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The presence of a bright “photon ring” surrounding a dark “black hole shadow” has been discussed as
an important feature of the observational appearance of emission originating near a black hole. We clarify
the meaning and relevance of these heuristics with analytic calculations and numerical toy models. The
standard usage of the term “shadow” describes the appearance of a black hole illuminated from all
directions, including from behind the observer. A backlit black hole casts a somewhat larger shadow.
Neither “shadow” heuristic is particularly relevant to understanding the appearance of emission originating
near the black hole, where the emission profile and gravitational redshift play the dominant roles in
determining the observed size of the central dark area. A photon ring results from light rays that orbit
around the black hole in the near-field region before escaping to infinity, where they arrive near a ring-
shaped “critical curve” on the image plane. Although the brightness can become arbitrarily large near this
critical curve in the case of optically thin emitting matter near the black hole, we show that the enhancement
is only logarithmic, and hence is of no relevance to present observations. For optically thin emission from a
geometrically thin or thick disk, photons that make only a fraction of an orbit will generically give rise to a
much wider “lensing ring,” which is a demagnified image of the back of the disk, superimposed on top of
the direct emission. For nearly face-on viewing, the lensing ring is centered at a radius ∼5% larger than the
photon ring and, depending on the details of the emission, its width is ∼0.5–1M (where M is the mass of
the black hole). It can be relatively brighter by a factor of 2–3, as compared to the surrounding parts of
the image, and thus could provide a significant feature in high-resolution images. Nevertheless, the
characteristic features of the observed image are dominated by the location and properties of the emitting
matter near the black hole. We comment on the recent M87* Event Horizon Telescope observations and
mass measurement.

DOI: 10.1103/PhysRevD.100.024018

I. INTRODUCTION

The Event Horizon Telescope (EHT) Collaboration
recently reported 1.3 mm Very Long Baseline
Interferometry (VLBI) observations of the nucleus of the
nearby galaxy M87, achieving angular resolution compa-
rable to the expected size of the supermassive black hole
[1–6]. In these papers, the concepts of a “black hole
shadow” surrounded by a “photon ring” have dominated
the discussion of the interpretation of the observations. In
this paper, we use analytic calculations and simple models
to gain better understanding and insight into the observable
features of emission arising from near a black hole, paying
special attention to shadows and rings.
The shadow and ring heuristics both involve a special

curve on the image plane that Bardeen called the “apparent

boundary” [7], and that we will call the critical curve. By
definition, when traced backwards from its observation by a
distant observer, a light ray from the critical curve will
asymptotically approach a bound photon orbit. Thus,
photons which are seen near the critical curve will have
orbited the black hole many times on their way to the
observer. For Schwarzschild, the bound orbits occur at
r ¼ 3M, and the critical curve is a circle of apparent radius
(i.e., impact parameter) b ¼ 3

ffiffiffi
3

p
M ≈ 5.2M (see, e.g.,

Refs. [8,9]). For Kerr, the critical curve remains of
approximately the same typical radius [7,10,11].
The term “black hole shadow” has come to represent the

interior of the critical curve. The model problem where this
region corresponds to some kind of “shadow” is when the
black hole is illuminated by a distant, uniform, isotropically
emitting spherical screen surrounding the black hole (and
the observer is far away from the black hole, but within the
radius of the screen). In this case, the region inside the
critical curve would be perfectly dark and the region
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outside would be uniformly bright. As we shall discuss in
Sec. III A, if a Schwarzschild black hole is instead backlit
by a distant planar screen, the black hole will cast a slightly
larger shadow, extending out to b ∼ 6.2M, with a tiny
amount of light emerging near the critical curve at b ∼
5.2M (Fig. 3 below). However, neither of these shadows
has much relevance for determining the appearance of
emission from near a black hole, where the physical
emission profile and redshift effects play the dominant
roles. For emission from an accretion disk, the main dark
area extends simply to the lensed position of the inner edge
of the disk [8,12]. For example, if the emission extends all
the way to the horizon of a Schwarzschild black hole,
the dark area (for face-on viewing) extends to 2.9M, well
within either of the “shadows” at 5.2M or 6.2M.
The photon ring is a region of enhanced brightness near

the critical curve that arises if optically thin matter emits
from the region where unstable bound photon orbits exist
[10,11,13]. The light rays that comprise the photon ring can
orbit many times through the emission region and thereby
“pick up” extra brightness. Since the optical path lengths
become arbitrarily long near the critical curve, the bright-
ness can become arbitrarily large (neglecting absorption).
One of the purposes of this paper is to give a quantitative
estimate of the size and observational relevance of this
photon ring.
We focus primarily on the simple case of emission

from an optically and geometrically thin disk near a
Schwarzschild black hole, viewed face-on, since the main
features can be understood from this example. We will also
investigate the effects of having a geometrically thick
emission region. (More detailed analysis for inclined disks
in Kerr will appear separately [14].) It will be convenient
for us to make a distinction between a “photon ring” and
what we call the “lensing ring.” We define the lensing ring
to consist of light rays that intersect the plane of the disk
twice outside the horizon, and we define the photon ring to
consist of light rays that intersect three or more times
(Fig. 2 below). For Schwarzschild, the photon ring lies at
5.19M < b < 5.23M and the lensing ring lies between
5.02M and 6.17M. For terminological definiteness, we
exclude the photon-ring region from the lensing ring, so
that the lensing ring consists of light rays that cross the disk
plane exactly twice.
Away from the lensing ring, i.e., for b < 5.02M or

b > 6.17M in Schwarzschild, one would see only the direct
emission from the disk. Within the lensing ring, however,
one would also see a lensed image of the back side of the
disk superimposed upon the direct emission. This lensed
image, of course, would be demagnified and distorted, and
would contain varying viewing angles. Within the photon
ring, one would see an additional image of the front side of
the disk, and, as one gets closer to the critical curve, one
would see additional alternating images of the back and
front sides of the disk.

