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ABSTRACT

High-speed ray tracing for illumination optics using GPGPU was investigated. Optical simulation for illumination optics
requires many rays tracing for precise simulation. Especially, optics for automotive LED lighting have small textures on
the exit surface of the lens to diverge part of the light for satisfying specific illumination pattern which is required in the
regulation. Many ray tracing requires much simulation times and it increases development cost. Recently, parallel
computing using CPU and GPU has been used for accelerating computing speed and reported its merit in computer
sciences. In this research, the ray tracing consists of two parts which are intersection searching and refraction calculation
was done in parallel using CUDA, GPGPU API provided by NVIDIA. Interpolation calculations such as linear
interpolation, Nagata triangular patch interpolation, and Nagata quadrilateral patch interpolation were used in
intersection searching calculation. The results indicate that there is a possibility to accelerate ray tracing speed by using
GPU. As a representative example, GPU ray tracing was about twice faster than the commercial software. In addition,
error differences depend on the interpolation types for intersection calculation were observed. Moreover, the results
indicate calculation error differences between single precision float calculation and double precision float calculation. In
conclusion, even there are several issues such as errors from interpolation and calculation precision, accelerated ray
tracing using GPU was achieved.

Keywords: ray tracing, CUDA, GPGPU, Nagata patch

1. INTRODUCTION

1.1 Ray Tracing

Ray tracing is basic calculation of geometrical optical simulation and important part of it. In general, rays propagate
straight through homogeneous media and are bent by optical elements, lenses and mirrors and such large macroscopic
structure.

1.2 Ilumination optics for automotive

From about 10 years ago, advanced LED technology has been used to automotive headlamp. Since illumination
distribution of the headlamp must satisfy regulations for traffic safety. Figure 1 shows an example of the light
distribution of the headlamp.

Figure 1. Light distribution of the headlamp

The regulations require not only light intensity at each points but also light gradation around cut line around horizontal
line. It requires complex optics design and complex lenses. Figure 2 shows an actual LED projector type headlamp lens.
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Figure 2. Headlamp lens with tiny texture

It has tiny textures on the exiting surface of the lens to diffuse a part of light for reducing condense of the light. Since the
textures are tiny, enough number of incident rays are required for precise simulation. Therefore, optics for LED
headlamp is complex design and its simulation requires massive calculation power.

2. RAY TRACING

2.1 Intersection Point Searching
Intersection searching is first part of ray tracing and can be solved mathematically. In this paper, intersection between a
ray and a plane, a ray and a sphere, and a ray and point cloud are introduced.

2.1.1 Intersection Point with Plane
The simplest object for intersection with a ray is a plane surface. Figure 3 shows calculation model for intersection
searching between a ray and a plane. The ray in three-dimensional space can be described as,

X = Xq + tky, (1)
y = Yo +tky, 2
z =17y + tk,, 3)

where {Xo, yo, Zo} is the initial position of the ray. t is distance from {X, yo, Zo}. {kx, ky, k,} is a unit directional vector.
The plane surface that contains a point {a, b, ¢} can be described as,

ny(x—a) +ny,(y —b) + n,(z—c) =0, @)
where {n,, ny, n,} is a normal vector of the plane surface. Equation (1), (2), and (3) can be substituted into equation (4)
and solved for t,

—NyXg + Ny@ — Ny Yo + Nyb — N2, + Ny

t= . 5
nyky +nyky, +nk, )

From t, the intersection point {X, y, z} can be derived by substitution of t into equation (1), (2), and (3).

