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Imputation strategies when a continuous
outcome is to be dichotomized for
responder analysis: a simulation study
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Abstract

Background: In many clinical trials continuous outcomes are dichotomized to compare proportions of patients
who respond. A common and recommended approach to handling missing data in responder analysis is to impute
as non-responders, despite known biases. Multiple imputation is another natural choice but when a continuous
outcome is ultimately dichotomized, the specifications of the imputation model come into question. Practitioners
can either impute the missing outcome before dichotomizing or dichotomize then impute. In this study we compared
multiple imputation of the continuous and dichotomous forms of the outcome, and imputing responder status as
non-response in responder analysis.

Methods: We simulated four response profiles representing a two-arm randomized controlled trial with a continuous
outcome at four time points. We omitted data using six missing at random mechanisms, and imputed missing
observations three ways: 1) replacing as non-responder; 2) multiply imputing before dichotomizing; and 3)
multiply imputing the dichotomized response. Imputation models included the continuous response at all
timepoints, and additional auxiliary variables for some scenarios. We assessed bias, power, coverage of the 95%
confidence interval, and type 1 error. Finally, we applied these methods to a longitudinal trial for patients with
major depressive disorder.

Results: Both forms of multiple imputation performed better than non-response imputation in terms of bias and
type 1 error. When approximately 30% of responses were missing, bias was less than 7.3% for multiple imputation
scenarios but when 50% of responses were missing, imputing before dichotomizing generally had lower bias compared
to dichotomizing before imputing. Non-response imputation resulted in biased estimates, both underestimates
and overestimates. In the example trial data, non-response imputation estimated a smaller difference in proportions
than multiply imputed approaches.

Conclusions: With moderate amounts of missing data, multiply imputing the continuous outcome variable prior to
dichotomizing performed similar to multiply imputing the binary responder status. With higher rates of missingness,
multiply imputing the continuous variable was less biased and had well-controlled coverage probabilities of the 95%
confidence interval compared to imputing the dichotomous response. In general, multiple imputation using
the longitudinally measured continuous outcome in the imputation model performed better than imputing
missing observations as non-responders.

Keywords: Responder analysis, Clinical trials, Multiple imputation, Missing data, Missing at random

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: lford@email.arizona.edu
Mel and Enid College of Public Health, University of Arizona, 1295 N. Martin
Ave, Tucson, AZ 85724, USA

Floden and Bell BMC Medical Research Methodology          (2019) 19:161 
https://doi.org/10.1186/s12874-019-0793-x

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Arizona

https://core.ac.uk/display/227282321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-019-0793-x&domain=pdf
http://orcid.org/0000-0003-0584-6227
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lford@email.arizona.edu


Background
Clinical trials can be evaluated by differences in rates of
successful response. In so-called responder analysis, sub-
jects are classified as responders, often by dichotomizing a
continuous outcome, if they improve by a specified thresh-
old. For example, responder definitions could be a 5%
change in body mass index or an improvement in symp-
toms by 10 points on a 100-point symptom scale.
Responder analysis is commonly used with patient-reported
outcomes (PROs) because results are easily interpretable to
patients and other stakeholders and can lend language to
drug labels and promotional claims.
When the outcome is measured for all subjects at base-

line and the timepoint of interest, responder status can be
calculated, and the analysis is routine. However missing
data are ubiquitous in longitudinal trials and responder
status cannot be determined for subjects missing the
outcome. [1] One approach for handling missing data in
responder analysis, recommended in the regulatory setting
[2–4] is to impute subjects missing the outcome as non-
responders, termed non-response imputation (NRI). How-
ever, it is a strong assumption to assume unobserved
outcomes are uniformly “failures” rather than come from
the distribution of subjects who do not improve. NRI can
be thought of as a composite outcome of response and a
dropout indicator. Methodologists warn that composite
endpoints can be misleading, for example, when the com-
ponents have varying degrees of severity and treatment
effects of each component differ between groups. [5, 6]
This could be true if dropout depended at least partly on a
tolerability. For example, a cancer treatment may offer a
favorable toxicity profile relative to a comparator. Using
NRI, the response rate of the comparator arm more than
in the treatment arm would reflect the effect of tolerabi-
lity, i.e., have more non-responders, and could widening
the between arm difference. While some may view
NRI as a conservative approach (since the proportions
of responders can only decrease), treating missing as
response failure can result in unpredictable differences in
proportions between treatment groups. [7, 8]
In longitudinal trials, missing observations can be

intermittent, as in a missed study visit, but dropout
accounts for most missing data. We focus this article on
monotone missing patterns, implying that observations
are observed up until one is missing and all subsequent
observations are missing. Little and Rubin [9] provide a
framework to describe categories of missing data mecha-
nisms given the relationship with observed and un-
observed values. When the probability of missingness is
independent of the observed and unobserved data the
mechanism is said to be missing completely at random
(MCAR). Data are missing at random (MAR) if the
probability of missingness is independent of the un-
observed data after conditioning on observed data.

