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Abstract

Mental illness is increasingly recognized as both a significant cost to society and a significant area of opportunity for biological
breakthrough. As -omics and imaging technologies enable researchers to probe molecular and physiological underpinnings
of multiple diseases, opportunities arise to explore the biological basis for behavioral health and disease. From individual
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investigators to large international consortia, researchers have generated rich data sets in the area of mental health, including
genomic, transcriptomic, metabolomic, proteomic, clinical and imaging resources. General data repositories such as the Gene
Expression Omnibus (GEO) and Database of Genotypes and Phenotypes (dbGaP) and mental health (MH)-specific initiatives,
such as the Psychiatric Genomics Consortium, MH Research Network and PsychENCODE represent a wealth of information
yet to be gleaned. At the same time, novel approaches to integrate and analyze data sets are enabling important discoveries
in the area of mental and behavioral health. This review will discuss and catalog into an organizing framework the increas-
ingly diverse set of MH data resources available, using schizophrenia as a focus area, and will describe novel and integrative
approaches to molecular biomarker discovery that make use of mental health data.

Key words: translational bioinformatics; mental health; open access; biomarker discovery

Introduction

In 2013, mental illness was highly prevalent and estimated as
incurring the highest financial burden among medical condi-
tions in the United States, with spending estimated at $201 bil-
lion [1]. In light of the considerable cost to individuals and
society, mental illness represents a compelling opportunity for
discovery and improved patient care. As our ability to untangle
biological mechanisms of disease grows, so too does our ability
to leverage our richer understanding for better diagnoses, inter-
ventions and outcomes. In many areas of medicine, biomarker
discovery is causing a shift toward biomarker-based diagnoses
that promise better targeted and thus more effective therapies.
Precision medicine approaches incorporating molecular and
imaging biomarkers into therapeutic decision-making are
emerging. Publicly available ‘big data’ resources like TCGA (The
Cancer Genome Atlas) are being used and reused in numerous
ways, with thousands of downstream citations [2]. Despite the
magnitude of opportunity, translation has been slower in men-
tal health (MH) than in other areas of health care [3]. In this
article, we first describe the motivation as well as some chal-
lenges for the use of biomarkers in MH. We address one major
challenge—findability of relevant resources—by providing a cat-
alog of relevant data resources for biomarker discovery in MH,
and a framework for their organization. Finally, we give an over-
view of existing approaches to biomarker discovery using pub-
licly available data.

An exploration of biomarker in MH is especially timely in light
of recent announcements from the National Institute of Mental
Health (NIMH) exhorting a renewed focus on causal models of
disease [4, 5]. Over the past 7 years, NIMH awards have shifted
away from clinical research and trials and toward mechanistic
biological understanding, coinciding with the NIMH’s launch of
Research Domain Criteria (RDoC) in 2011, a framework emphasiz-
ing research into mechanisms (rather than clinically observable
signs and symptoms) of mental illness [6].

Despite ample motivation, data reuse in MH research remains
sluggish even in the presence of available biological resources
and an emphasis on data sharing [7]. One important obstacle is
the surprising difficulty in identifying available resources, related
at least in part to an absence of a systematic approach to catalog-
ing available resources. We seek to propose and use a systematic
approach to organizing relevant resources. We then catalog data
sets pertinent to MH biomarkers to facilitate secondary use of
these data for computational biomarker discovery.

In addition to MH-focused resources and general resources
that include MH conditions, a number of rich resources exist for
specific MH disorders. However, inclusion of resources for every
MH condition would far exceed space limitations for a single
review. Therefore, in addition to general MH resources that
span multiple disorders, we extend resource cataloging to a

single MH disorder, schizophrenia (SCZ) and focus our bio-
marker discovery literature review on that disorder. SCZ is
selected because it is one of the most studied MH disorders,
puts heavy burden on the community and co-authors have con-
ducted both large data annotations and various analyses in this
area. It is also a prime example of a diagnostic concept well-
recognized to be problematic and in need of updating [8, 9].
Biological exploration, biomarker discovery and elucidation of
underlying mechanisms are key to addressing this issue. We
have also limited our catalog to resources that are publicly
available. Private or proprietary data sets or tools that are nei-
ther intended nor accessible for secondary research by inde-
pendent researchers are beyond the scope of this review.

The mind-biology problem: a challenge for
another day

The mind-body problem—What is the relationship between the
mind (feelings, thoughts, beliefs) and the physical realm (matter,
atoms, neurons)?—is commonly recognized in philosophy [10].
We stipulate, for the purposes of this discussion, that psychology
becomes neurobiology once a biological mechanism is under-
stood. As we gain insights into the neural basis of normal and
abnormal behavior, syndromes historically described in terms of
mental constructs can be described in terms of biological con-
structs. While we do not seek to tackle the philosophical question
of whether all mental constructs can be adequately described in
biological terms, we do assert that understanding biological
mechanisms in MH is valuable, is likely to expand and will bene-
fit from integrative research connecting behavior to biomarkers.

RDoC: ‘Outcomes to Causes and Back’

MH disorders typically include a spectrum of symptoms that
affect emotions, thoughts and behaviors [4]. Moreover, two peo-
ple can be diagnosed with a single disorder such as SCZ, despite
having no overlapping symptoms. The NIMH RDoC initiative is
an attempt to ‘develop, for research purposes, new ways of clas-
sifying mental disorders based on dimensions of observable
behavior and neurobiological measures’ [4, 11]. The goal is to
generate categories stemming from basic behavioral neuro-
science, rather than starting with a highly heterogeneous illness
definition and then seeking its neurobiological underpinnings.
To this end, RDoC makes no reference to current DSM-based
(Diagnostic and Statistical Manual of Mental Disorders) classifi-
cation but instead proposes an alternative organizing scheme
for linking behavior to underlying mechanisms. The RDoC
approach is directly relevant to MH biomarkers because it
aims to identify specific elements, such as mutations, genes,
molecules, cells, pathways, physiological measures or behaviors
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associated with specific mental constructs across different dis-
orders [3, 11].

