behavioral metrics affected by forward (post-FP) and 
backward (post-BP) pairing in PPL > CsChrimson and PAM > CsChrimson animals. Left traces 
represent average behavior over duration of trial including pre-odor, odor, and post-odor period. 
Right graphs represent average behavioral response in the odor. (A) Directional information of X 
and Y axis relative to air/odor flow in behavioral chambers. (B) Speed in the Y direction 
(upwind or downwind) for all animals. (C) Speed in the Y direction only for animals moving (>1 
pixel/s or 0.3mm/s). (D) Upwind velocity for all animals. (E-F) Speed in the X direction (left or 
right) (E) and crosswind velocity for all animals (F). (G) Fraction of animals walking upwind. 
(H) Fraction of animals stationary. (I) Fraction of animals walking downwind. (J) Fraction of 
animals walking crosswind. Mean ± SEM, n = 8 experiments for PPL and PAM with 6 flies per 
experiment. See methods for details in behavioral analysis. Significance for difference in 
behavior post-FP and post-BP for both PPL > Chrimson and PAM > Chrimson animals were 
tested using Wilcoxon match-paired sign rank test: ** ≤ 0.01, NS p ≥ 0.05.  
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experience. While it is possible for animals in these chambers to track downwind in conditioned 

odor, we do not see an increase in this behavioral response following aversive experiences. This 

is in contrast to preference assays, in which animals track downwind in the CS+ and approach 

the CS- upwind after aversive conditioning (Claridge-Chang et al., 2009).  This high-resolution 

analysis of behavior in response to the conditioned odor reveals a conserved behavioral strategy 

for contending with an aversive odor reinforced either through forward pairing with PPL or 

backward pairing with PAM DANs.  

 

 

2.5 Backward Pairing Instructs a Distinct Memory  

The Rescorla-Wagner model of associative conditioning expanded on Pavlov’s observations to 

suggest that the strength of an association depends on how predicted the unconditioned stimulus 

is by the conditioned stimulus and propose that animals attend to changes in contingency to 

modify prior associations (Rescorla, 1971). This model, proposed by Robert Rescorla and Allan 

Wagner in 1972, was used to explain the process of memory erosion by way of a change in 

contingency between the CS and US. A change in contingency can include the decoupling of the 

CS and US, or by varying the relationship from a positive contingency (CS predicts an increase 

in the probability of US occurring or forward pairing) to a negative contingency (CS predicts a 

decrease in the probability of US occurring or backward pairing), or vice versa. However, how 

these changes in contingency act mechanistically to update or erode an association is unclear. 

 

The discovery of reward prediction errors in the mammalian midbrain dopamine neurons added 

further weight to the model, providing a neural circuit basis to allow animals to update and 
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change associations as the contingencies between the CS and US are altered over time. 

Additional work in Drosophila and rodents suggested that the process of memory erosion due to 

decoupling of the CS and US arises from the formation of a parallel opposing memory and relies 

on neural circuitry and molecular pathways distinct for those involved in the initial learning 

(Berman and Dudai, 2001; Bouton, 2004; Felsenberg et al., 2018; Shuai et al., 2010). However, 

these experiments challenged long-term memories with an extinction protocol in which the 

memory was re-activated with the CS+ hours to days after the initial memory was formed, a 

timescale much longer than the rapid reversals in behavior we see on the minute timescale with 

backward pairing. In addition, most behavioral or functional assays used to assess memory 

erosion and decay examine the effects only of memory re-activation with an unpaired 

presentation of the CS+ or US, limiting insight into potentially distinct forms of memory re-

evaluation resulting from different changes in contingency (Aso and Rubin, 2016; Berry et al., 

2012; Bouton, 2002; Felsenberg et al., 2017; 2018).  

 

We were interested in testing whether backward pairing resulted in behavioral reversals distinct 

from the effect of decoupling the odor and DAN reinforcement. To explore this, we compared 

the effects of backward pairing to the re-exposure of the conditioned odor alone or the unpaired 

activation of the DANs alone.  In our assay neither odor re-exposure nor DAN re-activation 

alone was sufficient to drive the strong bidirectional modulation of behavior observed with 

backward pairing (Figures 2.6A-B). Activation of PAM DANs weakly dampened odor tracking, 

consistent with the idea that dopamine release in the absence of an odor can actively erode past 

associations (Berry et al., 2012; 2015; Cohn et al., 2015), but this effect was significantly weaker 

than the modulation that ensued from backward pairing (Figure 2.6C).  
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Figure 2.6, Modulation by Backward Pairing Depends on Convergence of Odor and DAN 
(A) Top: Behavioral protocol to test for memory erosion by re-exposure to odor alone. Protocol 
for training was similar to Figure 2.2B except that instead of backward pairing animals 
experienced 2-s re-exposure to ACV odor (Odor Alone) during the training trial. Animals 
experienced a total of 25 forward pairing (FP) and 25 Odor Alone trials in alternating succession 
across each experiment. Bottom: Average raster plot of upwind velocity of flies (left) and mean 
± SEM upwind displacement in ACV odor (right). Training with PPL DANs expressing 
CsChrimson (PPL > CsCh) shown in teal; training with PAM DANs expressing CsChrimson 
(PAM > CsCh) shown in magenta. (B) Same as in Figure 2.2B, except instead of backward 
pairing animals experienced 1-s LED illumination to re-activate DANs expressing CsChrimson 
(DAN Alone). (C) Mean change in upwind displacement post-forward pairing (FP), post-
backward pairing (BP), post-Odor Alone (Odor), and post-DAN Alone (DAN) for PPL > CsCh 
(teal) and PAM > CsCh (magenta) animals. Experiments where forward pairing and backward 
pairing alternate (left) are compared to experiments where forward pairing and Odor Alone 
alternate (middle) and where forward pairing and DAN Alone alternate (right). Odor Alone 
(Odor) and DAN alone (DAN) lead to weaker modulation of behavior than backward pairing 
(BP) for both PPL > CsCh (teal) and PAM > CsCh (magenta), mean ± SEM, n = 7-8 experiments 
with 5-7 flies per experiment for all genotypes. Statistical significance for difference from BP is 
indicated as follows ** p ≤ 0.01, *** ≤ 0.001; Mann-Whitney test with Bonferroni correction. 
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These observations reveal that the reversal of an association by backward pairing requires input 

from both olfactory and dopaminergic pathways and suggests that the convergence of olfactory 

and DAN input to the mushroom body conveys information about their causal relationship 

offering a mechanism to more rapidly update a memory when temporal relationships change. 

Together, our results suggest that the memory erosion by backward pairing reflects the formation 

of a new memory in which the odor, once predictive of a reinforcement, is now associated with 

its termination. 

 

 

2.6 Discussion 

In order to make meaningful predictions about the likelihood of events occurring, animals use 

the temporal structure of their environment to learn novel associations between events. This 

sensitivity to timing allows animals the capacity to approach things associated with reward and 

avoid others instead associated with punishment or pain. Since Pavlov’s seminal research on 

associative conditioning (Pavlov, 1927), scientists have debated the features of the environment 

that animals use to instruct meaningful associations and the statistics that they rely on to update 

or re-evaluate the utility of a prior memory (Rescorla, 1967). Specifically, the behavioral effects 

of backward pairing have been left unspecified due to conflicting results in which some 

experiments suggest backward pairing results in the opposite behavioral response to forward 

pairing (Moscovitch and LoLordo, 1968; Siegel and Domjan, 1971) while other results 

demonstrate the inverse effect (Heth and Rescorla, 1973). However, more recently, experiments 

have systematically explored the multiple temporal features an animal uses to inform 
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associations (Andreatta et al., 2012; 2015; Baxter and Byrne, 2006; Bergado Acosta et al., 2017; 

Davis et al., 2008; Davis, 2011; Dubnau and Tully, 2001; Gerber et al., 2004; 2019; Heisenberg, 

2003; Lechner and Byrne, 1998; Mayer et al., 2018; Tanimoto et al., 2004). 

 

Using the simple neural architecture of Drosophila and precise optogenetic activation of 

rewarding or punishment DANs, we explored the temporal dependence of associative learning 

and found that both rewarding and aversive DANs equivalently instruct the formation of 

appetitive and aversive associations, simply depending on the relative timing of events during 

conditioning. This is inline with previous results in Drosophila, revealing bidirectional behavior 

that depends on the timing of odor and shock punishment during conditioning (König et al., 

2018; Tanimoto et al., 2004). Interestingly, we show that the ‘innately’ attractive food odor, 

ACV, could be rendered unattractive by either forward pairing with shock-responsive PPL 

DANs or backward pairing with the rewarding PAMs. This suggests the capacity of experience 

to overwrite the innate valence of an attractive odor cue. In line with this observation, recent 

anatomic and functional experiments have suggested that lateral horn neurons involved in innate 

attraction, receive input from mushroom body neurons, emphasizing a likely intimate connection 

between hard-wire and flexible circuits in dynamically regulating odor attraction behavior as a 

result of an animal’s experience (Dolan et al., 2018).  

 

Furthermore, we found a change from a positive contingency (forward pairing) to a negative 

contingency (backward pairing) was sufficient to instruct rapid reversals in attraction to the 

conditioned odor over the brief timescale of minutes. A number of studies have examined the 

molecular and circuit mechanisms for the re-evaluation of a learned association and have 
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suggested that the process occurs through a circuit-based mechanism, often involving the 

formation of a new, parallel association of opposing valence (Auchter et al., 2017; Quirk and 

Mueller, 2008; Shuai et al., 2015). Indeed, recent work in Drosophila has demonstrated that the 

extinction of a memory by repeated re-exposure to the conditioned odor induces plasticity in 

neural circuits that work to antagonize the neural correlate of the original memory (Felsenberg et 

al., 2017; 2018). In addition, research has suggested distinct mechanisms exist for the decay of 

memory that occurs with the passage of time and ongoing behavioral locomotion of an animal 

that involves bidirectional modulation within an individual compartment of the mushroom body 

and the distinct engagement of two dopamine receptors that work in opposition to regulate 

memories (Berry et al., 2012; Cohn et al., 2015). Together, these results highlight the complexity 

of mechanisms in how animals update and re-evaluate associations over a short and long 

timescale.  

 

In contrast to these forms of memory re-evaluation, we show that the converging input of odor 

and DAN reinforcement is sufficient to rapidly reverse odor associations on the minute 

timescale. The rapidity with which animals update associations following backward pairing is in 

stark contrast to the hour-long process for memory re-evaluation that occurs with re-exposure to 

the CS+; these distinct timescales suggests backward pairing may rely on a distinct mechanism 

from the circuit mechanism proposed for memory re-evaluation following odor re-exposure. In 

addition, the observation that forward and backward pairing of an odor with activation of a single 

class of DANs is able to equivalently drive attraction or avoidance suggests an appealing model 

in which bidirectional neural plasticity within the individual compartments innervated by the 

reinforcing DANs reversibly modulates odor signaling through the MBONs. This type of 
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bidirectional plasticity would be distinct from other circuit models for memory re-evaluation and 

is a model I focus on in the following chapters.  
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Chapter 3 

 

Linking Bidirectional Behavior with Neural Plasticity 

 

3.1 Introduction 

Linking changes in neural activity to measureable changes in behavioral responses has been a 

central goal across all fields of neuroscience. While offering sometimes only correlative insight, 

providing a direct link between neural responses and changes in hormone production, emotional 

state, and behavior provides a foothold for further untangling the complex relationship between 

the properties of brain circuits and our internal states, drives, and ultimately behaviors.  

 

In both vertebrate and invertebrate brains, experiments have linked the location of a memory to 

specific brain centers through chemical and surgical ablation of specific brain regions (de Belle 

and Heisenberg, 1994; Milner and Penfield, 1955; Moyer et al., 1990; Ryou et al., 1998; 

Thompson, 2005). The use of electrophysiological recordings coupled with the advent of cell-

type specific drivers provided the opportunity to more specifically link the processing of memory 

to identifiable cell types within a neural circuit.  The discovery of long-term potentiation and 

depression (LTP and LTD) in the cerebellum and hippocampus, brain centers known to be 

central to learning and memory, sparked excitement among neurobiologist who recognized that 

this form of activity-dependent plasticity may serve as a readout, or engram, of the early stages 

of memory formation (Bliss and Lømo, 1973; Ito and Kano, 1982; Ito et al., 1982). However, 
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despite decades of research, there is little direct evidence to link LTP and LTD to the learning 

rules relevant for the emergence of acquired behaviors. The recent advance in neural imaging 

technologies has offered scientist the opportunity to observe and correlate neural signals with 

changes in learned behavior in unprecedented detail. For example, in the mammalian field of 

learning and memory, imaging experiments performed in awake and behaving animals have 

provided clarity into the plasticity and learning rules involved in the emergence of place-fields in 

the CA1 region of the hippocampus (Bittner et al., 2017; Sheffield and Dombeck, 2019).  

 

Directly linking synaptic and behavioral plasticity requires the identification of synaptic sites that 

undergo modulation during learning and maintain an altered state of neural activity during the 

behavioral expression of the learned association. The simple anatomy of the mushroom body and 

well-characterized function of the neural cell types within the circuitry, provide an appealing 

system for linking the rules of neural and behavioral plasticity. The combination of optogenetic, 

imaging, and behavioral experiments in Drosophila have provided four important observations 

that suggest that compartmentalized KC-MBON synapses are the site of memory storage and 

that changes in the strength of these synapses is sufficient to drive changes in behavior: 1) odor 

identity is encoded by sparse ensembles of activated KCs and ablation of subsets of KCs impairs 

memory (Campbell et al., 2013; Pascual and Préat, 2001; Tomchik and Davis, 2013), 2) 

optogenetic activation of MBONs directly drives changes in animal behavior and silencing 

subsets of MBONs impairs the behavioral expression of a learned association (Aso et al., 2014b; 

Owald et al., 2015; Séjourné et al., 2011), 3) aversive and appetitive DANs are sufficient instruct 

learned associations (Aso and Rubin, 2016; Aso et al., 2010; 2012; Burke et al., 2012; Claridge-

Chang et al., 2009; König et al., 2018; Liu et al., 2012) and 4) the distinct innervation pattern of 
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aversive and appetitive DANs across the lobes of the mushroom body allow for 

compartmentalized modulation of post-synaptic sites (Boto et al., 2014; Cohn et al., 2015). 

However, while functional experiments in Drosophila have identified changes in neural activity 

at specific synaptic sites in the MB following associative conditioning (Berry et al., 2018; Cohn 

et al., 2015; Hige et al., 2015; Owald et al., 2015; Séjourné et al., 2011), minimal work has been 

done to directly compare the rules of synaptic and behavioral plasticity and to directly correlate 

the emergence of synaptic plasticity with learned behaviors in the same individual animal.  

 

In the following chapter, I explore the temporal window within which both behavioral and neural 

plasticity is observed in Drosophila melanogaster, and I examine the direct correlation between 

odor tracking behavior and neural plasticity using a novel closed-loop olfactory system to 

monitor neural activity as an animal navigates in a virtual olfactory environment. In addition, the 

following experiments aim to describe a general rule for bidirectional synaptic plasticity within 

the short-term memory circuit of the gamma lobe of the mushroom body. While it is nearly 

impossible to probe all synaptic nodes within the mushroom body circuitry, these experiments 

provide a strong link between the induction of plasticity at KC-MBON synapses and the 

emergence of learned behaviors. 

 

 

3.2 Defining the Temporal Window for Behavior Modulation 

To first define the temporal window within which pairing an odor with DAN activation 

modulated animal behavior, we trained animals for 50 trials while varying the timing between 

odor and dopaminergic reinforcement, randomly selecting from a set of 5 different inter-stimulus 
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intervals (ISI) for each conditioning trial (-6 s, -2 s, 0 s, 1 s, and 6 s). The ISI is defined as the 

difference in time between odor onset and the start of DAN activation; therefore, a negative ISI 

represents a negative contingency between the odor and DAN reinforcement while a positive ISI 

represents a positive contingency. The random selection from this set of five distinct ISIs served 

as an important control to test the ability of an ISI to modulate animal behavior regardless of the 

prior conditioning structure. 

 

Using the behavioral chambers described in the previous chapter, we found that shifting the 

relative timing between odor presentation and PPL activation by only a few hundred 

milliseconds was sufficient to induce a switch from conditioned avoidance to attraction (Figures 

3.1A-B) mirroring past observations (Aso and Rubin, 2016; König et al., 2018; Tanimoto et al., 

2004). However, while these previous experiments generated a biphasic curves of odor attraction 

using naïve animals following only a single conditioning trial, our experiments examined the 

capacity of the same individual animals to rapidly update prior associations as the temporal 

relationship between events are altered over many trials, mimicking a more naturalistic dynamic 

environment. In addition, we observed a similar effect using PAM DANs for activation where 

conditioned attraction could be transformed to conditioned avoidance by simply shifting the 

timing of DAN activation from lagging to preceding the odor stimulus in time by a few hundred 

milliseconds (Figures 3.1A-B). The biphasic curves that emerge as a result of conditioning with 

PPL and PAM activation suggest both of these DAN populations can equivalently instruct 

learned attraction and avoidance depending on the structure of conditioning.  
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Figure 3.1, PPL and PAM DANs Equivalently Instruct Attraction and Avoidance 
(A) Analysis examining how changes in upwind displacement depend on the inter-stimulus (ISI) 
between odor (apple cider vinegar, ACV) and optogenetic dopaminergic reinforcement during 
conditioning (right). ISI is the time of DAN onset minus the time of odor onset. Each cohort of 
animals was conditioned for 50 trials. The ISI for each conditioning trial was randomly chosen 
from the 5 ISIs shown. PPL > CsChrimson (teal), PAM > CsChrimson (magenta), and 
CsChrimson (black). Mean ± SEM, n = 6-7 experiments with 4-6 flies per experiment. The 
change in upwind displacement for each ISI was measured relative to the preceding trial. Each 
data point in (A) represents the mean change in displacement for that particular ISI in an 
experiment. Statistical significance for behavioral modulation compared to CsChrimson controls 
indicated as follows:  * p < 0.05, ** ≤ 0.01, NS ≥ 0.05; Mann-Whitney test with Bonferroni 
correction. (B) Bidirectional behavioral modulation in PPL > CsChrimson and PAM > 
CsChrimson animals as a function of training with different ISIs. 
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Interestingly, the temporal sensitivity of PPL and PAM conditioning differed, with PPL neurons 

able to drive aversive behaviors over a longer time window; while this observation may simply 

be due to differences in expression across the two genotypes, it supports evidence that different 

mushroom body DANs write and update olfactory associations with distinct rules (Aso and 

Rubin, 2016).  

 

In addition, the weakened behavioral modulation observed with longer ISIs, most notable with 

PAM activation, is inline with a wealth of behavioral literature suggesting that as the delay 

between the CS and US is extended, the behavioral expression of the association grows weaker 

(Aso and Rubin, 2016; König et al., 2018; Roberts, 1930). This same effect likely occurs with 

PPL activation but would require an extension of ISIs tested. Together these experiments 

demonstrate the exquisite temporal sensitivity of the mushroom body to odor and dopaminergic 

reinforcement. This sensitivity instructs distinct associations of opposing valence and of varying 

magnitude depending on the ISI tested, and endows animals with the capacity to use current 

temporal relationships between events in their environment to form and update prior associations 

on a trial-by-trial basis in a manner that scales with the predictive value of cue for reinforcement. 

While it remains a difficult task to recapitulate a dynamic sensory environment in the laboratory, 

these experiments reveal that animals can use rapidly changing relationships in their environment 

to update and instruct up-to-date associations.  
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3.3 Defining the Temporal Window for Neural Plasticity 

What neural mechanism might account for this bidirectional behavioral modulation?  One 

possibility is that distinct compartments within the mushroom body could be sensitive to forward 

and backward conditioning such that opposing memories are written in parallel at different sites 

within the circuit. Such a distributed circuit-based mechanism has been proposed to underlie the 

re-evaluation of memories in Drosophila whereby an aversive association can be extinguished by 

the formation of a competing appetitive association in an anatomically distinct compartment 

(Felsenberg et al., 2018). Alternatively, bidirectional behavioral modulation could reflect 

reversible plasticity of KC-MBON synapses within each compartment.  Indeed, dopamine has 

been shown to bidirectonally tune the strength of KC-MBON signaling with forward 

conditioning driving depression of KC-MBON synapses (Cohn et al., 2015; Hige et al., 2015; 

Owald et al., 2015; Séjourné et al., 2011) while strong dopamine release in the absence of odor 

leads to synaptic potentiation (Cohn et al., 2015; Berry et al. 2018). Furthermore, while forward 

conditioning with PPL neurons depresses the odor responses of MBONs that drive attraction, 

forward pairing with PAM neurons depresses the responses of MBONs that mediate avoidance 

(Aso et al., 2014b).  Therefore, potentiating or depressing KC-MBON signaling within a 

compartment could alter the balance of activity across the MBON population, enabling animals 

to avoid odors that predict punishments and approach odors that predict reward or learn the 

opposite associations with odors that follow the positive or negative reinforcements in time. Yet 

whether neurons of an individual compartment are sensitive to the temporal order of odor and 

reinforcement remains unclear. 
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We therefore examined how varying the timing of dopaminergic reinforcement shapes KC-

MBON signaling within a single compartment. We used a brain explant preparation, which 

allows for precise temporal control over both KC and DAN activation and examined plasticity in 

the γ4 compartment, where KC-MBON signaling undergoes robust dopamine-dependent 

modulation (Cohn et al., 2015). KCs were directly stimulated by iontophoresing acetylcholine 

onto their dendrites in the mushroom body calyx, simulating olfactory input (Figure 3.2A). 

Similarly, γ4 DANs were stimulated by driving expression of the ATP-gated P2X2 channel in the 

PAM dopaminergic cluster and iontophoresing ATP onto their dendrites (Figure 3.2A). We 

expressed the genetically encoded indicator GCaMP6s in the γ4 MBON and used KC-evoked 

dendritic calcium within the γ4 compartment to assess the strength of KC-MBON signaling. 

 

We found that after a single forward conditioning trial, the response of the MBON to the same 

KC input was strongly attenuated (Figure 3.2B), consistent with previous reports (Cohn et al., 

2015; Hige et al., 2015; Owald et al., 2015; Séjourné et al., 2011). The depression of KC-MBON 

signaling decayed slowly over the course of ten minutes despite repeated stimulation of the KCs, 

but could be reversed and even driven above baseline through a single backward conditioning 

trial (Figure 3.2B). Conversely, backward pairing from a baseline state led to lasting potentiation 

of KC-MBON signaling and could be reversed and driven below baseline by a single forward 

conditioning trial (Figure 3.2C). Forward and backward pairing therefore bidirectionally regulate 

KC-MBON signaling on a trial-by-trial basis, mirroring the observed behavioral flexibility.  

 

We found that varying the timing between KC and DAN stimulation during conditioning 

revealed a narrow temporal window over which the strength of KC-MBON signaling was  
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Figure 3.2, Forward and Backward Pairing Instruct Bidirectional Neural Plasticity 
(A) Schematic of mushroom body preparation used to measure KC-MBON plasticity. GCaMP6s 
was expressed in γ4 MBON using VT026001-Gal4 driver. KCs were directly stimulated by 
iontophoresis of acetylcholine into the calyx.  The P2X2 channel was expressed in PAM DANs 
(including γ4-γ5 DANs) using the 58E02-LexA driver and activated by application of ATP onto 
their dendrites. (B) Average KC-evoked GCaMP response in γ4 MBON prior to and after 
forward pairing and backward pairing using the experimental set up shown in Figure 3.2A.  KCs 
were activated by iontophoresis of acetylcholine onto their dendrites in the calyx. Two baseline 
trials are shown prior to forward pairing KC activation with activation of the g4 DANs 
expressing the ATP-gated P2X2 channel under 58E02-LexA driver. Following forward pairing 
(noted by first dashed line), 10 responses to KC stimulation are shown to assess decay in 
plasticity prior to backward pairing (denoted by second dashed line). Two KC-evoked calcium 
responses in g4 MBON are shown after backward pairing, n = 6, mean ± SEM. Representative 
example below of the heat map of fluorescence changes in g4 MBON dendrites evoked by KC 
stimulation for each time point. (C) Same as in (B) except backward pairing was performed first, 
marked by first dashed line, and forward pairing was performed second, marked by second 
dashed line, n = 6, mean ± SEM. Black arrowheads mark times of KC stimulation.   
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Figure 3.3, Relating Neural Plasticity with Behavioral Modulation 
(A) Average KC-evoked GCaMP responses in the γ4 MBON prior to (pre) and after (post) 
pairing KC and DAN activation (arrow head denotes time of KC stimulation) across different 
inter-stimulus intervals (ISI = time of DAN onset minus time of KC onset), mean ± SEM. (B) 
Black: Change in peak γ4 MBON response plotted as a function of ISI, mean ± SEM. n = 5-6. 
Magenta: Behavioral data for PAM > CsChrimson animals re-plotted from (B). Significant 
change in γ4 MBON response after pairing was observed for ISI = -1.2 s (p ≤ 0.001), 0 s (p < 
0.05), and 0.5 s (p ≤ 0.01); one-sample t-test against zero with Bonferroni correction. (C) 
Normalized GCaMP signal in γ4 MBON to odor stimulus pre (black) and post (red) forward 
pairing, backward pairing, or no pairing (unpaired odor) shows odor-specific depression and 
potentiation with unpaired odor responses unaffected. N = 3 in tact tethered animals with odor 
presented to antenna of animal, mean ± SEM.  
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bidirectionally modulated, shifting from potentiation when DAN stimulation preceded KC 

activation to depression when DAN stimulation was coincident or followed KC activation 

(Figure 3.3A).  While stronger or more prolonged dopamine release in the absence of an odor has 

been shown to potentiate KC-MBON signaling (Berry et al., 2018; Cohn et al., 2015), we found 

that extending the KC-DAN inter-stimulus interval to 6 seconds resulted in minimal plasticity 

(Figure 3.3A) consistent with behavioral evidence that nearly synchronous dopaminergic and 

olfactory input is required for robust modulation. Importantly, the temporal dependence of KC-

MBON plasticity within a single compartment innervated by the PAM DANs matched the 

timescale of behavioral plasticity evoked using the same PAM dopaminergic reinforcement 

(Figure 3.3B), suggesting that bidirectional regulation of KC-MBON signaling may underlie the 

temporal sensitivity at the behavioral level.  

