
MNRAS 485, 3370–3377 (2019) doi:10.1093/mnras/stz634
Advance Access publication 2019 March 7

A high-fidelity realization of the Euclid code comparison N-body
simulation with ABACUS

Lehman H. Garrison ,1‹ Daniel J. Eisenstein1 and Philip A. Pinto2

1Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
2Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85121, USA

Accepted 2019 February 26. Received 2019 February 26; in original form 2018 October 5

ABSTRACT
We present a high-fidelity realization of the cosmological N-body simulation from the
Schneider et al. code comparison project. The simulation was performed with our ABACUS

N-body code, which offers high-force accuracy, high performance, and minimal particle
integration errors. The simulation consists of 20483 particles in a 500 h−1 Mpc box for a
particle mass of 1.2 × 109 h−1 M� with 10 h−1 kpc spline softening. ABACUS executed 1052
global time-steps to z = 0 in 107 h on one dual-Xeon, dual-GPU node, for a mean rate
of 23 million particles per second per step. We find ABACUS is in good agreement with
RAMSES and PKDGRAV3 and less so with GADGET3. We validate our choice of time-step by
halving the step size and find sub-percent differences in the power spectrum and 2PCF at
nearly all measured scales, with <0.3 per cent errors at k < 10 Mpc−1 h. On large scales,
ABACUS reproduces linear theory better than 0.01 per cent. Simulation snapshots are available
at http://nbody.rc.fas.harvard.edu/public/S2016.

Key words: methods: numerical – large-scale structure of universe.

1 IN T RO D U C T I O N

Cosmological N-body simulations are the primary tool for for-
ward modelling the theory of large-scale structure to observable
quantities like the spatial distribution of galaxies. As observations
improve, the comparison of the forward model with observations
becomes increasingly sensitive to systematic errors in the N-body
simulations. Some systematics can be checked analytically, such
as the recovery of linear theory on large scales, but most rely
on ‘convergence testing’, in which a parameter of the simulation
(such as the time-step) is moved towards the continuum value
until the answer stops changing (to some tolerance). Such tests
can be prohibitively expensive (see DeRose et al. 2018; for a recent
exhaustive effort) and are not guaranteed to converge to the physical
answer.

A common additional check is to compare the ‘converged’ results
from multiple, independent codes. While not a guarantee of physical
accuracy, agreement indicates control over systematics related to the
numerics, to the extent that different codes use different numerical
techniques. This is the approach of code comparison projects
like Heitmann et al. (2008) and Schneider et al. (2016; hereafter
S2016). The latter presents the code comparison project from the
Euclid Cosmological Simulations Working Group, which compared
the matter power spectrum from the PKDGRAV3 (Potter, Stadel &

� E-mail: lgarrison@cfa.harvard.edu

Teyssier 2017), RAMSES (Teyssier 2001), and GADGET3 (Springel
2005) codes.

A third path to assessing code accuracy in the non-linear regime
is through scale-free simulations. In these tests, a power-law power
spectrum is used in an expanding �M = 1 background, such that the
clustering on small scales should be a rescaling of the clustering on
large scales at a later time. Any deviation from this self-similarity
must be due to finite box size, finite particle mass, or inaccurate
numerics. The breakdown of this self-similarity can be used to
identify halo mass resolution limits and other complex non-linear
systematics; this will be our approach in an upcoming paper (Joyce
et al., in preparation).

In this work, we contribute ABACUS’s result to the S2016
code comparison project. ABACUS is a GPU-accelerated code for
cosmological N-body simulations; it offers excellent force accuracy
and minimal integration errors of the particle trajectory due to
the small global time-step used. It also employs a compact spline
softening kernel, which minimizes leakage of force softening to
large scales. ABACUS’s speed allows us to perform convergence
tests at scale; we do not need to sacrifice volume or mass resolution
to complete the tests in a reasonable amount of time with modest
computational resources.

The paper is organized as follows. In Section 2, we discuss
the ABACUS code and performance in the context of the S2016
simulation. In Section 3, we compare the ABACUS matter-field
clustering results with RAMSES, GADGET3, and PKDGRAV3. In

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/3/3370/5371170 by U
niversity of Arizona Library user on 26 August 2019

http://orcid.org/0000-0002-9853-5673
http://nbody.rc.fas.harvard.edu/public/S2016
mailto:lgarrison@cfa.harvard.edu

ABACUS code comparison 3371

Section 4, we show validation tests for various ABACUS code
parameters. We discuss our findings in Section 5.