Data, like life, is not always FAIR (Findable,
Accessible, Interoperable, Reusable)

One of the expected and desirable results of the NIMH funding
shift has been the generation of large biological data sets rele-
vant to MH that are expected to be shared and reused.
Recognizing the urgent need to improve infrastructure around
data discoverability and reuse in the big data era, a group of
stakeholders from academia, industry, funding organizations
and publishers came together to design and endorse a set of
measurable principles to act as guidelines for best practices in
data sharing [12]. The resulting framework is known as FAIR
principles—Findable, Accessible, Interoperable, Reusable. FAIR
principles put particular emphasis on enhancing the ability for
computers to find and use existing data. Findable refers to
whether a researcher who would want to use the data set in
question is able to discover that the data exist. This requires
clear, persistent and searchable metadata. Accessible refers to
whether the data are available to be downloaded. Are they
retrievable through a standard communications protocol that
enables authentication and authorization? Interoperable con-
siders whether appropriate data and metadata standards are
used for knowledge representation. Reusable addresses
whether the data and provenance are represented in sufficient
detail, with clear guidelines for usage.

While some researchers express concerns about reuse of
clinical data in particular [13], many in the scientific community
see significant benefit to be gained by data sharing and reuse
[14]. The National Institutes of Health (NIH) has launched a Data
Commons initiative to establish a virtual environment to facili-
tate the use, interoperability and discoverability of shared digi-
tal objects used for research [15]. This review focuses on those
resources, data sets and publications that adhere to the spirit of
the FAIR principles [12].

Biomarkers in mental health: What, why and
how?
What is a ‘biomarker’ anyway?

A biomarker traditionally is defined as ‘a characteristic that is
objectively measured and evaluated as an indicator of normal

biological processes, pathogenic processes, or pharmacological
response’ [16]. Biomarkers can be generally classified as (1) diag-
nostic or trait markers that indicate the presence of a disease,
(2) prognostic markers that indicate the likely course of a dis-
ease or (3) theranostic markers that predict how an individual is
likely to respond to a certain treatment [17, 18]. As yet, no clini-
cally actionable biomarkers have been approved for use in MH
[11]. However, there is increasing recognition of the biological
underpinnings of MH, the importance of biomarker discovery
and the significant opportunity that MH poses in this regard. To
this end, substantial research efforts have been devoted to bio-
marker discovery, and a number of publications describe prom-
ising leads [19–24]. Importantly, many of these studies have
made their data publicly available to varying degrees, enabling
secondary research and innovative approaches to analysis, in

some cases through novel, integrative methods that could not
have been done with the original data alone.

Biomarker types

Physiological biomarkers span a wide range of modalities and
data types and may be categorized as either microscopic or
macroscopic in scale (Figure 1).

Micro-scale biomarkers: all things omics
Micro-scale biomarkers refer to biomarkers at the molecular
level. The various and ever-increasing number of ‘-omic’ data-
based biomarkers has been documented elsewhere [25, 26].
Genomic biomarkers generally refer to DNA sequence, including
single-nucleotide variations (SNVs), copy number variations
(CNVs), insertions, deletions, structural variants, etc.
Transcriptomics refers to RNA expression, including both cod-
ing and noncoding RNA. Epigenomics refers to features of DNA
other than the sequence itself, e.g. methylation, histone modifi-
cation, etc. Proteomics refers to the presence, quantity and
posttranslational modification state of proteins and peptides.
Metabolomics refers to identification, quantification and ratios
of various metabolites generated through the organism’s
metabolism. Genomic and transcriptomic biomarkers have
arguably received the most attention in the past decade, in part
because they have become relatively low hanging fruit: microar-
rays and sequencing technologies make it fairly straightforward
and increasingly inexpensive to make observations across the
entire genome and transcriptome.

Figure 1. Overview of micro- and macro-level biomarkers. indels, small insertions/deletions; SV, structural variants.
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Macro-scale biomarkers: tissue and system level
Macro-scale biomarkers are observed at the tissue or system-
level, generally through imaging technologies. Advances in
brain imaging technology over past 20–30 years have enabled
application to MH and illness. Commonly used imaging modal-
ities include magnetic resonance imaging (MRI), magnetic reso-
nance spectroscopy, positron-emission tomography (PET),
single-photon emission computed tomography and diffusion
tensor imaging (DTI). Other methods of neuroimaging involve
recording of electrical currents or magnetic fields, for example
electroencephalography (EEG) and magnetoencephalography
(MEG). The additional biomarker types listed below are all
macro-scale biomarkers.

Structural biomarkers of the brain
Structural imaging provides qualitative and quantitative infor-
mation about the brain that describes the shape, size and integ-
rity of gray and white matter structures in the brain. Typically,
morphometric techniques measure the volume or shape of gray
matter structures and white matter tracts. Structural MRI is
used for identifying density or volume of brain matter, and DTI
provides images of anatomical pathways and circuits especially
of white matter [27].

Functional biomarkers of the brain
Whereas structural imaging provides static anatomical infor-
mation, functional imaging provides dynamic physiological
information [28]. Functional MRI (fMRI) and PET measure local-
ized changes in cerebral blood flow related to neural activity,
while EEG and MEG measure electrical currents and magnetic
fields that vary with function.

The connectome: a ‘wiring diagram’ for the brain
The brain connectome defines the connectivity architecture
and network organization of the neural components of the
brain in terms of both structure and function. The connectome
is represented as a large graph with nodes (brain regions) and
edges (pathways) and has been enabled by advances in neuroi-
maging including structural MRI, fMRI and diffusion MRI [29].
Connectivity analysis based on graph theory is used to explore
variations in the type and strength of connectivity between
brain regions. Current evidence demonstrates alterations in
both large-scale network and local network connectivity in
mental health, and these alterations define distinct clinical and
cognitive phenotypes [30].

