
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Optical simulation for illumination
using GPGPU ray tracing

Ryota Kimura, Masafumi Seigo, Russell A. Chipman,
Seiichiro Kitagawa

Ryota Kimura, Masafumi Seigo, Russell A. Chipman, Seiichiro Kitagawa,
"Optical simulation for illumination using GPGPU ray tracing," Proc. SPIE
10912, Physics and Simulation of Optoelectronic Devices XXVII, 109121A (26
February 2019); doi: 10.1117/12.2506129

Event: SPIE OPTO, 2019, San Francisco, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 Aug 2019  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Arizona

https://core.ac.uk/display/227282226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

Op

aNalux Co
of Optical

High-speed ra
requires many
the exit surfa
regulation. M
computing us
sciences. In th
was done in
interpolation,
intersection s
GPU. As a re
error differen
indicate calcu
conclusion, e
tracing using 

 

1.1 Ray
 Ray tracing 
straight throu
structure.  
 
1.2 Illum
From about 
distribution o
distribution o

The regulatio
line. It requir

ptical sim

Ryota Kimu
., Ltd., Yam
l Sciences, T

ay tracing for 
y rays tracing

ace of the lens
Many ray trac
sing CPU and
his research, t

n parallel usin
, Nagata tria
searching calc
epresentative 
nces depend o
ulation error d
even there are
GPU was ach

y Tracing 
is basic calcu

ugh homogene

mination opti
10 years ago

of the headla
of the headlam

ons require not
es complex op

mulation 

ura*a, Masa
mazaki 2-1-7
The Univer

r illumination 
g for precise si
 to diverge pa

cing requires 
d GPU has b
the ray tracing
ng CUDA, G
angular patch
culation. The r
example, GPU
on the interpo
differences bet
e several issu
hieved.  

Keywo

ulation of geo
eous media an

ics for autom
o, advanced 
amp must sat

mp.  

t only light int
ptics design an

for illum

afumi Seigo
7, Shimamo
sity of Ariz

A

optics using G
imulation. Esp
art of the light

much simula
been used for 
g consists of t
GPGPU API 
h interpolatio
results indicat
U ray tracing
olation types 
tween single p

ues such as er

ords: ray traci

1. IN

ometrical opti
nd are bent by

motive 
LED technol
tisfy regulatio

Figure 1. Ligh

tensity at each
nd complex le

mination
 

o*a, Russell 
oto-cho, Mis
ona, 1630 E

U.S.A. 

ABSTRACT

GPGPU was i
pecially, optic
t for satisfying
ation times an
accelerating 

two parts whic
provided by 

on, and Naga
te that there is
 was about tw
for intersecti

precision floa
rrors from int

ing, CUDA, G

NTRODUC

cal simulation
y optical elem

logy has been
ons for traffi

ht distribution o

h points but al
enses. Figure 2

n using G

A. Chipman
shima-gun, 
E. Universit

T   

investigated. O
cs for automot
g specific illum
nd it increase
computing sp

ch are intersec
NVIDIA. In

ata quadrilate
s a possibility
wice faster tha
ion calculatio
at calculation a
terpolation an

GPGPU, Naga

TION 

n and importa
ments, lenses 

n used to au
ic safety. Fig

of the headlamp

lso light grada
2 shows an ac

GPGPU 

nb, Seiichiro
Osaka 618-

ty Blvd., Tu

Optical simula
tive LED ligh
mination patte
es developme
peed and repo
ction searchin
nterpolation c
eral patch in

y to accelerate
an the comme

on were obser
and double pr
nd calculation

ata patch 

ant part of it. 
and mirrors a

utomotive hea
gure 1 shows

 
p 

ation around c
ctual LED proj

ray trac

o Kitagawa
-0001 Japan

ucson, AZ 85

ation for illum
hting have sma
ern which is r
ent cost. Rec
orted its meri

ng and refracti
calculations s
nterpolation w
e ray tracing s
ercial softwar
rved. Moreov
recision float c
n precision, ac

In general, r
and such large

adlamp. Since
s an example

cut line around
ojector type he

cing 

aa 

n; b College 
5721-0094

mination optics
all textures on
required in the
ently, paralle
it in computer
ion calculation
such as linear
were used in
speed by using
e. In addition

ver, the results
calculation. In
ccelerated ray

rays propagate
e macroscopic

e illumination
e of the ligh

d horizontal 
eadlamp lens. 

s 
n 
e 

el 
r 
n 
r 
n 
g 
n, 
s 
n 
y 

e 
c 

n 
ht 

 

Physics and Simulation of Optoelectronic Devices XXVII, edited by Bernd Witzigmann,
Marek Osiński, Yasuhiko Arakawa, Proc. of SPIE Vol. 10912, 109121A · © 2019 SPIE

CCC code: 0277-786X/19/$18 · doi: 10.1117/12.2506129

Proc. of SPIE Vol. 10912  109121A-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 
Figure 2. Headlamp lens with tiny texture 

It has tiny textures on the exiting surface of the lens to diffuse a part of light for reducing condense of the light. Since the 
textures are tiny, enough number of incident rays are required for precise simulation. Therefore, optics for LED 
headlamp is complex design and its simulation requires massive calculation power. 
 