\

Normal vector(n, ny. n,)

._/)

On axis point(a, b, c)

Figure 3. Intersection between a ray and a plane

2.1.2  Intersection Point with Sphere
The intersection between a ray and a spherical surface can be determined as follows. Figure 4 shows calculation model
for intersection searching between a ray and a sphere. p is vector from the center of the sphere to the surface of the
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sphere,

Ipl=r, (6)
where r is the radius of the spherical surface. Furthermore,
Il = =3 + 1 + tk, (7)

where s is a vector from the origin of the space to the origin of the sphere and I is an initial position of the ray, t is a
constant, and k is a directional vector of the ray. Substitute equation (6) into equation (7) and take square of both sides,

e (JR]) +e(=28 K+ 2k 1)+ (312 - 25T+ || = r¥) = 0. (®)
Since equation (8) is a quadratic function of t,

—(—2§-E+2E-f)iJ(—2§-E+2E-i)2 — 4 (R 312~ 25T+ |1 =2

t= -2
2([¥]")
The equation indicates that t has two answers. The smaller t is for the closer intersection points which are on the front

surface of the sphere, and the larger is for farther intersection on the back surface of the sphere. If t is an imaginary
number, it indicates that the ray does not intersect with the spherical surface but misses.

)

Origin of sphere
(a, b, ¢)

Figure 4. Intersection between a ray and a sphere

2.1.3  Intersection Point with Complex Surface

Actual surface models in ray tracing are often more complex surfaces than plane surfaces and spherical surfaces. In this

study, point clouds are used to express complex shaped surfaces because these are often used to communicate complex

shapes from CAD programs. Each point has a three-dimensional coordinates and an associated normal vector. The points

are addressed as an array and express the complex shaped surfaces. To find the Intersection point between a ray and the

surface, p which is a vector from the initial point to a point in the cloud is compared with a propagation vector k. If the p

points the same direction with K, the ray hit the point. Mathematically, evaluation value f can be calculated by cross
product as,

Pmn Xk (10)

f= pprp—e sin® k>
|Pran| Pmn

where py, is the vector from the initial point to the point located at m™ in horizontal and n™ in vertical in the point cloud.
Opmnk 18 the angle between py, and k. In the simplest algorithm, the evaluation values for all points in the point cloud are
evaluated with a brute force attack. The point which has the smallest evaluation value is the nearest point from the
intersection point between the ray and the surface. When the evaluation value is not zero, interpolation using points in
the nearby points are required. A variety of interpolation methods are described in the following. Since this evaluation
method requires a calculation for all points, much unnecessary calculation is performed. If a point cloud consists of 100
by 100 points, the calculation of the nearest point requires 10,000 loops. To reduce calculation loops, several method is
used. In this project, k-d tree is used. Figure 6 shows calculation model of k-d tree. Number of candidate points are
reduced by half in each step. The required loop number can be estimated as,

20 =M, (11)
where, Q is required loop number and M is the number of the points in a cloud. The equation solves,

_ logio M (12)

~ logyp 2’
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Therefore, calculation time is reduced dramatically over the brute force.

f=(x_(). Yo: Zg)

Figure 5. Intersection between a ray and a complex surface

-10 0 10
1 I | 1 l | I l | 1 |

Ath

Figure 6. K-d tree example

After finding nearest intersection points, interpolation is required for acquiring intersection point and surface normal
vector at the intersection point. Simplest interpolation is linear interpolation from vicinity points. Intersection is
calculated from vicinity points and a plane surface consists of the vicinity points. Nagata et al. introduced a simple
quadratic interpolation algorithm from vicinity points and normal vectors which is known as the Nagata patch. [1, 2]
Following is only simple results of Nagata patch. Figure 7 shows Nagata triangular patch. X is vicinity point location. n
is normal vector at each vicinity points. | and  are localized unit vector.