Biomarker data resources
A framework for resource classification

A surprising challenge awaits a novice attempting integrative
analyses: simply identifying what resources are available, how
they relate to each other and what each one can and cannot
provide is surprisingly difficult. In writing this review, we ini-
tially set out to catalog a list of publicly available data resources
relevant to mental health. In the course of due diligence to iden-
tify these resources, certain categories and attributes emerged.
Thus, our effort to catalog available resources also informed the
creation of a candidate framework for classifying and organiz-
ing the different resource types.

Data resources can be classified as one (or sometimes more
than one) of four high-level categories: (1) Organizational entity;
(2) Initiative; (3) Platform; or (4) Data set (Figure 2). Examples of
organizational entities include federal agencies, such as the

NIMH, and nonprofit organizations, such as the Allen Institute
for Brain Science [31]. Initiatives are activities or groups organ-
ized around activities aimed at creating, collecting or cataloging
data for research. Examples include PsychENCODE, BioCADDIE
and the Psychiatric Genomics Consortium (PGC) [32–34]. Data
sharing platforms are Web-based applications that enable a
researcher to search for data sets using metadata and to down-
load the data. Examples include Sage Bionetworks’ Synapse
platform or the Gene Expression Omnibus (GEO) [35, 36]. Finally,
specific data sets may include data resulting from experimental
assays, e.g. various data sets available in GEO, or curated knowl-
edge bases like SZGR [28]. As shown in Figure 2, the relation-
ships between different categories do not form a simple
hierarchy but are instead are many-to-many. An initiative may
be associated with one or more organizational entities, whether
through funding or logistical or administrative support, while
an organizational entity may be associated with one or more
initiatives. A given organizational entity or initiative may rely
on one or more platforms. A platform may contain (or point to)
one or more data sets from one or more initiatives or organiza-
tional entities. A given data set is generally stored in one plat-
form, but may also be accessed through other platforms,
whether because it is replicated there or because some plat-
forms serve as portals to federated data sets. These categories
are not strictly mutually exclusive, and some resources blur the
boundaries between them. For example, it can be hard to differ-
entiate between an organization and an initiative. As a general
rule, if an organization was created primarily for the purpose of
creating or collecting data, we consider it an initiative. In addi-
tion, a curated knowledge base may import and redistribute
some data sets on which it is based making it both a platform
and a data set.

With respect to platforms, several attributes are especially
salient. Some platforms such as Open fMRI focus on a single
data type. Other platforms such as Synapse are meant to be
general-purpose. In addition to storing different types of data,
Synapse is disease-agnostic, storing data from many different
diseases and medical domains. Other platforms, for example
the Stanley Neuropathology Integrative Database focuses on a
specific set of mental health conditions. Figure 3 shows where
major data-sharing platforms relevant to mental health fall

Figure 2. A framework for classification of data-related resources. Nodes denote

resource types (Entities, Initiatives, Platforms and Data sets), and edges show

the many-to-many relationships among them.
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along the spectra of data-type specificity and disease focus.
Some platforms, e.g. DataMed developed by the bioCADDIE proj-
ect team for the NIH BD2K Data Discovery Index (DDI), are
essentially portals to a federated collection of data sets that
reside in still other platforms. Finally, some resources solely
house data or information, while others are associated with bio-
specimens that may be available for generating additional data.

Resource identification

Because the topic of data for biomarker discovery in mental
health is so broad, a simple PubMed query was not feasible. (For
example, a query for ‘[mental health OR behavioral health OR
psychiatric] AND [biomarker OR genomic OR imaging] AND
data’ yields >25 000 hits.) A preliminary list of resources was
established based on co-authors’ prior knowledge in the
domains of open data, FAIR principles and MH. The list was
then augmented through a series of searches in PubMed and
Google Scholar using combinations and variations of the follow-
ing terms: mental health, SCZ, open data, database, imaging,
genomic, proteomic, metabolomic and biomarker. In addition to
direct hits yielded by these terms, PubMed’s ‘similar articles’
provided valuable additional results. Finally, a search in
BioCADDIE’s DataMed data search engine yielded additional
sources. Inclusion criteria for resources were: (1) Scope includes
one or more types of biomarker data (beyond clinical phenotype
data); (2) Data accessibility, or at minimum some indication of
how to request the data; and (3) Coverage of MH phenotypes, or
in the case of disease-specific resources, SCZ. The resulting list
of data resources and their metadata is provided in Table 1.
Figure 4 gives a high-level landscape overview for the
MH-specific organizational entities, initiatives and platforms
and how they relate to each other.

A number of potentially useful resources were deemed out
of scope for this review because they lacked either -omics data
(e.g. National Database for Clinical Trials Related to Mental
Illness, NDCT, Yale Open Data Access Project YODA [37]), or psy-
chiatric phenotype data (Exome Aggregation Consortium, ExAC
[38], Genotype-Tissue Expression (GTEx) project [39]).

Data sets

Genomic data
The two main data repositories for gene expression or tran-
scriptomic data are GEO and ArrayExpress (AE). GEO is an

international public repository developed by the US NIH’s
National Center for Biotechnology Informatics (NCBI) that
archives and freely distributes microarray, next-generation
sequencing and other high-throughput functional genomics
data submitted by the research community [35]. AE is the
Europe-based repository, hosted by the European
Bioinformatics Institute within the European Molecular Biology
Laboratory (EMBL-EBI). Data are imported from GEO into AE on a
weekly basis making GEO a subset of AE. To be uploaded to
these data repositories, data sets need to be in a specific format,
such as GEOarchive, SOFT or MINiM. They must also include
appropriate metadata about the clinical and experimental data.
Both AE and GEO enable programmatic access to data via tools
like R/Bioconductor. Data sets in GEO therefore are able to sat-
isfy the F (findable) and R (reusable) FAIR criteria. Gene expres-
sion data in GEO are generally considered to be de-identified,
and are thus freely available for public use.