The properties of the observed emission in the photon-
and lensing-ring regions depend significantly on the details
of the emission. For example, if there is no emission at all
coming from the region near the bound photon orbits, there
would still be emission appearing at the photon and lensing
rings arising from lensing of emission elsewhere, and there
could still be some enhanced brightness effects (arising
from seeing the emission region from a different “viewing
angle”), but it is not plausible that the photon and lensing
rings would be prominent features of the overall emission.
As an extreme example, even if there is only emission from
the disk at very large radii, there will still be a series of
(highly demagnified) lensed images of the distant disk near
the critical curve. At the opposite extreme, if there is so
much emission from the region near the bound photon
orbits that this emission is optically thick, then there would
be no photon- or lensing-ring effects at all—all the lensed
emission would be “blocked” by absorption. In intermedi-
ate cases, one could have photon and lensing rings of
enhanced brightness, but their exact size and brightness
would depend on the details of where the emission is
coming from as well as its optical depth. Nevertheless, we
will argue in this paper that it is possible to make some
general statements about the importance of the photon and
lensing rings.
A key result that allows us to make an unambiguous

statement about the photon ring concerns the behavior of
light rays near the critical curve. As we have already noted
above, for a Schwarzschild black hole the bound photon
orbits are at r ¼ 3M and the critical impact parameter is
bc ¼ 3

ffiffiffi
3

p
M. We will show that in Schwarzschild, both the

bending angle and the elapsed affine parameter near the
black hole diverge only as ln jb − bcj near the critical curve.
This implies that in order to additively lengthen the optical
path length of a light ray through the emission region near
the black hole by a given amount, one must get exponen-
tially closer to the critical curve. In particular, within the
regime of this approximation, in order to orbit the black
hole by an extra half-orbit (i.e., by an additional angle π),
one must get closer to bc by a factor of eπ ∼ 23. The main
consequence of this is that the light rays that make up the
photon ring as defined above can contribute only a few
percent of the total flux contributed by the lensing ring.
Thus, for practical purposes the photon ring can be ignored
and only the lensing ring need be considered. We show in
the Appendix that these results extend to Kerr black holes
at any inclination.
The width and brightness of the lensing ring will depend

upon the geometry of the emitting region. If the emitting
region is an optically thin, geometrically thin disk (viewed
nearly face-on) extending near the black hole, then as we
shall illustrate in Sec. III B (see Fig. 2), the lensing ring will
be narrow and should not be more than 2–3 times brighter
than the direct emission (where the direct emission is
included in the brightness of the lensing ring). It therefore
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should not make an important contribution to the observed
flux at low resolution. On the other hand, if the emitting
region is geometrically thick and if the emission peaks near
the region of bound photon orbits, then a bending angle of
only ∼π=2 would be needed to significantly lengthen the
optical path. The photon ring may be wide enough and
bright enough to make a more significant feature in the
observed total flux from the emission, as we shall illustrate
in Sec. III C. Nevertheless, even in this case, the observed
emission would be dominated by the direct image of the
emission profile.
The nature and properties of the enhanced emission from

the photon ring and lensing ring are illustrated in Fig. 1,
which corresponds to the toy model thin-disk emission
profile shown in the bottom-left panel of Fig. 5. The
observed intensity profile is a redshifted and slightly
distorted version of the source profile, upon which are
superimposed lensing and photon rings. Although very
bright, the photon ring is extremely narrow and makes a
negligible contribution to the overall flux. The lensing ring
is less bright but significantly broader, and for some
emission profiles can make a modest net contribution to

the total flux. The lensing-ring feature is particularly
prominent in this example because it lies directly on top
of the broad peak of the direct emission. The completely
dark area is at b ≲ 3M, far smaller than the “shadow”
defined above. The intensity profile shown in Fig. 1 exhibits
roughly the maximum possible contribution from the lensing
and photon rings in the case of thin-disk emission, because
the emission itself is already peaked in the region of photon
orbits. For a thick disk, the lensing ring can encompass
significantly more of the yellow lensing band (i.e., it can be
broader), but the typical brightness enhancement will still be
2–3. The contribution to the observed flux from the photon
ring is always negligible.
Some comparison of our terminology with that of the

recent EHT papers [1–6] is in order. In these papers, the
photon ring is introduced as the precise critical curve
b ¼ bc, and the associated theoretical discussion is closely
tied to the unstable photon orbits. The images arising from
simulations discussed in these papers display rings of
enhanced brightness, which the authors refer to as “photon
rings.” These enhanced-brightness rings cannot be “photon
rings” as we have defined the term. To the extent that the
enhanced-brightness rings are not direct features of the
emission profile, they would be “lensing rings” in our
terminology, and would therefore peak at an impact
parameter roughly 5% larger than that of what we (and
EHT) refer to as the “photon ring.”
In Sec. II, we discuss general features of photon

trajectories in Schwarzschild. In Sec. III, we describe the
appearance of the region near a Schwarzschild black hole
when it is backlit, as well as when there is emission from
an optically thin, geometrically thin or thick disk near the
black hole. Some comments about the case of a Kerr black
hole are given in Sec. IV. In Sec. V, we discuss implications
of our findings for EHT observations of M87*. In the
Appendix, we show that the optical path length near the
critical photon orbits in Kerr is similar to the Schwarzschild
case, indicating that our conclusions about photon rings
will also hold for Kerr. A more complete analysis of Kerr
will be given elsewhere [14].

II. LIGHT BENDING NEAR A SCHWARZSCHILD
BLACK HOLE

The behavior of null geodesics in Schwarzschild
spacetime is treated in standard general relativity texts.
Null geodesics possess a conserved energy E and angular
momentum L, with only their ratio b ¼ L=E relevant for
the trajectory. For null geodesics that reach infinity, b is the
impact parameter.
We are interested in the appearance of the region near

the black hole to a distant observer, for various cases of
emission from near the black hole. This can be understood
by tracing null geodesics from the eye of an observer
backwards towards the region near the black hole. A key
result needed to understand the appearance of what is