 

A basic tenant of associative learning is that the acquired knowledge and behavioral response is 

specific to the paired conditioned stimulus (CS+) and is not observed in response to an unpaired 

conditioned stimulus (CS-) that is temporally unrelated to reinforcement. In order to test this, we 

presented flies with an odor that was either forward or backward paired (CS+) and an odor that 

was unpaired (CS-). We found the bidirectional neural plasticity was only observable in the odor 

paired with reinforcement with the γ4 MBON showing no modulation in its response to the 

unpaired odor (Figure 3.3C).  

 

These odor-specific changes, in addition to supporting that the neural modulation we observe is a 

relevant form of synaptic plasticity to instruct odor-specific behavioral associations, also 

highlights an important coding property of the MB architecture: the capacity of dopamine to 
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bidirectionally modulate specific KC-MBON synapses depends on the current activity state of 

the synapses.  

 

Dopamine neurons in both the vertebrate and invertebrate brain are know to influence synaptic 

transmission through volume release of dopamine (Floresco et al., 2003; Gonon, 1997; 

Takemura et al., 2017). Modulation by dopamine, therefore, depends on the geometric 

parameters of diffusion and the uptake characteristics of post-synaptic sites. Indeed, a recent 

connectome of the adult MB revealed that only 6% of KC-MBON synapses receive direct 

synaptic input from DANs (Takemura et al., 2017). One interesting implication from this high-

resolution structural information is that while the percentage of direct DAN input is low within 

the MB lobes, the density of KC-MBON synapses is very high suggesting that dopamine need 

only diffuse 2 µm to reach all KC-MBON synapses and ensure minimal “spill over” into 

neighboring compartments. While this interpretation of the connectome would indeed allow for 

compartment-specific modulation by innervating DANs, it raises the interesting question for how 

odor-specificity is achieved in the DAN-dependent modulation that occurs during learning.  The 

narrow temporal window in which bidirectional plasticity shapes γ4 MBON output (Figure 3.3A) 

suggests that dopamine modulation depends on the activity state of the KC-MBON synapses––

dopamine depresses synapses only if it follows a high-activity state and potentiates synapses 

selectively if it precedes a high-activity state. This suggests two distinct mechanisms likely exist 

to account for these different plasticity rules. On the one hand, the requirement for convergence 

of KC and DAN input suggests a coincidence detection mechanism exists within the MB 

circuitry. In addition, the sign of plasticity (potentiation or depression) depends on the ordering 
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of KC and DAN input, emphasizing the need for order detection in the KC-MBON synapses, a 

topic further discussed in Chapter 5. 

 

 

3.4 Bidirectional Plasticity Across Gamma Lobe Compartments 

When assessed at the level of animal behavior, different KC and DAN populations have distinct 

capacities for writing and updating associative memories and for the storage of multiple 

memories (Aso and Rubin, 2016; Blum et al., 2009; Qin et al., 2012; Trannoy et al., 2011).  The 

mechanistic basis for these discrepancies across cell types remains unclear and raises the 

question of whether the rules for synaptic plasticity differ across the compartments of the MB.  

We were, therefore, interested in assessing the capacity for bidirectional plasticity across 

different compartments within the γ lobe of the MB.   

 

Across the γ lobe, the KC axons are thought to be homogenous and are tiled by the input of cell-

type specific MBONs and DANs. We first asked whether the γ5 compartment, a compartment 

innervated by the PAM DANs, shows similar bidirectional plasticity to its neighboring γ4 

compartment. Indeed, a single conditioning trial in which direct KC stimulation was forward 

paired with chemogenetic activation of γ5 DANs was sufficient to induce depression in the γ5 

MBON response to KC input while backward pairing drove strong potentiation of the MBON’s 

response (Figure 3.4A).  

 

By contrast the γ2 compartment of the MB is innervated by the shock-responsive PPL DANs. 

Despite this difference in DAN valence, we again found that the timing of inputs directed 
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bidirectional plasticity: synchronous activation of KC and the γ2 DAN led to depression of the γ2 

MBON while backward pairing drove potentiation (Figure 3.4B). Interestingly, coincident 

activation of KC and the γ2 DAN led to much more consistent depression than if KC activation 

preceded γ2 DAN activation (data not shown) unlike the γ4 MBON, which exhibited strong 

depression under both pairing conditions; while this may simply be do to driver differences, it 

raises the possibility that the temporal window for neural plasticity differs across the different 

compartments of the MB. Furthermore, similar bidirectional and reversible modulation in the γ2 

MBON’s response to odor could be elicited by conditioning with a naturalistic aversive 

reinforcement in which an electric shock was applied to the abdomen of a fly in place of 

optogenetic activation of PPL DANs (3.5A-C). Together, these experiments suggest that direct 

activation of MB DANs is sufficient to drive bidirectional plasticity in the KC-MBON synapses 

across a variety of compartments in the γ lobe. 

 

These experiments support a model in which PAM and PPL DANs can direct either conditioned 

avoidance or attraction by driving bidirectional KC-MBON plasticity in each of the multiple 

compartments they innervate. This coordinated plasticity could reweight the net output of the 

MBONs, allowing animals to learn to avoid odors that predict punishment by depressing the 

responses of MBONs that mediate approach, including the γ2 MBON (Aso et al., 2014b), or 

become attracted to odors that predict reward by weakening the responses of MBONs that drive 

avoidance, like the γ4 or γ5 MBONs (Aso et al., 2014b), or learn opposite associations with 

odors that follow these reinforcements in time by potentiating the activity of the same population 

of MBONs. 
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Figure 3.4, Bidirectional Plasticity Across the Gamma Lobe 
(A) γ5 MBON calcium responses to direct KC stimulation (black arrowhead) by iontophoresis of 
acetylcholine in the calyx pre and post forward (ISI = 0.5 s, n = 8) and backward (ISI = -1.2 s, n 
= 6) pairing of KC stimulation with activation of γ5 DANs using the 58E02-LexA driver. Right: 
Change in KC-evoked calcium response in γ5 MBON post-forward pairing (post-FP) and post-
backward pairing (post-BP). Mean ± SEM (B) Same as in (A) except for γ2 MBON responses 
pre and post forward pairing (ISI = 0 s, n = 6) and backward pairing (ISI = -1.2 s, n = 7) pairing 
with γ2 DANs using the 73F07-LexA driver. Significant change in γ5 and γ2 MBON responses 
after pairing was tested with a one-sample t-test against zero with Bonferroni correction:  *** p ≤ 
0.001, ** ≤ 0.01. 
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Figure 3.5, Naturalistic Reinforcement Replicates Bidirectional Plasticity  
(A) Schematic for conditioning fly with odor (apple cider vinegar, ACV) and electric shock 
applied to the abdomen of the fly. (B) Odor-evoked responses in the γ2 MBON during baseline, 
post-forward pairing, and post-backward pairing. Odor presentation is 2 seconds in duration. 
Two 1-s, 70V shocks separated by 0.2 s were applied to the abdomen of the fly. In forward 
conditioning, the odor preceded the shock by 0.5 s; in backward pairing, the shock preceded the 
odor by 3 s. (C) Change in odor-evoked calcium response in γ2 MBON post-FP and post-BP, 
mean ± SEM, n = 7. Significant change in γ2 MBON responses after shock conditioning was 
tested with Wilcoxon Signed Rank Test against zero with Bonferroni correction: * < 0.05.  
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3.5 Directly Relating Neural and Behavioral Plasticity 

While our results reveal a striking correspondence between the timescales of bidirectional neural 

and behavioral modulation, directly relating these forms of plasticity in Drosophila has been 

difficult in the absence of methods to measure both concurrently. Raphael Cohn, a former 

graduate student in the lab previously developed a closed-loop virtual olfactory paradigm, 

compatible with two-photon imaging, in which a fly’s angular velocity on an air-supported ball 

was yoked to the rotation of a tube carrying a constant airstream (Figure 3.6A). In this assay, a 

head-fixed animal can control its orientation within the airstream and increase its upwind 

velocity in response to introduction of an appetitive olfactory cue (Figure 3.6B), allowing us to 

image neural activity in the γ4 compartment of the mushroom body during odor tracking 

behavior. This system is also compatible with optogenetic activation of the rewarding PAM 

neurons as a reinforcement signal, allowing us to perform conditioning in head-fixed animals 

under the microscope. 

 

Preliminary experiments using the closed-loop system were performed to assess tracking 

behavior in this virtual olfactory environment and the ability for animals to modulate their 

behavior after repeated trials of conditioning. These initial experiments were not performed 

under the two-photon microscope and simply measured changes in the upwind displacement in 

the odor plume after interleaved trials of forward and backward pairing in a tethered fly. From 

these preliminary experiments, we found that forward and backward pairing with PAM 

activation consistently modulated the attraction to the conditioned odor, apple cider vinegar 

(ACV) in individual animals (Figure 3.6C), consistent with the behavior observed in freely 

walking animals.  
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Figure 3.6, Timing-Dependent Reversals in Behavior in Virtual Olfactory Environment 
(A) Schematic of closed-loop system. A fly walks on an air-supported ball within a constant air 
stream whose rotation (dashed line) is yoked to the fly’s heading direction. The outer disk that 
carries the airstream (gray) is rotated by a gear belt (black) connected to a motor getting real-
time information about the angular rotation of the ball. This system can be used under a 2-photon 
microscope, allowing simultaneous recording of odor-evoked responses in the MB and odor-
tracking behavior. (B) Representative 2D trajectory showing re-orientation and upwind tracking 
when the fly was presented with an odor (red).  Fly cartoon marks the end of the trajectory. (C) 
Pilot experiment testing the effect of forward and backward pairing in back tethered animals. 
PAM DANs expressing CsChrimson were activated using optogenetics prior to or during the 
presentation of the odor apple cider vinegar, n = 25. After being placed on food containing 0.4 
mM for 24-48 hours, animals were starved between 0 and 12 hrs for pilot experiment in (C). 
Starved animals were placed on 0.1-0.2mM retinal water or regular water overnight. 
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To directly relate changes in animal behavior to neural plasticity, we performed synchronous 

functional imaging of the γ4 MBON as an animal navigates within an odor plume under the two-

photon microscope. Examining the fictive two-dimensional trajectories of a single animal over 

multiple odor presentations revealed that forward pairing of ACV with activation of PAM 

neurons led to increased upwind tracking of ACV while backward pairing decreased tracking 

(Figure 3.7A). Notably, synchronously imaging the γ4 MBON responses during odor tracking 

showed a corresponding functional change: forward pairing depressed the MBON’s response to 

ACV while backward pairing potentiated its response (Figure 3.7A).  Conditioning consistently 

evoked bidirectional changes in both odor-evoked upwind displacement and γ4 MBON activity 

across animals (Figures 3.7B-G). These changes were significantly correlated, both on a trial-by-

trial basis and in the averaged responses of all trials for individual animals (Figure 3.7H). 

Importantly, these changes in behavior were not observed as the animals navigated in clean air 

(measured for the 10 seconds prior to odor presentation) (Figure 3.8A-D), suggesting that 

modulation of odor-evoked behavior is not simply due to an overall change in the arousal state of 

the animal but are contingent on the presence of the reinforced odor. Thus, the ability to 

simultaneously record neural and behavioral plasticity as learning unfolds reveals a tight 

correspondence between the emergence of bidirectional changes in KC-MBON signaling within 

a compartment and odor attraction.  

 

 

3.6 Discussion 

In 1921, German zoologist and evolutionary biologist, Richard Semon, put forward the idea of 

the “engram” as "... the enduring, though primarily latent, modification in the irritable substance  
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Figure 3.7, Relating Neural and Behavioral Modulation in Closed-Loop Olfactory Arena. 
(A) Calcium responses were recorded in g4 MBON expressing GCaMP6s. PAM DANs, 
including g4 DANs, expressed ChrimsonR using MB042B-Gal4. Top: protocol to compare odor 
tracking and neural responses to ACV odor after forward pairing (post-FP) and backward pairing 
(post-BP). Middle: Fictive 2D trajectories of a single representative fly in baseline, post-forward 
pairing, and post-backward pairing trials, aligned to a common origin with average upwind 
displacement for all trials shown to right (red). Bottom: Corresponding odor-evoked g4 MBON 
responses synchronously recorded in the same animal (odor is marked by gray box). Thin gray 
lines represent individual odor responses; black line represents mean odor response. (B) Mean 
change in upwind displacement in post-forward pairing and post-backward pairing trials during 
the 10-second odor presentation. (C) Mean upwind displacement in 10-s ACV odor during 
baseline, post-forward pairing (post-FP), and post-backward pairing (post-BP) trials in animals 
walking in closed loop olfactory system, n = 8 flies. Each gray data point represents the mean 
upwind displacement across 3-4 conditioning protocols for the individual animal. (D) Mean 
upwind displacement in 10-s ACV odor during baseline, post-forward pairing, and post-
backward pairing trials averaged across all training trials across all animals n = 27. (E) Left: 
average g4 MBON calcium traces for all animals during baseline, post-forward pairing, and post-
backward pairing trials (odor is marked with gray box). Right: Change in odor-evoked calcium 
response in g4 MBON post-forward pairing and post-backward pairing. (F-G) Average peak 
odor-evoked g4 MBON responses in baseline, post-forward pairing, and post-backward pairing 
trials for the same 8 animals (F) and all training trials across all animals n = 27 (G). (H) Change 
in upwind displacement in odor plotted as a function of change in odor-evoked g4 MBON 
responses for all individual training trials (gray dots; n = 27 individual training trials across n = 8 
animals) and animal averages (black dots; n = 8 animals, 3-4 training trials per animal); post-
forward pairing trial (open circle) and post-backward pairing trial (closed circle). Data 
represented as mean ± SEM. Significance is indicated as follows for (B and E): *** p ≤ 0.001, 
** ≤ 0.01, * < 0.05; one-sample t-test from zero with Bonferroni correction. For (C-D) and (F-G) 
*** ≤ 0.001, ** ≤ 0.01, * < 0.05; Wilcoxon matched-pairs signed rank test with Bonferroni 
correction. 
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Figure 3.8, Modulation in Animal Behavior is Specific to Odor Stimulus. 
(A) Fictive 2D trajectories for representative individual fly (same as shown in Figure 3.7A) but 
for the 10-s clean air prior to odor presentation. (B) Mean change in upwind displacement in 
post-forward pairing and post-backward pairing trials during the 10 seconds prior to odor when 
animals were in clean air n=8 animals, 3-4 trials per animal. (C) Mean upwind displacement in 
10-s clean air prior to odor onset during baseline, post-forward pairing (post-FP), and post-
backward pairing (post-BP) trials in animals walking in closed loop olfactory system, n = 8 flies. 
Each gray data point represents the mean upwind displacement across 3-4 conditioning protocols 
for the individual animal. (D) Mean upwind displacement in 10-s clean air prior to odor onset 
during baseline, post-forward pairing, and post-backward pairing trials across all training trials 
and all animals, n = 27 training trials across the same 8 animals. Data represented as mean ± 
SEM. Significance is indicated as follows for (B): NS ≥ 0.05; one-sample t-test from zero with 
Bonferroni correction. For (C-D) NS ≥ 0.05; Wilcoxon matched-pairs signed rank test with 
Bonferroni correction. 
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produced by a stimulus..." (Semon, 1921). The engram can be thought of as a memory trace, 

etched into the nervous system as a result of experience and persisting over the time course of 

memory. Beyond adding scientific terminologies to the lexicon of learning and memory research, 

Semon put forward prescient theories for how memories were stored and retrieved. For example, 

he proposed that “cuing” of the original memory or engram would lead to the formation of a new 

distinct engram and influence the strength of the original memory trace. While purely theoretical, 

Semon was the first to propose that an engram was not a static etch, but something that changed 

with use or experience (Josselyn et al., 2017).     

 

In the 1950s, brain centers containing memory engrams were implicated through the seminal 

research of Brenda Milner and Wilder Graves Penfield into the memory loss observed in patients 

with lesions within the hippocampus (Penfield and Milner, 1958). More recently, the use of cell-

type specific labeling, loss- and gain-of-function experiments, and functional imaging 

experiments have drawn a more definitive link between learning-dependent changes in neural 

activity and behavior. For example, recent mouse studies used learning-dependent cell labeling 

to demonstrate optogenetic re-activation of these engram cells results in memory retrieval 

(Ramirez et al., 2013; Ryan et al., 2015). Directly relating the emergence of neural plasticity with 

the evolution of adaptive, learned behaviors has been a difficult task and a central goal for many 

in the field of learning and memory research.  

 

In linking the temporal requirements for behavioral and neural modulation, we found a small 

window within which the pairing of an odor with either the aversive activation of PPL or 

rewarding activation of PAM dopamine neurons drove bidirectional attraction to the conditioned 
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odor. Shifting the timing of DAN activation relative to odor presentation by a few hundred 

milliseconds was sufficient to induce a behavioral state change from odor attraction to odor 

avoidance. Furthermore, we found that animals continuously attend to the temporal relationships 

in their environment, rapidly changing their attraction to an odor as a result of a change in the 

temporal contiguity between the odor and reinforcement signal. These results highlight the 

exquisite temporal sensitivity of the mushroom body for distinguishing the temporal order of 

events and suggest that animals use nearly coincident input of odor and reinforcement pathways 

to rapidly write and update associations to reflect the changing relationships in a dynamic 

environment.  

 

It is worth noting that the biphasic curves between the PPL and PAM animals differ; PPL 

animals form negative associations over greater ISI for forward pairing than PAM animals do in 

their formation of positive associations. These differences in the temporal requirements for 

memory across DAN populations is inline with observations that distinct DANs write and update 

associations with different rules (Aso and Rubin, 2016). Indeed, to minimize danger, it may be 

advantageous for animals to form associations between cues that predict peril even if the delay 

between the cue and reinforcement is extended in time. The experiments described in this 

chapter only begin to examine the state-space for the temporal dependence of associative 

learning. Indeed, broader biphasic curves have been observed in Drosophila through the use of 

longer odor presentations and stronger negative reinforcement (Aso and Rubin, 2016; König et 

al., 2018; Tanimoto et al., 2004). These wider curves that emerge with longer and stronger 

stimulations raise the question for the role of trace conditioning in the MB circuitry and the 
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molecular basis for how the KC-MBON synapses are modulated over these extended 

conditioning paradigms.   

 

Bidirectional neural plasticity has been proposed to confer learning circuits with behavioral 

flexibility to rapidly write and update associations as the environment changes (Coesmans et al., 

2004; Jörntell and Hansel, 2006; Lev-Ram et al., 2002). Indeed, we see that the narrow temporal 

window of behavioral modulation following PAM activation closely aligns with bidirectional 

plasticity in odor- and KC-evoked responses in the γ4 MBON. Over the past several years, 

research into the effects of associative conditioning on KC-MBON synapses has revealed that 

forward pairing drives odor-specific depression in the activity of the downstream MBON (Cohn 

et al., 2015; Hige et al., 2015; Owald et al., 2015; Séjourné et al., 2011). Positive reinforcement 

leads to depression of MBONs that elicit avoidance behavior, while negative reinforcement 

depresses the activity of MBONS that bias animals towards approach behavior (Aso et al., 

2014b). Furthermore, strong dopamine release in the absence of odor leads to synaptic 

potentiation (Cohn et al., 2015; Berry et al. 2018), suggesting the presence of a strong 

reinforcement event drives the re-evaluation of prior associations.  

 

The striking correspondence between the time course for neural plasticity in the γ4 MBON and 

behavioral modulation observed with PAM reinforcement, presented in this chapter, suggests 

that the MB is exquisitely sensitive to timing, resulting in graded levels of neural and behavioral 

plasticity that depend on the timing of events during conditioning. Similar bidirectional plasticity 

was observed across multiple compartments within the γ lobe innervated both by PAM and PPL 

DANs, suggesting a conserved mechanism for order and coincidence detection across the axons 
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of γ lobe KCs. In the future, it will be interesting to examine how the temporal window for 

bidirectional plasticity differs across the different compartments innervated by PAM and PPL 

pathways.  

 

Across a variety of neural circuits involved in classical conditioning both synaptic depression 

and facilitation have been observed following forward pairing, suggesting that the sign of 

plasticity depends on the molecular machinery engaged during conditioning in the post-synaptic 

neuron (Bauer et al., 2002; Ito and Kano, 1982). Interestingly, the neural mechanism underlying 

conditioned eye blink responses in rodents is thought to require synaptic facilitation of mossy 

fibers synapses and also require depression of parallel-fiber synapses onto Purkinje cells in the 

cerebellum (Freeman and Steinmetz, 2011; Ito and Kano, 1982; Linden and Connor, 1991; 

Linden et al., 1991; Pugh and Raman, 2008). It is not surprising, therefore, that forward pairing 

drives depression across a number of compartments of the γ lobe, considering the KCs of the 

γ lobe are thought to be homogenous across the length of the output lobe. Furthermore, KC-

MBON signaling in the α2 compartment (a compartment made up by the α/β KCs) also exhibits 

depression following forward conditioning (Hige et al., 2015), suggesting that the different KC 

population within the MB circuitry undergo similar plasticity changes depending on the timing 

of conditioning and therefore likely rely on similar molecular machinery.  

 

Using a novel closed-loop olfactory environment, we were able to show for the first time that the 

emergence of neural plasticity within the MB circuitry correlates with learned changes in odor 

attraction. While we focus on correlating the activity of the γ4 MBON with behavior, it is 

important to note that the bidirectional behavior likely emerges as a result of synaptic plasticity 
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across the multiple compartments innervated by the PAM neurons. Indeed, we show that both the 

γ4 MBON and the γ5 MBON undergo similar neural plasticity following forward and backward 

pairing. This redundancy makes it difficult to show the necessity and sufficiency of plasticity in 

any one individual MBON for learned behaviors; however, in future experiments this could be 

achieved by using multiple drivers to silence various MBONs innervated by either the PAM or 

PPL cluster.   

 

By examining neural and behavioral modulation over the same timescales and even concurrently 

within the same individuals, we reveal that bidirectional changes in KC-MBON signaling 

directly correlate with reversible changes in learned odor attraction from forward and backward 

conditioning. This suggests that modulatory pathways in the mushroom body have the capacity 

to transform the same dopaminergic signal into two opposing forms of neural and behavioral 

plasticity depending solely upon the relative timing of that signal to an odor presentation. 
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Chapter 4 

 

Temporal Sensitivity Allows Animals to Contend with 

Complex Environments 

 

4.1 Introduction 

Olfaction is commonly used as part of a navigational strategy in the natural world to avoid harm 

and discover food. However, only in the laboratory, are olfactory environments finely tuned and 

tightly controlled. By contrast, in the wild, animals are forced to contend with turbulent odor 

plumes generated from dynamic wind patterns and a complexity of odor cues and blends. The 

complex chemical landscapes in nature suggest the high likelihood that animals encounter a 

variety of odors with different temporal relationships to a single reinforcement; however, the 

limited complexity of olfactory environments studied in the laboratory setting obscures insight 

into the mechanisms for the processing of high-order stimulus features that ensure animals form 

and maintain appropriate association in more naturalistic sensory environments.  

 

A number of experiments in insects have begun to address how olfactory systems contend with 

complex and dynamic odor environments by simulating more naturalistic timescales of olfactory 

inputs and odor landscapes. For example, elegant electrophysiological and behavioral 

experiments in the moth, Manduca sexta, showed the capacity to navigate towards and target a 
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nectar resource in a simulated naturalistic, complex odor environment depends heavily on the 

plume frequency and volatiles present in the background, which directly influence neural 

representations of the target odor within the antennal lobe of the moth (Riffell et al., 2014).  