Finally, data are considered missing not at random
(MNAR) if they are neither MCAR or MAR and the
missing mechanism depends on the unobserved values,
given the observed data.
The MAR assumption is usually reasonable in the

context of longitudinal trials and current guidance out-
lines a framework that includes sensitivity analyses to
assess the extent to which analytic approaches are robust
to missing data assumptions. [10–12] Appropriate ana-
lyses that assume MAR include mixed models using
maximum likelihood estimation, extensions of generalized
estimating equations (GEEs) such as weighted GEE, and
multiple imputation (MI). [13, 14] Of these, MI is the only
approach that can be used with any analytic model. MI is
a three-stage process. First, missing values are filled M
times by a random draw from a posterior distribution of
the imputation model to generate M complete datasets.
Secondly, the M datasets are analyzed via any statistical
approach and thirdly, results are combined using a set of
rules that accounts for the uncertainty of the imputed
values. [15] The imputation model must be congenial, i.e.,
include the same variables, but does not have to be con-
sistent with the substantive model. Thus, the imputation
model can include variables predictive of missingness such
as the outcome from intermittent timepoints, making MI
a natural choice in responder analysis using a test of
proportions. For these reasons we focus this paper on MI.
When a continuous outcome is ultimately dichoto-

mized, the specifications of the imputation model come
into question. Practitioners can either impute the miss-
ing outcome before dichotomizing the response (IBD) or
dichotomize the outcome then impute the response
(DTI). Demirtas evaluated efficiency and accuracy of the
estimated proportions of responders using IBD under
the multivariate normal assumption compared to DTI
using a saturated binomial model for the dichotomous
response indicator, and concluded that DTI was superior
across most scenarios. [16] This finding is in contrast to
Yoo’s work that concluded MI with GEEs performs
better when the underlying continuous outcome is
imputed prior to dichotomizing. [17] More generally,
Von Hippel’s work supports the use of just-another-va-
riable (JAV), analogous to DTI, to impute a quadratic
and interaction term under a linear regression analysis
model with a conceptual argument extending to the
logistic setting. [18] Others demonstrated poor perfor-
mance using JAV when data were MAR particularly with
logistic regression [19], prompting some researchers to
discourage this practice. [14]
In trial settings where the dichotomized response of

a continuous outcome is of interest, there is no clear
best way to handle missing data. The aim of this
paper is to clarify inconsistent results in the performance
of multiply imputing the IBD or DTI in responder analysis
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and compare with the commonly recommended non-re-
sponse imputation.

Methods
Notation and analysis
Let the underlying continuous measure which is to be
dichotomized into the response indicator be Yij for subject
i where i = 1, …, n measured at the j timepoint. Measure-
ments are repeated over time such that j = 1, …, ti are the
observed measurements for each subject and ti represents
the time of dropout or end of the study,T. Without loss of
generality, assume that higher values of Y indicated better
outcomes. Let Yij > 1 − Yi1 =Ci represent change from base-
line to time j > 1. Subject i is classified as a responder if
Ci ≥ λ for some threshold λ, defined as Ri = I(Ci ≥ λ).
Consider a randomized controlled trial with treatment
and control arm.
The objective of responder analysis is to evaluate the

difference in proportion of responders at the endpoint
between treatment arms.

Multiple imputation approach
When data have either an intermittent or monotone
missing pattern, multiple imputation using the Markov
chain Monte Carlo (MCMC) method and fully conditional
specification (FCS, also known as imputation by chained
equations) method are two popular options. [20] Both are
relatively flexible to specify, straightforward to understand,
and easy to apply with standard statistical software. The
FCS assumes the existence of, but does not rely on, a
multivariate distribution. [20] Specifically, the FCS
approach assumes conditional densities for each partially
observed variable and uses a corresponding regression
model to sequentially generate imputations, e.g., linear
regression for continuous variables and logistic regression
for categorical variables. We used FCS MI for imputing
both the unobserved continuous outcomes for IBD MI
and the missing responder status for DTI MI, both using
the continuous outcomes intermittent timepoints as
auxiliary variables, and in some cases, additional cova-
riates related to the outcome, detailed below. Thus, the
comparison is not in the MI method but rather the
specification of the imputation model.
In general, the FCS procedure can be described in the

following steps. [21, 22] Consider a set of variables X =
X1, …, Xq in the imputation model. First, starting values
for unobserved measures are filled in sequentially for
each variable in the order specified. Continuous variables
are filled in by regressing one variable, say, X1, on the
other X2, …, Xq covariates and using the resulting set of
parameters to fill in the missing values of X1. Binary
variables are filled in similarly using logistic regression.
The next imputation phase replaces the filled in values
with imputed values. For a set of observed values of one

variable, X1, the corresponding imputation model is fit
using both the observed and filled-in values of all other
q − 1 variables as the independent variables and X1 as
the dependent variable. In this study, the binary variable,
R, is fit using logistic regression and the continuous
variables, Yj, are fit with linear regression. The result-
ing set of parameters are used to impute the first set
missing values. The latter two steps are repeated on
the remaining q − 1 variables to comprise a cycle. The
algorithm runs through a number of cycles updating
the imputed values until convergence, at which point
the current values of all X ’s complete the first imputed
dataset. The process is repeated for M datasets.
To calculate the estimand θ using IBD MI, we imputed

the missing continuous outcomes Yj, calculated the
responder status, Ri, estimated the difference and com-
bined estimates using Rubin’s rules in the final step. For
DTI MI, we calculated responder status prior to im-
puting and included the partially observed responder
status, Ri, in the imputation model. Using the imputed
Ri, we calculated the difference in proportions between
treatment arms on the M datasets and combined using
Rubin’s rules.