Iobs/I0
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FIG. 1. Using an example where the lensing ring is particularly
prominent, we illustrate the key features of the image of a black
hole surrounded by an optically and geometrically thin accretion
disk, viewed face-on. The observed intensity is plotted as a
function of impact parameter, b. This figure is an annotated
version of the middle bottom plot in Fig. 5 below. The underlying
emission source profile is peaked near the black hole, falling off
by r ¼ 6M (see bottom left panel of Fig. 5). The inner edge of the
observed profile at b≲ 3M is the lensed position of the event
horizon. (The radius of this central dark region is considerably
smaller than that of the conventional “black hole shadow” at
r ¼ 5.2M.) The ramp-up outside of the central dark area is due to
the gravitational redshift. The very narrow spike at 5.2M is the
photon ring, while the distinct, broader bump at 5.4M is the
lensing ring. The portion of this bump above the dashed line is
the contribution from the image of the back side of the disk; the
portion below the dashed line is from the direct emission from the
front side of the disk. Beyond the lensing ring, the intensity falls
off at a rate determined by the source profile. The yellow band on
the x axis shows the range of the lensing ring, and the red band
shows the range of the photon ring.
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observed is the total change in orbital plane azimuthal
angle, ϕ, of the null geodesic as a function of the impact
parameter b for such trajectories. This is plotted in two
ways in Fig. 2.
The left plot in Fig. 2 directly shows the total number of

orbits, n≡ ϕ=2π, as a function of b. (Note that “straight-
line motion” would correspond to n ¼ 1=2; i.e., the
bending of light rays that do not enter the black hole is
measured by n − 1=2.) The most prominent feature of this
plot is the singularity at b ¼ bc, where

bc ¼ 3
ffiffiffi
3

p
M ≈ 5.1962M: ð1Þ

Null geodesics at this critical impact parameter asymptoti-
cally approach the bound null geodesics at r ¼ 3M and
thus orbit around the black hole an infinite number of times.
The right plot gives perhaps a clearer picture of what

an observer—placed at large distances to the right of the
plot—would see. Null geodesics emerging at impact
parameter b < 5.02M originate from the black hole (or,
more precisely, from the spacetime region where the black
hole was formed) and make fewer than n ¼ 3=4 orbits
around the black hole. Thus, if we call the far right of the
plot the “north pole direction,” these null geodesics cross
the equatorial plane at most once. Light rays with 5.02M <
b < 6.17M have n > 3=4 and thus cross the equatorial

plane at least twice. Those with 5.19M < b < 5.23M have
n > 5=4 and thus cross the equatorial plane at least 3 times.
Finally, the light rays with b > 6.17 have n < 3=4 and
thus only cross the equatorial plane once. For the reasons
already indicated in the Introduction, we will classify these
rays as follows:
(1) Direct: n < 3=4

b=M ∉ ð5.02; 6.17Þ.
(2) Lensed: 3=4 < n < 5=4

b=M ∈ ð5.02; 5.19Þ or ð5.23; 6.17Þ.
(3) Photon ring: n > 5=4

b=M ∈ ð5.19; 5.23Þ.
In Fig. 2, these are colored black, gold, and red,
respectively.
It is useful to have a simple, analytic approximation

to the bending angle near the critical curve bc. The
Schwarzschild geodesics may be expressed in terms of
elliptic integrals—see Refs. [8,15] for details.1 Expanding
the elliptic integral near bc gives the approximation

ϕ ∼ log

�
C�

jb − bcj
�
; b → bc�; ð2Þ
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FIG. 2. Behavior of photons in the Schwarzschild spacetime as a function of the impact parameter b. On the left, we show the
fractional number of orbits, n ¼ ϕ=ð2πÞ, where ϕ is the total change in (orbit plane) azimuthal angle outside the horizon. The thick line
is the exact expression, while the dashed line is the approximation [Eq. (2)]. The colors correspond to n < 0.75 (black), 0.75 < n < 1.25
(gold), and n > 1.25 (red), defined as the direct, lensed, and photon-ring trajectories, respectively. On the right, we show a selection of
associated photon trajectories, treating r;ϕ as Euclidean polar coordinates. The spacing in the impact parameter is 1=10, 1=100, and
1=1000 in the direct, lensed, and photon-ring bands, respectively. The black hole is shown as a solid disk and the photon orbit as a
dashed line.

1These references considered the case b > bc only, but the
generalization is straightforward.
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with

Cþ ¼ 1944

12þ 7
ffiffiffi
3

p M ≈ 80.6M; ð3Þ

C− ¼ 648ð26
ffiffiffi
3

p
− 45ÞM ≈ 21.6M: ð4Þ

The result for b > bc was given by Luminet [8] [see Eq. (7)
of that reference]. The exact and approximate solutions are
plotted in the left panel of Fig. 2. It can be seen that the
logarithmic approximation [Eq. (2)] is excellent within the
photon ring and most of the lensing ring, with appreciable
(but still < 10%) deviation only at the rightmost edge.

III. SHADOWS AND RINGS

In this section, we consider the appearance of a
Schwarzschild black hole under various illumination con-
ditions. In Sec. III A, we consider a “backlit” black hole.
In Sec. III B, we consider emission from an optically
and geometrically thin disk around the black hole, viewed
face-on. In Sec. III C, we consider emission from a
geometrically thick region near the black hole.

A. Backlit black hole

For our first model problem, consider a black hole that
is illuminated from behind by a planar screen that emits
isotropically with uniform brightness. We assume that the
screen is infinitely far away and infinite in extent. This
problem is of no physical interest but is quite useful
pedagogically for understanding features of gravitational
lensing by a Schwarzschild black hole.
As in the previous section, we trace the light rays

backwards from the observer. By the conservation of
surface brightness (specific intensity), the image has bright-
ness equal to that of the screen where the relevant light ray
intersects the screen, and otherwise has zero brightness.
The light ray will intersect the screen if and only if b > bc
and n ∈ ðjþ 1=4; jþ 3=4Þ for j ¼ 0; 1; 2;…, where n is
the number of black hole orbits (see Fig. 2). Thus, the
observed brightness Iobs is given in terms of the emitted
brightness Iem by

IobsðbÞ ¼
�
Iem; b > bc and n ∈ ðjþ 1=4; jþ 3=4Þ
0; otherwise

:

ð5Þ
The main bright region is comprised of the rays deflected
by less than 90°, which occurs for

b > 6.17M: ð6Þ
The additional bright regions have at least n ¼ 5=4 and are
well within the validity of the log approximation [Eq. (2)].
These form a sequence of rings converging to the critical
curve,

b − bc
Cþ

∈ ðe−2πðjþ3=4Þ; e−2πðjþ1=4ÞÞ; j ¼ 1; 2;…: ð7Þ

The widest of these rings (j ¼ 1) has the range

b ∈ ð5.1975M; 5.2274MÞ: ð8Þ

That is, the inside edge of the first ring is already just
0.001M outside the critical curve and has a thickness of
only 0.03M, less than 1% the critical curve radius. The
subsequent rings are exponentially closer and narrower.
Thus, the image features a dark hole of radius 6.17M,
together with extremely narrow rings near 5.19M.
The observational appearance of a backlit black hole is

shown in Fig. 3. We would describe this arrangement as the
black hole casting a “shadow” of radius 6.17M, into which
a tiny amount of light has managed to “sneak through” to
occupy less than 1% of the shadow area. However, the
standard usage of the term “black hole shadow” refers to
the smaller portion within the thin ring.
Finally, suppose that, instead of a distant planar screen,

we had a distant spherical screen surrounding the black
hole—still emitting isotropically and with uniform
brightness—and a distant observer inside the radius of
the screen. Then it can be seen immediately from a similar
analysis that the region b > 3

ffiffiffi
3

p
M ≈ 5.20M would appear

FIG. 3. Observational appearance of a Schwarzschild black
hole that is backlit by a large, distant screen of uniform, isotropic
emission. The brightness (beige color) is uniform where it is
nonzero. The large dark area has radius 6.17M, and the thin ring
of light has radius 5.20M and thickness 0.03M. Inside of this ring
is an infinite sequence of tinier and tinier rings, which are far too
thin to display in this figure. We would regard the larger dark area
of radius 6.17M as the black hole “shadow”, but the standard
usage of this term is to refer to the region inside the tiny rings as
the shadow.
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uniformly bright and the region b < 3
ffiffiffi
3

p
M would be

entirely dark. Thus, there would be a smaller “shadow,”
and there would be no “rings” around the shadow.
We note in passing that Luminet [8] considered illumi-

nation by a plane-parallel beam of light, mainly discussing
the appearance of the deflected beam in that particular case.

B. Optically and geometrically thin disk emission

We now consider some simple examples where the
emission originates near the black hole from an optically
thin and geometrically thin disk—viewed in a face-on
orientation—whose specific intensity Iν depends only on
the radial coordinate. We assume that the disk emits
isotropically in the rest frame of static worldlines (i.e., the
matter is at rest). It would not be difficult to consider the
much more realistic cases of orbiting and/or infalling matter,
but for the face-on disk, these effects are degenerate with the
choice of radial profile. Our examples below are intended
only as toy models, designed to illustrate the effects of
gravitational lensing, as well as gravitational redshift.
We take the disk to lie in the equatorial plane, with our

observer at the north pole. We denote the emitted specific
intensity by

Iemν ¼ IðrÞ; ð9Þ

where ν is the emission frequency in a static frame. Since
Iν=ν3 is conserved along a ray, radiation emitted from a
radius r and received at any frequency ν0 has specific
intensity

Iobsν0 ¼ g3IðrÞ; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
: ð10Þ

The integrated intensity I ¼ R
Iνdν then scales as g4:

Iobs ¼ g4IðrÞ: ð11Þ

We assume that the disk is optically thin, since no
interesting photon-ring or lensing-ring effects will occur
otherwise. If a light ray followed backward from the
observer intersects the disk, it will pick up brightness from
the disk emission. But if the light ray has an impact
parameter b such that, in the notation of Fig. 2, we have
n > 3=4, then the light ray will bend around the black hole
and hit the opposite side of the disk from the back. It will
therefore pick up additional brightness from this second
passage through the disk. If n > 5=4, the light ray will also
hit the front side of the disk again. The observed intensity is
a sum of the intensities from each intersection,

IobsðbÞ ¼
X
m

g4I
���
r¼rmðbÞ

; ð12Þ

where rmðbÞ is the radial coordinate of the mth intersection
with the disk plane outside the horizon. Here we have

neglected absorption, which would decrease the observed
intensity resulting from the additional passages.
We will refer to the functions rmðbÞ ðm ¼ 1; 2; 3;…Þ as

transfer functions. A transfer function directly shows where
on the disk a light ray of impact parameter b will hit. The
slope of the transfer function, dr=db, at each b yields the
demagnification factor (relative to r, rather than proper
distance) at that b. The first three transfer functions are
plotted in Fig. 4. None of the transfer functions has support
for b≲ 2.9M, so no light appears inside this radius. Note
that this dark region is much smaller than the “black hole
shadow” of the previous subsection. The first (m ¼ 1)
transfer function corresponds to the “direct image” of the
disk. The slope is nearly 1 over its entire range, so the direct
image profile is essentially just the redshifted source
profile. The second (m ¼ 2) transfer function has support
in the “lensing ring” b=M ∈ ð5.02; 6.17Þ (including in the
“photon ring” portion of this range of b). In this range of b,
the observer will see a highly demagnified image of the
back side of the disk, with a variable demagnification given
by the slope of the curve. Over the displayed range of r, the
average slope is around 20, indicating that the secondary
image is around 20 times smaller, and hence will typically
contribute around 5% of the total flux. Finally, the third
transfer function has support only in the “photon ring”
b=M ∈ ð5.19; 5.23Þ. In this range of b, one will see an
extremely demagnified image of the front side of the
disk. This image—as well as the further images—is so
demagnified that it will always contribute negligibly to the
total flux.
The negligible contribution of the photon ring to the total

flux can be seen analytically as follows. Let us denote the
edges of the mth image by b�m:

mth image∶ b ∈ ðb−m; bþmÞ; ð13Þ

First

Second

Third

1 2 3 4 5 6 7 8 9 10
b/M0

5

10

15

20
r/M

FIG. 4. The first three transfer functions rmðbÞ for a face-on
thin disk in the Schwarzschild spacetime. Tracing a photon back
from the detector, these represent the radial coordinate of the first
(black), second (gold), and third (red) intersections with a face-on
thin disk outside the horizon.
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where m ¼ 1; 2; 3þ correspond to the direct, lensed, and
photon-ring contributions, respectively. Inverting Eq. (2)
gives

jb − bcj ∼ C�e−ϕ; b → bc�: ð14Þ

Thus, the width Δbm ¼ bþm − b−m is exponentially sup-
pressed:

Δbm ≈ e−πΔbm−1; m → ∞; ð15Þ

i.e., the images are exponentially demagnified.
For optically thin emitting matter present in the region of

photon orbits, the images will superpose. The local bright-
ness can then become arbitrarily large. However, because of
the exponential demagnification, the average brightness—
which is proportional to flux in a detector—remains low for
all reasonable profiles. For example, suppose that the direct
emission from near the photon orbit has typical brightness
Ilocal, while the rest of the disk has typical brightness Idisk. If
Iring is the average observed brightness in the lensing-ring
regime, ∼5M–6M, we have