 

In addition, behavioral experiments in Drosophila have explored this question by focusing on 

odor object segregation—a highly adaptive skill allowing animals to avoid a spoiled patch of 

food and instead approach a nutritive patch of food.  These experiments demonstrate that 

Drosophila are remarkably sensitive to the arrival of odor stimuli, permitting them to 

discriminate between odor sources due to as little as a difference in a few milliseconds between 

cue onsets (Sehdev et al., 2018). The ability for flies to discriminate odor plumes on the 

millisecond timescale requires remarkable precision in the encoding of odor onset. Indeed 

electrophysiological recordings in olfactory sensory neurons reveal that odor-evoked spikes can 

be recorded with a latency of roughly ~3 ms from odor onset (Egea-Weiss et al., 2018) and 

furthermore, projection neurons ipsilateral to the source of odor spike a few ms prior to 

contralateral projection neurons (Gaudry et al., 2012), suggesting the exquisite capacity for rapid 

odor detection and localization in Drosophila. Temporal sensitivity of this kind may permit 

animals to form distinct associations in a complex odor environment where more than one odor 

may occur close in time to a reward.   

 

In the previous chapter, I showed that the same dopaminergic signal in the mushroom body has 

the capacity to instruct bidirectional neural and behavioral plasticity depending on whether a 

single odor precedes or follows a reinforcement signal in time—a difference in time of only a 

few hundred milliseconds. This temporal sensitivity for bidirectional modulation may allow 
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animals to form distinct memories in a more complex odor environment where there is both an 

odor that precedes the onset of reward and an odor that follows reward offset. In the following 

sections, I explore the capacity for Drosophila to form distinct associations between multiple 

odors in an environment simulating a complex odor landscape and relate these distinct 

associations with odor coding in the MB circuitry.  Experiments of this kind help expand our 

understanding for how animals experience their sensory world outside of the controlled 

environment of the laboratory and reveal hidden complexities in the coding properties of neural 

circuits involved in sensory-dependent learning and memory.  

 

 

4.2 A Single Reinforcement Instructs Multiple Associations 

Given our previous observation that odors preceding a reinforcement are endowed with distinct 

meaning in comparison to odors following the reinforcement in time (Figure 3.1), we asked 

whether a single dopaminergic reinforcement may differentially modulate future behavioral 

responses to two distinct monomolecular odors that bookend the reinforcement in time. The 

capacity to distinguish between two odors that occur close in time but with distinct temporal 

relationships to a reinforcement could serve as an adaptive strategy to contend with the 

complexity of the sensory environment of the real world.  

 

To examine this possibility, we trained flies using two monomolecular odorants with a brief 1 

second period of PAM neuron activation interposed between them, such that one odor was 

forward paired while the other was backward paired in time relative to the reinforcement (Figure 

4.1A). We found that a single conditioning trial using this paradigm enhanced upwind tracking 
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 to the forward-paired odor while synchronously decreasing tracking of the backward-paired 

odor. Inverting the order of the two odors in the subsequent conditioning trial had the opposite 

effect, suppressing attraction to the first odor while enhancing attraction to the second odor 

(Figures 4.1B-D). This odor-specific bidirectional modulation in behavior could be seen across 

50 conditioning trials, in which the order of the two odors were repeatedly alternated in each 

conditioning trial. Importantly, animals showed this dual behavioral modulation when training 

flies with different odor pairs, suggesting that the capacity for a single dopamine signal to 

instruct multiple olfactory associations is independent of odor identity (Figure 4.2D). This 

sensitivity to timing for odor-specific modulation was not observed in parental control animals, 

further highlighting the important role of the PAM dopamine neurons in instructing these 

opposing associations and rapid reversals in odor-specific behaviors (Figures 4.2A-C and E).  

Thus, animals can extract multiple, opposing odor associations from the same DAN 

reinforcement.  

 

 

4.3 Bidirectional Neural Plasticity From a Single Reinforcement 

To verify that this odor-specific modulation was also apparent at the neural level, we replicated 

this conditioning paradigm in a tethered animal while monitoring olfactory responses of the γ4 

MBON using functional calcium imaging (Figure 4.3A).  As observed behaviorally, a single 

conditioning trial drove opposing forms of plasticity, depressing the response of the γ4 MBON to 

forward-paired odor while potentiating the response to the backward-paired odor.  Moreover, 
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Figure 4.1, A Single Dopamine Reinforcement Instructs Two Opposing Memories 
(A) Behavioral paradigm to examine how dopaminergic reinforcement instructs opposing 
memories for two odors based on their relative timing. For each conditioning trial, Odor1 
(isobutyl acetate) and Odor2 (4-methylcyclohexanol) were either forward paired (FP) or 
backward paired (BP) with optogenetic activation of PAM DANs expressing CsChrimson. Note 
that the order of the two odors alternated with each conditioning trial. For each experiment, 
animals were conditioned 50 times such that each odor was forward paired 25 and backward 
paired 25 times. (B) Raster plot shows average upwind velocity of flies for Odor1 (pink) and 
Odor2 (green). Right: upwind displacement in odor plume of Odor1 (pink) and Odor2 (green) for 
the corresponding rows in the raster plot, mean ± SEM. (C) Representative upwind velocity of 
flies during Odor1 and Odor2 presentation (trials 7, 8, and 9 in (B)). Bold pink and green lines 
represent mean, light gray lines represent individual experiments; odor on is indicted by gray 
box. (D) Change in upwind displacement in Odor1 (pink) and Odor2 (green) after Odor1 was 
forward paired and Odor2 backward paired (left points) and after Odor1 was backward paired 
and Odor2 forward paired (right points), mean ± SEM. n = 8 experiments with 6 flies per 
experiment. Significant difference in modulation of behavior to Odor1 and Odor2 after pairing is 
indicated as follows: *** p ≤ 0.001; paired t-test with Bonferroni correction. 
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Figure 4.2, Modulation Depends on PAM Activation and is Independent of Odor Pairs 
(A) Behavioral protocol, same as in Figure 4.2A (Odor1 is isobutyl acetate; Odor2 is 4-
methylcyclohexanol). (B,C) Same analysis as in Figures 4.2B and D except using UAS-
CsChrimson animals lacking the Gal4 driver, n = 7 experiments with 6 flies per experiment. 
Differences in modulation of behavior to Odor1 and Odor2 after pairing is indicated as follows: 
NS p ≥ 0.05; paired t-test with Bonferroni correction. (D-E) Same behavioral protocol as in 
Figure 4.2A and analysis as in 4.2D except the two odors used were benzaldehyde (Odor1) and 
1-hexanol (Odor2). (D) PAM > CsChrimson animals, mean ± SEM, n = 11 with 5 animals per 
experiment. (E) Control UAS-CsChrimson animals, mean ± SEM, n = 9 with 5 animals per 
experiment. Differences in modulation of behavior to Odor1 and Odor2 after pairing is indicated 
as follows: ** p ≤ 0.01, NS p ≥ 0.05; Wilcoxon match-paired sign rank test with Bonferroni 
correction.  
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inverting the temporal order of the two odors during a subsequent conditioning trial reversed 

both forms of modulation (Figures 4.3B-D). Again we were able to observe odor-specific 

plasticity across two different odor pairs, indicating a conserved sensitivity to timing of inputs 

regardless of odor identities. Together, these experiments highlight how the same dopaminergic 

reinforcement can synchronously drive the formation of multiple olfactory associations, allowing 

animals to take advantage of the different predictive temporal relationships that exist at any 

moment in a complex sensory environment.  

 

 

4.4 Discussion 

In the natural world, the sensory milieu surrounding a rewarding food source may be complex 

and dynamic due to turbulent wind flow and the presence of multiple odors. The volatile odors 

carried by turbulent plumes create a number of challenges for animals: 1) turbulent plumes create 

inconsistencies in odor concentration where periods of clean air are interspersed with bouts of 

high odor concentration and 2) the background chemical landscape can often dilute the salient 

odorant and minimize behavioral responses. To contend with such intermittent plumes, animals 

increase their speeds and reorient upwind upon the detection of an odor, and then perform a 

series of casts to hone in on the odor source (van Breugel and Dickinson, 2014). More recent, 

high-throughput analysis has parsed the elementary behaviors walking Drosophila use to track 

and search for odor sources (Álvarez-Salvado et al., 2018). Nonetheless, it is still unclear how 

animals contend with a dynamic odor environment to ensure they make the appropriate, 

causative association between an odor and a food reward amongst a backdrop of a complex odor-

scape.   
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Figure 4.3, A Single Dopamine Reinforcement Drives Odor-Specific Plasticity in γ4 MBON  
(A) Schematic of in vivo preparation to examine modulation of γ4 MBON odor responses. Odor-
evoked responses were recorded in γ4 MBON expressing GCaMP prior to and after pairing 
Odor1 and Odor2 with chemogenetic activation of γ4 DANs expressing P2X2 using the 58E02-
LexA driver. (B) Top: Conditioning paradigm with two odors. For the two conditioning trials, 
Odor1 and Odor2 are either forward paired or backward paired with a single activation of the 
PAM DANs. Note that the order of the two odors alternates across conditioning trials. The two 
odors used were isobutyl acetate and 4-methylcyclohexanol. Bottom: γ4 MBON responses after 
conditioning with two odors. n = 5 animals, mean ± SEM. (C) Same as in (B) except the two 
odors used were benzaldehyde and 1-hexanol. n = 4 animals, mean ± SEM. (D) Change in γ4 
MBON response to Odor1 (pink) and Odor2 (green) after Odor1 was forward paired and Odor2 
backward paired (left points) and after Odor1 was backward paired and Odor2 forward paired 
(right points). Open circles: data using isobutyl acetate and 4-methylcyclohexanol odor pairs (5 
animals). Closed circles: data using benzaldehyde and 1-hexanol odor pairs (4 animals). 
Differences in neural response to Odor1 and Odor2 after pairing is indicated as follows: ** p ≤ 
0.01; Wilcoxon match-paired sign rank test with Bonferroni correction. 
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To form the appropriate associations, animals must be able to selectively attend to odors 

predictive of a good food patch while avoiding odors associated with a spoiled or depleted food 

patch.  One successful strategy for staying on a healthy and nutritive food patch would be for an 

animal to continuously approach odor cues that promote a rise in food reinforcement and avoid 

odors that lead to a decrease in food reinforcement. This simple bidirectional sensitivity to cues 

that precede or lag a food reward in time ensures the prolonged luxury of nutritious food.  

 

Here, we show that a single reinforcement of the PAM neurons is sufficient to drive increased 

attraction to odors that precede PAM activation and a synchronous decrease in attraction to odors 

the follow PAM activation in time. This sensitivity to timing observed at the behavioral level 

likely emerges from the bidirectional and odor-specific plasticity observed between the KC-

MBON synapses using a similar conditioning paradigm. From these experiments, we reveal the 

remarkable capacity of the mushroom body to use a single DAN reinforcement to instruct two 

opposing olfactory associations in parallel.  

 

Behavioral experiments in Drosophila have recently suggested that the compartments involved 

in short-term memory, the gamma compartments of the mushroom body, have the capacity to 

only form a single olfactory association at a time (Aso and Rubin, 2016). When an animal learns 

a new association, the memory of the prior association is completely eroded or unable to be 

retrieved (Aso and Rubin, 2016). Instead, we show that the temporal sensitivity of the mushroom 

body permits animals to use a single dopamine reinforcement to instruct two, opposing olfactory 

associations in parallel. These associations depend on the relative timing between the odor 

presentation and the DAN reinforcement during conditioning. While this environment is still 
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certainly simplistic compared to the natural environment in the wild, it has revealed useful 

insight into more sophisticated coding properties of the mushroom body circuitry.  

 

This capacity for a single reinforcement to instruct bidirectional neural and behavioral plasticity 

in parallel may serve two important roles in odor navigation in Drosophila.  As discussed above, 

this bidirectional plasticity may allow animals to differentiate between odors to approach and 

odors to avoid in order to obtain nutritive resources. Alternatively, this synchronous and 

opposing plasticity may serve to enhance the signal-to-noise of neural responses for odors truly 

predictive of reward over neural responses to background or non-predictive odors that happen to 

be encountered in close temporal proximity. These two possibilities need not be mutually 

exclusive and in fact animals may use enhanced signal to noise of forward paired odors relative 

backward paired odors as a mechanism to increase the contrast between odors that should be 

approached versus those to be ignored or avoided.  
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Chapter 5 

 

Dopamine Pathways in Coincidence and Order Detection 

 

5.1 Introduction 

To infer the causal relationship between events requires both the detection of the order and 

coincidence of inputs. In the previous chapter, I showed that neural and behavioral responses are 

modulated depending on the temporal structure of conditioning where both the convergence of 

inputs and order of inputs are necessary for mediating the bidirectional responses. These results 

leave us with two important questions: Where is the temporal order of olfactory and 

dopaminergic input detected within the mushroom body circuitry? And how do these detection 

mechanisms influence the neural and behavioral plasticity? The bidirectional neural and 

behavioral modulation presented in the previous chapter occurs over a narrow temporal window. 

As the inter-stimulus interval between odor and DAN increases, the neural and behavioral 

modulation steeply drops off. In addition, the sign of plasticity depends on whether the odor 

precedes or follows DAN activation in time. These observations suggest that the bidirectional 

modulation relies on two distinct features of associative conditioning: 1) the time delay between 

the two inputs and 2) the sequence or ordering of the two inputs. The following chapter 

addresses how the MB is sensitive to both the coincidence and the order of events during 

conditioning to mediate the bidirectional changes in neural and behavioral responses. 
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Coincidence detection is defined by the convergent arrival of two distinct inputs and therefore 

has both a spatial and temporal component. A variety of coincidence detectors exist in the brain 

in mediating the integration and processing of information. For example, in the superior olivary 

nucleus, a delay line circuit architecture allows neurons to serve as coincidence detectors, firing 

maximally when receiving synchronous inputs originating from both ears (Oliver et al., 2003; 

Smith et al., 1993). This mechanism for coincidence detection in the brainstem is central to our 

ability for sound localization. By contrast, some coincidence detectors are molecules whose 

unique biochemical properties permit them to integrate synchronous activity from local inputs 

(Buhusi et al., 2016). It is thought that these molecular coincidence detectors serve a central role 

in driving the formation of associative memories, and indeed a number of receptors have been 

identified as coincidence detectors in associative learning circuits. For example, to activate the 

NMDA channel—a channel central to STDP and LTP—requires not just the binding of 

glutamate but also necessitates depolarization to remove a magnesium block (Miyashita et al., 

2012; Tabone and Ramaswami, 2012). Similarly, IP3-dependent LTD in Purkinje fibers of the 

cerebellum relies on both the production of IP3 through phosopholipase C dependent cleavage of 

PIP2 and influx of calcium through voltage-gated calcium channels (Freeman, 2015; Sarkisov 

and Wang, 2008). 

 

Unlike coincidence detectors that rely on two events happening close in time, order detectors 

encode the specific sequence of events. For example, a molecular coincidence detector may be 

activated as long as A and B occur within a small time window regardless of whether stimulus A 

precedes or follows B. By contrast, an order detector may require A to precede B within some 

time window in order for activation.  



 98 

 

In 1949, Donald Hebb proposed that synaptic strengthening between neurons could occur as a 

result of repeated coincident activation of pre- and post-synaptic neurons: 

Let us assume that the persistence or repetition of a reverberatory 

activity (or "trace") tends to induce lasting cellular changes that 

add to its stability.... When an axon of cell A is near enough to 

excite a cell B and repeatedly or persistently takes part in firing it, 

some growth process or metabolic change takes place in one or 

both cells such that A's efficiency, as one of the cells firing B, is 

increased. (Hebb, 1949) 

His theory was later supported by the discovery of LTP (Bliss and Lømo, 1973), in which the 

long-lasting depolarization of the pre-synaptic neuron permits removal of the magnesium block 

on post-synaptic neurons and the upregulation of another glutamatergic receptor channel called 

NMDA receptors, resulting in increased calcium influx and depolarization of the post-synaptic 

neuron (Mayer et al., 1984; Muller et al., 1988; Nowak et al., 1984). Later work in memory 

mutants in Drosophila expanded our understanding of molecular coincidence detectors through 

the discovery that the calcium-activated adenylate cyclase, rutabaga, plays a central role in 

detecting the coincident arrival of a sensory stimulus and a neuromodulator-dependent 

reinforcement signal to drive the formation of associative memories following forward pairing 

(Figure 5.1A) (Bourne and Nicoll, 1993; Levin et al., 1992; Livingstone et al., 1984). Since this 

discovery, a number of experiments have characterized the role of rutabaga in associative 

learning circuits (Gervasi et al., 2010; Tomchik and Davis, 2013; Tully and Quinn, 1985; Zars et 

al., 2000).  
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Figure 5.1, Classic Learning Mutant Rutabaga has Minor Effect on Plasticity. 
(A) Schematic of signaling cascade diagraming how coincidence of sensory stimulus (odor) and 
reinforcement (reward or punishment) act to synergistically activate calcium-activated adenylate 
cyclase Rutabaga, a long known learning mutant in Drosophila. (B-C) Fold change in KC-
evoked response in the γ4 MBON after forward and backward pairing shows a minimal deficit in 
Rutabaga (Rut1) mutant (purple) following forward pairing and no effect in the synaptic 
plasticity following backward pairing. Fold change in MBON response was calculated by 
normalizing the peak response in calcium in γ4 MBON after pairing by the peak calcium level 
prior to pairing. Significant difference between control and rutabaga animals is tested with 
unpaired t-test: * < 0.05, ns ≥ 0.05.   
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However, preliminary experiments examining the role of the Drosophila rutabaga gene in the 

bidirectional plasticity of the mushroom body, suggest additional forms of coincidence detection 

and order-detection mechanisms are involved in sculpting the temporal sensitivity of associative 

learning and neural plasticity. In the rutabaga-learning mutant described above, we observed that 

synaptic depression was selectively impaired by roughly 50% following forward pairing (Figure 

5.1B) but remarkably potentiation following backward pairing was unaffected (Figure 5.1C). 

This result confirms that rutabaga serves as a coincidence detector in partially contributing to the 

depression following forward pairing, but suggests it does not play a role in backward pairing. 

These results reveal an incomplete understanding for how temporal sensitivity is achieved in the 

mushroom body and suggests additional proteins are essential for the bidirectional neural 

plasticity.     

 

One intriguing model for how bidirectional plasticity emerges in the mushroom body is that 

forward and backward pairing may selectively engage two distinct dopamine receptors, DopR1 

(also termed dumb or dDA1) and DopR2 (also termed damb) that are co-expressed in the same 

KCs (Croset et al., 2018) and have been proposed to play distinct roles in the formation and 

erosion of memories (Figure 5.2A) (Berry et al., 2012; Himmelreich et al., 2017; Kim et al., 

2007; Qin et al., 2012). Sequence analysis suggests the DopR1 shares homology with the D1-like 

mammalian receptors; by contrast, DopR2 shares greatest sequence homology with the beta-

adrenergic receptor, highlighting the distinct signaling properties of these two receptors (Figure 

5.2B). This suggestion is in line with in vitro characterization of these dopamine receptors 

revealing that they preferentially couple to distinct G-protein partners, with DopR1 coupling to 

Gαs to stimulate cAMP production and DopR2 preferentially coupling to Gαq to drive increased 
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Figure 5.2, Drosophila Dopamine Receptors Couple to Distinct Intracellular Pathways 
(A) The role of DopR1 and DopR2 in opposing regulation of memory described at the behavioral 
level (Berry et al., 2012; Himmelreich et al., 2017; Kim et al., 2007; Qin et al., 2012). (B) 
Sequence homology tree of neurmodulatory receptors highlighting distinct lineage of DopR2. 
(C) Top: Schematic of bioluminescence resonance energy transfer (BRET)-based biosensors 
used to assess GPCR coupling properties of DopR1 and DopR2. Bottom: DopR1 preferentially 
couples to Gαs while DopR2 strongly couples to Gαq. (D) Luminescent and fluorescent signals 
measuring cAMP and cystolic calcium in heterologous expression system to examine second 
messenger production downstream of DopR1 and DopR2. In this reduced system the binding of 
dopamine to DopR1 and DopR2 lead to elevated cAMP levels likely through distinct 
mechanisms (left). By contrast, the binding of dopamine to DopR2 produces elevated calcium 
levels while DopR1 does not (right). This calcium rise is blocked by the addition of the Gαq 
inhibitor, YM-254890, suggesting the source of calcium is from endoplasmic reticulum stores. 
Figures C-D kindly generated and provided by Andrew Siliciano.  
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cytosolic calcium (Figures 5.2C-D) (Feng et al., 1996; Gotzes et al., 1994; Han et al., 1996; 

Himmelreich et al., 2017; Sugamori et al., 1995). However, it is important to note DopR2 is also 

capable of producing pertussis toxin sensitive cAMP, suggesting additional promiscuous 

coupling properties of DopR2 in vitro (Figure 5.2D).  

 

The observation that these two dopamine receptors selectively engage distinct signaling 

pathways suggests a mechanism for their opposing role in memory regulation at the behavioral 

level and hints at the potential for selective engagement in the bidirectional modulation of KC-

MBON synapses. While, it has been proposed that DopR1 and DopR2 are selectively engaged 

under different levels of dopamine release due to differences in affinity levels –– a mechanism 

similarly invoked in mammalian systems –– there is little evidence for this outside of in vitro 

assays, which fail to recapitulate the critical microenvironment of Drosophila neurons (Berry et 

al., 2012; Himmelreich et al., 2017).   

 

We address this hypothesis directly using functional imaging experiments and demonstrate that 

differences in affinity are insufficient to explain the interesting temporal sensitivity of these two 

distinct signaling pathways.  In focusing on how the dopamine signals are perceived by post-

synaptic neurons in the mushroom body and influence downstream signaling cascades, I hope to 

provide insight into how the memory relevant synapses within a learning center are sensitive to 

the temporal order of sensory and dopaminergic reinforcement. 
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5.2 Coincidence Detection Occurs in Post-Synaptic Sites 

In vitro, DopR1 and DopR2 exhibit different sensitivities for dopamine, raising the possibility 

that these receptors could be differentially recruited if forward and backward conditioning drove 

different levels of DAN activity and dopamine release (Berry et al., 2012; Himmelreich et al., 

2017). If the level of DAN activity and dopamine release were to differ between forward and 

backward pairing, it would suggest some form of coincidence or order detection occurs at the 

level of DANs in this circuitry. 

 

We therefore compared DAN activity and dopamine release during forward and backward 

pairing in the same brain explant preparation used to measure bidirectional KC-MBON 

plasticity. Imaging calcium influx in DAN axon terminals revealed that forward and backward 

pairing evoked equivalent responses that were indistinguishable from direct stimulation of DANs 

alone (Figure 5.3A). Moreover, we measured the levels of dopamine released in the different 

conditioning paradigms using either a pHlourin fused to the monoamine transport protein, 

VMAT, to visualize pre-synaptic vesicle fusion and reuptake in DANs (Wu et al., 2013) (Figure 

5.3B) or the GRABDA1m dopamine sensor expressed in post-synaptic sites along the KC axons 

(Sun et al., 2018) (Figure 5.3C). Both methods revealed equivalent levels of dopamine release in 

forward and backward pairing, indicating that differences in dopaminergic activity cannot 

account for the opposing forms of neural and behavioral modulation, and suggesting that 

mechanisms regulating neural plasticity may lie downstream of dopamine receptors in post-

synaptic neurons. 
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Figure 5.3, Dopamine Neurons are Insensitive to Timing of Events Suggesting Post-
Synaptic Sensitivity in Kenyon Cell Axons 
(A) GCaMP6s responses from γ4/γ5 DANs during forward pairing, backward pairing, and 
dopamine stimulation alone and comparison of peak response in DANs during different 
conditions. n = 5, mean ± SEM. (B) Same as in (A) except VMAT-pHluorin signals used to 
measure synaptic vesicle release from γ4/γ5 DANs). n = 5, mean ± SEM. (C) Same as in (A-B) 
except using a dopamine sensor (GRABDA1m) expressed in KC axons traversing the γ4/γ5 
compartments, n = 7, mean ± SEM.  Significance is indicated as follows: NS p ≥ 0.05, ordinary 
one-way ANOVA. (D) Left: acetylcholine release from KC axons in γ4/γ5 in baseline, post-
backward pairing, and post-forward pairing shows bidirectional regulation of release depending 
on the timing of events. Right: The change in acetylcholine release post-BP and post-FP suggests 
that KC axons are sensitive to the timing of events and play a role in bidirectional plasticity. n = 
6, mean ± SEM. 
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The KCs have long been suggested to be the critical site of coincidence detection and neural 

plasticity related to associative learning. Experiments measuring cAMP production in KCs has 

found supra-linear cAMP levels in KC axons during associative conditioning (Boto et al., 2014; 

Tomchik and Davis, 2009). Additionally, restoration of DopR1 exclusively in the gamma KCs 

have been shown to rescue learning deficits (Qin et al., 2012). In fact, activation of subsets of 

DANs within the MB have been shown sufficient to locally modulate second messengers in KC 

axons in a spatially discrete, compartmentalized manner (Cohn et al., 2015; Tomchik and Davis, 

2009). Lastly, sophisticated electrophysiological experiments reveal that spiking in the post-

synaptic MBONs is not required for learning-dependent plasticity in the mushroom body, further 

highlighting the essential role of KCs as the driving force for odor-specific plasticity in the MB 

(Hige et al., 2015). Collectively, these observations suggest that the temporal sensitivity of 

associative learning is achieved through specialized coincidence and order detectors present in 

the molecular machinery of KC axons. 