Data generation
We simulated twenty-four scenarios to represent a ran-
domized trial with two treatment arms with N = 200,
and a continuous outcome measured at baseline and
three subsequent timepoints. The scenarios described
two response profiles with the same mean difference at
the final assessment, six mechanisms of dropout, and
two dropout rates. One response profile was linear
where only treatment A was effective. In the other
response profile, treatment A is effective after a period
of worsening and treatment B demonstrates no effective-
ness after a period of improving, hence the mean trajec-
tories of treatment A and B cross. The third and fourth
response profiles had no treatment differences at the
final timepoint and were used to evaluate type 1 error.
Data for the continuous response were simulated to

represent a PRO scale with equal allocation to treatment
groups. Let Yij represent a continuous measure for the
ith individual at the jth timepoint where j = 1, …, 4.
Specifically, data were simulated according to the under-
lying model:

Y ij ¼ β0 þ bi
� �þ β j þ δ j�xtrt þ ϵij ð1Þ

where xtrt = 1 for treatment arm A and 0 for treatment
arm B, βj denotes the effect of the j

th timepoint and δj ∗ xtrt
is the interaction of treatment group and the timepoint.
Here, bi � Nð0; σ2bÞ represents the random subject effect
and the error term, ϵij � N ð0; σ2ϵÞ represents the within-
subject error. The mean vectors for the linear response
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profile were μA = (65, 67, 69, 71)′ and μB = (65, 65, 65, 65)′
. The non-linear response profile was μA = (65, 63, 68, 71)′
and μB = (65, 67, 66, 65)′. The third and fourth response
profiles to estimate type 1 error were μ = (65, 65, 65, 65)′
for both arms; and μA = (65, 67, 69, 71)′ and μB = (65, 63,
68, 71)′, respectively. Based on typical PRO scale data
[23], we set σb = 12 and σϵ = 7. These variance components
correspond to a compound symmetric covariance struc-
ture with a within-person correlation of 0.7. Additionally,
we created a normally distributed continuous correlated
variable (CV) to Y4 such that ρCV ;Y 4

≅0:3 , and the mean
and standard deviation were 38.0 and 62.7 respectively.
Let Yi4 − Yi1 =Ci represent change from baseline to

timepoint j = 4. To achieve 80% power to detect the
difference of response rates between the two arms, the
dichotomized response was defined as Ri4 = I(Ci ≥ 12.4).
Using this definition, response rates for the first and
second response profiles for treatment A and B were 25.6
and 10.6, respectively. (Exploratory result using thresholds
ranging from 10 to 20 produced similar trends.)

Missing data
We used six probability models representing plausible
trial scenarios to delete post-baseline observations using
a MAR mechanism. Let Zij = 0 if outcome Yij is missing
and 1 otherwise.

Dropout model 1
For the first model of dropout, the probability of missing re-
sponse is dependent on the value of the observed outcome

at Yj− 1 such that PðZij ¼ 0Þ∝ð1−ΦðY j−1; θ̂Y j−1 ; σ̂
2
Y j−1

ÞÞ ,
where j > 1 and Φ is the normal cumulative distribution

function with mean θ̂Y j−1 and standard deviation σ̂2Y j−1
esti-

mated from the data. This model represents the probability
of dropout due to lack of efficacy.

Dropout model 2
The mechanism leading to dropout can differ by treatment.
[25] To model this, observations in treatment A were more
likely to be missing when the outcome, Yj − 1, value was low

such that PðZij ¼ 0Þ∝ð1−ΦðY j−1; θ̂Y j−1 ; σ̂
2
Y j−1

ÞÞ, j > 1, and
observations in treatment B were more likely to be missing

when Yj− 1 values were high such that PðZij ¼ 0Þ∝ðΦðY j−1;

θ̂Y j−1 ; σ̂
2
Y j−1

ÞÞ, j > 1.

Dropout model 3
Model 3 represents missing mechanisms in the opposite
direction of model 2 for the treatment arms. For
example, lack of efficacy could drive dropout in a placebo
arm while those on treatment may be less motivate to
return to follow up when they are feeling better, i.e.

improved efficacy. Here, treatment B observations
were more likely to be missing when the outcome,

Yj − 1, value was low such that PðZij ¼ 0Þ∝ð1−ΦðY j−1;

θ̂Y j−1 ; σ̂
2
Y j−1

ÞÞ , j > 1, and treatment A observations

more likely to be missing when Yj − 1 values were

high such that PðZij ¼ 0Þ∝ðΦðY j−1; θ̂Y j−1 ; σ̂
2
Y j−1

ÞÞ, j > 1.

Dropout model 4
Treatment arm dropout rate can be differential. [26, 27]
We modeled substantial differential dropout by in-
cluding a weight term, wxtrt , specific to treatment arm,

such that PðZi j ¼ 0Þ∝wxtrt�ð1−ΦðY j−1; θ̂Y j−1 ; σ̂
2
Y j−1

ÞÞ ,

where w1 = 0.3 and w0 = 1.

Dropout model 5
Here, Yi was set to missing with probability PðZij ¼ 0Þ
∝½ 1

1þeðb1Y j−1Þ� , where j > 1 and b1 = 0.01 modeling drop

out due to lack of efficacy using a different mechanism
than model 1.

