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Abstract

Despite recent advances, the prognosis of pulmonary hypertension (PH) remains poor. While the initial insult in PH implicates the

pulmonary vasculature, the functional state, exercise capacity, and survival of such patients are closely linked to right ventricular

(RV) function. In the current study, we sought to investigate the effects of maximum incremental exercise on the matching of RV

contractility and afterload (i.e. right ventricular–pulmonary arterial [RV–PA] coupling) in patients with exercise PH (ePH) and

pulmonary arterial hypertension (PAH). End-systolic elastance (Ees), pulmonary arterial elastance (Ea), and RV–PA coupling

(Ees/Ea) were determined using single-beat pressure-volume loop analysis in 40 patients that underwent maximum invasive car-

diopulmonary exercise testing. Eleven patients had ePH, nine had PAH, and 20 were age-matched controls. During exercise, the

impaired exertional contractile reserve in PAH was associated with blunted stroke volume index (SVI) augmentation and reduced

peak oxygen consumption (peak VO2 %predicted). Compared to PAH, ePH demonstrated increased RV contractility in response to

increasing RV afterload during exercise; however, this was insufficient and resulted in reduced peak RV–PA coupling. The dynamic

RV–PA uncoupling in ePH was associated with similarly blunted SVI augmentation and peak VO2 as PAH. In conclusion, dynamic

rest-to-peak exercise RV–PA uncoupling during maximum exercise blunts SV increase and reduces exercise capacity in exercise PH

and PAH. In ePH, the insufficient increase in RV contractility to compensate for increasing RV afterload during maximum exercise

leads to deterioration of RV–PA coupling. These data provide evidence that even in the early stages of PH, RV function is

compromised.

Keywords

pulmonary arterial hypertension, exercise pulmonary hypertension, right ventricular–pulmonary arterial coupling

Date received: 24 April 2019; accepted: 18 June 2019

Pulmonary Circulation 2019; 9(3) 1–10

DOI: 10.1177/2045894019862435

Introduction

Pre-capillary pulmonary hypertension (PH) is characterized
by the presence of a mean pulmonary arterial pressure
(mPAP) >20mmHg and elevated resting pulmonary vascu-
lar resistance (PVR) with normal left-sided filling pressures
during resting supine right heart catheterization (RHC).
Pulmonary arterial hypertension (PAH), characterized by
advanced pre-capillary pulmonary vascular remodeling,

is a progressive disease whereby increased right ventricular
(RV) afterload leads to RV failure and death.1,2 Despite
recent therapeutic advances, the prognosis of PAH
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remains poor.3 The lack of response to PAH-specific therapy,
in part, reflects the delayed detection of the disease.4 Exercise
pulmonary hypertension (ePH) is increasingly being recog-
nized as an early, intermediary phase of pre-capillary
PH5–10 that is associated with adverse long-term out-
comes11,12 and is potentially treatable.13 Similar to PAH,
patients with ePH have impaired pulmonary vascular reserve
and a blunted CO response to exercise, the latter of which
plays a central role in determining the exercise capacity in
ePH.5 However, the relative contributions to the blunted
CO response in ePH (i.e. increased RV afterload and/or
reduced contractile reserve) are not completely characterized.

The aim of this study was to investigate the effects of
maximal incremental exercise on RV contractility (Ees),
RV afterload (arterial elastance, Ea), and RV–PA coupling
(Ees/Ea) in patients with early (ePH) and late stage pre-
capillary disease (PAH) and to compare their findings to
patients with normal physiological limit to exercise. We
hypothesize that RV–PA uncoupling occurs dynamically
during maximum incremental cycling even in ePH patients
and substantively impairs aerobic capacity.

Methods

Study population and design

We identified patients from the Brigham and Women’s
Hospital Dyspnea Clinic (Boston, MA, USA) between
March 2011 and September 2017 who underwent resting
supine RHC followed by symptom limited upright invasive
cardiopulmonary exercise testing (iCPET) as part of their
clinically indicated evaluation for unexplained exercise
intolerance.14 The study protocol was approved by Partners
Healthcare Human Research Committee (2011P000272).

PAH was defined by resting supine RHC as mPAP
>20mmHg and pulmonary arterial wedge pressure
(PAWP) �15mmHg along with PVR> 3 Wood units
(WU).15 ePH was defined by age-specific exercise pulmonary
hemodynamic criteria for maximum upright exercise as fol-
lows: (1) peak mPAP >30mmHg and peak PVR> 1.34WU
for patients aged� 50 years; or (2) peak mPAP> 33mmHg
and peak PVR> 2.10WU for patients aged> 50 years.16

Controls were individuals who exhibited a normal
physiological limit to exercise defined by a maximum
oxygen consumption (peak VO2) and cardiac output (CO)
of �80% predicted, respectively. Controls were age-matched
to the ePH and PAH groups.