2. RAY TRACING 
2.1 Intersection Point Searching 
Intersection searching is first part of ray tracing and can be solved mathematically. In this paper, intersection between a 
ray and a plane, a ray and a sphere, and a ray and point cloud are introduced. 
 
2.1.1 Intersection Point with Plane 
The simplest object for intersection with a ray is a plane surface. Figure 3 shows calculation model for intersection 
searching between a ray and a plane. The ray in three-dimensional space can be described as, 
 x = x଴ +  ௫, (1)݇ݐ
 y = y଴ +  ௬, (2)݇ݐ
 z = z଴ +  ௭, (3)݇ݐ
where {x0, y0, z0} is the initial position of the ray. t is distance from {x0, y0, z0}. {kx,  ky,  kz} is a unit directional vector. 
The plane surface that contains a point {a, b, c} can be described as, 
 n୶(x − a) + n୷(y − b) + n୸(ݖ − ܿ) = 0, (4) 
where {nx, ny, nz} is a normal vector of the plane surface. Equation (1), (2), and (3) can be substituted into equation (4) 
and solved for t,  
 t = −݊௫ݔ଴ + ݊௫ܽ − ݊௬ݕ଴ + ݊௬ܾ − ݊௭ݖ଴ + ݊௭ܿ݊௫݇௫ + ݊௬݇௬ + ݊௭݇௭ . (5) 

From t, the intersection point {x, y, z} can be derived by substitution of t into equation (1), (2), and (3).  
 
 

 
Figure 3. Intersection between a ray and a plane 

 
2.1.2 Intersection Point with Sphere 
The intersection between a ray and a spherical surface can be determined as follows. Figure 4 shows calculation model 
for intersection searching between a ray and a sphere. p is vector from the center of the sphere to the surface of the 
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sphere,  
|Ԧ݌|  =  (6) ,ݎ
where r is the radius of the spherical surface. Furthermore,  
|Ԧ݌|  = Ԧݏ− + +Ԧܫ  ሬ݇Ԧ, (7)ݐ

where s is a vector from the origin of the space to the origin of the sphere and I is an initial position of the ray, t is a 
constant, and k is a directional vector of the ray. Substitute equation (6) into equation (7) and take square of both sides,  
ଶݐ  ቀหሬ݇Ԧหଶቁ + Ԧݏ൫−2ݐ ∙ ሬ݇Ԧ + 2ሬ݇Ԧ ∙ Ԧ൯ܫ + Ԧ|ଶݏ|) − Ԧݏ2 ∙ +Ԧܫ หܫԦหଶ − (ଶݎ = 0. (8) 

Since equation (8) is a quadratic function of t, 
 t = −൫−2ݏԦ ∙ ሬ݇Ԧ + 2ሬ݇Ԧ ∙ Ԧ൯ܫ ± ට൫−2ݏԦ ∙ ሬ݇Ԧ + 2ሬ݇Ԧ ∙ Ԧ൯ଶܫ − 4 ቀหሬ݇Ԧหଶቁ Ԧ|ଶݏ|) − Ԧݏ2 ∙ +Ԧܫ หܫԦหଶ − ଶ)2ݎ ቀหሬ݇Ԧหଶቁ . (9) 

The equation indicates that t has two answers. The smaller t is for the closer intersection points which are on the front 
surface of the sphere, and the larger is for farther intersection on the back surface of the sphere. If t is an imaginary 
number, it indicates that the ray does not intersect with the spherical surface but misses. 
 

 
Figure 4. Intersection between a ray and a sphere 

 
2.1.3 Intersection Point with Complex Surface 
Actual surface models in ray tracing are often more complex surfaces than plane surfaces and spherical surfaces. In this 
study, point clouds are used to express complex shaped surfaces because these are often used to communicate complex 
shapes from CAD programs. Each point has a three-dimensional coordinates and an associated normal vector. The points 
are addressed as an array and express the complex shaped surfaces. To find the Intersection point between a ray and the 
surface, p which is a vector from the initial point to a point in the cloud is compared with a propagation vector k. If the p 
points the same direction with k, the ray hit the point. Mathematically, evaluation value f can be calculated by cross 
product as, 
 f = p୫୬ሬሬሬሬሬሬሬԦ × ෠݇|p୫୬ሬሬሬሬሬሬሬԦ| = sinθ୮ౣ౤୩ , (10) 