Dropout model 6
We simulated a repeated indicator variable representing
occurrence of adverse events (AEs) to represent drug
tolerability. The probability of AE depended jointly on
treatment arm and occurrence of an AE at the prior visit
such that for each assessment for each treatment group

pAEj xtrt ; γð Þ ¼ PX AE j ¼ 1jAE j−1 ¼ γ
� �

for j > 2

where xtrt represents the treatment arm and γ repre-
sents AE status at j − 1. Probabilities were estimated
from actual trial data and were similar to prior published
event rates (Table 1). [24] For simplicity we assumed
that no AEs occurred at baseline and the probability of
AE at j = 2 was 0.3 for xtrt = 1 and 0.5 for xtrt = 0. For
each subject we generated AE status at each post-base-
line visit as AEij � BernoulliðpAEj Þ.
The response Yi was set to missing with probability

PðZij ¼ 0Þ∝½ 1
1þeðb1Y j−1þb2AE jÞ� , where j > 1 and b1 = 0.01

and b2 = − 0.40 to model the probability of dropout due
to lack of efficacy and tolerability. If Yi was set to missing,
all subsequent AE were also set to missing.
For all dropout models, we multiplied P(Zij = 0) by a

randomly generated uniform variable and determined a
cutoff value creating the overall proportion of missing

Table 1 Conditional probabilities of AEs for j > 2

Timepoint xtrt=1, γ = 0 xtrt=1, γ = 1 xtrt=0, γ = 0 xtrt=0, γ = 1

j = 3 .2 .8 .4 .8

j = 4 .1 .8 .2 .8

xtrt=1: Treatment A, xtrt =0: Treatment B, γ = 0: No AE at j − 1, γ = 1: AE at j − 1
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responses at j = 4 to be 30% or 50%. If a patient was
missing at any Yj = a then all Yj > a were set to missing.

Analysis and comparison of methods
We determined the required number of simulated data-
sets per scenario, nsim, by estimating the standard de-

viation (SD) of θ̂ to be ≤6.0, based on exploratory
simulations and setting the maximum tolerated Monte
Carlo standard error (MCSE) of bias to be ≤.15. Given

MCSEðBiasÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Varðθ̂Þ
nsim

r
’ the required number of datasets

was nsim = 1600. [28] For each simulated dataset, we
evaluated the proportions of responders in, and the dif-
ference between, each arm at j = 4. For IBD MI and DTI
MI, all imputation models contained the group indicator,
xtrt, and the continuous outcomes Yj. In some im-
putation models, we included CV, a variable representing
a correlated covariate to evaluate the utility of including
an auxiliary variable. For DTI MI, the imputation model
included the binary response variable, R. Scenarios using
dropout model 6 also included AE status at j = 2, 3, 4 in
the imputation model. The M = 30 or M = 50 estimates
[22] of the difference in proportions and respective
standard errors when 30% or 50% of responses at j = 4
were missing, respectively, were combined using Rubin’s
Rules. [29] Sample SAS code is included in the Appendix.
We compared percent bias, coverage probability of the

95% confidence interval (CI) from multiple imputation,
power, and type 1 error rate to assess the relative per-
formance of NRI, IBD MI and DTI MI to the fully
observed simulated data. We calculated percent bias of
the difference as:

Percent bias of the difference

¼ pA−pBð Þ− πA−πBð Þ
πA−πB

�100

where π represents the true proportion of responders,
and p is the average proportion of responders among
datasets with missing observations. Positive values re-
present positive biases of the estimated difference in
proportions. We calculated coverage probability as the
proportion of MI results where the true value was
contained within the 95% CI. Power was calculated as
the percentage of statistically significant group diffe-
rences at the significance level of 0.05. Similarly, the type
1 error rate was calculated as the percentage of statisti-
cally significant group differences at the significance
level of 0.05 when simulating a scenario with no
between group difference. We assess performance of the
simulation with the MCSE of bias, mean square error
(MSE), standard error of the model (SEmod) and the em-
pirical standard error of the difference in proportions

(SEemp). Let θ̂ ¼ p̂A−p̂B be the difference in proportions
between groups. MSE, calculated as

MSE ¼ 1
nsim

Xnsim
i¼1

θ̂i−θ
� �2

is a combined measure of variance and bias. SEmod is the
average standard error of each bθi , and SEemp, is the stand-

ard error of θ̂ , measuring the efficiency of θ̂ . Simulation
and analyses were conducted using SAS software version
9.4 (SAS Institute Inc., 2013).

Results
When the response profile was linear with 30% of
responses missing, bias was less than 7.3% for all MI ap-
proaches and ranged from 8.5 to − 36.7% for NRI (Table 2).
Similar results were seen in the non-linear response profile
(Appendix A). IBD MI had slightly lower or equal bias rela-
tive to DTI MI for all scenarios, and bias was conservative
in direction, i.e., negative for 4 out of the 5 dropout models.
All MI models included the continuous repeated outcomes
as auxiliary variables in the imputation model. When using
DTI MI, the addition of the correlated auxiliary variable
reduced bias and changed the direction from positive to
negative in all scenarios except when there were differential
dropout rates. Including the auxiliary variable in the IBD
MI model increased the negative bias in all but the scenario
with differential dropout.
The probability of dropout in model 6 was related to

both treatment arms, through AE status, and outcome
score. Including AE status at j = 2, 3, 4 in the imputation
model negligibly reduced bias with DTI MI, and main-
tained a similar level of bias with IBD MI, compared to
no auxiliary variables.
NRI suffered from high negative bias and substantial