The quadratic interpolated point is described as,

X(,8) = Xoo(1 = 1) +X10(n = ) + X12§ =& (A =1 — &) = &0 — )& — (1 —n)é . (13)
¢y, ¢ and ¢; are curvature parameters and defined as,
¢, = &(dy, Too o) (14)
&, = &(dy Bag Baa) (15)
&; = &(ds, Top Tiyy) - (16)

where, ¢ is function and defined as,

Ad, , d | (17)
5> 7 — — - A + 1
cm(dma ng, nb) =311- ACV * Ac v (C * )
{0,0,0} (c =£1).
where v is an average of the normal vectors and Av is deviation of the normal vectors.
Vap = (1, + 1)/2 (18)
A1_/)ab = (ﬁa - ﬁb)/2 . (19)
d and A are defined as,
- T
dm = dm 17;11:; > (20)
- T
Ad, =4, AV, . @h
Each d is defined as,
a)l = )—()10 - )_()00 > (22)
d =Xu ~Xip (23)
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ag = ill - ioo . (24)

¢ and Ac are defined as

Cap = 1 — 2Acy, , (25)
Acab - Ha Avab (26)
In addition, the normal vectors at the interpolated point can be calculated by taking partial derivative of X respect to 1
and § as,
) G L (27)
Xy zﬁzd1+c1{(7l_f)_(1_77)}+(C3 — )¢,
) G L (28)
Xe ZEZdz +&E-M -+ - —n).
The normal vector at 1 and & are calculated as,
R, ) =3 x 5% (29)

o~ 0g’

Figure 7. Nagata triangular patch [1]

Similarly, they introduced quadrilateral patch method as figure 8. Equation for quadrilateral patch is omitted here.

(@) . (b)

| Vi Vy

Vi

Figure 8. Nagata quadrilateral patch [1]

2.2 Refraction Calculation
Objects and rays are defined in three-dimensional space for ray tracing, so Snell’s law is expanded into three-
dimensional space. In figure 9, an incident ray unit vector is shown as i. A unit refracted exiting ray vector is shown as r.
n shows the unit normal vector at the boundary. a and b are orthogonal unit vectors with n and orthogonal each other.
From trigonometry,

f=2asin® —ficos0'. (30)

Since a, b, and ¢ are orthogonal,
. ixfi 1 . . 1
a=fixb=10X =—— @ -1 — (0 1)ij=——
(5:5) = 55 (G- 01— (-9} = g

{i- (-l 31

sin 0 sin 0
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Substitute Snell’s law into (31),

= 6' {1 (n-l)n}. (32)
From trigonometry,
cosB = —i-fi . (33)
From Pythagoras’s identity,
sin?0 =1 —cos?0 = 1 — (—i-4)” . (34)
Substitute Snell’s law into (34),
N 2
n N
(;) sin?0’ = 1— (=i-4)” . (35)
N2 . (36)
ooy _ (T (%
sme—(n,) {1 ( 1-1 }
From Pythagoras’s identity,
na2 . N2 37
2" — —(— —(—=1-9
cos?0’ =1 (n’) {1 (-i-fi },
(38)
ny?2 R
cos 6’ =\/1—(§) {1-(-i-0)"}.
Substitute (2.50) and (2.56)into (2.48),
(39)

Pe i (n-i)ﬁ}sine'-ﬁjl—(g) {1-(-8)°)
=§{f—(ﬁ-?)ﬁ}—ﬁ\/1—(3)2{1—(—?-6)2}
=252 1)+J(rr‘l') ~{1-(=-a°} [a

1\ 2

= Si-=l @ m](%) ~1+@-D)° |4

n’

Now, refracted vector r is described with refractive indices, the incident vector, and the surface normal vector. When the
square root in equation (39) is negative, the ray cannot refract at the boundary, so the ray is reflected.

n
N
9
<15 a n
o) S
N
o
e i
o

Figure 9. Snell’s law in three dimension
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3. GPGPU

3.1 CUDA

NVIDIA describes CUDA as “a general purpose parallel computing platform and programming model that leverages the
parallel compute engine in NVIDIA GPUs to solve many complex computational problems in a more efficient way than
on a CPU.”[3] CUDA consists of a driver, a compiler, and APIs. The driver is interface software which connects a device
to the system for use in the operating system. The compiler transforms program code into machine code. The CUDA
compiler is compatible with the C and C++ and expanded for calculation in GPU. APIs provide program sets which
makes it easy to programming effectively. In CUDA, code running on a single core is called a thread. CUDA manages
several threads as a group called a block. Several blocks are managed as a grid. The block and the grid can be set in one
dimension, two dimensions, or three dimensions when the CUDA program is launched. Its maximum size depends on the
GPU specification. The configuration of block and grid should be considered for effective processing in CUDA. The
purpose of CUDA is to provide functions that allow for parallel computing.