There has been an increase in genomic profiling of data
related to MH in the last few years. Taking SCZ as an example, a
search in AE for published SCZ data sets shows 92 data sets in
humans (Supplementary Table S1). Only two data sets were
published in 2007 as compared with 11 data sets published in
2016. Until 2010, the majority of published data sets concerned
transcriptome profiling. In 2012 and 2013, other genomic meth-
ods had gained popularity including methylation and next-
generation sequencing technologies, exploration of noncoding
regions and gene expression and splicing. Since 2014, many
studies have been published using newer genomic platforms
including chromatin immunoprecipitation sequencing, RNA
sequencing (RNA-seq) and microRNA-seq, amounting to an
approximate 15 published studies in 2014, 13 studies in 2015
and 11 studies in 2016. As of July 2017, we found that of the 92
data sets, 80 had been cited in one or more subsequent publica-
tions. Using Google Scholar queries on data set accession identi-
fiers, it was determined that these 80 publications have been
cited 6710 times (Supplementary Table S1). Note that citation
does not necessarily imply analysis: many publications called
attention to the existence of a data set without performing any
additional analysis.

NCBI’s database of Genotypes and Phenotypes (dbGaP) con-
tains archived data and results from studies that have investi-
gated the association between genotype and phenotype in
Humans [40]. The European equivalent is the EGA (European
Genome-phenome Archive) [41]. As with the gene expression
repositories, data sets need to be in a specific format along with
minimal metadata to be submitted into dbGaP or EGA. Note that
these repositories contain sequencing data that are unique to the
individuals from whom they were derived, and thus cannot be
considered completely de-identified. Users must therefore sub-
mit a data request form detailing the goals of their project and
how they intend to use the data and observe data use policy for
approval by a data request committee. This approach has impli-
cations for meeting the accessibility aspect of FAIR criteria but
represents a balance between data accessibility and data privacy
for research participants. dbGaP contains a number of MH-
related data sets, including SCZ. Of the 154 studies returned
based on a query for the term ‘schizophrenia’, only a small subset
was targeted at SCZ as determined by manual inspection. In this
case, findability is hampered by the number of false positives
(Table 2). The vast majority of the 24 studies returned in a search
for ‘schizophrenia’ in EGA are either focused on SCZ or have
some number of samples included with a SCZ diagnosis.

Figure 3. Visual representation of data platform attributes. See Table 1 for

abbreviations.
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Table 1. Open data resources for biomarker discovery in mental health, particularly in schizophrenia

Resource Type URL Notes

Enhancing Neuro Imaging
Genetics Through Meta
Analysis (ENIGMA)

O http://enigma.ini.usc.edu/ongoing/
enigma-schizophrenia-working-
group/

The ENIGMA Network brings together researchers in imag-
ing genomics to understand brain structure, function and
disease, based on brain imaging and genetic data.
Includes Schizophrenia Working Group (ENIGMA-SCZ)

NIMH O https://www.nimh.nih.gov/index.
shtml

The institute within the NIH that focuses on mental health
and disease. The NIMH is one of 27 institutes and centers
within NIH, which is part of the US Department of Health
and Human Services

Open Translational Science In
Schizophrenia (OPTICS)

O https://sites.google.com/site/optics
schizophrenia/home

A time-limited proof of concept pilot project designed to
provide a forum for translational science based on
Janssen clinical trial data made available to qualified
investigators

Stanley Medical Research
Institute (SMRI)

O http://www.stanleyresearch.org/ A nonprofit organization supporting research on the causes
of, and treatments for, SCZ and bipolar disorder

Mental Health Research
Network (MHRN)

O http://hcsrn.org/mhrn Consortium of 13 health system research centers dedicated
to improving patient mental health through research,
practice and policy. Supported by a cooperative agree-
ment from the NIMH. The MHRN conducts pragmatic
research in health systems serving over 12 million
patients

Common Mind Consortium I http://commonmind.org Public–private partnership to generate and analyze large-
scale genomic data across several brain regions from
human subjects with neuropsychiatric disease and to
make these data and the associated analytical results
broadly available to qualified investigators

Human Connectome Project
(HCP)

I http://www.humanconnectome.org/ Large NIH-funded project for integrating genomics, behav-
ior and brain imaging. Currently, high-resolution imaging
data are available on 1200 individuals. Primary modal-
ities measure brain activity (resting state fMRI and task-
evoked fMRI), white matter integrity (diffusion imaging
and T2 FLAIR) and oscillatory brain activity (EEG and)

NIMH Human Genetics
Initiative

I https://www.nimhgenetics.org/nimh_
human_genetics_initiative/

Intended to establish a national resource of clinical and
diagnostic information and immortalized cell lines from
individuals with SCZ, bipolar disorder or Alzheimer’s dis-
ease and their relatives, available to qualified investiga-
tors for research on the genetic basis of these disorders

PsychENCODE I https://www.synapse.org//#! Synapse:
syn4921369/wiki/235539

Funded by the NIMH with the goal of accelerating discovery
of noncoding functional genomic elements in the human
brain and elucidating their role in the molecular patho-
physiology of psychiatric disorders

Stanley Neuropathology
Consortium (SNC)

I http://www.stanleyresearch.org/
brain-research/neuropathology-
consortium/

A collection of 60 brains, consisting of 15 each diagnosed
with SCZ, bipolar disorder or major depression, and unaf-
fected controls. Samples may be requested for research
purposed. Associated data are available in the SNC
Integrative Database (SNCID)—see below

Psychiatrics Genomics
Consortium (PGC)

I http://www.med.unc.edu/pgc Founded in 2007, the PGC includes over 800 investigators
from 38 countries with the goal of conducting meta- and
mega-analyses of genomic data for psychiatric disorders.
The initial focus was on autism, attention-deficit hyper-
activity disorder, bipolar disorder, major depressive dis-
order and SCZ. More recently, the scope has expanded to
other conditions and other types of genetic variation
beyond SNVs