where pmn is the vector from the initial point to the point located at mth in horizontal and nth in vertical in the point cloud. 
θpmnk is the angle between pmn and k. In the simplest algorithm, the evaluation values for all points in the point cloud are 
evaluated with a brute force attack. The point which has the smallest evaluation value is the nearest point from the 
intersection point between the ray and the surface. When the evaluation value is not zero, interpolation using points in 
the nearby points are required. A variety of interpolation methods are described in the following. Since this evaluation 
method requires a calculation for all points, much unnecessary calculation is performed. If a point cloud consists of 100 
by 100 points, the calculation of the nearest point requires 10,000 loops. To reduce calculation loops, several method is 
used. In this project, k-d tree is used. Figure 6 shows calculation model of k-d tree. Number of candidate points are 
reduced by half in each step. The required loop number can be estimated as, 
 2୕ = M, (11) 
where, Q is required loop number and M is the number of the points in a cloud. The equation solves, 
 Q = logଵ଴ Mlogଵ଴ 2 , (12) 
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Therefore, calculation time is reduced dramatically over the brute force. 
 

 
Figure 5. Intersection between a ray and a complex surface 

 

 
Figure 6. K-d tree example 

 
After finding nearest intersection points, interpolation is required for acquiring intersection point and surface normal 
vector at the intersection point. Simplest interpolation is linear interpolation from vicinity points. Intersection is 
calculated from vicinity points and a plane surface consists of the vicinity points. Nagata et al. introduced a simple 
quadratic interpolation algorithm from vicinity points and normal vectors which is known as the Nagata patch. [1, 2] 
Following is only simple results of Nagata patch. Figure 7 shows Nagata triangular patch. X is vicinity point location. n 
is normal vector at each vicinity points. η and ζ are localized unit vector. 
The quadratic interpolated point is described as, 
 XሬሬԦ(η, ξ) = XሬሬԦ଴଴(1 − (ߟ + XሬሬԦଵ଴(ߟ − (ߦ + XሬሬԦଵଵߦ − cԦଵ(1 − ߟ)(ߟ − (ߦ − cԦଶ(ߟ − ߦ(ߦ − cԦଷ(1 −  (13) . ߦ(ߟ

c1, c2 and c3 are curvature parameters and defined as, 
 cԦଵ ≡ cԦ(dሬԦଵ, nሬԦ଴଴, nሬԦଵ଴) , (14) 

 cԦଶ ≡ cԦ(dሬԦଶ, nሬԦଵ଴, nሬԦଵଵ) , (15) 
 cԦଷ ≡ cԦ(dሬԦଷ, nሬԦ଴଴, nሬԦଵଵ) . (16) 

where, c is function and defined as, 
 

cԦm(dሬԦm,	nሬԦa,  nሬԦb) = ൝ ∆dm1 − ∆c
Ԧߥ + d

Δc
ΔߥԦ (ܿ ≠ ±1)ሼ0,0,0ሽ (ܿ = ±1).  

(17) 

where ν is an average of the normal vectors and ∆ν is deviation of the normal vectors. 
Ԧabߥ  = ( nሬԦa +  nሬԦb)/2 , (18) 
 ΔߥԦab = ( nሬԦa −  nሬԦb)/2 . (19) 
d and Δ are defined as, 

 d୫ = dሬԦm୘ߥԦab , (20) 

 Δd୫ = dሬԦm୘ΔߥԦab . (21) 

Each d is defined as, 
 dሬԦଵ = XሬሬԦଵ଴ − XሬሬԦ଴଴ , (22) 

 dሬԦଶ = XሬሬԦଵଵ − XሬሬԦଵ଴ , (23) 
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Substitute Snell’s law into (31), 

 aො = nn′	sin θ'
൛iመ − ൫nො ∙ iመ൯nොൟ. (32) 

From trigonometry, 
 cosθ = −iመ ∙ nො . (33) 
From Pythagoras’s identity, 
 sinଶθ = 1 − cos2θ = 1 − ൫−iመ ∙ nො൯ଶ . (34) 
Substitute Snell’s law into (34), 

 ቆnᇱnቇଶ sinଶθ′ = 1 − ൫−iመ ∙ nො൯ଶ . (35) 

 sinଶθ′ = ቀnn′ቁଶ ቄ1 − ൫−iመ ∙ nො൯ଶ ቅ . (36) 

From Pythagoras’s identity, 

 cosଶθᇱ = 1 − ቀnnᇱቁଶ ቄ1 − ൫−iመ ∙ nො൯ଶ ቅ , (37) 

 cos θᇱ = ඨ1 − ቀnnᇱቁଶ ቄ1 − ൫−iመ ∙ nො൯ଶ ቅ . (38) 