Iring ≈ Ilocal þ Idiskð1þ e−π þ e−2π þ � � �Þ ð16Þ

¼ Ilocal þ Idisk
1

1 − e−π
ð17Þ

≈ Ilocal þ 1.05Idisk: ð18Þ

As long as the local emission is not too different from the
rest of the disk (i.e., as long as there are no very bright
sources outside the direct field of view), then the typical
brightness enhancement is a factor of 2.05. The main
contribution comes from the m ¼ 2 image (the back side
of the disk), while the first “photon ring” image (m ¼ 3)
contributes just 5% to the average brightness of the
lensing ring.
Figure 5 shows the appearance of the region near the

black hole for a range of source profiles. In the example
depicted in the top row, the disk emission is sharply peaked
near r ¼ 6M, and it ends abruptly at r ¼ 6M (see the left
panel). Thus, in this example, the region of emission is well
outside the critical photon orbits at r ¼ 3M. As can be
readily seen from the middle panel, the direct image of the
disk looks very similar to the emission profile, although its
abrupt end occurs at b ∼ 7M due to gravitational lensing.
The image of the back side of the disk (i.e., the “lensing
ring” emission) is disjoint from the direct emission and
appears in a narrow ring near b ∼ 5.5M. The lensing-
ring emission is confined to a very thin ring because the
back-side image is highly demagnified for r > 6M. As is
evident from the right panel—where the lensing-ring
emission appears as a tiny ring inside the direct image—
it makes only a very small contribution to the total flux.

The photon-ring emission is the extremely narrow spike at
b ∼ 5.2M in the middle panel of the top row. It makes a
totally negligible contribution to the total flux—one can
just barely see it in the right panel of the top row if one
zooms in.2

The second row of Fig. 5 depicts another example of a
sharply peaked emission profile, but this time the emission
peaks right at the photon orbit r ¼ 3M before abruptly
dropping to zero. In this case, redshift effects noticeably
decrease the observed flux. However, the most important
difference from the top row for our considerations is that
the lensing-ring and photon-ring emission are now super-
imposed on the direct emission. This produces a lensing-
ring spike in the brightness from 5.2M to 5.5M, with a
further extremely narrow photon-ring spike at b ∼ 5.2M.
Nevertheless, the lensing ring continues to make only a
very small contribution to the total flux, and the photon ring
continues to make an entirely negligible contribution.
Finally, the bottom row of Fig. 5 depicts emission that

arises mainly from r < 6M but extends all the way down to
the horizon at r ¼ 2M. This case was already depicted in
Fig. 1 above. Again, the lensing ring and photon ring are
superimposed on the direct image. In this case, the lensing
ring is more prominent, but the direct emission remains
dominant. The photon ring continues to be entirely
negligible.
Although Fig. 5 shows only a few highly idealized cases

of thin-disk emission near a Schwarzschild black hole
(viewed face-on), it illustrates two key points that we
believe will hold quite generally for optically thin disk
emission: (1) The emission is dominated by the direct
emission, with the lensing-ring emission providing only a
small contribution to the total flux and the photon-ring
emission providing a negligible contribution in all cases.
(2) Although the photon ring always occurs near the critical
curve (b ∼ 5.2M in Schwarzschild) and the lensing ring
always occurs somewhat outside this radius, the size of the
dark central area is very much dependent on the emission
model. Although the black holes in the right column of
Fig. 5 are the same size, the dark central areas are very
different in size, ranging from radii of b ∼ 7M to b ∼ 3M.

C. Geometrically thick emission

In this subsection, we consider emission from an
optically thin but geometrically thick region near the black
hole. In this case, the brightness at each impact parameter is
an integrated volume emissivity along the line of sight. The
observational appearance will therefore depend in a rela-
tively complex way on both the emission profile and the
shape of the emitting region.
We explore the effects of the shape of the emitting region

by considering a range of highly idealized models. First, we

2High-resolution images are available in the Supplemental
Material [16].
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arbitrarily select an emission region near a Schwarzschild
black hole. We assign a uniform emissivity to this region
and integrate the emissivity along each light ray (followed
backward from the observer). To greatly simplify our
calculations, instead of calculating the true optical path
length of the light ray in the Schwarzschild geometry, we
simply compute the Euclidean path length through the
emission region (treating r;ϕ as polar coordinates). We also
ignore redshift effects. The effects of these simplifications
on our results are small compared with effects that would
result from significantly varying the emission profiles in the
emission region, so we do not feel that much is lost by
making these simplifications. However, the reader should
be aware that our aim is merely to attain a qualitative
understanding of how the shape of the emission region may
affect the observed appearance, not to obtain physically
realistic models of geometrically thick emission.

Figure 6 shows nine different choices of emission region.
The top row shows plane-parallel disks of various thick-
nesses that extend all the way to the horizon. The middle
row shows tapered discs that terminate at different inner
radii. The bottom row shows spherical emission regions of
various radii. The corresponding observed brightness for
face-on viewing (i.e., arclength) is shown in the gray plots
in the figure.
The main difference that occurs for geometrically thick

emission is that a bending angle between π=2 and π (i.e., n
between 3=4 and 1) can result in a large increase in optical
path length. As a consequence, the lensing ring can be
brighter and the bright region of the lensing ring can extend
out to b ∼ 6M. Thus, the lensing ring can provide a more
significant feature in the emission than in the thin-disk case.
However, it should be noted that the potential effects of the
lensing ring are undoubtedly overemphasized in the models
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FIG. 5. Observational appearance of a thin, optically thin disk of emission near a Schwarzschild black hole, viewed from a face-on
orientation. The emitted and observed intensities Iem and Iobs are normalized to the maximum value I0 of the emitted intensity outside
the horizon.The lensing ringat around5.5M is clearly visible,while the photon ringat5.2M is negligible. [Only the first three images (m ¼ 1,
2, 3) are included in these plots.]When the emission stops at some inner edge (top two rows), the radius of the main dark hole is the apparent
position of the edge. When the emission extends to the horizon, the radius of the main dark hole is the apparent position of the horizon (here
b ∼ 3M). The critical curve b ¼ 5.2M (previously called the “shadow”) plays no role in determining the size of the main dark area.
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of the top and middle rows of Fig. 6, since our assumption
of uniform emission over the entire volume of the emission
region allows considerable brightness to be picked up from
emission far from the black hole. On the other hand, for a
spherical emission region, there is no clearly demarcated
lensing-ring feature.
The photon-ring feature at b ∼ 5.2M can be seen in all

nine cases shown in Fig. 6. However, as in the thin-disk
case, it contributes negligibly to the total flux. This can be
understood in the same manner as in the thin-disk case.
In summary, for geometrically thick emission, the

lensing ring can provide a more significant feature in
the observed appearance than in the thin-disk case.
Nevertheless, the basic features of the observed appearance
will be dominated by the emission profile. The photon ring
contributes negligibly to the total flux.