Neuroscience Information
Framework (NIF)

I/P https://neuinfo.org/ An NIH-funded framework for identifying, locating, relat-
ing, accessing, integrating and analyzing information
from the neuroscience research enterprise. NIF has come
to refer to both this initiative and the set of tools and
platforms that make up that framework including the
registry of electronic resources and the discovery portal
for searching those resources. NIF includes >4500 curated
resources and access to> 100 databases

Continued
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https://www.nimhgenetics.org/nimh_human_genetics_initiative/
https://www.synapse.org//#!
http://www.stanleyresearch.org/brain-research/neuropathology-consortium/
http://www.stanleyresearch.org/brain-research/neuropathology-consortium/
http://www.stanleyresearch.org/brain-research/neuropathology-consortium/
http://www.med.unc.edu/pgc
https://neuinfo.org/


Table 1. (Continued)

Resource Type URL Notes

Allen Brain Atlas/Data Portal I/P http://human.brain-map.org/ The Allen Institute for Brain Science is dedicated to under-
standing how the human brain works in health and dis-
ease. The Allen Human Brain Atlas integrates anatomic
and genomic information across the brain. Data modal-
ities include MRI, DTI, histology and gene expression
data derived from both microarray and in situ hybridiza-
tion (ISH) approaches. Microarray data are spatially
mapped to the MRI. Complete microarray and RNA-seq
data are available for six human brains. ISH data are
available for �50 SCZ brains

NIMH Repository and
Genomics Resource (RGR)

P https://www.nimhgenetics.org/avail
able_data/schizophrenia/

Includes 100þ studies, including CommonMind,
PsychENCODE. Formerly the Center for Collaborative
Genomic Studies on Mental Disorders, the RGR was
established in 1998 through the NIMH Human Genetics
Initiative to leverage and increase the value of human
genetic samples and data produced through NIMH-
funded research. It contains a collection of> 150 000
well-characterized, high-quality patient and control sam-
ples from patients with a range of mental disorders. The
RGR’s Biologic Core and a Data Management Core are
external to NIH

Function Biomedical
Informatics Research
Network Data Repository
(FBIRN DR)

P fbirnbdr.nbirn.net: 8080 (BROKEN) FBIRN was initially focused on assessing major sources of
variation of fMRI data generated across different scan-
ners. The FBIRN Phase 1 data set consists of a traveling
subject study of five healthy subjects, each scanned on 10
different 1.5 to 4 T scanners. The FBIRN Phase 2 and
Phase 3 data sets consist of subjects with SCZ or schizoaf-
fective disorder along with healthy comparison subjects
scanned at multiple sites. The BIRN Data Repository
(BDR) includes imaging, clinical, cognitive and physiolog-
ical data

OpenNeuro (previously
OpenfMRI)

P https://openneuro.org/(https://open
fmri.org/)

A neuroimaging repository to enable reproducible analysis
and data sharing. Started in 2010, it initially focused only
on task-based MRI, but is now open to all forms of neuroi-
maging data, reflected in the name transition from
OpenfMRI to OpenNeuro. Data are anonymized before
distribution to protect the confidentiality of participants
and distributed using a Public Domain license

Research Domain Criteria
Database (RDoC DB)

P https://data-archive.nimh.nih.gov/
rdocdb/

A data repository for the harmonization and sharing of
research data related to the RDoC initiative and mental
health research more generally. The actual platform uses
software designed to host the NIH’s National Database
for Autism Research (NDAR)

SchizConnect P http://schizconnect.org/ Federated access to several neuroimaging databases with
images acquired on SCZ subjects. Data sources include
FBIRN, NUSDAST, COINS and MCIC (maintained by the
Mental Illness and Neuroscience Discovery Institute, now
the Mind Research Network). More than 1100 subjects
with >1000 have imaging data, including resting state
fMRI, task-related fMRI, structural and diffusion imaging

SNCID P http://sncid.stanleyresearch.org/ Web-based tool for exploring neuropathological traits, gene
expression and associated biological processes in psychi-
atric disorders generated by the SNC within the SMRI

Australian Schizophrenia
Research Bank

P http://www.schizophreniaresearch.
org.au/bank/

A research database and storage facility that links clinical
and neuropsychological information, blood samples and
structural and fMRI brain scans from people with SCZ
and healthy nonpsychiatric controls, and currently has
data on �900 cases and 900 controls

Internet Brain Volume
Database (IBVD)

P http://ibvd.virtualbrain.org/ Centered around publications as the central data structure,
IBVD is a Web-based searchable database of brain neuro-
anatomic volumetric observations that enables electronic
access to the results in the published literature

Continued
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Proteomic and metabolomic data sets
EBI’s Metabolights and NCBI’s Metabolomics Workbench (MW)
are two major metabolomics data repositories. Metabolights
has no SCZ data sets; MW has one but data are not

downloadable. A limited number of data sets appear to be avail-
able for other mental health phenotypes such as Alzheimer’s
disease and autism spectrum disorder. PRIDE (PRoteomics
IDEntifications), the leading proteomics data repository, has

Table 1. (Continued)

Resource Type URL Notes

dbGap P https://www.ncbi.nlm.nih.gov/gap Developed by the NIH’s NCBI to archive and distribute the
data and results from studies that have investigated the
interaction of genotype and phenotype. While the focus
is on genomic data, other data types are included as well,
for example metabolomic data and laboratory values

Metabolights P http://www.ebi.ac.uk/metabolights/ A database for Metabolomics experiments and derived
information. Metabolights is the slightly more estab-
lished European counterpart to the NIH’s MW and the
recommended metabolomics repository for a number of
top journals