loss of power to detect differences in all but one scenario.
The proportion of responders per treatment arm were
always underestimated because missing observations were
classified as non-responders. When the dropout mecha-
nism affected the two arms differentially (model 4), NRI
produced a positively biased difference estimate.
When 50% of responses were missing with the linear

response profile, IBD MI had less bias relative to DTI
MI without the use of CV for all scenarios, and bias was
negative in direction for 5 of the 6 dropout models
(Table 3). Specifically, bias with DTI MI (with no auxil-
iary variables) ranged from − 21.8 to 11.0. Under the
same conditions, the bias of IBD MI ranged from − 6.9
to 0.7. In general, power to detect treatment differences
was lower using IBD MI compared to DTI MI.
Coverage probabilities of 95% confidence for all MI

approaches ranged from 93.2 to 95.3% when 30% of the
responses were missing (Table 2). When 50% of responses
were missing, the coverage probabilities when imputing
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the continuous response were closer to the nominal level
of 95% compared to imputing the dichotomized response,
ranging from 90.1 to 94.4% and 77.5 to 92.6%, respectively
(Table 3). NRI coverage was lower than the MI approaches
in all scenarios except for when there was differential
dropout. Although IBD MI generally had lower power to
detect treatment differences compared to DTI MI, the dif-
ference was negligible. NRI was more precise as measured
through the SEemp of the difference in proportions be-
tween groups, compared to all MI approaches (Table 4).

However, as a function of the high levels of bias, NRI
performed poorly in terms of MSE compared to the MI
approaches. The MCSE of bias was between 0.12–0.14, less
than our tolerated level of uncertainty, when 30% of re-
sponses were missing. NRI had higher precision estimating
the group difference, compared to the other approaches as
seen with the lower SEemp. The SEmod was similar to the
SEemp suggesting bias of SEemp is not a concern.
Type 1 error rate was controlled at less than 5% for

both multiple imputation strategies, reported in Table 5.

Table 2 Comparison of simulated responder analysis results using non-response imputation, impute-before-dichotomizing and
dichotomize-then-impute multiple imputation1

Dropout model Imputation
method

% Responders
Trt A

% Responders
Trt B

Difference in
proportions (95% CI)

% Bias Coverage of
the 95% CI

Power

1: Lack of efficacy NRI 17.6 6.9 10.6 (1.7, 19.5) −29.2 81.3 0.64

DTI MI 26.5 10.7 15.9 (5.4, 26.4) 6.0 95.2 0.77

DTI MI with CV 24.5 9.7 14.8 (4.6, 25.0) −1.3 94.9 0.74

IBD MI 25.7 10.8 14.9 (4.5, 25.3) −0.6 95.2 0.70

IBD MI with CV 24.1 9.9 14.1 (4.0, 24.3) −5.7 94.3 0.69

2: Differing mechanism NRI 17.6 7.9 9.6 (0.3, 18.7) − 35.7 77.2 0.55

DTI MI 26.5 10.5 16.0 (5.5, 26.5) 6.7 94.8 0.77

DTI MI with CV 24.7 9.8 14.8 (4.7, 25.0) −1 94.3 0.74

IBD MI 25.7 10.8 14.9 (4.5, 25.3) −0.7 94.9 0.69

IBD MI with CV 24.2 10.1 14.1 (3.9, 24.3) −5.8 94.5 0.68

3: Differing mechanism, reversed NRI 18.3 6.9 11.4 (2.4, 20.4) −24.1 86.3 0.69

DTI MI 26.1 10.5 15.5 (5.1, 26.0) 3.7 93.4 0.74

DTI MI with CV 24.2 9.7 14.5 (4.4, 24.6) −3.4 93.4 0.72

IBD MI 25.8 10.8 15.0 (4.6, 25.5) 0.2 94.1 0.70

IBD MI with CV 24.2 10.0 14.2 (4.0, 24.4) −5.4 93.4 0.68

4: Differential dropout rates NRI 21.5 5.3 16.2 (7.2, 25.3) 8.5 93.8 0.94

DTI MI 26.0 10.8 15.2 (4.8, 25.7) 1.8 93.8 0.71

DTI MI with CV 24.8 9.1 15.6 (5.6, 25.7) 4.5 93.3 0.79

IBD MI 25.6 10.9 14.7 (4.3, 25.1) −1.8 94.5 0.69

IBD MI with CV 24.6 9.4 15.2 (5.1, 25.3) 1.7 94.8 0.77

5: Lack of efficacy, sensitivity
of mechanism

NRI 16.5 6.7 9.7 (1.1, 18.4) −35 75.4 0.59

DTI MI 26.6 10.5 16.1 (5.6, 26.5) 7.1 93.7 0.76

DTI MI with CV 24.4 9.6 14.8 (4.6, 24.9) −1.5 94.3 0.72

IBD MI 25.8 10.8 15.0 (4.6, 25.5) 0.4 94.3 0.68

IBD MI with CV 24.0 9.9 14.2 (4.0, 24.3) −5.5 93.6 0.67

6: Lack of efficacy and tolerability NRI 18.0 7.1 10.9 (2.0, 19.9) −27.1 83.8 0.67