2 ABACUS

2.1 Method

ABACUS is a code for cosmological N-body simulations based on
the compact near-field or far-field force split developed in Metchnik
(2009). In this approach, the domain is decomposed into K3 cubic
cells, and every particle belongs to one cell. Particles in cells
separated by fewer than near-field radius R cells (typically 2) interact
via the near-field force, which we compute as a direct pairwise
summation of 1/r2 forces (or some appropriately softened form).
Particles in cells more distant than R interact via the far-field force,
which is computed with a multipole method. Thus, every pairwise
interaction is only present in either the near field or the far field.

The simplicity of the near-field computation offers a substantial
performance and accuracy opportunity. Due to the compact force
split, the near-field force is exact (up to machine precision); thus, any
force inaccuracy must arise from the far-field. To increase total force
accuracy, one thus only needs to increase the far-field multipole
order p. The challenge then becomes offsetting the computational
load of doing so. This is where the GPU performance helps: We
can decrease K to shift work from the far field into the near field,
balancing the performance for the choice of p. Modern GPUs
excel at the kind of work N-body requires: compute-dense kernels
consisting of a few simple mathematical operations repeated many
times on a small amount of data. In ABACUS, this performance
translates quite directly into increased accuracy: The faster the near
field becomes, the smaller the optimal K becomes, allowing us to
increase p at fixed wall-clock time.

We organize particles into ‘slabs’ one cell wide. Particles are
processed in a ‘slab pipeline’: we load a rolling window of slabs
into memory, compute forces, and update particles on the central
slab, write out the trailing slab, and then load a slab at the leading
edge. Only the central slab can be processed at a given time because
R slabs must be present on either side to compute the near force. For
R = 2, this means 5 slabs must be in memory. In practice, we allow
ABACUS to read ahead by a few slabs, so we typically have 7 slabs
in memory. For K = 693 (which we use for the S2016 simulation),
the rolling window is thus 1 per cent of the total volume.

This is a substantial opportunity: since not all slabs have to be
in memory, we don’t need a large computer cluster; we can instead
use a single node and store the slabs on hard drives, reading and
writing them in an ordered sweep. The raw compute power can be
provided by GPUs for the near-field force and fast vectorized CPU
implementations for the far-field force.

Of course, particles separated by more than the pipeline window
size must ‘talk’ to each other too. A single time-step of ABACUS thus
consists of two primary sub-steps: singlestep and convolu-
tion. Singlestep is the slab pipeline step detailed above. As
part of this pipeline, the multipole moments of the particle positions
are computed in every cell and written to disc. After singlestep
has completed, we thus have K slabs of the cell multipoles. The
convolution convolves these slabs with a ‘derivatives’ tensor to
produce a Taylor series approximation to the force in every cell. We
dub these the ‘Taylors’. The derivatives tensor is so called because it
uses the derivative of the gravitational potential from the multipole
moments to produce the acceleration. This tensor is fixed for a given
K, R, and multipole order p, and is pre-computed in a small amount
of time.

The convolution is performed in Fourier space as a multiplication,
so in detail we perform the YZ-FFT duringsinglestepwhile we
have the whole slab in memory (a slab spans all Y and Z for a single
X). Thus, the convolution’s task is to do the cross-slab X-FFT, apply
the derivatives tensor in Fourier space, and do the inverse X-FFT to
produce the Taylors. The inverse YZ-FFT is done while applying
the Taylors to a slab in singlestep.

In this version of ABACUS, we compute the near field with brute-
force N2 summation. Future versions of ABACUS will employ trees
to accelerate the force computation in dense clusters. Our choice of
when to use a tree (and what leaf opening criteria to employ) will
be determined by the usual efficiency–accuracy trade-off.

Although ABACUS largely employs single precision (32-bit floats)
for particle kinematic data, positions are stored as offsets relative
to cell centres. This gains us an extra 9–10 bits of mantissa beyond
the nominal 23 in IEEE 754. Multipole and Taylor data is stored as
32-bit floats, but all internal computations are performed in double
precision to avoid build-up of numerical imprecision.

Multipole order p = 8 is our usual choice that balances perfor-
mance and accuracy. One way we test our accuracy is with the
‘Ewald test’, in which we compute the forces on a random distribu-
tion of 65 K particles with a brute-force Ewald summation (Ewald
1921) in quad-double precision. Comparing with ABACUS’s forces,
we find the 99 per cent and median fractional errors are 1.6 × 10−4

and 1.2 × 10−5, respectively. We also use a ‘homogeneous lattice’
test, in which a uniform grid of particles is set up such that the forces
should be zero everywhere. For p = 8, the maximum deviation
is 2.6 × 10−5, in units of the displacement that would produce
that force under the Zel’dovich Approximation (Zel’Dovich 1970),
expressed as a fraction of the interparticle spacing.