4. SIMULATION RESULT

4.1 Simulation Model

To validate the program, following plano-convex aspherical lens is simulated. For CUDA ray tracing, first aspherical
lens is expressed as a point cloud which point pitch is 0.05mm and consists of 78,961 points. Second and detector
surface is expressed as a plane surface. Diameter of the lens is 12mm. The focal plane position is optimized for
minimization of spot radius located at 23.168mm from plane surface. Figure 10 shows simulation model and simulation
result from OpticStudio which is commercial optical simulation software. Since the aspherical surface is optimized to
minimal spot size, the spot size at the focal plane nearly zero.

0.010

0.010

Figure 10. Simulation model for validation with Optic"S{adio simulation result

4.2 Simulation Time Comparison

As expectation, GPGPU accelerate ray tracing calculation speed. Figure 11 shows calculation time comparison of the ray
tracing with Nagata triangular patch. The test was done with a PC which consists with Core 17-8700K(3.7GHz), 16GB
RAM, GeForce GTX1080 (2560 CUDA Core, 8GB GDDR5X RAM), and windows 10. First result is from single thread
CPU calculation with double float precision. Second result is from multi thread CPU calculation with double float
precision using OpenMP. Third is result from double float precision calculation in GPU. Fourth is result from single float
precision calculation in GPU. Since GPU cannot access main memory directly, GPGPU requires GPU driver
initialization, data copying from main memory to GPU memory and result data copying from GPU memory to main
memory. When the ray number for simulation is much, GPGPU take time advantage even the data copying takes few
times. In this calculation condition, CUDA calculation is about twice faster than CPU calculation.
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Figure 11. Time comparison of CPU calculation and GPU calculation

4.3 Simulation Accuracy

There are some errors in the results and the errors depends on the interpolation types and float precision. Figure 12

shows the spot diagrams at the detector surface of CUDA ray tracing with linear interpolation. The error is about
+17.5um in both x and y direction.

Double precision float Single precision float
Figure 12. Spot diagram of an aspherical lens using CUDA ray tracing (Linear interpolation)

Figure 13 shows the spot diagrams of CUDA ray tracing with Nagata triangular patch interpolation. The error is about
+2.3pum in both x and y direction.

0010 0010

20010 0005 . i 0005 0010 0.010 -0.005

-0.010
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Double precision float Single precision float
Figure 13. Spot diagram of an aspherical lens using CUDA ray tracing (Nagata triangular patch)

Figure 14 shows the spot diagrams of CUDA ray tracing with Nagata quadrilateral patch interpolation. The error is about
+7.2um in both x and y direction.
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Double precision float Single precision float
Figure 14. Spot diagram of an aspherical lens using CUDA ray tracing (Nagata quadrilateral patch)

5. CONCLUSION

Several types of intersection searching methods and interpolation methods include Nagata patch were reviewed. Then,
refraction calculations in 3-dimensional space were reviewed. In addition, CUDA, GPGPU was reviewed. Ray tracing
results using each interpolation method were described, and their accuracies were discussed. Validation test was used a
plano-convex aspherical lens. Results indicate that the double float precision Nagata triangular patch interpolation is the
most accurate. In conclusion, an accelerated ray tracing method using CUDA for models with spherical surfaces, plane
surfaces, and point clouds with linear and quadratic interpolation have been developed in this study. High-speed ray
tracing was achieved. However, some errors were documented from interpolation.
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