DataMed P http://datamed.org/ Data search engine portal to enable users to search for data
across different repositories developed for the NIH BD2K
DDI by the bioCADDIE project team. The initial prototype
release (v2.0) features a set of data repositories selected
by the bioCADDIE team, with a form to suggest additional
repositories for inclusion

Metabolomics Workbench
(MW)

P http://www.metabolomicsworkbench.
org/

A repository for metabolomics data and metadata, MW pro-
vides analysis tools and access to metabolite standards,
protocols, tutorials and training

PRIDE P https://www.ebi.ac.uk/pride/archive/ A centralized, standards compliant, public data repository
for proteomics data, including protein and peptide identi-
fications, posttranslational modifications and supporting
spectral evidence. Most of the data sets related to mental
health disorders in PRIDE are derived from animal
models

Synapse P https://www.synapse.org/ Sage Bionetworks’ software platform for data sharing and
provenance tracking. Synapse enables researchers to
carry out, track and communicate research in real time
and enables co-location of scientific content (data, code,
results) and narrative descriptions of that work. The plat-
form is agnostic regarding biomedical domain or data
type and hosts a number of different file types and proj-
ects funded by a number of different sources

GEO P https://www.ncbi.nlm.nih.gov/geo/ An international public repository developed by the NIH
NCBI that archives and freely distributes microarray,
next-generation sequencing and other high-throughput
functional genomics data submitted by the research
community

AE P https://www.ebi.ac.uk/arrayexpress/ The European counterpart to GEO. AE is an archive of func-
tional genomics data from high-throughput functional
genomics experiments. A subset of experiments is
imported from GEO, while others are submitted directly

GEMMA P http://www.chibi.ubc.ca/Gemma/ Gemma is a website, database and a set of tools for the
meta-analysis, re-use and sharing of genomics data, cur-
rently primarily targeted at the analysis of gene expres-
sion profiles

OmicsDI P http://www.omicsdi.org Enables data set discovery across omics data resources
spanning eight international repositories, including both
open and controlled access data resources. The resource
provides key metadata for each data set and uses this
metadata to enable search capabilities and identification
of related data sets. OmicsDI helps researchers to idenitfy
groups of related, multi-omics data sets across
repositories

Note: Type: O, organizational entity; I, initiative; P, platform.

Translational bioinformatics in mental health | 849

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/20/3/842/4662948 by Arizona H

ealth Sciences Library user on 30 August 2019

https://www.ncbi.nlm.nih.gov/gap
http://www.ebi.ac.uk/metabolights/
http://datamed.org/
http://www.metabolomicsworkbench.org/
http://www.metabolomicsworkbench.org/
https://www.ebi.ac.uk/pride/archive/
https://www.synapse.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
http://www.chibi.ubc.ca/Gemma/
http://www.omicsdi.org


Figure 4. Overview of landscape of organizational entities, initiatives and data sharing platforms.

Table 2. SCZ data sets in dbGaP

Data set ID Name # Participants Platform Publication
(PMIDs)

Citations Data type

phs000979.v1.p1
(PRJNA293910)

Gene Expression in
Postmortem DLPFC and
Hippocampus from
Schizophrenia and Mood
Disorders

914 HumanHap650Yv3.0,
Human1M-Duov3_B,
Human HT-12
Expression Bead Ch

28070120 [4] SNP array,
mRNA
expression

phs000473.v2.p2
(PRJNA157243,
PRJNA94281)

Sweden-Schizophrenia
Population-Based Case-
Control Exome Sequencing

12 380 SureSelect Human All
Exon v.1 Kit,
SureSelect Human All
Exon v.

22641211 [15] WES

phs000738.v1.p1 Exome Sequencing in
Schizophrenia Families

216 SeqCap EZ Human
Exome Library v2.0

23911319,
24317315

[1] WES

phs000687.v1.p1 Bulgarian Schizophrenia Trio
Sequencing Study

1826 SureSelect Human All
Exon v.2 Kit,
SureSelect Human All
Exon v3-50Mb,
SeqCap EZ Human
Exome Library v2.0

23040492,
22083728,
24463507

[1] WES, SNP
Genotype

phs000608.v1.p1 Whole-Genome Profiling to
Detect Schizophrenia
Methylation Markers

1459 MBD-seq 23244307 [42] Methylation

phs000448.v1.p1 Genetics of Schizophrenia in an
Ashkenazi Jewish Case-
Control Cohort

3096 HumanOmni1-Quad_v1-
0_B

[4] SNP array

phs000021.v3.p2 Genome-Wide Association
Study of Schizophrenia

5064 AFFY_6.0 16400611 [43] SNP array

phs000167.v1.p1 Molecular Genetics of
Schizophrenia-nonGAIN
Sample (MGS nonGAIN)

3029 AFFY_6.0 16400611 [44] SNP array

850 | Tenenbaum et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/20/3/842/4662948 by Arizona H

ealth Sciences Library user on 30 August 2019



only three SCZ-related data sets: two in rat models and one in a
mouse model. Data sets related to other MH disorders are simi-
larly limited and largely generated from animal models.

Imaging repositories
SchizConnect is a federated portal that integrates data from three
neuroimaging consortia on SCZ: FBIRN’s Human Imaging Database
(HID), MRN’s Collaborative Imaging and Neuroinformatics System
(COINS) and the Northwestern University Schizophrenia Data and
Software Tool (NUSDAST) project [45].

A number of general purpose brain imaging repositories
exist, such as OpenNeuro (formerly OpenfMRI) [46], and the
Neuroimaging Informatics Tools and Resources Clearinghouse
Image Repository (NITRC IR) [47]. However, to date, the publicly
available data sets in those resources appear to be more
cognition-oriented (e.g. classification learning, visual and audi-
tory functions, attention) than psychiatric. Notable exceptions
in SCZ include [42, 48].