 

In the previous chapter, we measured the change in neural responses in MBONs as a result of 

associative conditioning; however, if the coincidence and order detection mechanisms exist in 

KC axons, it is likely that these alterations in MBON responses arise from modulation of pre-

synaptic KCs. The KCs of the MB are thought to be cholinergic, releasing acetylcholine onto 

post-synaptic partners, which include MBONs, DANs, and other KCs through axo-axonic 

connections (Takemura et al., 2017). To assess whether conditioning alters acetylcholine release 

in KC axons, we expressed an acetylcholine sensor in KC axons to determine whether the 

activity of KCs was modulated as a result of forward and backward pairing (Jing et al., 2018). 

While expressing this acetylcholine sensor in the post-synaptic MBONs would offer a more 
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direct readout of alterations in neurotransmission, this strategy was technically challenging due 

to weak expression of the fluorescent sensor in the MBONs. Nevertheless, we reasoned that 

expressing the acetylcholine sensor within KC axons would still provide an accurate readout for 

the release of acetylcholine from KCs.  

 

Indeed, activating KCs directly by stimulating their dendrites in the calyx evoked measurable 

acetylcholine responses in the KC axons. Backward pairing of KC activation with the activation 

of the PAM DANs innervating the γ4 and γ5 compartments potentiated the release of 

acetylcholine in the KCs, and this potentiation could be depressed by instead forward pairing KC 

activation with PAM stimulation (Figure 5.3D). While, a more definitive statement on this matter 

would require silencing of KCs to block transmission to ensure the change in signal emerges 

directly from KC synapse, these results suggest that acetylcholine release from KC axons is 

bidirectionally modulated depending on forward and backward pairing and emphasizes that the 

neural modulation measured in the post-synaptic MBONs likely arises from changes in 

neurotransmitter release in the pre-synaptic KCs. . In addition, protein expression and mRNA 

profiling of DopR1 and DopR2 across the different neural populations of the MB indicate 

enrichment of DopR1 and DopR2 in KCs. Furthermore, behavioral and functional experiments 

have highlighted the critical role of DopR1 and DopR2 expressed in KCs in supporting aversive 

learning and contributing to the compartmentalized patterns of pre-synaptic modulation along 

KC axons, respectively (Cohn et al., 2015; Qin et al., 2012). Together, these observations 

provide compelling evidence that the mechanisms for the temporal sensitivity observed at the 

neural and behavioral level lie in the molecular machinery of the KC axons. 
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5.3 Dopamine Receptor Pathways are Sensitive to Temporal Order 

Based on the likelihood of dopamine acting at the site of pre-synaptic KC axons, we were 

interested in examining the recruitment of DopR1 and DopR2 under the different conditioning 

paradigms of associative learning within the KCs of the γ lobe. To do this, we used optical 

reporters of the second-messengers downstream of Gαs (cAMP) and Gαq (endoplasmic 

reticulum calcium release) to examine these dopamine receptor-signaling pathways in KC axons 

during conditioning.  While a FRET-based cAMP reporter existed in the fly and had been 

previously used to examine the effects of forward pairing (Boto et al., 2014; Tomchik and Davis, 

2009), an optical reporter of endoplasmic reticulum (ER) calcium did not. Fortunately, a low-

affinity genetically encoded calcium indicator targeted and retained in the ER lumen had recently 

been generated and characterized in a mammalian system (de Juan-Sanz et al., 2017). The ER 

calcium sensor contains an N-terminal calreticulin signaling peptide and a KDEL sequence that 

permits the proper trafficking and retention of the sensor in the ER lumen (Figure 5.4A) (de 

Juan-Sanz et al., 2017; Kendall et al., 1994). Indeed, co-expression of this ER calcium sensor 

with DopR2 in a heterologous expression system lead to dopamine-dependent calcium release 

from ER stores, which could be blocked by the application of a Gαq inhibit (YM-254890) 

(Figure 5.4B). This low-affinity calcium sensor (ER-GCaMP, Kd = 210µM) was inserted into a 

10XUAS vector and injected into Drosophila. Expression of ER-GCaMP using a KC specific 

driver (OK107) could be visualized using a two-photon microscope (Figure 5.4C-D). With 

fluorescent reporters for both cAMP and ER calcium release at hand, we could now test the 

temporal sensitivity of these two second messenger pathways known to be downstream of 

DopR1 and DopR2.  
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Figure 5.4, Low-Affinity Endoplasmic Reticulum (ER) Calcium Sensor Permits Real-Time 
Analysis of ER Calcium Regulation in Kenyon Cell Axons 
(A) Design of low-affinity GCaMP sensory targeted and retained in the ER lumen using N-
terminal calreticulin peptide signal and C-terminal KDEL sequence. Adapted from (de Juan-Sanz 
et al., 2017). (B) Black: ER-calcium release resulting from dopamine binding to DopR2 in 
exogenously expressed HEK293T cells. Red: Blockade of ER-calcium release in the presence of 
the Gaq inhibitor YM-254890. Traces generated and kindly provided by Andrew Siliciano. (C) 
The ER-GCaMP-210 sensor was inserted PCR amplified using KOD Hot Start DNA polymerase 
and inserted into the UAS plasmid, pJFRC81 (Addgene Plasmid #36432). Baseline expression of 
the sensor can be observed by driving ER-GCaMP-210 in KCs using the OK107-Gal4 driver. 
(D) Schematic for fluorescent signals generated by sensor depending on whether the ER is taking 
up or releasing calcium.  
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cAMP has been extensively studied as an effector of Gαs signaling that regulates synaptic 

plasticity (Boto et al., 2014; Brunelli et al., 1976; Kandel et al., 1976; 1983; Tomchik and Davis, 

2009). Indeed, results in the Drosophila MB have suggested that cAMP production is maximally 

produced following forward pairing, suggesting this second messenger serves as the critical 

signaling molecule in associative conditioning. However, these experiments use a crude, and 

temporally imprecise way of activating KC and DANs to look at the dependence of timing on 

cAMP production (Tomchik and Davis, 2009), making it difficult to draw definitive conclusions 

over the time course of cAMP in KC axons.   

 

We again used the simplified brain explant experiment relying on direct KC activation with 

iontophoresis of acetylcholine and direct activation of DANs expressing the P2X2 channel, 

allowing for temporally precise activation of neural populations on the sub-second timescale. We 

monitored cAMP production in KC axons using a FRET based cAMP reporter (Shafer et al., 

2008) while varying the relative timing of PAM dopaminergic reinforcement and KC 

stimulation, using the same inter-stimulus intervals that drove bidirectional plasticity within the 

γ4 compartment (Figures 3.2B-C).  We found that cAMP was produced by direct DAN 

stimulation alone and under all conditioning parameters (Figures 5.5A and C). cAMP production 

was maximal when KC and DAN stimulation were temporally coincident, matching the timing 

that gave rise to the strongest depression of KC-MBON signaling (Figures 3.2B-C and 5.5C). 

These observations support biochemical and behavioral evidence that calcium sensitive adenylate 

cyclases, like the classic learning mutant rutabaga, may serve as molecular coincidence detectors 

to amplify cAMP production during associative conditioning (Levin et al., 1992; Livingstone et 

al., 1984; Mons et al., 1999; Tomchik and Davis, 2009).  However, while forward and backward 
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pairing give rise to opposing forms of neural and behavioral plasticity, these conditioning 

protocols evoked comparable cAMP levels, implying that this second messenger cannot alone 

encode the temporal order of odor and dopaminergic reinforcement. We therefore asked whether 

DopR2 signaling pathways might account for the temporal sensitivity of MB plasticity. Upon 

activation of Gαq, inositol triphosphate (IP3) is produced, resulting in IP3-receptor dependent 

calcium release from the endoplasmic reticulum (ER) (Berridge, 1993). 

 

To examine signaling through Gαq, we targeted a low-affinity GCaMP to the ER lumen in KC 

axons (de Juan-Sanz et al., 2017) and monitored calcium efflux from the ER during conditioning 

trials.  We found that ER calcium in KC axons was selectively released during backward pairing, 

with no efflux apparent during forward pairing (Figures 5.5B-C). Notably, just as the inter-

stimulus interval that evoked maximal cAMP production matched the timing of the strongest 

KC-MBON depression, the inter-stimulus interval that evoked the greatest ER calcium efflux 

matched the timing of the strongest potentiation (Figures 3.2B-C and 5.3C).   

 

Therefore, while Gαs signaling is sensitive to the temporal coincidence of inputs to the 

mushroom body during associative conditioning, Gαq signaling depends on their temporal 

ordering, suggesting that these two pathways may work in concert to generate bidirectional 

plasticity. Indeed, a simple linear summation of the cAMP and ER signals elicited by each 

pairing protocol replicated the biphasic curve of KC-MBON plasticity (Figure 5.5D), indicating 

that the selective recruitment of these second-messenger pathways is sufficient to account for the 

temporal dependence of neural and behavioral modulation. 
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Figure 5.5, Dopamine Receptor Pathways in Kenyon Cell Axons are Sensitive to the Timing 
of Events 
(A-B) Measuring second messengers, cAMP (A) and ER calcium (B), in KC axons in the γ4/γ5 
compartments during conditioning with different inter-stimulus intervals (ISIs) of DAN and KC 
activation. (A) KCs express EPAC sensor used to measure cAMP production as change in FRET 
ratio (ΔR/R, where R = CFP/YFP). (B) KCs express ER-GCaMP. Measurements for (A-B) were 
made using an explant preparation with γ4/γ5 DANs expressing P2X2 activated by iontophoresis 
of ATP. Black arrowheads mark time of KC stimulation. Magenta arrowheads mark time of 
DAN stimulation. (C) Average response for cAMP (gray) and ER calcium (black) in γ4/γ5 KC 
axons across the six ISIs tested in (A-B). n = 6, mean ± SEM for EPAC; n = 7, mean ± SEM for 
ER-GCaMP. Significance is indicated as follows: *** ≤ 0.001, ** ≤ 0.01, * < 0.05, NS ≥ 0.05; 
one-sample t-test against zero with Bonferroni correction. (D) Left axis (purple): Linear sum of 
normalized cAMP and ER calcium responses from data shown in (C) were inverted, matching 
the timescale of γ4 MBON plasticity. Standard error of the mean was propagated from cAMP 
and ER calcium responses. Right axis (black): change in KC-MBON responses after 
conditioning with the same six ISIs (data re-plotted from Figure 3.2C).   
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The γ KCs traverse the entire length of the gamma lobe. Along this traversal, axon terminals 

from shock-responsive DANs innervate the proximal γ2 and γ3 compartments, while the 

rewarding PAM DANs innervate the medial γ4 and γ5 compartments. This compartmentalized 

organization of DAN innervation overlaps with the discrete innervation pattern of the MBONs 

tiling across all 15 compartments of the mushroom body (Aso et al., 2014a).  This 

compartmentalized architecture permits different segments of the same KC axons to receive 

distinct neuromodulatory input, allowing for differential plasticity between KC synapses and 

each of its post-synaptic MBON targets across the lobes of the MB (Boto et al., 2014; Cohn et al., 

2015).  While we expect that activation of PAM DANs should selectively modulate the KC-

MBON synapses within the γ4 and γ5 compartments, this compartmentalized plasticity requires 

the recruitment of second messenger pathways within the gamma KC axons obey the spatial 

innervation pattern of the compartmentalized DANs. Indeed, the regulation of independent 

synaptic sites along the length of a neuronal axon has been observed in mammalian and 

invertebrate systems and invoked as a mechanism to allow for local processing of information, 

adding additional flexibility and computational powers in static neural circuits (Cohn et al., 

2015; Pelkey and McBain, 2007). 

 

To address this question, we measured and compared cAMP and ER calcium release levels in the 

proximal γ2/γ3 compartments versus the medial γ4/γ5 compartments innervated by the activated 

PAM DANs during forward and backward conditioning. Indeed, both cAMP and ER calcium 

release show significantly lower levels in the proximal compartments (Figures 5.6A-B). The low 

levels of cAMP and ER calcium release observed in the γ2/γ3 compartments is not surprising 

considering that the 58E02-LexA driver used to activate the PAM DANs weakly innervates both 
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of these compartments but may also reflect that subcellular second messengers do not adhere to 

compartmentalized architecture with perfect fidelity. This spatial recruitment of second 

messengers matches the release of dopamine across the gamma lobe, as measured by expressing 

the dopamine sensor (GRABDA1m) in KCs. (Figures 5.6C).  These observations align with the 

connectome analysis that has suggested that the low number of KC-MBON synapses receiving 

direct DAN innervation (6%) is ideal for ensuring minimal ‘spill-over’ of dopamine release into 

neighboring compartments (Takemura et al., 2017).  

 

The selective release of ER calcium during backward pairing, suggests an order-dependent 

mechanism for the activation of this pathway. Interestingly, if the traces for ER calcium release 

under 7 different inter-stimulus intervals, in which the relative timing of KC activation and DAN 

stimulation was varied, we found ER calcium release was time-locked to the moment of KC 

activation (Figure 5.6E). This is in contrast to cAMP, which was produced predominantly in 

response to DAN activation, regardless of the activity state of KCs (Figure 5.6D). In addition, 

application of the Gαq inhibitor YM-254890 blocked this temporally sensitive ER calcium 

release (Figure 5.6F), confirming that it arises from the Gαq pathway. Together, these results 

reveal an order-detection mechanism regulating Gαq-dependent ER calcium release. This 

mechanism requires that dopamine engage DopR2 to activate the Gαq protein, resulting in the 

priming of a downstream molecule to an increased activity state of the KCs. It is possible that 

this order-detection arises from the complex regulation of IP3R by calcium, a topic I further 

expanded on in the discussion of this chapter.  
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Figure 5.6, Characterization of Second Messenger Production in Gamma Kenyon Cells 
(A-B) Comparison of cAMP (A) and ER-calcium release (B) in γ2/γ3 KC axons versus γ4/γ5 KC 
axons. Mean ± SEM, n = 12 for cAMP and 13 for ER-calcium. (C) Comparison of dopamine 
sensor (GRABDA1m) expressed in KC axons traversing the γ2/γ3 and γ4/γ5 compartments. Mean 
± SEM n = 7. For significant difference between γ2/γ3 and γ4/γ5 compartments in (A-C) paired 
t-test was used: ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001. (D) CFP/YFP ratio of KC axons in the 
γ4/γ5 compartments expressing EPAC sensor during pairing of KC and DAN activation across 
seven different ISIs used for conditioning. All traces were collected from the same preparation 
and aligned to the time of KC stimulation. cAMP production occurs over multiple seconds 
following DAN stimulation. (E) ER calcium fluorescent signal in KC axons expressing ER-
GCaMP traversing the γ4/γ5 compartments during pairing of KC and DAN activation across 
seven different ISIs used for conditioning. All traces were collected from the same preparation 
and aligned to the time of KC stimulation. Alignment shows time-locked ER calcium flux to KC 
stimulation. (F) Left: ER-GCaMP responses in KC axons traversing γ4/γ5 compartments during 
forward pairing (FP) and backward pairing (BP) in brain explant preparations bathed in 10µM of 
the Gaq inhibitor, YM-254890 (red traces), or in DMSO control (black traces). Right: Average 
ER-GCaMP responses in KC axons in the presence (red) and absence (black) of 10µM YM-
254890 during forward and backward pairing. Mean ± SEM, n = 5. Significance for difference in 
YM-254890 treated preparations indicated as follows: * p < 0.05, NS ≥ 0.05, unpaired t-test. For 
(A-E) Black arrowhead marks KC stimulation, colored arrowheads mark DAN stimulations for 
indicated ISIs. For all experiments, PAM DANs expressed the P2X2 channel using the 58E02-
LexA driver and were activated by local iontophoresis of ATP. KCs were stimulated by 
iontophoresis of acetylcholine in mushroom body calyx. 
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To confirm that second messenger signaling in KC axons depends on activation of DopR1 and 

DopR2, we examined cAMP and ER calcium in animals mutant for these dopamine receptors 

(Figure 5.7B). Despite the historic use of DopR1 mutants in assessing animal behavior, a 

receptor mutant compatible with functional, two-photon imaging did not exist (Keleman et al., 

2012; Kim et al., 2007).  

 

Ianessa Morantte, a research scientist in the lab used Cas9-mediated genome engineering to 

generate a novel DopR1 null allele (Figures 5.7A-B) to allow for functional studies of the role of 

this receptor in synaptic modulation. This novel DopR1 mutant resulted in a complete loss of the 

protein coding sequence, verified by qPCR, and loss of protein expression, verified by 

immunohistochemistry (5.7B). In accord with the preferential G-protein signaling of these 

receptors described in vitro (Feng et al., 1996; Gotzes et al., 1994; Han et al., 1996; Himmelreich 

et al., 2017; Sugamori et al., 1995), production of cAMP was strongly diminished in both 

forward and backward pairing in DopR1-/- but not DopR2-/- animals (Figures 5.7C-E). This 

suggests the majority of cAMP generated during associative conditioning in the γ KC axons is 

through a DopR1-dependent mechanism. In addition, the significant reduction in cAMP in the 

DopR1 mutant animals is more dramatic than the loss of cAMP observed in the rutabaga mutant 

(data not shown), suggesting that the minor deficit in synaptic depression in the rutabaga mutant 

is due to an incomplete loss of DopR1-dependent cAMP production.  

 

Furthermore, the equivalent levels of cAMP in wild type compared to DopR2 mutant animals, 

suggests that in vivo DopR2 contributes only minimally, if at all, to dopamine-dependent cAMP 

production. Conversely, the ER calcium release elicited in backward pairing was lost completely  
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Figure 5.7, Select Role of DopR1 in cAMP Production in Kenyon Cell Axons 
(A) Schematic of two sgRNAs targeting the DopR1 locus. Orange boxes represent exons. 
sgRNA 1 on reverse strand targets the 5’ UTR and sgRNA 2 targets the 3’UTR. (B) Left: 
Immunohistochemistry with anti-DopR antibody showing absence of DopR1 protein in DopR1-/- 
adult brain. RT-PCR confirming loss of DopR1 mRNA in DopR1-/- animals compared to wild 
type animals (n = 8 WT and 8 DopR1-/- brains). Right: Immunohistochemistry with anti-DopR2 
antibody in the adult brain of WT and DopR2-/- shows absence of DopR2 protein in DopR2-/-. Z 
stack projection, max intensity. Immunohistochemistry and qPCR analysis of mutant animals 
performed by Ianessa Morantte. (C-D) cAMP responses in KC axons traversing γ4/γ5 
compartments in wild type (WT), DopR1-/-, and DopR2-/- animals during forward (C) and 
backward pairing (D). KCs express EPAC sensor of cAMP. (E) Mean cAMP produced in 
forward (FP) and backward pairing (BP), n = 6 flies for all genotypes, mean ± SEM. 
Significance for difference between receptor mutants and wild type in cAMP production is 
indicated as follows: *** p ≤ 0.001, NS ≥ 0.05; unpaired t-test with Bonferroni correction.  
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in DopR2-/- but not DopR1-/- animals (Figures 5.8A-B), highlighting the unique role of DopR2 in 

driving ER calcium release during backward pairing. DopR1 and DopR2 therefore selectively 

signal through different biochemical pathways in the mushroom body to generate distinct 

patterns of second messengers during conditioning (Figure 5.8C). This suggests that the capacity 

for temporally-dependent bidirectional plasticity emerges from the distinct signaling properties 

of these two dopamine receptors. 

 

 

5.4 Discussion 

Neuromodulators have a profound and varied effect on animal behavior. They can act over short 

or long timescales, with effects that span narrow or broad spatial domains.  Neuromodulatory 

effects are frequently determined by the geometry of the neuropil including the axonal 

projections of the modulatory neurons, as well as the complement of post-synaptic proteins that 

sense neuromodulators and initiate downstream cascades. These downstream signaling pathways 

often contain molecules that allow for the temporal summation of events through coincidence 

detection, or can instead be gated by the order of inputs.  

 

In complex brain circuits where multiple neurmodulatory receptors are expressed among a 

heterogeneous population or intermingled neurons, understanding how select receptor 

engagement is achieved is a daunting question. Indeed, both mammalian and invertebrate studies 

have suggested that distinct dopamine receptors are selectively engaged due to differences in 

affinity for dopamine across D1- and D2-like receptors. Such a model allows for tonic dopamine 

release to engage the high-affinity D2 receptors where as the low-affinity D1 receptor would be 
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 Figure 5.8, DopR2 Drives ER Calcium Release in Kenyon Cells Selectively in Backward 
Pairing 
(A) ER-GCaMP responses in KC axons traversing γ4/γ5 compartments in wild type (WT), 
DopR1-/-, and DopR2-/- during forward pairing (left) and backward pairing (right). (B) Mean ER 
calcium release during forward pairing and backward pairing across all genotypes, n = 5-6 
animals for all genotypes, mean ± SEM. Significance for difference between receptor mutants 
and wild type in ER calcium release is indicated as follows: ** ≤ 0.01, NS ≥ 0.05; Mann-
Whitney test with Bonferroni correction. (C) Schematic showing second messenger production 
during forward and backward pairing and the resulting plasticity in KC-MBON signaling. 
 
 
 
 
 
  



 126 

  



 127 

selectively engaged during phasic release (Berry et al., 2012; Grace et al., 2007; Marcott et al., 

2014; Surmeier et al., 2011); however, these experiments often rely on simplified in vitro assays 

in which the innate, microenvironments are stripped away or altered in non-physiological ways. 

More recent work in vivo has suggested this model is likely overly simplistic. Rather, it seems 

heterogeneous D2-expressing neural populations in the striatum and nucleus accumbens can 

function in both a high- or low-affinity state, encoding both phasic and tonic dopamine activity 

(Marcott et al., 2014; 2018). This complexity in receptor engagement across a heterogeneous 

population of receptor-expressing neurons emphasizes the importance of using in vivo dynamical 

sensors of the neuromodulatory state of a circuit to achieve unprecedented insight into how a 

circuit is altered, from the initial stages of neuromodulator release to the engagement of 

downstream effectors.  

 

In Chapter 3, I showed that the order of inputs during conditioning result in bidirectional tuning 

of the KC-MBON synapses within the MB to drive changes in odor tracking behavior. It was 

reasonable to suspect that if dopamine release in forward and backward pairing were different, 

distinct downstream modulatory pathways could be selectively engaged if differences in affinity 

for dopamine truly existed across the Drosophila dopamine receptors; however, we found that 

dopamine release was equivalent across all conditioning paradigms, suggesting that dopamine 

neurons are likely not the site of coincidence detection and that such a site likely exists in the 

post-synaptic neurons. We, therefore, needed insight into the effects of dopamine on post-

synaptic neurons to identify the cellular site likely involved in order and coincidence detection. 

Through the development and use of fluorescent reporters for dopamine-receptor second 
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messengers, we were able to characterize how the timing of associative conditioning influences 

downstream signaling pathways in the KC axons of the MB.   

 

We show that DopR1-dependent cAMP is recruited under both forward and backward pairing 

with maximum production occurring with the synchronous activation of both KC and DANs. 

The drop off in cAMP production as the ISI increases suggests that the production of cAMP 

depends on the detection of coincidence, occurring likely through a calcium-activated adenylate 

cyclase. However, the symmetric production of cAMP in forward and backward pairing suggests 

this pathway is insufficient to explain the bidirectional modulation that relies on the order of 

events. This observation challenges the firmly held belief that synergistic levels of cAMP during 

associative conditioning are sufficient to explain the temporal dependence of associative learning 

(Abrams et al., 1991; Boto et al., 2014; Kheirbek et al., 2008; Tomchik and Davis, 2009). Prior 

results suggested that supralinear cAMP was produced selectively during forward pairing and 

was not observed during backward pairing (Tomchik and Davis, 2009); however, the limited 

conditioning paradigms tested and lack of temporal resolution in neuron activation likely 

occluded the production of cAMP in backward pairing. Indeed, if equivalent levels of cAMP 

were observed in forward and backward pairing, a more complex mechanism for why forward 

and backward pairing do not lead to equivalent neural and behavioral responses would need to be 

invoked. Through the use of chemogenetic tools, allowing for temporally precise activation of 

DANs relative to KCs, our work suggests multiple signaling pathways must be involved to shape 

the neural and behavioral responses to associative conditioning. 
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The use of a the low-affinity ER-calcium sensor revealed for the first time a central role in Gαq 

dependent calcium release during associative conditioning in Drosophila. We observed three 

interesting features of the DopR2-dependent ER calcium signal: 1) calcium release only occurs 

in backward pairing paradigms, 2) as the delay between DAN and KC activation increases, the 

calcium release decreases, and 3) release of calcium from the ER is time locked to the moment of 

KC activation during backward pairing. Together, these observations highlight the immense 

regulation in recruitment of this downstream pathway. Experiments in the mouse cerebellar 

circuitry has suggested a role of order-dependent coincidence detection in driving long-term 

depression in parallel fiber-Purkinje cell synapses (Sarkisov and Wang, 2008). The pairing of IP3 

production in Purkinje cells (PCs) with activation of the climbing fiber 400 ms later, resulted in a 

supralinear calcium response in the dendrites of the PCs. A reversal in the order of events 

showed minimal effects, suggesting that the supralinear responses depend both on the order and 

delay time between events (Sarkisov and Wang, 2008). These requirements are similar to what 

we observe in ER calcium release in KC axons. While the analogous circuit organization of the 

mushroom body and cerebellum has been well described (Farris, 2011), our observations suggest 

they may share conserved molecular mechanisms for temporally precise synaptic modulation.  
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Chapter 6 

 

Dopamine Receptors in Bidirectional Plasticity 

 

6.1 Introduction 

Across nervous systems, dopamine pathways and receptors have been proposed to oppose one 

another at a macroscopic level in regulating animal behavior, and at a microscope level in the 

recruitment of distinct second messengers that tune synaptic activity through the regulation of 

individual proteins. At the macroscopic level, it is clear that dopamine plays a central role in 

sculpting and regulating animal behavior. A wealth of evidence suggests that dopamine signaling 

in the mammalian basal ganglia circuitry is critically involved in motor control (Cisek and 

Kalaska, 2010; Markowitz et al., 2018; Mink, 1996; 2003; Redgrave et al., 1999; Wichmann and 

DeLong, 2003), and loss of dopamine within this circuitry can have opposing behavioral 

effects—leading to hypokinesia, a hallmark of Parkinson’s disease, or hyperkinesia, evident by 

the involuntary movements seen in patients suffering from chorea.  