D. Inclined disks

Thus far, we have considered disks viewed from a face-on
orientation. For a disk viewed at a modest inclination (e.g.,
the presumed 17° inclination of the M87* disk), we would
still define the lensing and photon rings as the trajectories

that make 2 and 3þ intersections with the disk plane,
respectively, since this is the region of enhanced brightness.
The typical brightness enhancement will still be a factor of
2–3, with the qualitatively new feature being variation of the
ring thickness around its circumference. If α is a polar angle
on the image plane and θ is the inclination between the line
of sight to the observer and the disk axis (θ ¼ 0 is face-on),
then the first intersection with the disk plane occurs at
n ¼ 1=2þ θ=ð2πÞ sin α. The definitions of photon and
lensing rings are those given above with the replacement

n → n −
θ

2π
sin α: ð19Þ

Note, however, that as θ → π=2 (i.e., for nearly edge-on
viewing), a “lensing ring” defined this way would not take
the shape of a ring, as the back-side image of the far side of
the disk makes a large contribution, comparable to that of the
direct image.
In the inclined case, the brightness along the ring will

also vary due to doppler-shift effects. However, this bright-
ness variation will precisely mirror that of the direct
emission (the lensing ring is, after all, just a demagnified

FIG. 6. Euclidean arclength of each ray with impact parameter b, including only the portion where it intersects a red “emission region.”
The observer is located to the right, as in Fig. 2. The arclength illustrates the contribution to observed brightness from the effects of
extended, optically thin emission. For disklike emission (top two rows) a lensing ring is clearly present, with wider disks giving wider
rings. The narrow photon ring is also visible. (Finite numerical resolution keeps the height of the spike finite.) When the emission is
more isotropically distributed (bottom row), the lensing and photon ring features blend with the direct image.
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image of the disk), so the typical brightness enhancement
will remain a factor of 2–3. Our main conclusions are
therefore unaltered in the case of a modestly inclined disk.
A discussion of the role of orbiting photons in the

observational appearance of inclined disks was given pre-
viously by Beckwith and Done [12]. Their conclusions in the
nearly face-on case (Fig. 5 therein) agree qualitatively with
ours. In the nearly edge-on case, the authors claim a large
contribution from orbiting photons, but the relevant photons
in this case execute only a fraction of an orbit.

IV. KERR

We now argue that our conclusions from the above
analysis in the Schwarzschild spacetime are qualitatively

unchanged in the more realistic case of a Kerr black hole.
Our first main conclusion was that the photon ring—
defined as photons that intersect the disk at least 3 times—
makes a negligible contribution to the flux of an image
spanning a few M. The key observation is that the number
of orbits increases only logarithmically with distance from
the critical curve [Eq. (2) above], making successive
images exponentially demagnified. In the Appendix,
we prove that the affine path length diverges at most
logarithmically at any point near the critical curve of the
Kerr black hole. This shows that successive images are at
least exponentially demagnified, making the photon ring
negligible.
Our second main conclusion from the Schwarzschild

analysis is the presence of a “lensing ring” from the first
demagnified image of an optically thin emitting disk.
Consider now a disk surrounding a Kerr black hole, lying
in the plane orthogonal to the spin axis. When the disk is
viewed from a face-on angle, the main effect of the spin is
to “drag” the photons around the viewing axis, without
qualitatively affecting propagation in the radial direction.
Thus, the typical properties of the lensing ring should be
similar. For nearly edge-on viewing, Kerr photons behave
rather differently from Schwarzschild photons, and the
properties of the lensing ring could be somewhat different.
A more complete analysis of lensing rings in the Kerr
spacetime will be presented in a forthcoming paper [14].

V. IMPLICATIONS FOR THE INTERPRETATION
OF EHT OBSERVATIONS OF M87*

The EHT Collaboration has reported [1–6] the observa-
tion of an annular feature centered on M87* with a typical
radius of θobs ∼ 21 μas. Image reconstruction algorithms
favor a width of 30%–50% of the diameter, while fitting to
simple ring models favors smaller fractional widths of
10%–20%.3 The brightness along the ring is asymmetric,
presumably due to Doppler boosting from matter orbiting
around the jet axis, which is inclined relative to the line
of sight by 17°. We will ignore the asymmetry in our
discussion, instead focusing on the interpretation of the
annulus.
The EHT Collaboration reported a measurement [6]

of the black hole mass that is consistent with the
“stellar dynamics” value 6.2 × 109 M⊙ [17], but incon-
sistent with an alternative “gas dynamics” measurement of
3.5 × 109 M⊙ [18]. This mass measurement was made by
comparing their observations with simulated images gen-
erated by applying a phenomenological prescription for
electron temperature (as a function of ion density, ion
internal energy, and magnetic field strength) to the results
of a bank of general relativistic magnetohydrodynamic

FIG. 7. Images from Fig. 5 before and after blurring with a
Gaussian filter with standard deviation equal to 1=12 the field of
view (simulating the nominal resolution of the Event Horizon
Telescope). A lensing ring at ∼5.4M appears in the sharp images,
but this feature washes out after blurring. (The photon ring at
5.2M is never relevant.) The effective radius of the blurred ring,
and the size of the dark area, depend directly on the assumed
emission profile near the black hole, with the critical curve
(previously called the “shadow”) playing no significant role.