The Functional Connectomes Project is also available
through NITRC [49]. It comprises data from >1400 healthy sub-
jects who underwent fMRI scans that assessed their brain activ-
ity when their minds were at rest. Included in the 1400 is a
subset known as the COBRE (Center for Biomedical Research
Excellence) data set, which includes anatomical and functional
MR data from 72 patients with SCZ and 75 healthy controls.
These data have been analyzed in a number of different ways
by different groups [50–53].

Curated knowledge bases
SZGR [28], SZGene [44] and SZDB [54] are three distinct but sig-
nificantly overlapping knowledge repositories that include cura-
ted information regarding SCZ-related genes and data sets. The
SZGR, available since 2009, is a ‘one-stop shop’ for genes and
variants in SCZ, along with their function, regulation and drug
information. It was created through systematic review and
curation of multiple lines of evidence and includes �4200 com-
mon mutations and �1000 de novo mutations [28, 55]. SZGene is
affiliated with the Schizophrenia Research Forum and contains
data from 1700 studies. It enables the user to search by gene,
protein, polymorphism, study or keyword to return the specific
publications addressing those features [44]. However, the
resource only contains data from studies before 2012 and is no
longer supported. (Unfortunately, this is not uncommon for
resources that require maintenance over time.) Finally, SZDB
includes genomic, transcriptomic, molecular network data and
functional annotations [54].

The DisGeNET database (http://www.disgenet.org) integrates
human gene–disease associations from various expert curated
databases and text-mining-derived associations including
Mendelian, complex and environmental diseases. A search in
July 2017 for genes and single-nucleotide polymorphisms (SNPs)
associated with SCZ yielded 1871 and 1635, respectively.

Genome-wide association studies and beyond:
innovative, integrative approaches to
biomarker discovery in mental health

At the most basic level, data sharing can enable integrative anal-
ysis for biomarker discovery by allowing researchers to combine
two or more comparable data sets to increase statistical power
through increased sample size. Researchers have developed
many creative methods to combine data, enabling the discovery
of patterns not apparent when analyzing just a single data type.

Genotype data, including those identified through both microar-
rays and next-generation sequencing, can be combined with
other data types such as protein–protein interaction networks,
biological pathways, gene expression and co-expression, methyl-
ation and microRNA regulation data [43, 56–60]. In some cases,
researchers have been able to combine three or more data types
in creative ways for biomarker discovery [61, 62].

Most studies start with the purpose of discovering novel var-
iants and then make use of public resources to validate and
support their initial discovery. Methods may be categorized
at the gene level [63–66], pathway level [67] and network level
[68–70]. Another way to categorize the methods is based on the
multi-omics data. Some integrative studies involve only genet-
ics and eQTL (expression quantitative trait loci) data [71], while
others are more comprehensive, involving multiple genome-
wide association studies (GWAS) and/or other dimensional data
[72, 73]. Recently, with the dramatic increase of GWAS data,
especially by the PGC, an increasing number of studies have
been published for integrative analyses using multiple-
disorders or multiple-omics data, aiming to identify shared or
unique genetic variants among different MH disorders [74]. To
generate an overview of these integrative studies, we used
PubMed to systematically search for integrative studies using
keywords listed in Table 3. In total, we obtained 595 publica-
tions for integrative studies of SCZ. A majority of them (497)
were published after 2010, likely due in part to the curation of
omics data in recent years. As shown in Figure 5, the publication
of integrative studies in SCZ has been increasing sharply in
recent years, mostly in the category of eQTL. Recurring themes
among these integrative methods include overlap between var-
iants from different omics modalities and randomization and
permutation tests for statistical significance.

Big big-data: large-scaleGWASs

Since 2008, GWAS have reported a number of genetic variants
associated with SCZ [63–66]. The Schizophrenia Working Group
of the PGC conducted the largest GWAS in SCZ to date (36 989
SCZ and 113 075 controls) and identified 108 loci [75]. The largest
ancestrally and phenotypically homogeneous GWAS study of
SCZ (11 260 cases and 24 542 controls) reported 50 novel SCZ
risk loci [76].

Table 3. Keywords and counts for integrative biomarker studies in
schizophrenia published before May 2017

Keywords N

schizophrenia [TIAB] AND GWAS AND expression 285
schizophrenia [TIAB] AND SNP AND expression 242
schizophrenia [TIAB] AND GWAS AND network 140
schizophrenia [TIAB] AND SNP AND network 75
schizophrenia [TIAB] AND GWAS AND methylation 36
schizophrenia [TIAB] AND GWAS AND eQTL 35
schizophrenia [TIAB] AND SNP AND integrative 32
schizophrenia [TIAB] AND GWAS AND quantitative traits 26
schizophrenia [TIAB] AND GWAS AND transcriptome 26
schizophrenia [TIAB] AND SNP AND methylation 20
schizophrenia [TIAB] AND SNP AND eQTL 19
schizophrenia [TIAB] AND SNP AND quantitative traits 11
schizophrenia [TIAB] AND SNP AND transcriptome 10
schizophrenia [TIAB] AND GWAS AND integrative 5
schizophrenia [TIAB] AND SNP AND transcriptome 4
schizophrenia [TIAB] AND genotyping AND transcriptome 3
schizophrenia [TIAB] AND SNP AND ATAC-seq 1
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Despite these large-scale studies, the genes or functional
DNA elements through which these variants exert their effects
remain unknown. An emerging trend is to integrate multidi-
mensional data from genetics, epigenetics and transcriptomics
to prioritize biomarkers and also to understand the underlying
mechanisms by which they act.