 

The dichotomous effect on movement regulation by dopamine is believed to emerge from the 

distinct pathways and signaling mechanisms of dopamine in the basal ganglia circuit. For 

example, dopamine release within the striatum acts on distinct GABAergic, medium spiny 

neurons (MSNs) that differ both in their expression of dopamine receptors and their projection 

pattern within the basal ganglia circuitry. The GABAergic neurons expressing the D1-like 
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receptor make up the majority of the striatonigral projections, while the striatopallidal projecting 

GABAergic neurons instead preferentially express the D2-like receptor (Gerfen et al., 1990). The 

distinct neuroanatomical circuits for the direct (striatonigral) and indirect (striatopallidal) 

pathway tune activity levels within cortical regions to bidirectionally modulate behaviors, with 

the direct pathway promoting body movements and the indirect pathway suppressing competing 

locomotor behaviors (Freeze et al., 2013; Kravitz and Kreitzer, 2012). Additional experiments 

since the discovery of these pathways have further clarified and expanded this simple model of 

the role of direct and indirect pathway in motor control, suggesting that both the direct and 

indirect pathway are engaged during locomotion to select appropriate motor programs while 

inhibiting unwanted behaviors (da Silva et al., 2018; Markowitz et al., 2018; Mink, 2003). 

 

These differences in the regulation of animal behavior are thought to arise from distinct signaling 

properties of these two dopamine receptors at the microscopic level. The binding of dopamine to 

D1-like receptors stimulates adenylate cyclases through the Gαs, leading to activation of 

downstream protein kinase A (PKA). The excitatory effects of D1-like activation are mediated 

through PKA-dependent phosphorylation and regulation of downstream receptors including 

glutamatergic NMDA and AMPA receptors, and voltage-regulated sodium, potassium, and 

calcium channels (Greengard et al., 1999; Svenningsson et al., 2004). By contrast, binding of 

dopamine to D2-like receptors inhibits adenylate cyclases and PKA activation through the 

engagement of Gαi/o, leading to inhibition of the indirect pathway (Greengard et al., 1999; 

Svenningsson et al., 2004).  
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However, the intermingled dendrites of D1 and D2 expressing MSN raises the interesting 

question of how the direct and indirect pathways are selectively engaged for proper action 

selection in animals. Functional experiments in heterologous expression systems have suggested 

that D2 receptors have a 10- to 100-fold higher affinity when compared to D1 receptors using 

radiolabeled antagonists (Beaulieu and Gainetdinov, 2011; Tritsch and Sabatini, 2012); this 

difference in affinity levels would suggest that low-level, tonic release of dopamine would 

selectively engage the D2 receptor and inhibit the indirect pathway while the direct pathway 

would only be engaged during phasic release of dopamine. However, these experiments fail to 

represent that native microdomains of these receptors in the MSNs limiting the current model 

into how these receptors are differentially engaged in the basal ganglia circuitry. Furthermore, 

recent experiments parsing the dopamine pathways in mammalian circuits have highlighted the 

complexity of dopamine pathways in encoding multi-varied signals, including motor, reward, 

and punishment (Cohen et al., 2012; Lammel et al., 2014; Lerner et al., 2015).  

 

Understanding how the brain decodes these multivariate signals both at the circuit level and at 

the molecular level through engagement of distinct dopamine receptors remains a complex task 

to achieve in mammalian circuits. Similar complexity in dopamine signaling exists in the simple 

nervous system of Drosophila (Berry et al., 2012; Cohn et al., 2015); however, the wealth of 

genetic tools and well-characterized neural architectures aide in the unraveling of dopamine-

dependent mechanisms regulating neural and behavioral plasticity.  

 

While there exists a clear distinction between positive and negative valence within the dopamine 

neurons innervating the mushroom body through the PPL and PAM DANs, these same neurons 
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also provide an ongoing record of the locomotor behavior of the animal. Additionally, single-cell 

sequencing of KCs show that these cells co-express a variety of dopamine receptors with distinct 

signaling. Despite this complexity, two specific dopamine receptors highly expressed in KC 

axons, DopR1 and DopR2, have been shown to play opposing roles in regulating olfactory 

memories at the behavioral level; however, it is unknown how these two receptors work to shape 

plasticity in post-synaptic neurons and how these two receptors are selectively engaged to 

mediate learning and memory.  

 

In the previous chapter, I showed that while DopR1-dependent cAMP is produced under all 

conditions of DAN activation, DopR2-dependent ER calcium is produced only under specific 

timing conditions. Furthermore, a simple summation of these two pathways recapitulates the 

biphasic curve of neural plasticity in the γ4 compartment of the mushroom body, hinting at a role 

of these pathways in sculpting the neural plasticity. In this chapter, I will link the distinct 

temporal sensitivity of these dopamine receptor pathways to bidirectional neural and behavioral 

plasticity, providing a relatively simple model for how distinct dopamine receptors within a 

neural circuit can achieve opposing neural and behavioral effects through select engagement 

under different contexts. 

 

 

6.2 DopR1 and DopR2 Underlie Opposing Forms of Neural Plasticity 

The distinct temporal sensitivity of DopR1 and DopR2 signaling pathways described in the 

previous chapter suggests these receptors play a central role in mediating opposing forms of 

synaptic plasticity within the mushroom body. To test this idea, we examined the capacity for 
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bidirectional plasticity in the mushroom body circuitry in the background of dopamine receptor 

mutants. In these experiments, we used a brain explant experiment, where KCs were directly 

stimulated by iontophoresis of acetylcholine onto their dendrites while the PAM DANs were 

activated by targeted iontophoresis of ATP onto the P2X2-expressing PAM dendrites. This 

approach was designed to directly hone in on modulation of KC-MBON synapses within a 

compartment by directly activating KCs and DANs, bypassing any perturbations in upstream 

signaling in the receptor mutants. 

 

Indeed, the robust depression of KC-MBON signaling induced by forward pairing in wild type 

animals (Figure 6.1A) was absent in DopR1 mutants, instead leading to weak potentiation 

(Figure 6.1B). However, the potentiation following backward pairing remained intact (Figure 

6.1B), suggesting a selective loss in the capacity to depress the MBON in the absence of DopR1. 

This neural deficit is inline with behavioral and neural literature emphasizing firstly, the 

importance of DopR1 in memory formation at the behavioral level following forward pairing and 

secondly, the role of depression in odor-drive onto MBON following forward conditioning in the 

KC-MBON synapses.  

 

In contrast, both forward and backward pairing induced comparable levels of depression in KC-

MBON signaling in DopR2-/- animals (Figure 6.1C). This result demonstrates the critical role of 

DopR2 in driving potentiation of KC-MBON synapses in backward pairing, and additionally, 

suggests that in the absence of DopR2, DopR1-dependent cAMP drives depression in KC-

MBON synapses, independent of the timing of conditioning. These results highlight a novel role 
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Figure 6.1, DopR1 and DopR2 Differentially Regulate Bidirectional Plasticity 
(A) KC-γ4 MBON plasticity in wild type (WT) animals in response after either forward pairing 
(FP) or backward pairing (BP). Left: γ4 MBON calcium responses to direct KC stimulation 
(black arrowhead) by iontophoresis of acetylcholine in the calyx prior to (pre) and after (post) 
forward or backward pairing. Right: Peak GCaMP response of γ4 MBON to KC stimulation pre 
and post forward or backward pairing. (B-C) Same as (A) except in DopR1-/- (B), and DopR2-/- 
(C) animals. n = 5 for all genotypes, mean ± SEM. Paired t-test, *** p ≤ 0.001, ** ≤ 0.01, * < 
0.05. For all experiments, PAM DANs expressed the P2X2 channel using the 58E02-LexA driver 
and were activated by local iontophoresis of ATP. KCs were stimulated by iontophoresis of 
acetylcholine in mushroom body calyx.  
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for DopR2 in associative conditioning, distinct from behavioral experiments suggesting a role of 

DopR2 only in memory erosion through forgetting mechanisms. Furthermore, inhibition of Gαq 

using YM-254890 prevented potentiation of KC-MBON signaling after backward pairing 

(Figure 6.2A), demonstrating that loss of either DopR2 or inhibition of its G-protein partner 

results in a similar deficit in synaptic plasticity. Interestingly, backward pairing led to depression 

in the MBON in four out of the six preparations exposed to YM-254890, highlighting the 

essential role of DopR2-dependent Gαq signaling in opposing the depressive effects of the 

DopR1 pathway. Together, these experiments suggest that DopR1 and DopR2 play opposing 

roles in shaping synaptic modulation within the mushroom body such that all conditioning 

paradigms drive potentiation in DopR1 mutants and depression in DopR2 mutants, underscoring 

how the coordinated signaling through these two receptors generates bidirectional plasticity. 

 

It is important to recognize that these mutant animals lack the receptor in all neural and non-

neural tissues; however, prior behavioral studies have demonstrated that DopR1 expression in γ 

KCs alone is sufficient to support short-term learning following forward conditioning (Qin et al., 

2012), highlighting that dopamine signaling in this neural population alone can drive associative 

plasticity. Likewise, we demonstrate that forward and backward conditioning engages DopR1 

and DopR2 second messenger-signaling cascades in KC axons, the direct post-synaptic partners 

of the mushroom body DANs we are activating, further suggesting the site of dopamine 

signaling is localized to the pre-synaptic KCs.  
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Figure 6.2, Potentiation from Backward Pairing Relies on Gαq Signaling and DopR2 
Expression in Kenyon Cells  
(A) Left: γ4 MBON GCaMP response to KC stimulation pre and post backward pairing in brain 
preparations bathed in 10µM YM-254890 (red) or in DMSO control (black). Black and red 
arrowheads mark KC stimulation. Right: Peak γ4 MBON response to KC stimulation pre and 
post backward pairing in YM-254890 (red) or control (black), * p < 0.05, NS ≥ 0.05, Wilcoxon 
matched-pairs signed rank test. (B) Left: KC-evoked GCaMP responses in the g4/g5 KCs pre- 
and post-backward pairing. Black traces are control animals; blue traces are animals expressing 
DopR2-RNAi in KCs (OK107-Gal4 > UAS-GCaMP6s). Right: Peak γ4 MBON response to KC 
stimulation pre and post backward pairing. Statistical difference between pre- and post-backward 
pairing responses assessed using paired t-test: **** p ≤ 0.0001, NS ≥ 0.05.   
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Further support for a pre-synaptic role for dopamine receptor signaling comes from examining 

how conditioning alters calcium signaling in KC axons. We found that backward pairing resulted 

in potentiation of calcium entry in KC axons expressing soluble GCaMP to direct KC stimulation 

(Figure 6.2B). This potentiation was lost by selectively expressing DopR2-RNAi exclusively in 

the KCs, underscoring that KC axons are the critical site of dopamine signaling underlying 

bidirectional plasticity depending on the timing of events during conditioning.  

 

 

6.3 DopR1 and DopR2 Underlie Opposing Forms of Behavioral Plasticity 

We next examined whether the selective loss of potentiation or depression in DopR1 and DopR2 

mutants could alter an animal’s capacity to reversibly update behavioral preferences.  As shown 

in Chapter 2, interleaving forward and backward pairing of ACV with PAM activation in wild 

type flies revealed a saw-tooth pattern of odor attraction as animals alternately increased and 

decreased their upwind odor tracking with each conditioning trial (Figure 6.3A). In contrast, 

DopR1 mutants were unable to bidirectionally modulate their behavioral responses to ACV after 

forward and backward pairing (Figure 6.3A-B). In fact, DopR1 mutant animals maintained a 

relatively low level of attraction to the conditioned odor, failing to vigorously track ACV after 

forward conditioning (Figure 6.3C-D). These observations are in line with behavioral evidence 

that DopR1 is required for writing memories within the mushroom body (Kim et al., 2007; Qin et 

al., 2012). 

 

In contrast, DopR2 mutant animals strongly tracked ACV following forward and backward 

pairing (Figure 6.4A-B). This unwavering attraction suggests that DopR2 mutants are able to 
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Figure 6.3, DopR1 is Required for Memory Formation and Rapid Reversals in Behavior 
(A) Left: Raster plot of average upwind velocity trained by alternating forward pairing (FP) and 
backward pairing (BP) of PAM (MB042B) > CsChrimson activation with apple cider vinegar 
(ACV) odor in wild type (WT) animals (magenta) or DopR1-/- animals (orange). Right: Upwind 
displacement in the 2-second ACV odor presentation corresponding to trials shown in raster. 
Behavioral paradigm same as in Figure 2.3A (50 conditioning trials, alternating between forward 
and backward pairing). The first row of the raster and upwind displacement graphs represents 
tracking at baseline. Subsequent rows and data points correspond to behavioral trials after 
forward pairing or backward pairing occurring in alternating succession (post-FP, post-BP). (B) 
Left: Change in upwind displacement in odor post-forward and post-backward pairing in WT 
(magenta) and DopR1-/- (orange) animals.  The change in upwind displacement was measured 
relative to the preceding odor trial. Each data point represents the mean change in displacement 
after the 25 forward pairing (post-FP) or 25 backward pairing (post-BP) trials for each 
experiment. Right: Data points are re-plotted from graph on the left to compare changes in 
upwind displacement post-forward pairing and post-backward pairing in WT and DopR1-/- 
mutants. Unpaired t-test was used to test for differences in the change in odor behavior post-
forward pairing and post-backward pairing across genotypes, **** p ≤ 0.0001. (C) Upwind 
velocity of flies during representative trials 7, 8, 9, and 10 (corresponding to trial number shown 
in A) in wild type (WT, magenta) and DopR1-/- (orange) animals. (D) Mean upwind 
displacement in ACV odor post-forward pairing and post-backward pairing for WT and DopR1-/- 
animals. Unpaired t-test was used to test for differences in upwind odor displacement post-FP 
and post-BP across genotypes: ** p ≤ 0.01, NS ≥ 0.05. n = 7  experiments with 5-6 animals per 
experiment for all genotypes, mean ± SEM. 
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Figure 6.4, DopR2 is Required for Rapid Reversals in Behavior after Backward Pairing 
(A) Left: Raster plot of average upwind velocity trained by alternating forward pairing (FP) and 
backward pairing (BP) of PAM (MB042B) > CsChrimson activation with apple cider vinegar 
(ACV) odor in wild type (WT) animals (magenta) or DopR2-/- animals (blue). Right: Upwind 
displacement in the 2-second ACV odor presentation corresponding to trials shown in raster. 
Behavioral paradigm same as in Figure 2.3A (50 conditioning trials, alternating between forward 
and backward pairing). The first row of the raster and upwind displacement graphs represents 
tracking at baseline. Subsequent rows and data points correspond to behavioral trials after 
forward pairing or backward pairing occurring in alternating succession (post-FP, post-BP). (B) 
Left: Change in upwind displacement in odor post-forward and post-backward pairing in WT 
(magenta) and DopR2-/- (blue) animals.  The change in upwind displacement was measured 
relative to the preceding odor trial. Each data point represents the mean change in displacement 
after the 25 forward pairing (post-FP) or 25 backward pairing (post-BP) trials for each 
experiment. Right: Data points are re-plotted from graph on the left to compare changes in 
upwind displacement post-forward pairing and post-backward pairing in WT and DopR2-/- 
mutants. Unpaired t-test was used to test for differences in the change in odor behavior post-
forward pairing and post-backward pairing across genotypes, **** p ≤ 0.0001. (C) Upwind 
velocity of flies during representative trials 7, 8, 9, and 10 (corresponding to trial number shown 
in A) in wild type (WT, magenta) and DopR2-/- (blue) animals. (D) Mean upwind displacement 
in ACV odor post-forward pairing and post-backward pairing for WT and DopR2-/- animals. 
Unpaired t-test was used to test for differences in upwind odor displacement post-FP and post-
BP across genotypes: * p < 0.05, NS ≥ 0.05. n = 7  experiments with 5-6 animals per experiment 
for all genotypes, mean ± SEM. 
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form a positive association but are unable to overwrite that memory in response to subsequent 

experience (Berry et al., 2012) (Figure 6.4C-D). The behavioral inflexibility of DopR1 and 

DopR2 mutants highlights how the balance of signaling through these two receptors allows 

animals to reversibly modify their behavioral attraction to an odor, based on the predictive 

temporal relationships between odor presentation and dopaminergic reinforcement.   

 

Importantly, despite the deficit of DopR1 and DopR2 mutant animals in their ability to flexibly 

modulate their attraction to an odor, these animals are capable of tracking ACV at levels 

equivalent to wild type animals with a matched genetic background (Figure 6.5A-O).  These 

control experiments show that the speed of DopR1, DopR2, and wild type animals are equivalent 

both within the clean-air stream as well as within the odor plume (Figure 6.5B-G). Additionally, 

the fraction of flies stationary or moving upwind in response to the odor presentation are 

equivalent across all three genotypes, further emphasizing the critical role of DopR1 and DopR2 

in mediating odor-specific changes in animal behavior directly as a result of associative 

conditioning. Together, these experiments emphasize the critical role of two dopamine receptor 

pathways and their different temporal sensitivities for mediating the bidirectional neural and 

behavioral plasticity.  
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Figure 6.5, Dopamine Receptor Mutants Track Odor Equivalent to Wild Type Controls 
(A-O) Behavioral analysis of locomotor metrics comparing PAM >CsCh DopR1-/-, PAM > CsCh 
DopR2-/-, and PAM > CsCh wild type animals. (A) Directional information of X and Y axis 
relative to air/odor flow. (B-C) Speed in the Y and X direction. (D-E) Average speed in Y 
direction in odor (D) or in the four seconds of air prior to odor presentation (E). (F-G) Average 
speed in X direction in odor (F) or in the four seconds of air prior to odor presentation (G). (H-I) 
Upwind velocity (H) and crosswind velocity (I). (J-K) Average upwind and crosswind velocity 
in the odor. (L-M) The fraction of stationary animals (L) and of flies walking upwind (M). (N-
O) The average fraction of stationary animals (N) and of flies walking upwind (O) during odor 
presentation. Mean ± SEM, n = 4 experiments with 5 animals per experiment for all genotypes. 
Significance for differences in behavior metrics across genotypes tested using ordinary one-way 
ANOVA: NS p ≥ 0.05. See methods for how behavior was analyzed along axes. 
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6.4 Discussion 

In Chapter 3, I showed that the order of associative conditioning results in bidirectional plasticity 

between the individual KC-MBON synapses within a single compartment of the MB. These 

opposing forms of plasticity dependent on the timing of events suggest distinct involvement of 

dopamine-sensitive receptors in neurons post-synaptic to dopamine terminals. In this chapter, I 

showed that DopR1 and DopR2, despite both being highly expressed in KC axons, are 

selectively involved in the depression of synapses following forward pairing and the potentiation 

of synapses resulting from backward pairing, respectively.  

 

In a final attempt to link this neural plasticity to reversals in odor attraction depending on 

conditioning, we found that loss of either DopR1 or DopR2 impairs the ability of animals to 

rapidly update their odor associations following reversals in contingency between the odor and 

rewarding reinforcement. Together, these experiments highlight the critical balance of these two 

dopamine receptors and their distinct intracellular signaling pathways in permitting animals the 

flexibility to form appropriate relationships that reflect the temporal relationship between events 

in their environment.  

 

The observation that DopR2-RNAi expressed selectively in KC axons impairs the potentiation of 

KC-evoked calcium levels in KCs suggests DopR2 acts pre-synaptically to alter transmission 

between KC-MBON synapses. In these experiments, the time delay between conditioning and 

testing for neuromodulation is ~20-30 seconds, potentially enough time for phosphorylation or 

insertion of channels. Given the multitude of channels controlled via phosphorylation by 

dopamine-dependent signals, such as the GABA(A) and GluR1 AMPA receptor in striatal 
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circuits (Flores-Hernandez et al., 2000; Greengard, 2001; Snyder et al., 2000), the basis for this 

modulated calcium responses remains unknown but suggests that the release probability is 

altered within KC boutons following DopR2-dependent ER calcium release. However, we 

cannot exclude a role of post-synaptic modulation in the plasticity in odor-drive to the MBONs 

following forward or backward pairing. Furthermore, while electrophysiological recordings in 

the pre-synaptic neurons could potentially reveal the ionic currents altered during conditioning, 

such experiments are difficult given the MB architecture. Specifically, the soma of KCs are 

electrically isolated from the axons intrinsic to the output lobes; additionally, we believe the 

modulation is occurring locally along the KC axons, emphasizing the requirement of sharp axon 

recordings, a non-trivial experimental approach.  

 

The downstream targets of cAMP and ER calcium are numerous and depend highly on the 

cellular machinery present in sites of activity (Thum and Gerber, 2019). It is likely that these two 

pathways work downstream through differential activation of PKA and protein kinase C (PKC) 

to shape synapse function (Leenders and Sheng, 2005; Thum and Gerber, 2019). The use of 

additional fluorescent sensors for PKA and PKC may help elucidate how forward and backward 

pairing differential recruit these two kinases to shape neural plasticity. However, it still remains 

unclear what the potential targets are of the DopR1 and DopR2 pathway. The observation that 

both forward and backward pairing drive depression in the DopR2 mutant animal suggests that 

DopR2 may act to antagonize the depressive-effects of cAMP-dependent DopR1, either by 

acting in opposition on a common downstream target or through a parallel, antagonistic, 

pathway. One known target for DopR2 is the scribble scaffolding protein that interacts with a 

Rac1 GTPase that has been suggested to mediate forgetting through active restructuring of the 
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actin cytoskeleton (Cervantes-Sandoval et al., 2016; Davis and Zhong, 2017; Dong et al., 2016; 

Shuai et al., 2010; 2015; Zhang et al., 2018). However, it is unclear whether the rapid reversals 

in neural plasticity and behavior we observe on the second to minute timescale could emerge 

from DopR2-dependent cytoskeletal reorganization. Instead, it is likely that PKA and/or PKC 

shape the bidirectional plasticity through direct phosphorylation of channels involved in synaptic 

transmission. Indeed, distinct kinases are known to have opposing roles in regulating channel 

function; for example, Ca2+/calmodulin-dependent kinase II (CAMKII) and PKC bidirectionally 

regulate the open probability of the large conductance potassium channel (BK) in the medial 

vestibular nucleus (van Welie and Lac, 2011). A candidate screen of RNAis expressed in KC 

axons may allow us to further examine which channels are required for this bidirectional 

plasticity. Ultimately, understanding how these two dopamine pathways interact on downstream 

targets would provide an elegant model for how distinct neuromodulatory pathways integrate 

signals to sculpt synaptic transmission.  
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Chapter 7 

 

Discussion and Future Experiments 

 

7.1 Introduction 

While memories are often thought of as windows into the past, their adaptive value lies in the 

ability to predict the future. Memory systems enable animals to use their prior experience to 

anticipate and prepare for future events. In the context of a dynamic and uncertain environment, 

however, memories must be continually retouched and rewritten to maintain their relevance and 

predictive value. Learning circuits must therefore accommodate two opposing demands: first, to 

rapidly generate associations that inform optimal behavior and second, to flexibly overwrite 

these associations as environmental conditions change (Dudai, 2009). Behavioral experiments 

across a diversity of animals have suggested that animals form distinct and opposing associations 

depending on whether a conditioned stimulus precedes or follows a reinforcement, allowing 

animals to form meaningful associations about the causal relationship between events. While this 

temporally sensitive learning has been well-described at the behavioral level (Aso and Rubin, 

2016; Gerber et al., 2019; König et al., 2018; Tanimoto et al., 2004), understanding how such 

temporal specificity is achieved in associative learning circuits was a previously unexplored 

question.   

 

During my thesis, I took advantage of the concise circuitry of the Drosophila mushroom body 

and the temporal resolution of optogenetics to investigate how the timing of dopaminergic 
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reinforcement instructs the formation of distinct and opposing olfactory memories depending on 

the order of events during conditioning. Our work suggests a model in which bidirectional neural 

and behavioral plasticity arises from the temporal sensitivity of two dopamine receptor-signaling 

pathways that work in opposition to regulate the strength of KC-MBON signaling within a 

compartment (Figure 7.1), allowing animals to maintain an accurate model of a changing world. 