3A fractional width of 20% corresponds to roughly one half
the nominal resolution of the array, a typical lower bound for the
scale one can probe with visibility fitting.
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(GRMHD) simulations. These simulated images—or, at
least, the ones used to fit the observations—have peak in
brightness at a location ∼10% outside the photon ring.
In many places in Refs. [1–6], it is suggested that it is a

robust feature of emission models that the observed
emission will peak near the photon ring. One of the main
conclusions of our analysis is that this is not the case. In this
paper, we have distinguished between a “photon ring”
(light rays that complete at least n ¼ 5=4 orbits) and a
“lensing ring” (light rays that complete between 3=4
and 5=4 orbits). For optically thin emission, we have
argued that the “photon ring” always produces a sharp
feature near the critical impact parameter bc (¼ 3

ffiffiffi
3

p
M in

Schwarzschild) but the peak is so narrow that it never
makes a significant contribution to the observed flux.
The photon ring, as we have defined it, cannot be relevant
for the EHT observations. On the other hand, the lensing
ring contributes a broader and more significant feature.
Depending on the geometry of the emitting region and
its emission profile, the lensing ring could be making
a non-negligible contribution to the EHT observations.
Nevertheless, the lensing-ring emission is subdominant to
the direct emission.
The degree of nonrobustness of the observed emission

peaking near the photon ring can be seen clearly if we
return to the images in Fig. 5 for thin-disk emission and
blur them to correspond roughly to the EHT resolution, as
shown in Fig. 7. The images of Fig. 5, of course, do not
correspond to realistic emission models, but they represent
a range of illustrative possibilities. The simple blurring
done in Fig. 7 does not correspond to the EHT image
reconstructions—and model fitting should, of course, be
done in the visibility domain—but the blurring gives a
rough indication of EHT’s current resolution. It can be seen
from Fig. 7 that in all cases, the blurring washes out the
sharp lensing ring feature. In the bottom-row images of
Fig. 7, the blurred image peaks at the location of the lensing
ring, and the lensing-ring emission itself contributes non-
trivially to this peak. But in the middle-row images, the
peak emission is inside the lensing ring; in the top-row
images, the peak emission is well outside the lensing ring.
Thus, it is clear that the validity of the EHT mass
measurement is dependent on the validity of the detailed
physical assumptions underlying the simulated images that
are used to fit the observations.
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APPENDIX: PATH LENGTH CALCULATION

The key fact underlying the weakness of the photon-ring
effect is the slow, logarithmic increase of the path length
with the distance from the critical impact parameter. In the
Schwarzschild case, photons are confined to a plane, and in
Sec. II we discussed the number of orbits. Photon trajec-
tories in Kerr are more complicated, and we instead discuss
the elapsed path length directly. We first establish the
general method in the Schwarzschild spacetime, before
turning our attention to Kerr.

1. Schwarzschild

We use a dimensionful parameter s such that pμ ¼
Edxμ=ds is the four-momentum of the photon, where E is
the conserved energy. Null geodesics satisfy

dr
ds

¼ �
ffiffiffiffiffiffiffiffiffiffi
VðrÞ

p
; V ¼ 1 −

b2

r2

�
1 −

2M
r

�
; ðA1Þ

where r is the Schwarzschild coordinate, E is the conserved
energy, and b is the impact factor relative to the north pole
(equal to L=E in terms of the associated conserved angular
momentum L). The impact factor is directly proportional to
the distance from the center of an image taken on the pole.
Since the Schwarzschild metric is spherically symmetric,
we may place our observer on the pole without loss of
generality. Henceforth, we regard b as a radial coordinate
on the asymptotic image.
The critical photon orbits have r ¼ 3M and b ¼ 3

ffiffiffi
3

p
M,

and we define dimensionless fractional deviations by

r ¼ 3Mð1þ δrÞ; b ¼ 3
ffiffiffi
3

p
Mð1þ δbÞ: ðA2Þ

To preserve the physics of interest (orbits near 3M), δb and
δr must be taken simultaneously to zero at the rate
δb ∝ δr2. Keeping the leading term in this approximation
gives

V ≈ 3δr2 − 2δb: ðA3Þ

Turning points occur where V ¼ 0, i.e., δr ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=3Þδbp
.

When δb < 0, there are no turning points; these trajectories
link the horizon and infinity. When δb > 0, the trajectories
that reach infinity only involve the outermost turning point.
We therefore consider just the positive branch,

δrturn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þδb

p
: ðA4Þ
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We now ask how much affine parameter accumulates in a
region near the photon orbit defined by

−δR < δr < δR ðA5Þ

for some positive δR ≪ 1. First, consider δb < 0. There are
no turning points, and from Eq. (A1) we have

Δs ¼ 3M
Z

δR

−δR

dδrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3δr2 − 2δb

p ðA6Þ

¼
ffiffiffi
3

p
M log

�
3

−2δb

�
δRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δR2 − ð2=3Þδb

q �
2
�
: ðA7Þ

The logarithmic divergence as δb → 0 is clearly visible.
Now consider δb > 0, where there is a single turning point.
We must also take δR > δrturn for the photon to enter the
region of interest. Using Eq. (A4), we then have

Δs ¼ 2 × 3M
Z

δRffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þδb

p dδrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3δr2 − 2δb

p ðA8Þ

¼
ffiffiffi
3

p
M log

�
3

2δb

�
δRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δR2 − ð2=3Þδb

q �
2
�
: ðA9Þ

Comparing with Eq. (A7), we see that the answer for all
cases may be written

Δs ¼
ffiffiffi
3

p
M log

�
3

2jδbj
�
δRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δR2 − ð2=3Þδb

q �
2
�

× ΘðδR2 − ð2=3ÞδbÞ; ðA10Þ

where ΘðxÞ is zero if x < 0 and is otherwise equal to 1.
It is interesting that the equation takes the same form for
δb > 0 and δb < 0. This is a special property of the region
−δR < r < δR for Schwarzschild radius r (and δR ≪ 1).
For jδbj ≪ ð3=2ÞδR2, we have

Δs ≈
ffiffiffi
3

p
M log

�
6δR2

jδbj
�
: ðA11Þ

This recovers the logarithmic scaling of path length with
the impact parameter.
It is straightforward to similarly estimate the lapse in

t and ϕ. From the definition of the conserved quantities
E and b ¼ L=E, we have

dt
ds

¼ 1

1 − 2M
r

≈ 3 ðA12Þ

dϕ
ds

¼ b
r2

≈
1ffiffiffi
3

p
M

: ðA13Þ

Thus, from Eq. (A11), we have

Δt ≈ 3
ffiffiffi
3

p
MΔϕ; ðA14Þ

Δϕ ≈ log

�
6δR2

jδbj
�
: ðA15Þ

2. Kerr

We now repeat the analysis for the nonextremal Kerr
metric, using Boyer-Lindquist coordinates ðt; r; θ;ϕÞ. We
first summarize the basic results on image coordinates [7]
and photon orbits [19] that will be needed for our analysis.
We use the notation of Ref. [20], except that our λ and q are
their λ̂ and q̂. The relevant derivations are also reviewed in
Ref. [20]. Wewill assume 0 < a < M, whereM is the mass
and a is the spin parameter.
Each null geodesic possesses two conserved quantities