DTI MI 26.3 10.6 15.7 (5.2, 26.2) 4.7 93.7 0.77

DTI MI with CV 24.4 9.7 14.7 (4.6, 24.9) −1.9 93.8 0.75

DTI MI with AE 26.5 11.0 15.5 (5.0, 26.0) 3.4 93.3 0.74

IBD MI 25.6 10.8 14.8 (4.4, 25.2) −1.2 93.0 0.69

IBD MI with CV 24.1 10.0 14.2 (4.0, 24.3) −5.5 93.8 0.69

IBD MI with AE 25.7 10.9 14.8 (4.3, 25.2) −1.5 93.2 0.69

NRI: Non-response imputation; DTI MI: Dichotomize then impute multiple imputation; IBD MI: Impute before dichotomizing multiple imputation; CV:
Correlated variable; AE: Adverse event status
1 Results are from a linear response profile with 30% data missing at random, N = 200. In fully observed data, % responders in Treatment A and B was
25.6 and 10.6, respectively for a difference of 15.0 and power = 0.80
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When dropout rates differed between groups (model 4),
NRI had type 1 error rates ranging from 0.16 to 0.31,
suggesting false positives are of concern.
The non-linear response profile demonstrated very

similar results overall, as shown in the Appendix.

Application to a clinical trial
We applied the above imputation approaches to data
adapted from a Phase III randomized, double-blind clinical

trial in patients with major depressive disorder. The trial
evaluated efficacy of duloxetine 40mg/d and 80mg/d
versus placebo and a comparator, paroxetine 20mg/d, to
treat emotional and physical symptoms in depressed
patients. [30] Details of the original trial design are reported
in Goldstein et al. [30] For the purpose of this study, we
considered a publicly available dataset modified from the
original trial data. [31] The trial included four parallel arms;
the modified dataset has two arms: the original placebo

Table 3 Comparison of simulated responder analysis results when 50% responses are missing using non-response imputation,
impute-before-dichotomizing and dichotomize-then-impute multiple imputation1

Dropout model Imputation
method

% Responders
Trt A

% Responders
Trt B

Difference in
proportions (95% CI)

% Bias Coverage of
the 95% CI

Power

1: Lack of efficacy NRI 12.8 4.8 8.0 (0.3, 15.7) − 46.8 55.6 0.52

DTI MI 27.5 11.2 16.3 (5.7, 26.9) 8.8 91.5 0.72

DTI MI with CV 24.2 9.7 14.5 (4.4, 24.6) −3.2 90.6 0.66

IBD MI 25.8 11.1 14.8 (4.3, 25.2) −1.5 94.1 0.59

IBD MI with CV 23.3 9.7 13.6 (3.5, 23.6) −9.6 92.9 0.56

2: Differing mechanism NRI 12.8 6.3 6.6 (−1.4, 14.6) − 56.2 45.5 0.37

DTI MI 27.5 10.9 16.6 (6.1, 27.2) 11.0 86.9 0.71

DTI MI with CV 24.6 9.8 14.8 (4.7, 25.0) − 1.2 88.7 0.65

IBD MI 25.9 11.1 14.8 (4.4, 25.3) −1.1 92.9 0.58

IBD MI with CV 23.6 9.9 13.7 (3.6, 23.8) −8.6 92.2 0.56

3: Differing mechanism, reversed NRI 13.9 4.8 9.0 (1.1, 16.9) − 39.8 66.5 0.62

DTI MI 26.7 11.0 15.7 (5.1, 26.2) 4.5 85.4 0.64

DTI MI with CV 23.9 9.7 14.2 (4.1, 24.2) −5.4 86.1 0.61

IBD MI 26.1 11.1 15.1 (4.6, 25.6) 0.7 92.0 0.58

IBD MI with CV 23.6 9.8 13.8 (3.7, 23.8) −8.1 91.1 0.55

4: Differential dropout rates NRI 18.3 1.8 16.5 (8.5, 24.4) 10.0 93.9 0.99

DTI MI 26.2 14.5 11.7 (0.9, 22.5) −21.8 77.5 0.48

DTI MI with CV 24.0 11.1 12.9 (2.7, 23.1) −13.8 84.1 0.58

IBD MI 25.7 11.8 13.9 (3.4, 24.5) −6.9 92.8 0.49

IBD MI with CV 23.8 9.4 14.4 (4.4, 24.4) −3.7 94.4 0.60

5: Lack of efficacy, sensitivity
of mechanism

NRI 13.7 5.6 8.1 (0.1, 16.1) − 45.9 59.9 0.53

DTI MI 26.9 10.7 16.2 (5.7, 26.7) 8.1 91.9 0.72

DTI MI with CV 24.2 9.5 14.7 (4.6, 24.8) −2.1 92.6 0.67

IBD MI 25.9 10.9 15.0 (4.5, 25.4) −0.2 94.1 0.62

IBD MI with CV 23.5 9.8 13.8 (3.7, 23.8) −8.1 93.6 0.60

6: Lack of efficacy and tolerability NRI 13.2 4.9 8.3 (0.5, 16.1) − 44.6 59.5 0.57