One reason we choose the multipole order to give such high-
force accuracy is that our domain decomposition is a structured
mesh. When computing forces on such a repeating structure, the
force error patterns are likely to not be homogeneous and random;
they will vary based on position in the cell and approximately repeat
in every cell. Such a spatially repeating error could readily appear
in the power spectrum, which is one of the primary quantities we
wish to measure from these simulations.

The primary ABACUS code paper is in preparation (Garrison,
et al.). A paper is also in preparation detailing our far-field method.
ABACUS has already been validated in a number of contexts, in
internal convergence tests and against analytic theory (Garrison
et al. 2016), and against other codes and emulators (Garrison et al.
2018).

2.2 Performance: design

We present the performance of ABACUS for the S2016 20483 simula-
tion on one node. The performance and low-memory requirements
enabled by the exact force split mean that ABACUS does not need
a computer cluster to complete large simulations in a reasonable
amount of wall-clock time; indeed, ABACUS presently only supports
single-node operation.

We built the node used in this work, called hal, specifically for
ABACUS using commodity computer hardware.hal is a dual-socket
Intel platform with two 14-core Intel Xeon Gold 6132 @ 2.60 GHz,
128 GB DDR4-2666 RAM, and two NVIDIA GeForce GTX 1080
Ti GPUs. HyperThreading is disabled and the CPU frequency
scaling governor is set to performance. hal is equipped with
four 1 TB Samsung NVMe SSDs (two 970 Pro and two 960 Pro).
We used the Intel compiler icc 17, and NVIDIA CUDA 9.2. hal

MNRAS 485, 3370–3377 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/3/3370/5371170 by U
niversity of Arizona Library user on 26 August 2019

3372 L. H. Garrison, D. J. Eisenstein and P. A. Pinto

costs about $13 000 and consumes approximately 1 kW under
load.

The NVMe drives store the particle and convolution data. Since
we only hold 1 per cent of slabs in memory at a time, and since
the CPU and GPU compute rate is so high, the drives holding the
particles must be similarly fast. For this work, we used the two 970
Pros for the particle data (440 GB), and the two 960 Pros for the
convolution data (multipoles and Taylors, 102 GB total). While we
could have fit the whole 20483 problem on a single SSD, we rely on
multiple SSDs to provide the throughput to keep up with the GPU
and CPU. For larger simulations, we employ RAID arrays of HDDs,
which offer lower performance but a better price or GB ratio.

During singlestep, since we can compute the near field on
GPUs and the far field on CPUs, we can overlap their computation.
Typically, a few CPU cores are dedicated to GPU communication, a
few are dedicated to IO, and the rest are used for far-field forces and
other CPU work. Thus, we have the IO, GPU, and CPU operating
in parallel. For this work, we used 6 cores to prepare GPU work, 1
core for IO, and 21 for CPU work.

We carefully control the assignment of threads to cores (both
OpenMP threads, and our own GPU and IO threads). This is to
prevent threads from switching cores and interfering with each other
and to maintain NUMA locality. In most contexts, we statically
schedule the OpenMP threads over y-rows, so particles will largely
stay on their own NUMA node.

For this simulation, we use K = 693, multipole order p = 8, and
near-field radius R = 2. This yields 25.8 particles per cell. K was
chosen post hoc to optimize the trade-off between the late time N2

work and the increased CPU work and IO for all time-steps.
We note that the S2016 particle mass (1.2 × 109 h−1 M�) is

smaller than would be optimal for the current version of ABACUS on
thehal hardware. At late times, the N2 work from the largest haloes
dominates the runtime; the largest cell has over 200 000 particles
by the end of the simulation. To counteract this, we were forced to
choose a relatively large K, which tends to underfill the AVX-512
vectors in most cells and increase the FFT work. This decreases
far-field performance. Furthermore, the multipole or Taylor data
volume increases as K3, thus slowing down the convolution step
(which is strongly IO limited). Even a factor of 2–3 increase in
particle mass would cause the GPU work to be sub-dominant to the
CPU work, increasing the total speed of the simulation.

The small force softening also leads to larger particle acceler-
ations in the centres of haloes. Since ABACUS is a globally time-
stepped code, this forces us to take one or two thousand time-steps
to z = 0, instead of one or two hundred, as is common in codes with
adaptive time-stepping. Future versions of ABACUS will address this
with on-the-fly identification of haloes and refined time-stepping
within those haloes; we call this scheme ‘microstepping’. This will
allow us to take larger global time-steps and have the benefit of
increasing the compute load for every time we load the particles.
This should bring the compute performance back in line with the
disc performance. The former currently outstrips the latter, except
at late times for the low-particle masses considered here.