Substitute (2.50) and (2.56)into (2.48), 

 

r̂ = nnᇱsin θ'
൛iመ − ൫nො ∙ iመ൯nොൟ sin θᇱ − nො ඨ1 − ቀnnᇱቁଶ ቄ1 − ൫−iመ ∙ nො൯ଶ ቅ 

				= nnᇱ ൛iመ − ൫nො ∙ iመ൯nොൟ − nො	ඨ1 − ቀnnᇱቁଶ ቄ1 − ൫−iመ ∙ nො൯ଶ	ቅ 
				= nnᇱ iመ − nnᇱ ቎൫nො ∙ iመ൯ +	ඨ൬nᇱn ൰ଶ − ቄ1 − ൫−iመ ∙ nො൯ଶ	ቅ  ቏ nො 
				= nnᇱ iመ − nnᇱ ቎൫nො ∙ iመ൯ + ඨ൬nᇱn ൰ଶ − 1 + ൫nො ∙ iመ൯ଶ ቏ nො 

(39) 

Now, refracted vector r is described with refractive indices, the incident vector, and the surface normal vector. When the 
square root in equation (39) is negative, the ray cannot refract at the boundary, so the ray is reflected. 
 

 
Figure 9. Snell’s law in three dimension 
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3. GPGPU 
3.1 CUDA 
NVIDIA describes CUDA as “a general purpose parallel computing platform and programming model that leverages the 
parallel compute engine in NVIDIA GPUs to solve many complex computational problems in a more efficient way than 
on a CPU.”[3] CUDA consists of a driver, a compiler, and APIs. The driver is interface software which connects a device 
to the system for use in the operating system. The compiler transforms program code into machine code. The CUDA 
compiler is compatible with the C and C++ and expanded for calculation in GPU. APIs provide program sets which 
makes it easy to programming effectively. In CUDA, code running on a single core is called a thread. CUDA manages 
several threads as a group called a block. Several blocks are managed as a grid. The block and the grid can be set in one 
dimension, two dimensions, or three dimensions when the CUDA program is launched. Its maximum size depends on the 
GPU specification. The configuration of block and grid should be considered for effective processing in CUDA. The 
purpose of CUDA is to provide functions that allow for parallel computing.  
 

4. SIMULATION RESULT 
4.1 Simulation Model 
To validate the program, following plano-convex aspherical lens is simulated. For CUDA ray tracing, first aspherical 
lens is expressed as a point cloud which point pitch is 0.05mm and consists of 78,961 points. Second and detector 
surface is expressed as a plane surface. Diameter of the lens is 12mm. The focal plane position is optimized for 
minimization of spot radius located at 23.168mm from plane surface. Figure 10 shows simulation model and simulation 
result from OpticStudio which is commercial optical simulation software. Since the aspherical surface is optimized to 
minimal spot size, the spot size at the focal plane nearly zero. 

 

 
Figure 10. Simulation model for validation with OpticStudio simulation result 

 
4.2 Simulation Time Comparison 
As expectation, GPGPU accelerate ray tracing calculation speed. Figure 11 shows calculation time comparison of the ray 
tracing with Nagata triangular patch. The test was done with a PC which consists with Core i7-8700K(3.7GHz), 16GB 
RAM, GeForce GTX1080 (2560 CUDA Core, 8GB GDDR5X RAM), and windows 10. First result is from single thread 
CPU calculation with double float precision. Second result is from multi thread CPU calculation with double float 
precision using OpenMP. Third is result from double float precision calculation in GPU. Fourth is result from single float 
precision calculation in GPU. Since GPU cannot access main memory directly, GPGPU requires GPU driver 
initialization, data copying from main memory to GPU memory and result data copying from GPU memory to main 
memory. When the ray number for simulation is much, GPGPU take time advantage even the data copying takes few 
times. In this calculation condition, CUDA calculation is about twice faster than CPU calculation.   
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Double precision float Single precision float 

Figure 14. Spot diagram of an aspherical lens using CUDA ray tracing (Nagata quadrilateral patch) 
 

5. CONCLUSION 
Several types of intersection searching methods and interpolation methods include Nagata patch were reviewed. Then, 
refraction calculations in 3-dimensional space were reviewed. In addition, CUDA, GPGPU was reviewed. Ray tracing 
results using each interpolation method were described, and their accuracies were discussed. Validation test was used a 
plano-convex aspherical lens. Results indicate that the double float precision Nagata triangular patch interpolation is the 
most accurate. In conclusion, an accelerated ray tracing method using CUDA for models with spherical surfaces, plane 
surfaces, and point clouds with linear and quadratic interpolation have been developed in this study. High-speed ray 
tracing was achieved. However, some errors were documented from interpolation. 
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