DTI MI 26.9 11.0 15.9 (5.4, 26.5) 6.1 91.3 0.68

DTI MI with CV 24.1 9.7 14.4 (4.3, 24.5) −4.0 91.2 0.65

DTI MI with AE 27.4 11.9 15.5 (4.8, 26.2) 3.4 90.1 0.63

IBD MI 25.8 11.1 14.7 (4.2, 25.2) −2.0 93.3 0.59

IBD MI with CV 23.5 9.8 13.6 (3.6, 23.7) −9.0 92.5 0.57

IBD MI with AE 26.0 11.4 14.6 (4.1, 25.1) −2.7 93.6 0.57

NRI: Non-response imputation; DTI MI: Dichotomize then impute multiple imputation; IBD MI: Impute before dichotomizing multiple imputation
1Results are from a linear response profile with 50% data missing at random, N = 200. In fully observed data, % responders in Treatment A and B was 25.6 and
10.6, respectively for a difference of 15.0 and power = 0.80
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arm and a “treatment” arm consisting of a random sample
of patients from the three active drug arms. At 6 weeks
post randomization, 75% of the patients remained in the
study. To further illustrate the effect of imputation choice,
we used a MAR mechanism (Dropout model 1) to identify
observations to omit so that 60% of patients have outcome
values at week 6. The outcome was the total score on the
17-item Hamilton depression rating scale (HAMD-17),

measured at baseline and weeks 1, 2, 4, and 6 after
randomization. Lower scores indicate less severity; negative
change scores indicate improvement. We conducted a
responder analysis using a meaningful change threshold of
6 points to assess the proportions of patients who im-
proved at 6 weeks post-baseline, as this threshold coincides
with common categories of depression severity, e.g., the dif-
ference between mild and moderate depression is 6 points.

Table 4 Comparison of Monte Carlo standard error, mean squared error, model and empirical standard error using non-response
imputation, impute-before-dichotomizing and dichotomize-then-impute multiple imputation1

Dropout model Imputation method MCSE MSE SEmod SEemp

1: Lack of efficacy NRI 0.12 40.84 4.46 4.65

DTI MI 0.13 28.94 5.99 5.31

DTI MI with CV 0.13 27.31 5.75 5.23

IBD MI 0.14 29.26 6.14 5.41

IBD MI with CV 0.13 28.27 5.84 5.25

2: Differing mechanism NRI 0.12 50.99 4.66 4.72

DTI MI 0.14 31.11 6.10 5.49

DTI MI with CV 0.13 29.10 5.84 5.39

IBD MI 0.14 30.03 6.14 5.48

IBD MI with CV 0.13 29.70 5.93 5.38

3: Differing mechanism, reversed NRI 0.12 35.34 4.60 4.72

DTI MI 0.14 31.63 6.03 5.60

DTI MI with CV 0.14 30.36 5.72 5.49

IBD MI 0.14 31.39 6.17 5.60

IBD MI with CV 0.14 30.30 5.95 5.45

4: Differential dropout rates NRI 0.12 24.27 4.67 4.76

DTI MI 0.14 31.26 6.00 5.59

DTI MI with CV 0.13 29.13 5.69 5.36

IBD MI 0.13 28.54 6.10 5.34

IBD MI with CV 0.13 27.13 5.79 5.20

5: Lack of efficacy, sensitivity of mechanism NRI 0.12 48.88 4.41 4.63

DTI MI 0.14 31.97 6.13 5.56

DTI MI with CV 0.14 29.59 5.89 5.44

IBD MI 0.14 31.04 6.23 5.57

IBD MI with CV 0.14 30.00 6.01 5.42

6: Lack of efficacy and tolerability NRI 0.12 39.14 4.58 4.75

DTI MI 0.14 30.73 6.00 5.50

DTI MI with CV 0.13 28.74 5.73 5.36

DTI MI with AE 0.14 32.73 5.84 5.70

IBD MI 0.14 31.44 5.94 5.61

IBD MI with CV 0.14 30.13 5.73 5.43

IBD MI with AE 0.14 31.43 5.91 5.60

MCSE: Monte Carlo standard error; MSE: Mean squared error; SEmod: Average standard error of the risk difference; SEemp: Empirical standard error of the risk
difference; NRI: Non-response imputation; DTI MI: Dichotomize then impute multiple imputation; IBD MI: Impute before dichotomizing multiple imputation; CV:
Correlated variable; AE: Adverse event status
1 Results are from a linear response profile with 30% data missing at random, N = 200. In fully observed data, % responders in Treatment A and B was 25.6 and
10.6, respectively for a difference of 15.0 and power = 0.80
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Case study results
At baseline N = 172 subjects (n = 84 in the treatment
group and n = 88 in the control group) had complete
HAMD-17 total scores. The difference in proportions
of responders at week 6 was 19.1% (p = 0.009), 21.9%
(p = 0.009) and 21.1% (p = 0.007) estimated using NRI,
IBD MI and DTI MI, respectively (Table 6). When the
number of patient dropouts was increased to 40%, the
difference in proportions was reduced from 19.1 to
13.1% (p = 0.064), remained similar at 21.9 and 22.6%
(p = 0.007), or increased from 21.1 to 24.6% (p = 0.002)
when using NRI, IBD MI and DTI MI, respectively,
compared to the original data. We repeated the random
sampling using dropout model 1 three times and saw
similar results. These results show that as missingness
increased, IBD estimates remained similar. NRI estimates
decreased (and were no longer able to detect statistically
significant differences) and DTI MI estimates increased
slightly. Using the IBD method, 56.3% of patients in the
treatment arm improved at least as much as 6 points in
the HAMD-17 depression scale compared to 36.3% of
those in the placebo arm for a between group difference
of responders of 21.9 (CI: [5.3, 36.6], p = 0.009).