For truly massive simulations, we are developing a parallel
version of ABACUS based on the existing slab decomposition
suitable for parallelization over a few dozen nodes.

While it may seem that the hal hardware is specialized (e.g. the
combination of fast local disc and several GPUs on a single
node), we note a trend in supercomputing towards this ‘fat node’
design. For example, the Summit1 supercomputer (number 1 on the

1https://www.olcf.ornl.gov/summit/

Figure 1. ABACUS runtime per step. The singlestep GPU and CPU
work is overlapped, so the wall-clock time is the maximum of the two. The
convolution occurs as a separate step between singlestep invocations.
The spikes in GPU runtime are the output steps, where the CPU is too busy
to prepare work for the GPU at full speed. Minor ticks on the redshift axis
are steps of �z = 0.1.

Top5002) has 1.6 TB of NVMe SSD and six NVIDIA Volta V100
GPUs per node. We expect ABACUS to be well suited to Summit
and Summit-like architectures.

2.3 Performance: results

Using the exact particles provided by the Euclid Cosmological
Simulations Working Group3 (i.e. no corrections to the initial
conditions in the style of Garrison et al. 2016), ABACUS executed
1052 time-steps from zinit = 49 to z = 0 in 107 h (4.5 d) for a
mean rate of 23 million particles per second per step (Mp s−1).
The singlestep work took 87 h and the convolution 21 h. In
singlestep, the GPU work (near-field force) was fully masked
by the CPU work until about redshift z = 1.5 (step 600), after which
it quickly became dominant (Fig. 1). singlestep started at 46.0
Mp s−1 and ended at 10.8 Mp s−1 due to the increased GPU work.
Including the convolution, ABACUS started at 33.6 Mp s−1 and ended
at 9.9 Mp s−1. See Fig. 2 for a visualization of the final state.

A timing breakdown of the first ABACUS time-step is given in
Table 1. This timing is representative of all time-steps, except for
the increased GPU work towards late times, as noted in the table.

In Fig. 3, we show the measured GPU wall-clock performance
in terms of number of pairwise spline interactions computed
per second. The performance increases as the compute density
(interactions per particle) increases, peaking around step 700 (z
= 1) or 1.2 × 104 interactions per particle. Afterwards, the
performance declines, possibly due to worsening load balancing
from the increasing density contrasts between cells.

We also give a rough estimate of the theoretical peak performance
of our two NVIDIA 1080 Ti GPUs. We assume 10.6 TFLOPS
per GPU (see above), which assumes all operations are fused
multiply–add (FMA). In our spline kernel, we count 22 additions
and multiplies (not all of which are FMA), a reciprocal square root
(rsqrt), and amin. We count thersqrt as one FLOP and ignore
the min, even though we expect these are poor approximations.

2https://www.top500.org/list/2018/11/
3https://www.ics.uzh.ch/∼aurel/euclid.htm

MNRAS 485, 3370–3377 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/3/3370/5371170 by U
niversity of Arizona Library user on 26 August 2019

https://www.olcf.ornl.gov/summit/
https://www.top500.org/list/2018/11/
https://www.ics.uzh.ch/~aurel/euclid.htm

ABACUS code comparison 3373

Figure 2. A 0.7 h−1 Mpc thick slice through an ABACUS realization of the S2016 box at z = 0. Colour indicates projected surface density.

We thus derive a conservative 23 FLOP estimate, yielding a theo-
retical peak of 920 billion direct interactions per second (GDIPS).

We measure a peak ABACUS performance of 485 GDIPS, which
is 52 per cent of our estimated theoretical peak. We consider this
excellent performance. This measurement uses wall-clock time
while at least one ABACUS GPU thread is running and thus includes
PCIe bus transfer overheads and load imbalancing.

A ‘notch’ of 10 per cent slower CPU performance is visible
between steps 837 and 1000 in Fig. 1. After step 836, the simulation
was manually paused for several minutes to run fstrim on the
SSDs to ensure consistent write performance (we had observed
catastrophic write performance decreases in the recent past that were
fixed with TRIM). Upon resuming, the singlestep performance
was slightly slower in memory-bandwidth-bound operations like
Transpose Positions. At step 1000, the simulation automatically
paused for several minutes to write a backup state. Upon resuming,
the bandwidth issue disappeared. We do not have compelling
explanation for this issue, but it also had no impact on the wall-clock
time, since it was completely masked by the GPU compute time.