Combining expression and sequence data: eQTL

Several large-scale studies have markedly expanded the scope
of known eQTLs [77–79]. One recent example integrates SCZ
postmortem brain gene expression with GWAS signals at the
pathway levels [80]. Building on these eQTL resources as well as
gene expression profiles, candidate genes have been identified
by integrative studies [81–85]. Using expression data from 647
postmortem human brain samples collected by Stanley Medical
Research Institute and the GTEx project, the gene complement
component 4 (C4) in major histocompatibility complex region
was identified as contributing to SCZ risk [86]. In addition, the
CommonMind Consortium (CMC) generated RNA-seq data from
postmortem dorsolateral prefrontal cortices from 258 subjects
with SCZ and 279 controls, and they identified a list of genes
whose expression was significantly affected by SCZ risk varia-
tions [87]. Using the CMC data, a list of brain splicing quantita-
tive trait loci was identified that are causally associated with
SCZ [88]. In another study, SCZ risk genes were identified using
summary data from GWAS and eQTL in which gene expression
data were generated from 5311 peripheral blood samples [89].
More examples include valuable eQTLs located at NMDAR [90],
CTCF and CACNB2 [91], and 17q25 locus [92], most of which used
public eQTL data such as those from GTEx. These eQTLs are
mostly common variants. Rare noncoding SCZ risk variants
were also identified [93].

Combining genomic data with multiple phenotypes:
pleiotropy

Genomic data combined with multiple phenotypes can enable
the discovery of pleiotropy-associated genes, i.e. alleles that
impact two or more apparently unrelated effects. The PGC pro-
vides a good example of this. They initially, and intentionally,
focused studies on five major psychiatric disorders: autism,
attention-deficit hyperactivity disorder, bipolar disorder, major
depressive disorder and SCZ [74, 94]. A number of clinical fea-
tures transcend these disease classifications, and previous
research had suggested overlap in familial and genetic liability
for different combinations of these disorders [74].

Combining genomic and imaging data

Another common integrative approach in the study of MH is the
combination of genomic data with imaging data. The
Enhancing NeuroImaging Genetics through Meta-Analysis
(ENIGMA) consortium provides tools and protocols to meta-
analyze genome-wide and neuroimaging data from research
teams worldwide [95]. The consortium does not require partici-
pating investigators to contribute raw data nor provide access
to such data for research or public use. Instead, ENIGMA pro-
vides standardized protocols with predefined covariates to
allow sites to conduct GWAS and imaging studies locally and
report meta-analyzed data, which are made publicly available
through an interactive visualization tool, ENIGMA-Vis [96]. For
example, the ENIGMA SCZ working group conducted a collabo-
rative, prospective meta-analysis of neuroimaging data from
>4500 study participants (2028 were subjects with SCZ and 2540
were healthy control) across 15 sites [97].

Combining genomic and epigenetic data

DNA methylation is important for epigenetic regulation of gene
expression. The 108 SCZ-GWAS risk loci identified by the PGC
[75] were evaluated systematically as methylation quantitative
trait loci in postmortem prefrontal cortex from 191 SCZ and 335
controls [98], 689 SCZ and 645 controls [99] and 1163 postmor-
tem brains of European ancestry [100]. The loci were also sys-
tematically analyzed using 166 human fetal brains [101]. The
evidence showed a much stronger differential DNA methylation
enrichment in genes associated with SCZ, even using a medium
sample size (<100) of postmortem brains [102].

Transposase Accessible Chromatin followed by sequencing
(ATAC-seq) is another promising technique that can be used to
map chromatin accessibility. Recently, ATAC-seq has been used
to study spatiotemporal regulation of gene expression of neuronal
and nonneuronal nuclei isolated from frozen postmortem human
brain to map chromatin accessibility for SCZ risk loci [103].

Concluding remarks

Our review of data resources and integrative biomarker discov-
ery in MH with a focus on SCZ suggests a recent increase in the
number and quality of resources and an even more recent
growth in their use. Indeed, we are starting to see high-profile
papers that leverage some of these existing data sets. For exam-
ple, a recent paper in Nature Genetics described a GWAS study in
36 000 individuals of Chinese ancestry that was combined with
data from the PGC [75] to perform trans-ancestry meta-analyses
yielding 30 novel risk loci for SCZ [104]. However, there remains

Figure 5. Publication summary of SCZ integrative studies.

Note: Publications in 2017 were estimated based on the data between January and May in 2017.
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significant untapped potential: many resources that could be
made available under FAIR principles are not, and those resour-
ces that are available remainunderused. While we leave other
MH disorders for a future paper, we do not believe the results
will be significantly different for anxiety or depression, or for
most other disorders in mental health with the possible excep-
tion of autism spectrum disorder, where a concerted national
effort by both public and private entities has created a large con-
centration of findable and accessible shared data [105, 106].

The challenges facing those seeking to reuse resources for
integrative research are numerous and formidable, but we
believe that many seeking to enter the fray are tripping over the
threshold of findability. We hope that both the suggested organ-
izing framework and the catalog of resources presented here
will help new entrants into the space cross the threshold suc-
cessfully and focus on more substantive challenges of data inte-
gration and analysis. We also believe the proposed framework
is useful more broadly in other biomedical domains to facilitate
categorization and dissemination of information about data
resources to support emerging precision medicine initiatives.

As noted recently in a memo from Dr Joshua Gordon, direc-
tor of NIMH, understanding the underlying biology of MH is
more important than ever, and increasingly within reach given
recent technological developments [4]. A consensus on FAIR
principles, the NIH push toward data sharing, and NLM support
for best practices, mean those who continue to develop innova-
tive approaches to the vast and ever-increasing amount of pub-
licly available data will help the rest of us gather valuable
insights about mental health diagnosis and treatment.

Key Points

• The growing number of data sets available to research-
ers in mental and behavioral health enables secondary
analysis and novel integrative methods for biomarker
discovery.

• We propose a framework for organizing and classifying
publicly available resources for biomarker discovery in
mental health using SCZ as an example.

• Many potential resources are not yet compliant with
FAIR data-sharing principles, and currently available
resources remain underused.

• While no clinically actionable biomarkers have yet been
identified, a confluence of policies, initiatives and tech-
nological advances puts us at a potential inflection
point for accelerating discovery and advancement in
the field of MH.

Supplementary Data

Supplementary data are available online at https://
academic.oup.com/bib.
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