Discussion
When continuous data are collected in longitudinal
trials with the ultimate interest in differences of a
binary response, imputing missing as non-response
produces positively and negatively biased estimates. Mul-
tiply imputing before dichotomization is often slightly

less biased than dichotomizing then imputing but both
methods perform well when 30% of the responses are
missing. When there are higher rates of missing outcomes,
dichotomizing before imputing produced estimates with
over 10% bias in three scenarios. When applied to real
trial data where the true difference in proportions is un-
known, the method of imputing prior to dichotomizing
produced similar estimates when both 25 and 40% of
observations at the endpoint were missing.
Literature addressing IBD and DTI has been contra-

dictory. One reason could be the choice in MI method. For
example, Demirtas used a saturated multinomial model to
impute the binary outcome. [16] While statistically sound,
this MI approach is not readily available in standard sta-
tistical software. Another study using the Markov chain
Monte Carlo (MCMC) method comparing IBD MI and
DTI MI prior to assessing binary outcomes longitudinally
via GEEs found an advantage to imputing before dichoto-
mizing, consistent with the work of Yoo. [17] One dis-
tinguishing feature of our study was the use of the
continuous Yj’s as auxiliary variables in the imputation
model making the MAR assumption more likely if they are
predictive of missingness, the outcome, or both. [14, 25]
The use of auxiliary variables in addition to the out-

comes from interim timepoints in the imputation models
provided limited usefulness. It is likely that the correlation
between CV and the outcome was not strong enough to
systematically increase precision. Further, adverse events
were not related to the outcome after conditioning on the
treatment group. The use of auxiliary variables are ge-
nerally useful to reduce the standard error when highly

Table 5 Type 1 error rate for non-response imputation, dichotomizing before multiply imputing, and multiply imputing before
dichotomizing when missing =30%1

Null response profile 1 Null response profile 2

Dropout model 1 Dropout model 4 Dropout model 1 Dropout model 4

NRI 0.06 0.16 0.05 0.31

DTI MI 0.03 0.04 0.03 0.04

DTI MI with CV 0.03 0.04 0.03 0.04

IBD MI 0.02 0.02 0.03 0.03

IBD MI with CV 0.03 0.02 0.03 0.04

NRI: Non-response imputation; DTI MI: Dichotomize then impute multiple imputation; IBD MI: Impute before dichotomizing multiple imputation
1Using Dropout model 1 and 4
2 Null response profile 1: =(65, 65, 65, 65)′; Null response profile 2: μA = (65, 67, 69, 71)′ and μB = (65, 63, 68, 71)′

Table 6 Comparison of imputation results for a clinical trial example. Treatment arm: n = 84; Placebo arm: n = 88

% Missing NR imputation responders* IBD imputation responders* DTI imputation responders*

Arm % Difference % Difference % (95% CI) Difference

25% Drug 46.4 19.1
(p = 0.009)

56.3 (45.9, 68.7) 21.9 (5.3, 36.6)
(p = 0.009)

56.6 (45.7, 67.5) 21.1 (5.8, 36.5)
(p = 0.007)

Placebo 27.3 36.3 (25.7, 47.0) 35.5 (24.6, 46.3)

40% Drug 38.1 13.1
(p = 0.064)

60.5 (48.2, 72.8) 22.6 (6.2, 39.1)
(p = 0.007)

59.2 (48.1, 70.3) 24.6 (8.9, 40.5)
(p = 0.002)

Placebo 25.0 37.8 (26.2, 49.5) 34.6 (23.5, 45.7)

*Response is defined as improvement ≥6 on the HAMD-17 total score from baseline to week 6
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correlated with the outcome or reduce bias when corre-
lated with the outcome and missingness. [22]
It is unclear why NRI is a recommended strategy in

light of the highly biased estimates produced in this
simulation and others. [7, 8, 32, 33] Practitioners may
erroneously believe that NRI always produces conserva-
tive results. Indeed, the NRI can only underestimate
proportions of responders in treatment groups. However,
when the difference in proportions is of interest, which
is usually the case, using NRI when there is differential
dropout can yield erratic results including positively
biased estimates as shown in model 4. [7, 26] Further
warnings include those related to composite endpoints
[5, 6] and single imputation methods which under-
estimate the uncertainty of the missing data in the form
of overly precise standard errors. [13, 34]
This study aimed to determine the optimal approach

to imputing missing observations for responder analysis
when a continuous variable is dichotomized. However, it
is impossible to simulate all scenarios that could occur
in real settings. We simulated outcomes under a normal
distribution which may not always happen. For example,
the baseline measure will not be normally distributed if
the measure is also an inclusion criterion and subjects
must meet a cutoff value. Many outcomes, such as
PROs, are measured ordinally and imputing a conti-
nuous version via a linear regression could produce
values not possible on the original scale. Data here were
simulated to be MAR yet in real settings missing may be
MNAR or a mixture of mechanisms.

Conclusion
We compared imputation methods for missing outcomes
in a responder analysis. MI approaches using the longi-
tudinally measured continuous outcome as auxiliary
variables performed better than imputing missing ob-
servations as failures. Differences in proportions of
responders between arms, bias, coverage probabilities
of the 95% confidence interval, and other perfor-
mance measures were similar for both MI approaches
with moderate rates of missingness. With high rates
of missingness, imputing the continuous outcome
prior to dichotomizing was less biased and provided
better coverage probability than imputing the already
transformed response. Trialists conducting responder
analysis by dichotomizing a continuous outcome can
benefit from these findings.
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