3 C O D E C O M PA R I S O N R E S U LT S

3.1 Power spectrum

We repeat the power spectra tests of S2016 on the z = 0 and
z = 2 particles (except for GADGET3 z = 2 particles, which
were unavailable) and add ABACUS’s results. We use our own
power spectrum code, which uses triangle-shaped (TSC) cloud
mass assignment and TSC-alias window deconvolution (Jing 2005).
We use a 35003 FFT mesh and find excellent agreement with
the previously reported results. The ABACUS result lies between
RAMSES and PKDGRAV3 at both z = 2 & z = 0 (Figs 4
and 5).

As observed in S2016, the codes do not agree even on the largest
scales at both redshifts at the 0.5 per cent level. This motivates us
to check the analytic linear theory prediction of the power spectrum
on these scales in Section 4.1. The largest disagreements are on the
smallest scales, however. This motivates our checks of the effects
of time-step and softening in Sections 4.2 and 4.3.

MNRAS 485, 3370–3377 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/3/3370/5371170 by U
niversity of Arizona Library user on 26 August 2019

3374 L. H. Garrison, D. J. Eisenstein and P. A. Pinto

Table 1. Wall clock timing for the first ABACUS time-step of the S2016 box, z = 49. Units of ‘Mp s−1’ mean millions of
particles per second. ‘DP-FLOPS’ means double-precision floating-point operations per second. Only rates for the dominant
sub-steps are shown. Percentages are relative to their parent step. ‘Non-blocking’ means other CPU actions can proceed while
that action is running.

Action Time [s] % Rate Notes

Total 255 100 % 33.6 Mp s−1 9.9 Mp s−1 at z = 0
Singlestep 187 73 % 46 Mp s−1

CPU work 187 100 % 46 Mp s−1

CUDA initialization 7.3 3.9% Pinning memory
Check slab integrity 1.6 0.9%
Transpose positions 3.0 1.6 %
Prepare near force 7.6 4.1 %
Taylor force 85.2 45.5 % 100 Mp s−1

Kick 10.1 5.4 %
Drift 7.8 4.2 %
Multipoles 48.3 25.8 % 177 Mp s−1

Finish 14.7 7.9 %
Waiting for GPU or IO 1.0 0.5 %

GPU near force (non-blocking) 137 73 % 62 Mp s−1 11 Mp s−1 at z = 0
Disc IO (all non-blocking) . .

Particle data read 100 53 % 2.8 GB s−1 285 GB read
Particle data write 112 60 % 2.5 GB s−1 285 GB written
Taylors read 30.6 16 % 1.7 GB s−1 108 GB read
Multipole write 27.6 15 % 1.9 GB s−1 108 GB written

Convolution 68 27 % All work is CPU
Array swizzle 19 28 %
Convolution arithmetic 19 28 % 5.8 × 109 DP-FLOPS/core
z-FFT 10 15 %
Inverse z-FFT 10 15 %
Wait for IO 10 15 %

Figure 3. GPU performance for the near-field pairwise force computation.
The theoretical maximum is computed assuming 10.6 TFLOPS per GPU and
23 FLOP per direct interaction (spline kernel). The latter is a conservative
lower limit and we surmise that our peak performance is actually larger than
the 52 per cent of the ideal maximum shown here.

3.2 Two-point correlation function

We extend the analysis of S2016 to the small-scale two-point
correlation function (2PCF). We use the CORRFUNC code (Sinha &
Garrison 2017) to measure the autocorrelation of the matter density
field out to 1 h−1 Mpc. We first downsample the particles by a factor
of two to reduce the pair-counting runtime.

The same trends that are visible in the small-scale power spectrum
are visible in the 2PCF analysis (Figs 6 and 7). The main trend that
is qualitatively different from the power spectrum analysis is that

Figure 4. Comparison of power spectra at z = 2. GADGET3 particles were
not available for this redshift.

the RAMSES clustering amplitude exceeds that of ABACUS on the
smallest scales. This may be related to differences in the softening
model.

4 VALI DATI ON

In addition to the end-to-end, standalone tests described in Section 2
(the Ewald and homogenous lattice tests), we validate the accuracy
of ABACUS specifically in the context of the S2016 simulation.
We test the recovery of linear theory, time-step parameters, force
softening model, and far-field and near-field accuracy.

MNRAS 485, 3370–3377 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/3/3370/5371170 by U
niversity of Arizona Library user on 26 August 2019

ABACUS code comparison 3375

Figure 5. Same as Fig. 4 (comparison of power spectra), but at z = 0.

Figure 6. Comparison of 2PCF at z = 2. ε marks the softening length and �

marks the mean particle spacing. Only compressed outputs were retained for
ABACUS particles at this redshift, so some noise is apparent on small scales.
A larger binning was chosen to mitigate this effect. GADGET3 particles were
not available for this redshift.