Specifically, during forward pairing we see the selective engagement of DopR1-dependent 

cAMP that is likely required for driving the KC-MBON depression, leading to increased 

attraction to the positively conditioned odor. By contrast, in backward pairing, we see the unique 

engagement of DopR2-dependent ER calcium release. Loss of this ER calcium signal, either in 

the DopR2 mutant animals or in the presence of the Gαq inhibitor, leads to a loss in synaptic 

facilitation and impairs behavioral flexibility. Together, these experiments combining molecular, 

functional and behavioral analysis allow us to link mechanisms of learning and memory across 

multiple levels: from molecular pathways that regulate synaptic strength to the emergence of 

learned behavior.   

 

 

7.2 Using Temporal Relationships to Form and Overwrite Associations 

Memory retention is regulated through multiple mechanisms that span different timescales 

(Bouton, 2002; Davis and Zhong, 2017; Richards and Frankland, 2017).  If not reinforced, 

memories may passively fade over time, reflecting the slow natural turnover of molecular and 

neural hardware. Alternatively, memory erosion may be actively triggered by changing 

circumstances and contingencies, as observed with fear extinction or reversal learning studied  
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Figure 7.1, Model for Dopamine-Dependent Bidirectional Neural and Behavioral Plasticity 
Model of the selective engagement of the two dopamine receptors and their downstream 
signaling pathways following forward and backward pairing leading to opposing synaptic 
plasticity and odor tracking behavior. 
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in mammalian and invertebrate species (Izquierdo et al., 2017; Quinn et al., 1974; Shuai et al., 

2010; Xue et al., 2013). Indeed, the ability to update prior associations is advantageous for 

animals contending with dynamic environments and is often used as a measure of cognitive 

flexibility.  

 

Previous work in Drosophila has suggested that olfactory memories can be eroded by re-

exposure to the learned odor in the absence of the anticipated dopaminergic reinforcement, 

violating the expected contingency between these two events (Aso and Rubin, 2016; Felsenberg 

et al., 2017; 2018; Schwaerzel et al., 2002). In fact, it is believed that memory erosion resulting 

from odor re-exposure results in the creation of a parallel, competing association with the 

specific odor. This type of re-evaluation relies on a circuit-based mechanism, in which distinct 

compartments in the mushroom body process and encode competing odor associations 

(Felsenberg et al., 2017; 2018). 

 

Dopaminergic reinforcement in the absence of odor can similarly erode memories (Aso and 

Rubin, 2016; Berry et al., 2012). Indeed, strong or prolonged dopamine release within a 

compartment is sufficient to potentiate the response of KC-MBON signaling to all subsequent 

odor stimuli (Cohn et al., 2015) and overwrite past learned associations (Aso and Rubin, 2016; 

Berry et al., 2012; 2015; 2018). Furthermore, ongoing locomotor activity of Drosophila engages 

the same DANs that are involved in reinforcement learning (Berry et al., 2012; Cohn et al., 

2015). This constant engagement during motor activity has been shown to result in memory 

erosion over time, likely due to the engagement of the same dopamine receptor pathways in KCs 

that are involved in associative learning. However, these forms of memory erosion occur over a 
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timescale of hours (Berry et al., 2012; 2015; Felsenberg et al., 2017). Such slow re-evaluation of 

a learned association limits the capacity for animals to rapidly update associations in an 

environment as dynamic and complex as the sensory world we live in.  

 

In contrast to these forms of memory erosion, here we describe a rapid form of memory updating 

that is specifically sensitive to the temporal relationship between a converging sensory cue and 

reinforcement. We find that the brief periods of odor and dopaminergic reinforcement (1-2 

seconds) are insufficient to overwrite an olfactory association when presented independently but 

can immediately reverse a prior association when paired together in time. The convergence of 

olfactory and DAN input to the mushroom body thus conveys information about the causal 

relationship between these events, allowing animals to immediately update their memories to 

reflect the changing temporal structure of their environment. 

 

Since the 1950s, scientists have debated the relevance of backward pairing in animal behavior 

due to conflicting outcomes in behavioral conditioning (Spetch et al., 1981). Early reports 

suggested that backward conditioning had little effect on instructing associations, and in fact, 

backward pairing was often used as a negative control for examining the behavioral effects of 

forward pairing, further obscuring any insight into the behavioral effects of negative contingency 

conditioning (Kalish, 1954; Spence and Runquist, 1958). Around the same time, a conflicting 

report instead showed that animals learned to associate a tone that follows a shock as a safety 

signal (conditioned inhibition) (Moscovitch and LoLordo, 1968), creating a rift in the field 

regarding what temporal relationships animals use for causality judgments. Recently, well-

controlled behavioral experiments across a wide-diversity of animals have emphasized the 
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importance of backward pairing in learning and memory (Andreatta et al., 2012; 2013; 2015; 

Aso and Rubin, 2016; König et al., 2018; Tanimoto et al., 2004). In our work, we observe that 

flies are capable of learning appetitive associations between cues that anticipate rewards or 

follow punishments and aversive associations between sensory signals that predict punishments 

or follow rewards. This work adds to the growing literature that negative contingency 

reinforcement, such as that in backward pairing, is equally as important as the learning occurring 

with positive contingency reinforcement (Aso and Rubin, 2016; König et al., 2018; Tanimoto et 

al., 2004). Interestingly, in the rodent brain, the basolateral amygdala and nucleus accumbens 

appear to be selectively involved in either punishment learning following forward pairing and 

relief learning following backward pairing, respectively, and appear to encode shock onset and 

offset in temporally distinct ways (Andreatta et al., 2012; Gerber et al., 2014). By contrast, we 

found that the same DAN populations can instruct bidirectional behaviors and plasticity in an 

individual compartment depending on the timing of events; however, it is possible circuit 

dynamics in the MB architecture contribute to the behavioral effects of conditioning.   

 

Indeed, we found a single reinforcement can simultaneously instruct multiple olfactory 

associations in parallel depending on whether an odor preceded or lagged the reinforcement in 

time, highlighting how Drosophila take advantage of all the temporally correlated features of 

their environment that may inform causal relationships. Prior to this work, research in the MB 

field suggested that short-term memory compartments were only capable of storing a single 

association at a time (Aso and Rubin, 2016)—the learning of a new association eroded the prior 

association. Instead, we show that the capacity of short-term memory processing is multiplexed, 

allowing animals to learn which associations precede and lag a reinforcement simultaneously. 
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Together, these results suggest that memory erosion by backward pairing may reflect the 

formation of a new memory in which the odor, once predictive of a reinforcement, is now 

associated with its termination, analogous to the changes in contingency that occur during 

reversal learning (Quinn et al., 1974; Shuai et al., 2010).  Our observations thus extend upon the 

memory updating mechanisms previously described in the mushroom body, revealing how the 

temporal sensitivity of this associative circuit to dopaminergic and olfactory input allows animals 

to quickly rewrite outdated associations.  

 

Additionally, the implementation of a novel assay using freely behaving animals clarified how 

animals change their odor preferences following associative conditioning. In the classic T-maze 

assay, populations of flies are given a choice between the conditioned and an unconditioned odor 

(Quinn et al., 1974). However, these end-point assays often obscure the specific behavioral 

strategies animals use to contend with sensory cues that are predictive of negative or positive 

experiences. Here we show that negative reinforcement of either forward pairing with the 

aversive PPL DANs or backward pairing with the rewarding PAM DANs biases animals to both 

remain stationary during the odor presentation and for those that do walk, decrease their speed in 

the odor plume. By contrast, positive reinforcement had the opposite effect, decreasing the 

number of stationary animals and increasing the walking speed of animals in the odor plume. 

Together, these results suggest that negative and positive reinforcement by forward and 

backward pairing work in opposition to regulate the same facets of behavior underlying odor-

tracking. This antagonism at the behavioral level is further supported by our observations that 

forward and backward pairing act to bidirectionally modulate the same individual KC-MBON 

synapses within an individual mushroom body compartment. Optogenetic activation of a variety 
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of MBONs in the absence of odor demonstrate that individual MBONs act to bias animal 

behavior towards attraction or avoidance in a manner highly correlated with the neurotransmitter 

of the MBONs, with cholinergic neurons mediating attraction and glutamatergic neurons biasing 

towards avoidance (Aso et al., 2014b). Indeed, these experiments showed that optogenetic 

activation did not elicit stereotyped locomotor patterns, instead suggesting that the concerted 

activity state of MBONs bias an animal in goal-directed behaviors (Aso et al., 2014b). 

Interestingly, we see that forward and backward pairing with PPL or PAM DANs bidirectionally 

modulate multiple aspects of animal behavior—most notably altering the probability of whether 

an animal will move in response to the odor stimulus and the speed with which the animal will 

track the odor. These results reveal how changing the activity state of MBONs alters the 

navigational strategies animals employ in the presence of an appetitive or aversive odor stimulus. 

Given the multiple compartments innervated by PAM and PPL DANs, as well as the recurrent 

feedback circuitry, the question remains regarding how many MBONs are influenced by positive 

or negative conditioning and how the concerted modulation across the MB architecture works to 

shape animal behavior.   

 

 

7.3 Mechanisms of Temporal Order Detection 

Bidirectional plasticity at the synaptic level in associative learning circuits has been invoked as a 

key mechanism for driving bidirectional modifications at the behavioral level (Boyden et al., 

2004; Coesmans et al., 2004; Jörntell and Hansel, 2006; Lev-Ram et al., 2002). The capacity for 

bidirectional synaptic modulation could thus allow animals to form distinct associations 
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depending on the timing of events of forward and backward pairing and additionally allow for 

the erosion of outdated associations to permit storage of more relevant information.  

 

For example, spike-timing dependent plasticity (STDP) can bidirectionally tune the strength of 

synaptic connections between neurons depending on the relative timing of spikes in pre- and 

post-synaptic neurons (Bell et al., 1997; Bi and Rubin, 2005; Cassenaer and Laurent, 2012; Dan 

and Poo, 2004). STDP therefore mirrors the sensitivity to temporal order we observe 

behaviorally in associative learning. However, STDP requires nearly coincident firing patterns 

on a millisecond timescale, far more rapid than the temporal relationships between stimuli 

typically required for associative learning (Drew and Abbott, 2006). More recent work has 

identified plasticity mechanisms in learning circuits that aligned with the delays of circuit 

processing and accommodate the behaviors the circuit promotes (Suvrathan et al., 2018). 

Specifically, timing delays in the perforant pathway of the hippocampus (Basu et al., 2013; 

Leroy et al., 2017), pyramidal neurons in the amygdala (Cho et al., 2011), place cells in the CA1 

area (Bittner et al., 2017), and Purkinje Cell circuits in the cerebellum (Suvrathan et al., 2018) 

have all found expanded windows for the integration of temporal coincidence that drive learned 

changes in behavior. Thus, a big push has been made in recent years to determine the plasticity 

mechanisms relevant to support learned changes in animal behavior.  

 

Here, by examining neural and behavioral modulation over the same timescales we reveal that 

bidirectional changes in KC-MBON signaling directly correlate with reversible changes in 

learned odor attraction from forward and backward conditioning. Importantly, the closed-loop 

behavioral experiments described in Chapter 3 reveal that the neural and behavioral plasticity 
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emerge concurrently following the same dopaminergic reinforcement signal. The aligned 

emergence of plasticity at the behavioral and neural level further emphasizes the link between 

dopamine-dependent modulation in the KC-MBON synapses and learned changes in odor 

tracking behavior. These results are inline with previous, indirect measures comparing changes 

in neural activity with behavior across independent experimental preparations (Hige et al., 2015; 

Owald and Waddell, 2015; Owald et al., 2015; Séjourné et al., 2011).  

 

Within the mushroom body, each compartment serves as a site of convergence between odor-

specific KC signaling and dopaminergic reinforcement, allowing dopamine receptor signaling 

pathways within KC axons to detect the temporal order of these inputs.  Different odors are 

thought to activate unique ensembles of KCs (Campbell et al., 2013; Caron et al., 2013; 

Gruntman and Turner, 2013) whose axons traverse through the tiled compartments of a 

mushroom body lobe. We found that patterns of dopamine release and dopamine receptor second 

messenger signaling cascades both adhere to the compartmentalized architecture of the lobes 

(Boto et al., 2014; Cohn et al., 2015), permitting the different synapses along the same KC axon 

to be independently regulated.  Within a compartment, multiple neuromodulatory mechanisms 

can be engaged to further tune neurotransmission, depending on the structure of conditioning. 

Indeed, we demonstrate that a single dopaminergic reinforcement can drive odor-specific 

bidirectional plasticity of KC-MBON synapses activated by odors that precede or follow the 

reinforcement are differentially regulated. Thus dopamine acts with both exquisite spatial and 

temporal precision to fine tune synaptic transmission in the mushroom body. While it has been 

known that KC axons express a diversity of dopamine receptors (Crittenden et al., 1998; Crocker 

et al., 2016; Han et al., 1996; Kim et al., 2007), prior to this work it has remained unclear how 
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the different modulatory pathways are engaged in KC axons depending on the context of 

learning. 

 

In both vertebrates and invertebrates, dopamine can shape circuit function in diverse ways by 

engaging distinct classes of receptors that couple to different signaling cascades (Tritsch and 

Sabatini, 2012). In Drosophila, DopR1 and DopR2 have been previously proposed to play 

opposing roles in olfactory memory regulation at the behavioral level, with DopR1 essential to 

memory formation and DopR2 necessary for the long, steady decay of memory (Berry et al., 

2012; Kim et al., 2007). Our work reveals that the opposing behavioral roles of DopR1 and 

DopR2 are mirrored by their antagonistic regulation of KC-MBON signaling, with DopR1 

required for the depression ensuing from forward pairing, while DopR2 is essential for the 

potentiation that follows backward pairing. Thus the same dopaminergic signal can 

simultaneously write multiple odor associations by directing opposing forms of plasticity at 

different KC-MBON synapses, effectively expanding the coding capacity of a single 

compartment. 

 

The discrete innervation patterns of DANs permit the local modulation of KC-MBON synapses 

in individual compartments. Indeed, we show that bidirectional plasticity is a conserved feature 

across multiple compartments, suggesting a conserved sensitivity to the timing of events exists 

across the KC-MBON synapses of the γ lobe. However, it remains to be addressed whether the 

synaptic plasticity across different compartments depends on DopR1 and DopR2 in a similar 

manner. It is likely naïve to consider the examination of the dopamine receptor-dependent 

plasticity rules of a single compartment represents the whole picture of dopamine-dependent 
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modulation across all 15 compartments of the mushroom body. Indeed, complex feedback 

interactions exist across many compartments of the mushroom body, raising the intriguing 

possibility that plasticity in one compartment can tune the output of an entirely distinct 

compartment. Evidence for this cross compartmental influence has been invoked in mediating 

the opposing behavioral effects of aversive and appetitive conditioning (Felsenberg et al., 2018; 

Owald et al., 2015). Additionally, sugar-feeding and shock drive coordinated patterns of 

dopamine release across compartments; specifically, shock activates the γ2/γ3 DANs and 

synchronously decreases activity in the γ4/γ5 DANs (Cohn et al., 2015). This patterning of DAN 

activity with natural reinforcers raises the question for whether PAM and PPL compartments are 

opposingly modulated by aversive or rewarding conditioning.  

 

Nonetheless, our results indicate that the coupling of DopR1 and DopR2 is highly selective in γ 

lobe KCs in vivo, as mutation of DopR1 results in a deficit in cAMP production while mutation 

of DopR2 leads to a loss of ER calcium release. We found that DopR1-mediated cAMP 

production is enhanced by coincident KC and DAN activation, consistent with calcium-activated 

adenylyl cyclases acting as molecular coincidence detectors due to their dual regulation by Gαs 

and calcium (Levin et al., 1992; Livingstone et al., 1984; Mons et al., 1999; Tomchik and Davis, 

2009). However, DopR1 drives equivalent production of cAMP during both forward and 

backward pairing, demonstrating that this pathway cannot autonomously encode the temporal 

order of events to drive bidirectional neural and behavioral modulation. In contrast, DopR2 

signaling strictly depends on the temporal order of KC and DAN activation, as efflux from ER 

calcium stores is exclusively evoked during backward pairing, indicating that it serves as a 

temporal order detector.   
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Which component of the DopR2 signaling cascade is sensitive to the temporal sequence of KC 

and DAN input? IP3 receptors that gate calcium release from the ER lumen represent an 

interesting order-detection candidate as their complex regulation by both IP3 and cytosolic 

calcium renders them inherently sensitive to the sequence of agonist binding: IP3 binding 

unmasks a calcium regulatory site required for channel opening, while high calcium in the 

absence of IP3 inhibits channel activity (Adkins and Taylor, 1999; Paknejad and Hite, 2018; 

Srikanth et al., 2004). Indeed, we observe that ER calcium release during backward pairing is 

time-locked to KC stimulation, suggesting that this second-messenger is ‘gated’ in a temporally 

precise way by KC activity. Additionally, we see that loss of Gαq or IP3 receptors impairs the 

ability of DopR2-dependent calcium release in HEK293T cells (Figure 7.2A-B). In the 

cerebellum, bidirectional plasticity at parallel fiber-Purkinje neuron synapses relies on calcium 

release from the ER lumen via IP3 receptors (Finch and Augustine, 1998; Sarkisov and Wang, 

2008; Wang et al., 2000). The analogous circuit organization of the mushroom body and 

cerebellum (Farris, 2011) makes it tempting to speculate on the potentially conserved molecular 

mechanisms for temporally precise synaptic modulation across these circuits. Further 

experimentation on the role of calcium-dependent IP3 activation in backward pairing would 

clarify the order-detection mechanism of this pathway in mediating synaptic potentiation of KC-

MBON synapses.  

 

Another important question remaining is how this time course of bidirectional plasticity is 

established? Unlike the time course for STDP that unfolds over a time course of tens of 

milliseconds, here we show bidirectional plasticity that occurs over time frame of seconds. This 
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discrepancy in time course between STDP and the plasticity we observe is undoubtedly due to 

differences in the molecular pathways involved—specifically, STDP relies on the very rapid 

molecular events of NMDA receptor activation and coincidence of magnesium release. Instead, 

the time course we observe is defined by the engagement of second messengers downstream of 

GPCRs. These slower molecular pathways permit the alignment of neural plasticity with the 

emergence of learned behavior.  

 

Indeed, the temporal sensitivity of DopR1 and DopR2 signaling within KC axons is sufficient to 

account for the time course of bidirectional neural and behavioral plasticity, highlighting how the 

balance of these two pathways tunes the strength of KC-MBON synapses to generate flexible 

behavioral responses to odor. cAMP and cytosolic calcium regulate a myriad of different cellular 

pathways, offering a wide array of potential targets to control synaptic function, as described 

above in the previous chapter. Additionally, presynaptic levels of ER calcium have been shown 

to finely tune activity-driven calcium entry and regulate release probability (de Juan-Sanz et al., 

2017; Mattson et al., 2000), both of which may play an important role in the potentiation of KC-

MBON synapses following backward pairing. However, the link between DopR1 and DopR2 

and its downstream effectors have yet to be elucidated.  Expanding the repertoire of biochemical 

reporters may offer a link between the dynamic engagement of receptor signaling on 

behaviorally relevant timescales and synaptic regulation; specifically, using fluorescent reporters 

of PKA, PKC and IP3 may help our understanding of when particular molecules and kinases are 

engaged during associative conditioning (Komatsu et al., 2011; Oura et al., 2016). In addition, 

kinase activity could be assessed using biochemical approaches to examine phosphorylation  
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Figure 7.2, DopR2-Dependent Calcium Release Depends on Gαq and IP3R Expression 
(A) Cytosolic calcium response in DopR2-expressing HEK293T cells in the background of wild 
type cells (black trace), Gαq knock out cells (light gray trace), or Gαq knock out cells with 
rescued expression of the Gαq protein (dark gray trace). Application of dopamine (30 nM) 
marked with black arrow. (B) Same as above except light gray trace is in background of IP3R 
knock out HEK293T cell line. Data traces kindly provided by Andrew Siliciano.   
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changes and RNAi knockdown of candidate genes coupled with functional experiments may link 

the dopamine receptors to their downstream effectors.  

 

 

7.4 The Timescales of Neural Plasticity and Memory 

Together, our work supports the idea that dopamine receptor signaling pathways in KC axons 

serve as a key site of temporal coincidence and order detection during associative learning. 

While we initially focused on the γ4 compartment, whose MBON contributes to odor avoidance 

behavior, we found similar reversible plasticity could be instructed by the γ2 and γ5 DANs 

within their cognate compartments with a similar temporal sensitivity to the plasticity driven by 

the γ4 DANs, indicating that bidirectional modulation of KC-MBON signaling is a general 

feature shared by compartments of the γ lobe, including those innervated by either PAM or PPL 

dopaminergic pathways. Such plasticity across the γ lobe of the mushroom body may allow 

animals to avoid odors that predict punishment through the depression of approach MBONs, like 

γ2, or become attracted to odors that predict reward through the weakening of MBONs that drive 

avoidance, like γ4 or γ5, or learn opposite associations with odors that follow these 

reinforcements in time by potentiating the activity of the same, individual MBONs. However, we 

have yet to explore whether additional compartments share a similar dependence on DopR1 and 

DopR2 signaling in KC-MBON modulation.  
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Additionally, the ability to form and overwrite associations on a trial-by-trial basis allows for 

adaptive behavior in a noisy and changing environment where the temporal relationships 

between events may quickly change. However, animals also have the capacity to store relevant 

memories persistently, even for a lifetime. Therefore, the reversible plasticity we describe must 

co-exist with additional mechanisms to allow for the formation and retention of longer-term 

associations. Recent work has described intrinsic differences between mushroom body 

compartments in their susceptibility to memory erosion (Aso and Rubin, 2016).  Furthermore, 

while KCs innervating the γ lobe are essential for short-term associations (Blum et al., 2009), 

other populations, specifically the α/β KCs, support long-term memory formation and retention, 

leading to the proposal that transient and enduring memories are written in parallel at different 

synaptic sites within the mushroom body circuitry. An intriguing possibility is that the 

differential expression or coupling of dopamine receptor signaling pathways in distinct KC 

classes may tune synaptic plasticity rules to regulate the persistence of information storage.  

 

We were, therefore, interested in examining how the capacity for bidirectional plasticity differs 

across compartments involved in short- and long-term memory. The α1 compartment is located 

in the ventral region of the mushroom body and has been shown to be essential for the formation 

and retrieval of an appetitive long-term memory (Ichinose et al., 2015). Additional 

characterization has shown that memories processed in this compartment are resilient to erosion 

by odor re-exposure or strong activation of the innervating DANs (Aso and Rubin, 2016), 

suggesting inflexibility to dopamine-dependent modulation that is distinct from the rapid and 

reversible modulation observed in the compartments of the γ lobe. Indeed, preliminary 

experiments revealed that while the α1 MBON undergoes depression following forward pairing,   
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there was no effect on neural activity following from backward pairing (Figure 7.3A). This 

reveals that distinct neural plasticity rules exist across the different lobes of the mushroom body 

and suggests such differences may underlie the distinct kinetics of short- and long-term memory 

encoding and maintenance. 

 

To further explore this idea, we performed fluorescence activated cell sorting (FACS) of soma 

from genetically labeled γ  and α/β KCs and transcriptionally profiled these populations in 

search of differentially expressed candidate genes that may determine the rules governing neural 

plasticity in learning (Figure 7.3B-C). We generated 4 RNA-seq libraries for γ and α/β KC types 

(in duplicate). These libraries were generated from high-quality RNA isolated from 100,000 

FAC-sorted GFP-tagged γ or α/β KCs that were sequenced at a depth of 25-40 million reads per 

sample—a depth shown to identify 75% of truly differentially expressed genes (Liu et al., 2013). 

Our sequencing results matched single-cell profiling of γ and α/β KC types (Crocker et al., 

2016), confirming expression of dopamine receptors, the vesicular acetylcholine transporter, and 

the octopamine receptor—all known to be highly expressed in KC axons.  