λ and q, related to the angular momentum and Carter
constant, respectively. For geodesics that reach an observer
at infinity at an inclination θ ¼ θo, the impact parameters
ðα; βÞ are given by

ðα; βÞ ¼
�
−

λ

sin θo
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2 cos2 θo − λ2 cot2 θo

q �
:

ðA16Þ

The � reflects the fact that, for each λ and q, there are two
distinct geodesics that reach the observer. Since ðα; βÞ are
proportional to Cartesian distance ðx; yÞ on an image, we
will refer to them as “image coordintaes.” We emphasize
that the observer is at θ ¼ θo, in contrast to the
Schwarzschild calculation, where one can place her on
the pole without loss of generality.
Null geodesics in the Kerr metric satisfy

Σ
dr
ds

¼ �
ffiffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ðA17aÞ

Σ
dθ
ds

¼ �
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ðA17bÞ

Σ
dϕ
ds

¼ −
�
a −

λ

sin2 θ

�
þ a
Δ
ðr2 þ a2 − aλÞ; ðA17cÞ

Σ
dt
ds

¼ −aða sin2 θ − λÞ þ r2 þ a2

Δ
ðr2 þ a2 − aλÞ;

ðA17dÞ

where Σ ¼ r2 þ a2 cos2 θ, Δ ¼ r2 þ a2 − 2Mr, and

RðrÞ ¼ ðr2 þ a2 − aλÞ2 − Δ½q2 þ ða − λÞ2�; ðA18aÞ

ΘðθÞ ¼ q2 þ a2 cos2 θ − λ2 cot2 θ: ðA18bÞ

Photon orbits at r ¼ r̃ occur whenRðr̃Þ ¼ R0ðr̃Þ ¼ 0. This
is possible in the range r̃ ∈ ½r̃−; r̃þ�, where
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r̃� ≡ 2M

�
1þ cos

�
2

3
arccos� a

M

��
; ðA19Þ

and the associated conserved quantities are

λ̃ ¼ −
r̃2ðr̃ − 3MÞ þ a2ðr̃þMÞ

aðr̃ −MÞ ; ðA20aÞ

q̃ ¼ r̃3=2

aðr̃ −MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2M − r̃ðr̃ − 3MÞ2

q
: ðA20bÞ

The critical curve fαðr̃Þ; βðr̃Þg is parametrized by the
radius r̃ of the associated photon orbit using Eqs. (A20)
and (A16). In the edge-on case θo ¼ π=2, the parameter r̃
ranges over the full range r̃ ∈ ½r̃−; r̃þ�; i.e., all photon orbits
are “visible.” In general, the parameter ranges over only the
subset of values such that β is real, since only for these
photon orbits can nearby photons reach infinity at the
desired observation angle.
We now turn to the path length calculation. The presence

of Σðr; θÞ in Eq. (A17) means that the r and θ equations are
not fully decoupled. The path length is given by

Δs ¼
Z

r2 þ a2 cos2½θðrÞ�
� ffiffiffiffiffiffiffiffiffiffi

RðrÞp dr: ðA21Þ

This expression is to be understood as an integral along a
photon path, choosing (þ) during portions of outward
motion and (−) during portions of inward motion. Since the
cosine squared function is positive and bounded, the path
length is bounded by

Δs ≤
Z

r2 þ a2

� ffiffiffiffiffiffiffiffiffiffi
RðrÞp dr: ðA22Þ

For limits of integration near a photon orbit r̃, we have

Δs≲ ðr̃2 þ a2ÞI ; I ¼
Z

dr

� ffiffiffiffiffiffiffiffiffiffi
RðrÞp : ðA23Þ

It remains to compute the integral I for limits near a photon
orbit. Following the general approach used above for
Schwarzschild, we let

r¼ r̃ð1þδrÞ; λ¼ λ̃ð1þδλÞ; q¼ q̃ð1þδqÞ; ðA24Þ

and consider δr ≪ 1, δλ ≪ 1, δq ≪ 1, with δr2 ∼ δλ ∼ δq.
The radial “potential” is approximated as

R ≈ Crδr2 − δB; ðA25Þ

where

δB ¼ Cqδqþ Cλδλ ðA26Þ

and

Cr ¼
4r̃3

ðr̃ −MÞ2 ðr̃
3 − 3Mr̃ðr̃ −MÞ − a2MÞ ðA27aÞ

Cq ¼
−2r̃3

a2ðr̃ −MÞ2 ½r̃
5 − 8Mr̃4 þ r̃3ða2 þ 21M2Þ

−Mr̃2ð10a2 þ 18M2Þ þ 17a2M2r̃ − 4a4M�
ðA27bÞ

Cλ ¼
2r̃2

a2ðr̃ −MÞ2 ½r̃
6 − 8Mr̃5 þ r̃4ð2a2 þ 21M2Þ

−Mr̃3ð10a2 þ 18M2Þ þ a2r̃2ða2 þ 10M2Þ
þ a2Mr̃ð6M2 − 2a2Þ − 3a4M2�: ðA27cÞ

Turning points occur at δr ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
δB=Cr

p
, provided the

quantity under the square root is positive. As before, we
disregard the inner root, since a trajectory turning there
will not reach infinity. Noting that Cr is positive outside
the horizon, the analysis proceeds identically to the
Schwarzschild case, and we find

I ¼ r̃ffiffiffiffiffi
Cr

p log

�
Cr

jδBj
�
δRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δR2 − δB=Cr

q �
2
�

× ΘðδR2 − δB=CrÞ: ðA28Þ

Using Eqs. (A16), (A24), and (A26), it is straightforward
to express δB as a linear combination of the linearized
deviations δα and δβ from the critical curve. Then
Eqs. (A28) and (A23) show that the path length grows
at most logarithmically as one approaches the image plane
critical curve, meaning that photon-ring images are at least
exponentially demagnified.
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