Figure 7. Same as Fig. 6 (comparison of 2PCF), but at z = 0. Full-precision
outputs ABACUS outputs were available for all but the Plummer softening
line, hence the coarser binning in that case.

Figure 8. Test of evolution the deeply linear regime (σ 8 = 0.817/200 at z

= 0). ABACUS executed 137 time-steps from zinit = 49 to z = 0 and recovers
the analytic linear theory prediction with excellent accuracy. The dashed
line shows the predicted scaling of the suppression of growth rate due to
discreteness, or finite particle mass, on the power spectrum.

4.1 Linear theory

The S2016 codes do not agree on the power spectrum on the
largest scales in the simulation. Most notably, RAMSES produces
a 0.35 per cent power deficit compared to ABACUS at z = 2 and
GADGET3 produces a 0.45 per cent deficit at z = 0. Motivated by this
failure to agree on linear theory, we test ABACUS’s ability to recover
the analytic result in the strongly linear regime. We set up a 10243

particle simulation with a σ 8 = 0.817/200 at z = 0 and otherwise
the same parameters as the S2016 simulation. In particular, we hold
fixed parameters that could plausibly affect the accuracy, like the
particles per cell and the multipole order. To best mimic S2016,
we used the ordinary Zel’dovich Approximation (i.e. no corrections
following Garrison et al. 2016).

We evolve the simulation from zinit = 49 to z = 0 using 137
time-steps and compare the power spectrum at z = 2 and z =
0 to the linear power spectrum at those redshifts. In both cases,
we find better than 0.01 per cent agreement on the largest scales
(Fig. 8). We find a deficit of power on smaller scales, towards
kNyquist. This is expected. An N-body system with finite particle
mass should see a suppression of linear growth rate towards the
Nyquist wavenumber of the particle sampling, independent of force
softening or integration errors (Marcos et al. 2006; Garrison et al.
2016). The wavenumber scaling of this effect is an excellent match
to the analytic prediction (dashed line, Fig. 8), using the k �
kNyquist approximation of Marcos et al. (2006). We see that z =
2 consistently shows less suppression of power, as expected: the
suppressed quantity is the growth rate, so a higher redshift gives
less time for the suppression to accumulate in an absolute sense.

4.2 Time-stepping

4.2.1 Parametrization

ABACUS is presently a globally-stepped code; all particles share the
same time-step. At the beginning of each step, the time-step �a is
chosen based on three criteria:

(i) The step size in �log (a) units must not exceed Time-
stepDlna.

(ii) The step size must be less than Time-stepAccel times
the maximum of vrms/amax computed within each cell.

MNRAS 485, 3370–3377 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/3/3370/5371170 by U
niversity of Arizona Library user on 26 August 2019

3376 L. H. Garrison, D. J. Eisenstein and P. A. Pinto

(iii) The step size times the maximum velocity must be less than
80 per cent of a cell width.

The first criterion, set by Time-stepDlna, usually limits
the step size at the beginning of the simulation before particle
accelerations become large. It ensures integration accuracy even
in the linear regime. We use a value of 0.03 or about 33 steps per
e-fold of scale factor. The successful linear theory test in Section 4.1
uses the same value and thus validates this choice.

The second criterion, controlled by Time-stepAccel (also
called η), becomes the limiting factor as soon as two particles
anywhere in the simulation come into a close orbit. We nominally
use a value of η = 0.15; we also try a value of η = 0.3 in Section 4,
since we expect that our nominal choice is extremely conservative,
given that we take 2200 global steps to z = 0 as a result.

In detail, for the second criterion we also compute a global
vrms/amax and use the maximum of the global and cell-based values.
This protects us from taking catastrophically small time-steps as a
result of abnormally cold cells.

The third criterion simply ensures that particles drift by at most
one slab per time-step. This is necessary in order to keep the rolling
window of slabs in memory small. In practice, we rarely trigger this
criterion.

A large number of global steps is undesirable because (1) it
increases the IO load, and (2) it wastes a large amount of computa-
tional effort integrating motions of low-acceleration particles. This
problem is particularly noticeable in the S2016 simulation, which
has a small softening length and thus a high contrast in the dynamical
time-scale of halo and void particles. We intend to address this in
a future version of ABACUS with our ‘microstepping’ scheme (see
Section 2.2). A large number of global steps does have the benefit
of minimizing integration errors in the particle dynamics, however,
which is useful in the context of checking code convergence.