 

From our sequencing results, we identified an interesting candidate gene, PKA-C3, enriched in γ  

over α/β KC, which encodes the major catalytic domain of the cAMP dependent protein kinase 

(7.3D). Interestingly, mutation of this gene in Drosophila (DCO), leads to a reduction in age-

related memory loss (Yamazaki et al., 2007), suggesting the high levels of cAMP and PKA 

activity work in opposition to long-term memory storage. In line with this, α/β KCs are enriched 

in genes encoding phosphodiesterase enzymes (PDE6 and PDE8) that catalyze the breakdown of 

cAMP (7.3D). Together, these results suggest that memory kinetics may be finely tuned by  



 171 

 
 
 
 
 
 
 
 
 
 
Figure 7.3, Different KC Populations Exhibit Distinct Rules for Synaptic Plasticity and 
Show Differential Expression of Transcript and Proteins Involved in Plasticity.  
(A) Comparing fold change in in Kenyon Cell-evoked response in γ4 MBON and α1 MBON 
following forward and backward pairing. The γ4 and α1 DANs are both activated by activating 
DAN dendrites using exogenously expressed ATP-gated P2X2 channel using the 58E02-LexA 
driver that labels both DAN populations. Electrode containing ATP was targeted specifically to 
either γ4 or α1 DANs, which are located in distinct regions of the brain. The α1 MBON shows 
depression following forward pairing but no potentiation following backward pairing. (B) GFP+ 
KC sub-populations labeled using split-gal4 drivers. These GFP+ populations were sorted from 
brains of adult flies. The α/β core and shell KCs were sorted and sequenced independently but 
then sequencing results were pooled since populations were similar in transcript profiling. (C) 
Differential gene enrichment in of γ and α/β KCs. Negative log2 (fold change) corresponds to 
genes enriched in γ over α/β and positive to genes enriched in α/β over γ. Red indicates enriched 
genes with false discovery rate adjusted p-values<0.05. (D) Categorization of enriched genes in γ 
and α/β KCs. Size of circle represents enrichment for type of proteins within KC population. (E) 
Pattern of Gaq GPCR protein shows differential level of expression across γ and α/β KCs. 
Immunofluorescence images in (E) kindly provided by Ianessa Morantte.  
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differing levels of cAMP across the two KC populations—with the labile γ KCs enriched in PKA 

and the more rigid α/β KCs reinforced with PDEs. Additionally, levels of the Gαq protein 

appear differential expressed with higher levels in the γ KCs in comparison to the α/β KCs 

(Figure 7.3E). Together, these experiments suggest that high signaling of cAMP and PKA in 

addition to Gαq may allow for greater flexibility and plasticity in the γ KCs while lower levels of 

these signaling pathways in the long-term memory associated α/β KCs may result in more rigid 

and stable modulation. Functional dissection of these signaling cascades across the different 

lobes of the mushroom body may provide insight into the distinct timescales of memory 

formation and erosion.  

 

In summary, the data presented in this thesis reveal how the balance of two neuromodulatory 

pathways allow animals to form distinct associations between sensory cues associated with 

reinforcement onset in comparison to cues associated with the offset of reinforcement. This 

capacity for differential associations depending on the timing and order of events is essential for 

animals to form and maintain meaningful associations in a complex sensory environment. 

Additionally, we reveal that these associations can be updated on a trial-by-trial basis, permitting 

animals to change their associations depending on the most up-to-date contingency between the 

cue and reinforcement. These rapid reversals may be an ideal mechanism for short-term memory 

processing; however, in addition to the dynamics of short-term memory animals must also be 

able to form stable, long lasting associations. In the future, it will be interesting to link the 

differences in the molecular machinery between KC populations to the rules for neural plasticity 

and ultimately to the different kinetics in short- versus long-term memory.   
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Methods and Materials 

 

Generation of ER-GCaMP transgenic flies  

The coding sequence for the low-affinity ER calcium sensor (ER-GCaMP6-210) (de Juan-Sanz 

et al., 2017) containing an N-terminal calreticulin signaling peptide and KDEL ER retention 

sequence was PCR amplified using KOD Hot Start DNA polymerase. Restriction sites were 

added to the 5’ and 3’ end of the coding sequence (Xho1 and Xba1, respectively). The amplified 

product and pJFRC81 (Addgene Plasmid #36432) were digested with Xho1 and Xba1 and ligated 

together.  The resulting plasmid was used to generate transgenic flies by PhiC31 mediated 

integration into VK00005 and attp5 (Bestgene Inc.) 

 

Primer sets to clone sensor and add restriction sites: 

5’ – GCG GCTCGA GGG TAC CAA CTT AAA AAA AAA AAT CAA ACA AAA TGG GAC 

TGC TGT CTG TGC CTC – 3’ 

5’ – TTC ATT CTA GAT CAC AGC TCA TCC TTG CCT CCG – 3’ 

 

Crispr-Cas9 mediated deletion of DopR1  

Existing DopR1 mutants were generated either imprecisely using a larger chromosomal 

inversion (dumb1, (Kim et al., 2007)), through disruption by a transposable PiggyBac element 

and therefore incompatible with 2-photon imaging (dumb2, (Kim et al., 2007)), or were actually 

hypomorphs (Keleman et al., 2012) based on immunohistochemistry. We therefore generated a 

novel DopR1 mutant compatible with functional imaging. Two gRNAs were designed to direct 

Cas9-mediated cleavage to the 5’ and 3’ UTRs of the Dop1R gene locus. gRNA off-target 
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potential was determined using Crispr optimal target finder 

(http://tools.flycrispr.molbio.wisc.edu/targetFinder/index.php) gRNA sequences were PCR 

amplified with Q5 High-Fidelity master mix (NEB) and cloned into pCFD4 by Gibson assembly 

(NEB). The resulting vector was sequence verified and injected into nos-Cas (Bloomington stock 

54591) embryos (Rainbow Transgenic Flies). G0 flies were individually crossed to a balancer 

strain prior to being screened for the deletion by PCR-based genotyping. Each G0 founder 

positive for the deletion was further verified by Sanger sequencing. F1 progeny from a deletion 

positive G0 parent were individually crossed to a balancer strain then screened for transmission 

of the deletion. Multiple unique deletion lines were obtained and a single line was then used for 

further experimentation. Loss of DopR1 protein expression in the mutant was verified by 

immunohistochemistry with anti-DopR1 antibody (a gift from Tim Lebetsky) and qRT-PCR in 

adult fly brains. 

 

Fly strains and husbandry 

Flies used for ex vivo brain explant preparations and functional imaging in Figure 3F and S3E-F, 

flies were maintained on conventional cornmeal-agar-molasses at 25°C and 60-70% relative 

humidity, under a 12 hr light:12 hr dark cycle. Flies used for optogenetic behavioral experiments 

were maintained at 25°C and 60-70% relative humidity in constant darkness. For optogenetic 

experiments, 1-3 day old females were transferred to cornmeal-agar-molasses food containing 

0.4 mM all trans-Retinal (Sigma #R2500) and reared in the dark for 48 hours before behavioral 

experiments. Flies were not food-deprived prior to any functional or behavioral experiments. 
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Strains and sources: 

 20X-UAS-IVS-CsChrimson.mVenus-attP18, 20X-UAS-IVS-CsChrimson.mVenus-attP40, 20X-

UAS-ChrimsonR.mCherry-attP2 (gifts from Vivek Jayaraman, Janelia Research Campus); 

VT026001-Gal4 (Vienna Drosophila Resource Center (VDRC)); MB042B, MB504B, R53C03-

LexA, R58E02-LexA, UAS-GCaMP6s, LexAOP-GCaMP6s (Bloomington Drosophila Stock 

Center); OK107-Gal4 (Connolly et al., 1996); TH-Gal4 (Friggi-Grelin et al., 2003); DDC-Gal4 

(Li et al., 2000); LexAOP-P2X2 (gift from Orie T. Shafer, University of Michigan); UAS-EPAC 

(Shafer et al., 2008); DopR2-/-  (Keleman et al., 2012); UAS-GRABDA1m (Sun et al., 2018); UAS-

VMAT-pHluorin (Wu et al., 2013)  

 

Detailed fly genotypes used by figure (with neuronal expression description): 

Figures 2.2, 2.3, 2.4, 2.5, 2.6, 3.1, 3.6, 4.1, 4.2:   

w1118 UAS-IVS-CsChrimson.mVenus; R58E02-p65ADZp (PAM DAN split); R22E04-ZpGdbd 

(PAM DAN split) 

w1118 UAS-IVS-CsChrimson.mVenus; 52H03-p65ADZp (PPL DAN split); TH-ZpGDBD (PPL 

DAN split) 

w1118 UAS-IVS-CsChrimson.mVenus 

Figures 3.2, 3.3, 4.3, 6.1A, 6.2A: 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2; VT026001-gal4 (γ4 MBON), UAS-GCaMP6s 

Figure 3.4A: 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2/ UAS-GCaMP6s; 66C08-gal4 (γ5 MBON) 

Figure 3.4B: 

73F07-LexA (γ2 DANs), LexAOP-P2X2; 25D01-gal4 (γ2 MBON), UAS-GCaMP6s 
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Figure 3.5: 

25D01-LexA (γ2 MBON), LexAOP-GCaMP6s 

Figure 5.1B-C: 

Rut1; R58E02-LexA (γ4-5 DANs), LexAOP-P2X2; VT026001-gal4 (γ4 MBON), UAS-GCaMP6s 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2; VT026001-gal4 (γ4 MBON), UAS-GCaMP6s 

Figures 3.7, 3.8: 

w1118; R58E02-p65ADZp (PAM DAN split)/53C03-LexA (γ4 MBON), LexAOP-GCaMP6s; 

R22E04-ZpGdbd (PAM DAN split)/UAS-ChrimsonR.mCherry 

Figure 5.3A: 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2; LexAOP-GCaMP6s 

Figure 5.3B: 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2; TH-Gal4 (DAN subset), DDC-Gal4 (DAN 

subset)/UAS-VMAT-pHluorin 

Figure 5.3C: 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2; UAS-GRABDA1m; OK107-Gal4 (KCs) 

Figure 5.3D: 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2/UAS-Ach4.3; ; OK107-Gal4 (KCs) 

Figures 5.5A,C, 5.6A,D, 5.7C-E: 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2; UAS-EPAC (cAMP); OK107-Gal4 (KCs) 

Figures 5.5B-C, 5.6B,E-F, 5.8A-B: 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2; UAS-ER-GCaMP; OK107-Gal4 (KCs) 

Figures 5.6C-E: 
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R58E02-LexA (γ4-5 DANs), LexAOP-P2X2/UAS-EPAC (cAMP); DopR1-/-/DopR1-/-; OK107-

Gal4 (KCs) 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2/UAS-EPAC (cAMP); DopR2-/- DopR2-/-; OK107-

Gal4 (KCs) 

Figures 5.7A-B: 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2/UAS-ER-GCaMP; DopR1-/-/DopR1-/-; OK107-Gal4 

(KCs) 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2/UAS-ER-GCaMP; DopR2-/-/DopR2-/-; OK107-Gal4 

(KCs) 

Figures 6.1B-C: 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2/UAS-GCaMP6s; VT026001-gal4 (γ4 MBON), 

DopR1-/-/ VT026001-gal4 (γ4 MBON), DopR1-/- 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2/UAS-GCaMP6s; VT026001-gal4 (γ4 MBON), 

DopR2-/-/ VT026001-gal4 (γ4 MBON), DopR2-/- 

Figure 6.2B: 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2/UAS-GCaMP6s; UAS-DopR2-RNAi; OK107-Gal4 

(KCs) 

Figures 6.3, 6.4, 6.5: 

w1118; R58E02-p65ADZp (PAM DAN split)/ UAS-IVS-CsChrimson.mVenus; R22E04-ZpGdbd 

(PAM DAN split) 

w1118; R58E02-p65ADZp (PAM DAN split)/ UAS-IVS-CsChrimson.mVenus; R22E04-ZpGdbd 

(PAM DAN subset), DopR1-/-/ R22E04-ZpGdbd (PAM DAN split), DopR1-/- 
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w1118; R58E02-p65ADZp (PAM DAN split)/ UAS-IVS-CsChrimson.mVenus; R22E04-ZpGdbd 

(PAM DAN split), DopR2-/- R22E04-ZpGdbd (PAM DAN subset), DopR2-/- 

Figure 7.2A: 

R58E02-LexA (γ4-5 DANs), LexAOP-P2X2; VT026001-gal4 (γ4 MBON), UAS-

GCaMP6s/R52G04-gal4 (a1 MBON) 

Figure 7.2B: 

R13F03, UAS-CD8GFP (γ KC split); R89B01 (γ KC split) 

R52H09, UAS-CD8GFP (α/β shell KC split); R18F09 (α/β shell KC split) 

13F02, UAS-CD8GFP (α/β core KC split); 58F02 (α/β core KC split) 

 

Functional Imaging  

All functional imaging experiments were performed on an Ultima two-photon laser scanning 

microscope (Bruker Nanosystems) equipped with a Chameleon Ultra II Ti:Sapphire laser. The 

excitation wavelength was 920 nm for all experiments except for FRET imaging of the EPAC 

sensor, which was excited at 850 nm. Emitted fluorescence was detected with either 

photomultiplier-tube or GaAsP photodiode (Hamamatsu) detectors. Images were acquired with 

an Olympus objective, either 40X, 0.8 NA or 60X, 1.0 NA at 512 × 512 pixel resolution. 

Quantification of neural activity was performed by normalizing fluorescence intensity changes 

(ΔF/F) or CFP/YFP fluorescence ratio changes (ΔR/R) to control for variations in reporter 

expression and imaging parameters across neurons and experiments.  ROIs were manually drawn 

using anatomic landmarks. The inter-stimulus interval between KC stimulation or odor 

presentation and DAN activation was calculated by subtracting the onset of KC stimulation/odor 

presentation (time zero) from the onset of DAN activation. 
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In ex vivo experiments, brains from 1-4 day old male or female flies were dissected in saline (108 

mM NaCl, 5 mM KCl, 2 mM CaCl2, 8.2 mM MgCl2, 4 mM NaHCO3, 1 mM NaH2PO4, 5 mM 

trehalose, 10 mM sucrose, 5 mM HEPES, pH 7.5 with osmolarity adjusted to 265 mOsm), 

briefly (30 s) treated with collagenase (Sigma #C0130) at 2 mg/mL in saline, washed with fresh 

saline, and then pinned with fine tungsten wires to a thin Sylgard sheet (World Precision 

Instruments) in a 35 mm petri dish (Falcon) filled with saline. For in vivo imaging experiments in 

which we examined odor-specific modulation of γ4 MBON responses (Figure 3F and S3E-F), 1-

4 day old female flies were prepared as described previously (Cohn et al., 2015; Murthy and 

Turner, 2013; Ruta et al., 2010). For in vivo imaging experiments in which we examined odor-

specific modulation of odor and behavioral responses in the closed-loop assay (Figures 4 and S4), 

flies were prepared as described previously (Green et al., 2017) with minor modifications. 

Briefly, 3-5 day old female flies were temporarily anesthetized using CO2  (for < 30 s) and then 

tethered to a milled plastic holder (Green et al., 2017) using UV-curable glue (Loctite) applied to 

each eye and thorax. The proboscis was glued in an extended position to minimize brain motion 

during imaging. The dish was then filled with saline and the cuticle covering the dorsal portion 

of the head was removed. Muscle 16 and obstructing trachea were removed. Care was taken to 

keep the antennae and antennal nerves intact. On rare occasions, flies showed no movement or 

odor responses and were discarded.  
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Imaging in ex vivo brain explants  

(Figures 3.2, 3.3A-B, 3.4, 5.1B-C, 5.3, 5.5, 5.6, 5.7, 5.8, 6.1, 6.2) 

Stimulation of Kenyon Cells 

Stimulation of Kenyon Cell dendrites was performed as described previously (Cohn et al., 2015). 

Briefly, glass-stimulating electrodes were pulled to a resistance of 4–5 MΩ and filled with 10 

mM acetylcholine (Sigma) in saline. Stimulating electrodes were positioned into the mushroom 

body calyx viewed under IR-DIC optics. Square voltage pulses (500 ms, 0.1-15V for all imaging 

experiments) were used to iontophorese  acetylcholine into the calyx and excite Kenyon Cells. 

Pulse trains were generated by a stimulator (Grass Technologies) triggered by Prairie View 

software. The inter-trial interval for calycal stimulations was at least 20 seconds to assure 

activity levels returned to baseline. On the rare occasion that MBON responses could not be 

evoked or were unusually variable in the absence of conditioning, the mushroom body in other 

hemisphere of the brain was tested or the prep was discarded. 

 

Activation of DANs expressing P2X2  

To chemogenetically stimulate DANS (Figure 2D-E, S2A-D, 5A-E, S5A-H, 6A-G, S6C-D), 

R58E02-LexA or 73F07-LexA was used to drive expression of the P2X2 channel in either the 

PAM DANs or γ2 DAN, respectively. Glass stimulating electrodes pulled to a resistance of 4-5 

MΩ were filled with 2 mM ATP in saline and positioned dorsal to the mushroom body’s medial 

lobes, in the superior medial protocerebrum (Cohn et al., 2015) at the site of rich DAN dendritic 

innervation.  To validate that placement of the electrode in the superior medial protocerebrum 

drove activation of DANs, in a subset of experiments, responses of DANs expressing GCaMP 

were directly measured. DANs were stimulated using a train of five 100-ms pulses at 2.5-5V 
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with an inter-pulse interval of 20 ms. Trains were generated by a stimulator (Grass 

Technologies) that was triggered by Prairie View software.  

 

MBON modulation to KC activation 

KC-evoked responses in the γ2, γ4, and γ5 MBON were measured as the peak fluorescence 

evoked in the 2 seconds following KC stimulation, normalized to baseline fluorescence (2-3 

seconds prior to KC stimulation). To compare KC-evoked calcium responses in the γ2, γ4, and 

γ5 MBON, prior to and after conditioning the mean traces and peak responses for the two KC 

stimulations prior to pairing were used as baseline measurements (‘pre’), and the mean 

fluorescent traces and peak responses for the first two responses to KC stimulation after pairing 

were used for the post-pairing measurements (‘post’). This was done to control for any inter-trial 

variability, which was minimal in explant preparations. On the rare occasion that MBON 

responses could not be evoked or were highly variable in the absence of conditioning, the other 

side of the brain was tested or the prep was discarded. 

 

To calculate the change in evoked response in the MBONs due to conditioning in Figure 3.3A-B 

and 3.4A-B, the mean peak fluorescence response prior to pairing was subtracted from the 

response post pairing as schematized in Figure 2D. To calculate the fold change in the Rutabaga 

mutants, the change in evoked response was normalized by the baseline-evoked response (Figure 

5.1B-C). For the γ4 and γ5 MBON experiments in the inter-stimulus interval (ISI, DAN onset 

minus KC onset) used for forward pairing was 0.5 seconds and the ISI for backward pairing was 

-1.2 seconds. For γ2 MBON experiments, the ISI used for forward pairing was 0 seconds with 

KC activation onset coincident with DAN stimulation and the ISI for backward pairing was -1.2 
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seconds. These ISI were chosen as they induced the most robust bidirectional plasticity across 

preparations. In some explant preparations in Figures 3.4A-B, each mushroom body was treated 

as an independent sample. Each data point in Figures 3.3A-B, 3.4A-B, 5.1B-C, 6.1, 6.2A 

represents plasticity evoked by a single conditioning trial within an independent sample. To 

examine the time course of plasticity decay and to confirm the reversible nature of plasticity in 

the brain explant preparation we also performed sequential forward and backward pairing within 

the same preparation (Figure 3.2). Prior to and after forward and backward pairing in Figure 3.2, 

γ4 MBON responses to each individual KC stimulation were plotted to assess decay over time. 

To examine deficits in γ4 MBON plasticity in dopamine receptor mutants (Figure 6.1) wild type 

and receptor mutant preparations were interleaved. The GCaMP responses of the γ4 MBON in 

DopR2 mutants exhibited higher fluctuations than typically observed in wild type animals but 

these were averaged out across experiments and did not obscure baseline KC-evoked responses. 

The time between a conditioning trial and the first post-conditioning trial was at least 20 seconds.  

 

KC modulation From Backward Pairing 

Analysis of KC-evoked calcium or acetylcholine responses in the KC axons traversing the γ4/γ5 

compartments following conditioning (Figures 5.3D and 6.2B) same as described above for 

MBON analysis.  

 

Imaging of fluorescent reporters in KC and DAN axons (Figure 5.3, 5.5, 5.6, 5.7, 5.8) 

To quantify ER calcium release in KC axons (OK107-Gal4 > UAS-ER-GCaMP) during 

conditioning, we averaged the response for 1 second post KC activation  to account for the rapid 

kinetics of this signal, the fact that ER calcium release was time-locked to KC stimulation, and 
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its relatively low signal to noise (Figure 5.6E). ER-GCaMP fluorescence was normalized by the 

mean intensity for 2-4 seconds prior to KC stimulation.   

 

The GRABDA1m sensor was expressed in KC axons using the cell-type specific OK107-Gal4. 

TH,DDC-Gal4 driver was used to express VMAT-pHluorin in DANs and the 58E02-LexA 

driver was used to express GCaMP6s in the γ4/γ5 DANs . VMAT-pHluorin, GRABDA1m, and 

TH,DDC traces exhibited a higher signal enabling us to use the peak response evoked in the 

γ4/γ5 compartments during conditioning. VMAT-pHluorin, GRABDA1m, and GCaMP6s 

responses were normalized by the mean intensity for 2-4 seconds prior to stimulation.  

 

Ratiometric imaging of the FRET-based cAMP sensor, EPAC, was performed, in the γ4/γ5 KC 

axon segments (OK107-Gal4 > UAS-EPAC) during conditioning).  A Semrock filter set 

(#FF506-Di03-25x36, #FF01-483/32-25, #FF01-534/30-25) was used to spectrally separate and 

monitor CFP and YFP emission and responses were imaged at 850 nm.  The CFP/YFP ratio was 

measured for each frame with an increase in this ratio corresponding to increased cAMP levels. 

To measure cAMP evoked during conditioning, we averaged the CFP/YFP ratio for the 4 

seconds post DAN activation normalized to the CFP/YFP ratio in the 2-4 seconds prior to 

stimulation to account for the slow kinetics of this signal and the fact that cAMP was produced 

under all conditions and in response to direct DAN activation (Figure 5.6D).  

 

In Figures 5.6A-C, evoked levels of dopamine release (GRABDA1m), cAMP (EPAC), and ER 

calcium release (ER-GCaMP) in the KC axons (OK107) in the proximal γ2/γ3 compartments and 

the PAM innervated γ4/γ5 compartments during conditioning were measured as described above 
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and compared to assess local production of second messengers along KC axons. For this 

comparison aggregated cAMP and ER calcium data from wild type animals in Figures 5.5A-B, 

5.7C, and 5.8A, and the data of dopamine levels in KCs from Figure 5.3C were re-analyzed to 

compare fluorescent responses across the distal (γ2/γ3) and proximal (γ4/γ5) compartments of 

gamma lobe structure. Compartmental bounds were determined anatomically. All pairing 

conditions were tested in each brain preparation, and the order of pairing conditions tested was 

varied across experimental preparations. 

 

YM-254890 (Gαq inhibitor) with ER-calcium in KC axons and γ4-MBON  

The Gαq inhibitor, YM-254890 (Wako Chemicals #257-00631), was applied (10µM in DMSO) 

to the saline bathing an explant preparations. Control experiments using saline with equivalent 

amounts of DMSO were interleaved with drug treatments to test the effect of YM-254890. 

 

Behavioral analysis in laminar flow chambers  

Chamber construction 

Fly chamber component pieces were cut from acrylic sheets using a laser cutter. The lid and base 

of each chamber were cut from transparent acrylic (Clear Cast Acrylic Sheet, 12" x 24" x 1/16", 

McMaster Carr). Two holes on opposite sides of the lid were tapped for 10-32 threaded Luer 

lock connectors. A single hole was cut in the base to allow flies to be loaded and unloaded. A 

spacer was cut from a 3-mm black scratch-resistant acrylic sheet (McMaster-Carr) with a central 

empty chamber (20 mm x 50 mm) flanked by two manifolds. Narrow channels were etched 

between the manifolds and central chamber using a low-power setting of the laser cutter. This 

permitted airflow between the chamber and the manifolds while confining flies within the 
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chamber. The dimensions of the inside chamber were 20 mm x 50 mm x 3 mm. The base, spacer, 

and lid were glued together using acrylic solvent and the edges of the chamber were further 

sealed with epoxy (Devcon 5 Minute® Epoxy) to make them airtight. 10-32 Luer connectors 

were screwed into the top of the chamber and sealed around the edges with epoxy.  

 

Behavioral set-up 

Flies in chambers were assayed in a custom-built training and testing rig. Chambers were placed 

on a 3-mm thick white acrylic sheet suspended on aluminum posts above a 3 x 4 array of 627 nm 

LEDs (Luxeon Rebel). LEDs were attached to metal heat sinks (Mouser #532-374624B32G), 

which were secured at 5 cm intervals to a 30 x 30 cm aluminum wire cloth sheet (McMaster-Carr 

#9227T53). LEDs were driven by Recom Power RCD-24-0.70/W/X2 drivers, which were 

powered by a variable DC power supply. Infrared LED strips (940 nm, LED Lights World) 

attached to the wire cloth between the heat sinks provided back-illumination of the platform. A 

Firefly camera (Point Grey) was mounted in a central hole within an acrylic lid suspended 30 cm 

above the platform on aluminum posts. Flies were recorded at 30 frames/second. Odor 

presentation and airflow were controlled using 3-way micro solenoid valves. A vacuum line was 

used to draw air into each chamber at a rate of 0.75-1.25 L/min/chamber. Two valves were used 

to control the direction of airflow, and additional valves were used to switch between clean air 

and different odors. Valves were powered by a 12 V DC power supply and switched on and off 

using VO14642AT solid state relays. Chamber design and valve system shown in Figure 2.1A. 

Valve relays and LED drivers were controlled by the output pins of an Arduino running custom 

software. Custom software written in C was used for data acquisition and instrument control 
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during individual trials of odor/light presentation. Python scripts were used to execute sequences 

of trials. 

 

Odor presentation  

Odorants were placed in glass bottles with lids containing two luer connectors. One connector 

was attached to an odor inlet valve and the other was left open to allow room air to enter the 

bottle.  By default, air entered the apparatus through a bottle containing distilled water. To 

deliver odor pulses, the solenoid valve to the water bottle was closed while simultaneously 

opening the valve to an odor bottle. The valves were then switched back to their resting position 

after the specified odor presentation interval (Figure 2.1A).   

 

For each baseline, post-forward pairing, and post-backward pairing trial, animals experienced 

two odor presentations for each odor tested—one presentation originating from the top of the 

chamber and the second presentation originating from the bottom. The air-flow direction across 

the chamber was switched 19 seconds prior to odor onset and 20.6 seconds after odor offset. The 

mean upwind displacement for the group of flies for the two odor presentations originating from 

the top and bottom of the chamber was used to assess odor-tracking behavior for each trial. This 

was done to control for any variability in air/odor flow between the two chamber sides. All 

training trials lasted 11.6 seconds except for training trials in Figure 3.1, which lasted 20 seconds 

to accommodate the longer inter-stimulus intervals between LED and odor presentation. Testing 

trials began 60 seconds after a training trial.  

 

Apple cider vinegar (Heinz) was used for testing and training for experiments in Figures 2.1B, 
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2.2, 2.3, 2.4, 2.5, 2.6, 3.1, 6.3, 6.4, 6.5. The two odorants used in Figures 4.1 and 4.2A-C to test 

for odor-specific behavioral modulation were isobutyl acetate (Odor1) and 4-

methylcyclohexanol, cis+trans (Odor2); the two odors used in Figure 4.2D-E were benzaldehyde 

(Odor1) and 1-hexanol (Odor2). All monomolecular odors were diluted to a final concentration 

of 1:1000 in heavy mineral oil. All odor presentations were 2 seconds in duration.  

 

Optogenetic activation of DANs 

PPL and PAM DANs expressing the light sensitive ion channel, CsChrimson, were activated 

using 1-second illumination with 627 nm LEDs. Split-Gal4s were used to drive CsChrimson in 

either the PAM cluster (MB042B) or PPL cluster (MB504B) DANs. The intensity of light within 

each chamber during LED illumination was roughly 18-40 µW/mm2.   

 

Associative conditioning  

4-7 flies were loaded into each chamber through the bottom port using a mouth pipette, and the 

bottom port was sealed with a piece of transparent Scotch tape (exact number of flies used per 

experiment referenced in table below). Chambers were aligned in an acrylic frame on the 

imaging platform and connected in parallel to air inlets using Tygon tubing.  

 

To examine the effect of a single forward pairing (FP) conditioning trial on ACV tracking 

behavior (Figure 2.2D), PPL > Chrimson animals experienced multiple baseline trials followed 

by a single forward pairing trial in which apple cider vinegar (ACV) was presented for 2 s, and 

LED illumination was provided during the final second of odor presentation. Animals then 

experienced 15 odor test trials to assess the time course of memory decay. To assess the ability 
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of backward pairing (BP) to reverse a negative association following forward pairing (Figure 

2.2E), PPL > Chrimson animals were conditioned as described above, however, after a single 

odor test trial, animals were conditioned by backward pairing in which a 1-s pulse of LED 

illumination preceded ACV presentation by 2 seconds. Animals then experienced 14 odor trials 

post-BP to examine the decay in the memory formed by BP. To examine the effect of a single 

BP trial to alter ACV tracking in nominally naïve PAM > CsChrimson, the upwind displacement 

in a single baseline odor trial was compared to the displacement in the first test odor trial 

immediately following a single BP conditioning in which a 1-second pulse of LED illumination 

was provided to activate PAM DANs two seconds prior to ACV presentation (Figure 2.4D). 

 

For experiments comparing the effect of interleaving FP and BP on ACV tracking behavior 

(Figures 2.2B-C, 2.3, 2.4B-C, 2.5B-J, 2.6C, 6.3, and 6.4), 25 training trials of FP and 25 trials of 

BP were interleaved with test trials in between each training trial. The timing of FP and BP are 

described above. To assess whether odor re-exposure or DAN re-activation alone (Figures 2.6A-

C) could erode forward pairing associations to the same extent as backward pairing, 25 forward 

pairing trials were interleaved with 25 trials with the same timing as backward pairing but with 

either the odor or DAN stimulation omitted.  

 

To examine the relationship between ISI and behavioral modulation in ACV tracking behavior 

(Figures 3.1A-B), five different ISIs were tested. In each experiment, 10 trainings of each of the 

five ISIs were tested in a random order over the course of an experiment, again with test trials in 

between each training trial. The randomization of ISI tested was used to account for any 

dependence on the trial structure.  
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To examine how a single reinforcement can instruct multiple odor-specific associations (Figures 

Figures 4.1A-D and 4.2A-E), we trained flies with two monomolecular odorants which were 

sequentially presented in each baseline, post-FP, and post-BP trial. During the conditioning 

trials, each odorant was presented for 2 s with a 1 s inter-stimulus interval of clean air. PAM > 

Chrimson activation began 1 s after the start of the first odor presentation and 2 s prior to the 

presentation of the second odor. Experiments consisted of 25 training trials in which odor 1 was 

forward paired and odor 2 was backward paired and 25 training trials in which odor 2 was 

forward paired and odor 1 was backward paired. 

 

To compare baseline locomotor parameters and odor tracking behavior in nominally naïve wild 

type and dopamine receptor mutant PAM > Chrimson animals (Figure 6.5B-O), responses to 

ACV were measured over 9 odor trials, with each odor trial consisting of one odor presentation 

originating from the top of the chamber and one originating from the bottom as described above. 

Various behavioral metrics of wild type, DopR1-/-, and DopR2-/- animals prior to and during the 

odor were compared across genotypes. Analysis of behavioral metrics described below. 

 

All experiments were performed in the dark. Chambers were cleaned at the beginning or end of 

each experimental day by using a syringe to flush them thoroughly with water followed by 70% 

ethanol. Chambers were air-dried by connecting them to a vacuum line. Chambers were not 

cleaned between experiments within the same day; no difference in behavior was observed 

across subsequent experiments within the same day testing the same conditioning paradigm. In 

addition, time of day had no observable effect on conditioning. Genotype assignments to 
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different chambers were varied across experiments to avoid bias due to variability in chamber 

construction or position within the apparatus. Different genotypes were tested in parallel in all 

experiments. Behavioral responses to ACV were often variable in the first 1-2 baseline trials and 

were discarded from analysis to assure a stable readout of nominally naïve attraction. 

 

Tracking of fly trajectories and behavioral analysis (Figure 2.2B, 2.5B-J, 6.5B-O) 

The trajectories of individual flies were tracked across trials to examine how behavioral metrics 

were altered as a result conditioning (Figure 2.5B-J), or to compare locomotor characteristics of 

wild type, DopR1-/-, and DopR2-/- animals (Figure 6.5B-O) by capturing movies of flies 

throughout the trial. A background image was generated by taking the maximum value of each 

pixel over the entire movie. To account for fluctuations in illumination intensity, this background 

image was rescaled frame-by-frame by the average pixel intensity. After subtracting the rescaled 

background, the image was bandpass-filtered, and flies were detected with a local maximum-

finding algorithm (derived from the function pkfnd.m, which can be found at 

http://site.physics.georgetown.edu/matlab/code.html). Centroid positions of flies were then 

calculated from the original background-subtracted image using the function cntrd.m 

(http://site.physics.georgetown.edu/matlab/code.html). Fly localizations from individual frames 

were combined into multi-frame tracks using the function track.m 

(http://site.physics.georgetown.edu/matlab/code.html). The Y-axis and X-axis were defined as 

the axes parallel or perpendicular to the air/odor stream, respectively. For Figures 2.5B-J and 

6.5B-O, X and Y speeds were defined as the absolute values of the velocity components in the X 

and Y directions. To examine Y-speed exclusively in moving animals a threshold of < 1 pixel/s 

(0.3 mm/s) was used. The fraction of stationary flies was defined as the proportion of animals 
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moving < 0.3 mm/s; the fraction of animals walking sideways was defined as the proportion of 

flies moving > 0.3 mm/s and within +/- 45 degrees of the X-axis; and the fractions of animals 

walking upwind or downwind were defined as the proportions of animals moving > 0.3 mm/s 

and within +/- 45 degrees of the positive or negative Y-axis, respectively.  

 

Center of mass tracking (Figures 2.2C-E, 2.3A-D, 2.4B-D, 2.6A-C, 3.1A-B, 4.1A-D, 4.2A-E, 

6.3A-D, 6.4A-D) 

To measure the aggregate behavior of groups of flies, background subtraction was performed as 

above, and background noise was further suppressed by setting to zero all pixels below an 

empirically-determined threshold. The same threshold was applied to all chambers in each 

experiment, and the output of the analysis was not sensitive to the exact choice of threshold. The 

centroid position of all flies was then calculated for each background-subtracted frame. Upwind 

center-of-mass velocities were smoothed using a 15-frame moving average across each testing 

trial.  The upwind velocity raster plots for each trial show animal behavior over an 11-second 

time window with odor on between 4-6 seconds. Upwind displacement during odor presentation 

was defined as the difference in center-of-mass position along the airflow direction between time 

of odor onset and time of odor offset. Change in upwind displacement after conditioning was 

calculated by subtracting the upwind displacement in the trial immediately preceding the 

conditioning trial from the upwind displacement in the trial immediately following the 

conditioning trial. Positive changes in upwind displacement therefore indicate increased upwind 

odor tracking and negative changes indicate decreased upwind odor tracking. This was done for 

all conditioning trials across each experiment. The mean change in upwind displacement across 

all training trials of the same training paradigm in an experiment was used to compare behavioral 
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modulation across different conditioning paradigms and experiments. To compare upwind 

displacement after a single FP or BP conditioning trial (Figures 2.2D-E and 2.4D) the raw 

upwind displacement values in the center of mass of flies in odor trials immediately proceeding 

and following conditioning were compared to assess the effects of conditioning. In Figure 2.2D 

the upwind displacement in the first two odor trials following FP were compared to assess initial 

memory decay. For the receptor mutants (Figure 6.3D and 6.4D), the raw upwind displacement 

values in the center of mass of flies post-FP and post-BP were compared between wild type and 

receptor mutant animals.  

 

Figure Genotype Chambers 
(N) 

Total 
flies 

2.4B-C PAM (MB042B) > CsCh 8 48 
2.2B-C and 2.3A-
C 

PPL (MB504B) > CsCh 8 48 

2.2D PPL (MB504B) > CsCh 11 66 
2.2E PPL (MB504B) > CsCh 11 66 
2.3C-D CsCh 8 48 
2.4D PAM (MB042B) > CsCh 8 44 
2.6C PAM (MB042B) > CsCh (FP-BP experiment) 7 43 
2.6C PPL (MB504B) > CsCh (FP-BP experiment) 7 42 
2.6A and C PAM (MB042B) > CsCh (FP-Odor Alone) 7 42 
2.6A and C PPL (MB504B) > CsCh (FP-Odor Alone) 8 48 
2.6B-C PAM (MB042B) > CsCh (FP-DAN Alone) 8 48 
2.6B-C PPL (MB504B) > CsCh (FP-DAN Alone) 8 48 
3.1A-B PAM (MB042B) > CsCh 6 34 
3.1A-B PPL (MB504B) > CsCh 6 34 
3.1A CsCh 7 38 
4.1B-D PAM (MB042B) > CsCh 8 48 
4.2B-C CsCh 7 42 
4.2D PAM (MB042B) > CsCh 11 55 
4.2E CsCh 9 45 
6.3A-D PAM (MB042B) > CsCh (controls for 

DopR1-/-) 
7 42 

6.3A-D PAM (MB042B) > CsCh, DopR1-/- 7 42 



 194 

6.4A-D PAM (MB042B) > CsCh (controls for 
DopR2-/-) 

7 37 

6.4A-D PAM (MB042B) > CsCh, DopR2-/- 7 42 
6.5B-O PAM (MB042B) > CsCh  4 20 
6.5B-O PAM (MB042B) > CsCh, DopR1-/- 4 20 
6.5B-O PAM (MB042B) > CsCh, DopR2-/- 4 20 

 

 

Conditioning of odor responses in tethered flies (Figure 4.3 and 3.3C) 

Tethered flies were stimulated with odor by directing a continuous stream (400 mL/min) of clean 

air through a 2 mm diameter teflon tube directed at the fly’s antenna (carrier stream). 5% of the 

total airstream was diverted through the headspace of either an empty or odor filled 10 mL glass 

vial (odor stream). At a trigger, a custom-built solenoid valve controller system redirected the 

odor stream from the empty vial to the vial containing various odorants diluted 1:10 in heavy 

mineral oil (Sigma). The odorants used in Figure 4.3B were isobutylacetate (odor 1) and 

cis+trans 4-methylcyclohexanol (odor 2). The odorants used in Figure 4.3C were 1-hexanol and 

benzaldehyde. For half of the experiments in Figure 4.3C, 1-hexanol was odor 1 and 

benzaldehyde was odor 2; for the other half of experiments the odor identities were reversed. 

Each odor presentation was 2 s in duration. Each odor was presented 2-4 times during baseline 

and post-pairing trials and the responses in γ4 MBON for each odor were averaged. Odor-evoked 

responses in the γ4 MBON were normalized by the mean fluorescence for 10 s prior to odor 

presentation. In Figures 3F and S3E-F, 58E02 DANs expressing the P2X2 channel were activated 

as described above. During conditioning trials, the two odors were each presented for 2 s. DANs 

were stimulated using four 100-ms pulses at 5V with an inter-pulse interval of 20 ms. The DAN 

stimulation started 1.5 s after the start of the first odor presentation and 1.7 s prior to the 

presentation of the second odor. To compare the odor-specific modulation in the γ4 MBON 
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across the odor pairs (Figure 4.3D), the average response for each odor prior to a conditioning 

paradigm was subtracted from the mean peak response for each odor immediately post pairing; 

the change in evoked responses for odor 1 and odor 2 following conditioning were compared. 

Odor-evoked responses were determined by taking the peak fluorescence during the 2-s odor 

presentation. The same type of experiment was done in Figure 3.3C except one odor remained 

unpaired throughout the duration of the experiment to look at non-specific changes in odor 

responses in the γ4 MBON. 

 

Odor and shock stimulation in tethered flies (Figure 3.5) 

Animals were tethered to a holder as above (Green et al., 2017) but modified to include a 

polypropylene luer with a 2 mm opening directed at the antenna of the fly for odor delivery. 

Odor stimulation was performed as described above, however, in these experiments 40% of the 

total airstream was diverted through the headspace of an empty or pure ACV filled 10 mL glass 

vial to ensure consistent responses in the γ2 MBON. ACV was presented twice to each fly in 

baseline, post-FP, and post-BP trials and averaged as described above. If the γ2 MBONs in both 

hemispheres were visible in the same imaging plane, odor-evoked responses from both output 

neurons were averaged together. After positioning the fly under the microscope, two copper 

washers were precisely placed under visual control to make contact with either side of the fly’s 

abdomen. Electrical leads from the two washers were connected to a stimulator (Grass 

Technologies), which was used to apply two 1 s shocks of 70 V that were separated in time by a 

200 ms delay. In forward pairing trials, odor onset preceded shock onset by 500 ms. In backward 

pairing trials, the onset of shock preceded odor onset by 3 s.  



 196 

 

 

 

Behavioral and functional imaging in closed-loop system (Figures 3.6, 3.7, and 3.8) 

Closed-loop arena 

An air-supported foam ball (~6.5 mm diameter, Matsubara Sangyo Co.), modified based on 

(Green et al., 2017; Seelig and Jayaraman, 2015) and positioned within the fly’s grasp to allow 

the fly to ‘walk’ on the ball during imaging. On the rare occasion an animal could not maintain 

control of the ball because of placement on the ball, the trial was discarded and the fly 

repositioned for further analysis.  The ball was recorded at 60-61 fps using a Point Grey Firefly 

Camera with Infinity Lens (94 mm focal length) focused on the ball, which was illuminated by 

infrared LED lights. Ball rotation was calculated in real time using FicTrac software running on 

Ubuntu 12.04 on computers with processors with speeds of at least 3GHz. The heading of the fly, 

as calculated by FicTrac, was transmitted to an Arduino Mega via serial port. Custom Arduino 

code was used to translate heading into tube position controlled by motors described below.  

 

The closed loop air-delivery system was custom designed using OnShape (www.onshape.com) 

and 3D printed using Visijet Crystal material at XHD resolution in a 3DSystems Projet 3510 HD 

Plus. O-ring OD and ID Gland surfaces were designed with excess material for printing then 

manually modified on a lathe for improved RMS [surface] finishing. Tube rotation over 360 

degrees was driven by a bipolar stepper motor (Pololu item #1206) controlled through a A4988 

Stepper Motor Driver Carrier (Pololu #2980) coupled by a Dust-Free Timing Belt XL Series, 

1/4" Width (McMaster-Carr, 1679K121, Trade No. 130xL025) to the rotating tube system, 
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which rotated mounted on an Ultra-Corrosion-Resistant Stainless Steel Ball Bearing (3/4" Shaft 

Diameter, 1-5/8" OD, Mcmaster-Carr 5908K19). Air channel was kept airtight using oil resistant 

o-rings (1/16 Fractional Width, Dash Number 020, Mcmaster-Carr 2418T126). Motor rotation 

was measured by a rotary encoder (CUI Inc., AMT10 Series) that was used in order to correct for 

skipped steps. Preliminary experiments in Figure 3.6C where carried out not under the 2-photon 

microscope. Animals were repeatedly trained with interleaving trials of forward and backward 

pairing to test for bidirectional modulation in tracking. Ideal training conditions were determined 

off this data set and used in Figures 3.7 and 3.8.  

 

Odor stimulation in walking flies in the closed loop system (Figures 3.7-3.8) 

Odor stimulation was achieved by directing a continuous stream (400 mL/min) of clean air 

through a 2 mm diameter tube made of Visijet Crystal material directed at the fly’s antenna. 20% 

of the total airstream was diverted through the headspace of a 500 mL glass bottle containing 

water. At a trigger, a custom-built solenoid valve controller system redirected the odor stream 

from the water bottle to a bottle containing pure ACV. A 10 s odor presentation was used to 

allow the fly time to respond to and track the odor. Shorter odor presentations led to less 

consistent tracking in naïve animals, potentially due to the need to compensate for the inertia of 

the ball. In baseline, post-forward pairing and post-backward pairing test trials, animals were 

presented with two 10 s ACV odor presentations separated by 30 s of clean air. The peak odor-

evoked fluorescence in the γ4 MBON and the total upwind displacement in ACV for the two 10 s 

odor presentations were averaged together for baseline and test trial measurements. Odor 

responses in the γ4 MBON were normalized by the mean intensity for 10 s prior to the first odor 

presentation in each baseline and test trial. The odor-evoked responses in the γ4 MBON in both 
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hemispheres were averaged for analysis except in one preparation where the γ4 MBON was 

visible in only one hemisphere. Due to a small latency in image capture rate, a systematic delay 

was introduced in image sequences between baseline, post-forward pairing, and post-backward 

pairing test trials to properly align odor delivery with neural responses. 

 

Conditioning of flies in the closed loop paradigm (Figures 3.7-3.8) 

The split-Gal4 driver was used to drive expression of UAS-ChrimsonR.mCherry in the PAM 

cluster (MB042B). ChrimsonR.mCherry activation was performed by 1-second constant 

illumination of 565 nm (CoolLED, PE-100) light of roughly 150 µW/mm2  intensity directed at 

the brain of the fly through the microscope objective. The LED was triggered from the two-

photon Prairie View software. 

 

Tethered animals expressing UAS-ChrimsonR.mCherry in PAM neurons and LexAOP-

GCaMP6s in the γ4 MBON were placed on an air-supported foam ball under the two-photon 

microscope and allowed time to acclimate until consistent walking was initiated. Each fly then 

experienced 3-4 full training paradigms consisting of a baseline trial, a forward-paired 

conditioning trial (ACV was presented for 10 s with LED illumination during the last second), 

post-FP test trial, a backward-paired conditioning trial (DANs were activated for 1 s using LED 

illumination and then 1 s later a 10 s ACV presentation), and post-BP test trial. The delay 

between the end of a conditioning trial and start of a testing trial was 40 s.  

 

The difference in upwind position from ACV onset and ACV offset was used to calculate the 
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upwind displacement of the fly in the 10-s ACV odor presentation. The upwind displacement in 

clean air was also measured for the ten seconds prior to each odor presentation to control for 

odor-independent modulation in behavior (Figure 3.8). If behavior-tracking was dropped by 

FicTrac at odor onset or offset, the behavioral analysis of upwind displacement for that odor 

presentation was excluded from the analysis. The change in upwind displacement after forward 

and backward pairing was measured by subtracting the mean upwind displacement in the odor 

trials preceding FP or BP from the odor trials immediately following FP or BP. Likewise, the 

change in the γ4 MBON response after forward and backward pairing was measured by 

subtracting GCaMP response of odor trials preceding FP or BP from the odor trials immediately 

following FP or BP. A 500 ms delay was used for determining upwind displacement and peak 

neural response to the odor to account for lag in odor delivery to the antennae of the animal 

based on neural responses. The behavioral and neural modulation was plotted for each of the 3-4 

training paradigms per animal to examine trial-to-trial variability (Figures 3.7D, G, H-gray dots 

and 3.8D); in addition, the mean of the 3-4 training session per animal were analyzed to look at 

animal-to-animal variability (Figures 3.7B-C, E, F, H-black dots and 3.8C).  

 

Immunohistochemistry  

Day 1 adult brains were dissected in Schneider's media (Sigma) then immediately transferred to 

cold 1% PFA (Electron Microscopy Sciences) and fixed overnight at 4°C. Following overnight 

incubation samples were washed in PAT3 Buffer (0.5% BSA/0.5% Triton/1X PBS pH 7.4) 3 

times. Brains were blocked in 3% Normal Goat Serum for 90 minutes at RT. Primary antibodies 

1:2000 rabbit anti-DAMB (Figure 5.7B) (a gift from Ron Davis) (Feng et al., 1996), 1:20 guinea 

pig anti-DopR (Figure 5.7B) (Lebestky et al., 2009), 1:1000 chicken anti-GFP (Abcam ab13970) 
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(Figures 2.2A and 2.4A) and 1:50 mouse anti-brp (Developmental Studies Hybridoma Bank 

nc82)  (Figures 2.2A and 2.4A) were incubated 3 hours at RT then 2-3 days at 4°C. Brains were 

washed extensively in PAT3 Buffer. Secondary Alexa Fluor antibodies (Life Technologies) were 

incubated 3 hours at RT then 2-3 days at 4°C. Brains were washed 3 times in PAT3 Buffer then 

once in 1X PBS. Samples were mounted in Vectashield (Vector Laboratories). Images were 

captured on a Zeiss LSM 880 using a Plan-Apochromat 20X (0.8 NA) objective.  

 

RNA Isolation and qRT-PCR (Figure 5.7B) 

Total RNA was isolated from the dissected brains of eight 1-day-old adult wild type and DopR1-

/- females. RNA was extracted using Qiazol reagent (QIAGEN) then column purified by RNeasy 

micro kit (QIAGEN). cDNA was generated using Quantitect Reverse Transcriptase kit 

(QIAGEN). Taqman real-time qPCR experiments were performed on a QuantStudio 12K Flex 

Real-Time PCR System (Thermo Fisher Scientific) following the manufacturer’s instructions. 

Data were analyzed using the comparative 2ΔΔCt method using alphaTub84B as an endogenous 

control. The average fold-change relative to wild type was calculated. The following Taqman 

assays from Life Technologies were used: alphaTub84B (Dm02361072_s1) and DopR1 

(Dm02134814_m1). 

 

Statistical analysis 

Statistical analysis was performed using Prism and MATLAB with Bonferroni correction to p 

values when multiple comparisons were performed. The Shapiro-Wilk normality test was used to 

assess normality across all individual experiments. If the null hypothesis was rejected, Wilcoxon 

match-pairs signed rank or Mann-Whitney tests were used to compare for differences between 
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two groups; otherwise, paired or unpaired t-tests were used. All tests were two-tailed. Ordinary 

one-way ANOVA was used to test for differences across the three genotypes of wild type, 

DopR1-/-, and DopR2-/- in locomotor parameters and odor tracking behavior. An RM one-way 

ANOVA was used to test for differences in DAN activation, VMAT release, and extracellular 

dopamine levels between FP, BP, and DAN activation alone. One-sample t-tests or Wilcoxon 

signed rank tests against zero were used to assess the significance of changes in KC- or odor-

evoked responses in the γ2, γ4, and γ5  MBONs, behavioral modulation after conditioning trials, 

and changes in cAMP and ER-calcium levels in KC axons during conditioning. Spearman’s rank 

correlation was used to measure the correlation between changes in upwind displacement in odor 

and the change in odor-evoked calcium responses in the γ4 MBON across individual trials or 

averages for each animal. Exact statistical test used referenced in each figure legend. 
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