4.2.2 Validation

We investigate the effect of varying the time-stepping parameter
η, or Time-stepAccel, on the matter field power spectrum
and 2PCF. We try both η = 0.15 and η = 0.3. ABACUS takes
2206 and 1052 time-steps, respectively, to z = 0. We find sub-
percent differences in the power spectrum to the smallest scales
we measure (k = 22 h Mpc−1); the differences fall to 0.4 per cent
above kNyquist = π/� = 12.9 h Mpc−1, where � = L/N1/3 is the
mean interparticle spacing. The differences are even smaller at
z = 2.

Similarly, we find very small differences of less than 1.6 per cent
across the whole measured range of the 2PCF at z = 0, which
extends down to ε/2 or 5 h−1 kpc. This decreases to 1 per cent at 2ε.
Again, the differences are even smaller at z = 2.

In both metrics, the error caused by increasing the time-step
to η = 0.3 is smaller by about an order of magnitude than the
disagreements among the different codes. Thus, we consider our
choice of η = 0.3 to be sufficiently accurate.

4.3 Softening

4.3.1 Parametrization

We investigate the effect of different force softening laws on our
results. Our nominal results use spline softening, but we also
perform a simulation with Plummer softening. In both cases, we use
a Plummer-equivalent co-moving softening length of 10 h−1 kpc

(see below). We use a time-step parameter of η = 0.15, which is the
finer of the two time-step criteria investigated above.

In Plummer softening (Plummer 1911), the F(r) = r/r3 force
law is modified as

F(r) = r
(r2 + ε2

p)3/2
, (1)

where εp is the softening length. This softening is very fast to
compute but is not compact, meaning it never explicitly switches to
the exact r−2 form at any radius (in contrast with spline softening).
This affects the growth of structure on scales much larger than εp,
as we will see below.

Spline softening is an alternative in which the force law is
softened for small radii but explicitly changes to the unsoftened
form at large radii. Traditional spline implementations split the force
law into three or more piecewise segments (e.g. the cubic spline of
Hernquist & Katz 1989); we split only once for computational
efficiency and to avoid code path branching.4 We derive our spline
implementation by considering a Taylor expansion in r of Plummer
softening (equation 1) and requiring a smooth transition at the
softening scale up to the second derivative.5 This gives

F(r) =
{[

10 − 15(r/εs) + 6(r/εs)2
]

r/ε3
s , r < εs ;

r/r3, r ≥ εs .
(2)

This was first presented in Garrison et al. (2016).
The softening scales εs and εp imply different minimum dynami-

cal times (an important property, as this sets the step size necessary
to resolve orbits). We always choose the softening length as if it
were a Plummer softening and then internally convert to a softening
length that gives the same minimum pairwise dynamical time for
the chosen softening method. For our spline, the conversion is
εs = 2.16 εp.

4.3.2 Comparison

In Figs 4 and 5, we see that Plummer softening produces a
significant suppression of small-scale power. The range is notable
too: 1 per cent effects extend even to k below kNyquist, which itself
is 24 times larger than the softening scale.

We see the same trend in the two-point correlation function in
Figs 6 and 7: The suppression of clustering extends to many times
the softening length.

In both the power spectrum and the 2PCF, using spline softening
brings us into qualitatively better agreement with the other codes.
Due to its compact nature, we consider spline softening the more
physically accurate of our two softening models.

4.4 Far-field force

The main source of error in the far-field force is the finite multipole
order p. Our nominal value is p = 8, which gives excellent force
accuracy for near-field radius 2 (see Section 2). To quantify this
in the context of S2016, we re-ran the final state with p = 11 and
compared the far-field forces in the first 6 slabs to the p = 8 result.
Measuring the fractional error as |f8 − f11|/|f11|, we find the median

4We implement our split as a single min operation which compiles to a
conditional move rather than a costly conditional jump.
5A Taylor expansion in r2 is also possible, but we discard that solution due
to a large plateau of constant angular frequency near r ∼ 0 that we worry
might excite dynamical instabilities.

MNRAS 485, 3370–3377 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/3/3370/5371170 by U
niversity of Arizona Library user on 26 August 2019

ABACUS code comparison 3377

error is 6.8 × 10−7, with only 0.28 per cent of forces worse than
1 × 10−4.

4.5 Near-field force

The near-field force is essentially exact, since it is computed
via brute-force N2 summation (i.e. no tree structures or other
approximations are used). The main source of uncertainty is use
of single-precision (32-bit) floating point values for the positions
and accelerations. This mainly enters as round-off error in the
accumulation of the accelerations, but there are other intermediate
steps, like the re-centring of particle positions before they are sent
to the GPU, that may suffer similarly. To quantify these effects, we
make a copy of the final state in double precision, evaluate the forces,
and compare the forces to the single-precision answer. We find that
only 0.038 per cent of force errors are worse than 1 × 10−4, which
is an order of magnitude fewer than in the far-field. The median
fractional error is 7.5 × 10−7.

5 D ISCUSSION

We have presented a realization of the S2016 code comparison
simulation using our ABACUS N-body code. ABACUS has excellent
force accuracy properties that give us confidence that we are
recovering the correct answer on most scales, especially in the
linear regime where other codes disagree on the answer. Indeed,
our linear evolution tests show better than 0.01 per cent recovery
of linear theory growth. We have validated our time-step and force
accuracy parameters and found them to be conservative.

On small scales, the answer still depends on the choice of
softening model. Even matching dynamical times, we find that
Plummer softening produces a significant suppression of small-
scale power. We consider this non-physical and prefer our compact
spline softening, which brings our small-scale results closer to that
of RAMSES and PKDGRAV3. GADGET3 is still somewhat of an outlier,
generally missing power across a broad range of scales. Part of this
could well have to do with softening model differences, given the
large effect we saw when switching from Plummer to spline. It may
be illuminating to compare these results to those of other codes like
HACC (Habib et al. 2013) and 2HOT (Warren 2013) to determine
which differences arise from the force-solving technique and which
arise from the softening model.

We have also demonstrated ABACUS’s performance, which ex-
ceeds 30 million particles per second per step until z = 1.1.
Afterwards, the near-field computation slows down due to the
amount of clustering at this particle mass. Overall, we achieve a
mean rate of 23 Mp s−1 and measure GPU performance of over

50 per cent of the peak theoretical FLOPS. Future enhancements
to ABACUS will substantially increase our performance at this force
and mass resolution.

AC K N OW L E D G E M E N T S

We would like to thank Doug Ferrer and Marc Metchnik as co-
authors of ABACUS, and Nina Maksimova for assistance in building
hal, the computer used to run these simulations. We also would
like to thank Aurel Schneider and Doug Potter for providing the
S2016 particle snapshots, and the referee for helpful comments.
This work has been supported by grant AST-1313285 from the
National Science Foundation and by grant DE-SC0013718 from the
U.S. Department of Energy. DJE is further supported as a Simons
Foundation investigator.

REFERENCES

DeRose J. et al., 2018, preprint (arXiv:1804.05865)
Ewald P. P., 1921, Annalen der Physik, 369, 253
Garrison L. H., Eisenstein D. J., Ferrer D., Metchnik M. V., Pinto P. A.,

2016, MNRAS, 461, 4125
Garrison L. H., Eisenstein D. J., Ferrer D., Tinker J. L., Pinto P. A., Weinberg

D. H., 2018, ApJS, 236, 10
Habib S., Morozov V., Frontiere N., Finkel H., Pope A., Heitmann K.,

2013, SC ’13 Proceedings of SC13: International Conference for High
Performance Computing, Networking, Storage and Analysis, p. 6

Heitmann K. et al., 2008, Comput. Sci. Discovery, 1, 015003
Hernquist L., Katz N., 1989, ApJS, 70, 419
Jing Y. P., 2005, ApJ, 620, 559
Marcos B., Baertschiger T., Joyce M., Gabrielli A., Sylos Labini F., 2006,

Phys. Rev. D, 73, 103507
Metchnik M. V. L., 2009, PhD thesis, Univ. Arizona
Plummer H. C., 1911, MNRAS, 71, 460
Potter D., Stadel J., Teyssier R., 2017, Comput. Astrophys. Cosmol., 4, 13
Schneider A. et al., 2016, J. Cosmol. Astropart. Phys., 4, 047
Sinha M., Garrison L., 2017, Corrfunc: Blazing fast correlation functions

on the CPU Astrophysics Source Code Library, record ascl:1703.003
Springel V., 2005, MNRAS, 364, 1105
Teyssier R., 2001, A&A, 385, 337
Warren M. S., 2013 SC ’13 Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis, p. 72
Zel’Dovich Y. B., 1970, A&A, 500, 13

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 485, 3370–3377 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/3/3370/5371170 by U
niversity of Arizona Library user on 26 August 2019

http://arxiv.org/abs/1804.05865
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1093/mnras/stw1594
http://dx.doi.org/10.3847/1538-4365/aabfd3
http://dx.doi.org/10.1088/1749-4699/1/1/015003
http://dx.doi.org/10.1086/191344
http://dx.doi.org/10.1086/427087
http://dx.doi.org/10.1103/PhysRevD.73.103507
http://dx.doi.org/10.1093/mnras/71.5.460
http://dx.doi.org/10.1186/s40668-017-0021-1
http://dx.doi.org/10.1088/1475-7516/2016/04/047
http://dx.doi.org/ 10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/ 10.1051/0004-6361:20011817