Exclusion criteria included: (1) left heart disease defined
by moderate/severe mitral and/or aortic valvular disease of
left ventricular ejection fraction (LVEF) <0.5 on resting
echocardiography, or post-capillary PH identified by a
mPAP� 25mmHg and PAWP> 15mmHg on resting
RHC or PAWP� 15mmHg at rest but abnormally elevated
during exercise with associated normal peak PVR for the
patient’s age (i.e. peak PAWP> 19mmHg and peak
PVR< 1.35WU for ages� 50 years or PAWP> 17mmHg

and peak PVR� 2.10WU for ages> 50 years;16 (2) submax-
imal cardiopulmonary exercise testing defined by peak
respiratory exchange ratio (RER) <1.05 and a peak heart
rate <85% predicted along with a peak mixed-venous par-
tial pressure of oxygen >27mmHg; (3) relevant lung disease
defined as the forced expiratory volume in the first second
divided by the forced vital capacity (FEV1/FVC)< 70% pre-
dicted with associated FEV1< 60% predicted, or a radio-
logical diagnosis of lung fibrosis;17 (4) incomplete exercise
hemodynamics; and (5) absent or uninterpretable RV pres-
sure waveform tracing at rest and/or peak exercise.

Invasive cardiopulmonary exercise testing

The RHC and iCPET techniques used have been described
previously14,16,18 and the details of the iCPET technique and
conventional hemodynamic measurements can be found in
the online supplementary material.

Conventional right heart hemodynamic data

The conventional right heart hemodynamics measured were
mPAP, PAWP, CO, PVR, total pulmonary resistance
(TPR), stroke volume (SV), and PA compliance. PVR was
calculated as (mPAP – PCWP/CO) and expressed in Wood
units (WU). The TPR was calculated as mPAP/CO. The
TPR was calculated as mPAP/CO and expressed as
mmHg/L/min. SV was calculated as CO/heart rate. CO and
SV were indexed for body surface area to obtain both cardiac
index (CI) and SV index (SVI). PA compliance was calculated
as SV divided PA pulse pressure (stroke volume/systolic –
diastolic PAP) and expressed as mL/mmHg. Chronotropic
reserve was determined by the difference between peak exer-
cise and resting heart rate (bpm). Chronotropic incompetence
was defined by a peak heart rate adjusted for age, gender, and
body size that is �85% predicted.

RV–PA coupling assessment

RV Ees was determined at rest and at peak exercise, using
the single beat method (Fig. S1),19 as follows:

Ees ¼
Pmax�RVESP

SV1

Where Pmax was calculated from non-linear extrapolation
of the early and late isovolumic portions of the RV pressure
curve, RV ESP represents the RV end-systolic pressure, and
SVI represents the stroke volume index. The exertional con-
tractile reserve was determined by the difference between
rest and peak exercise Ees. The mPAP was used as a surro-
gate for the RV ESP. Ea was calculated as follows20:

Ea ¼
RVESP

SV1
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RV–PA coupling was subsequently determined by the
ratio between Ees and Ea:

RV� PA coupling ¼
Ees

Ea

Statistical analysis

Unless otherwise stated, values are presented as
mean� standard deviation (SD).

Comparisons of baseline characteristics, resting hemo-
dynamics, CPET parameters, and load independent meas-
ures of RV function between the groups were performed
using one-way ANOVA with Bonferroni post hoc correc-
tion for normally distributed data and Kruskal–Wallis for
data not normally distributed. Comparison between rest-
to-exercise response between patients in all three groups
were performed using two-way repeated measures analysis
of variance with Bonferroni post hoc correction. The
effects of exercise between groups was evaluated using
the P value comparing the delta change from rest-to-
peak exercise of the hemodynamic variable measured.
For two group comparisons, independent t-test was per-
formed for normally distributed data and Wilcoxon Rank
Sum test for data not normally distributed. The relation-
ships of SVI augmentation (change from rest-to-peak exer-
cise) and peak exercise oxygen consumption (VO2

%predicted) with peak exercise RV–PA coupling were
examined using linear regression. To identify if peak
RV–PA coupling predicts peak SVI, Pearson correlation
was performed. Univariable analysis was performed to
determine the predictors of peak RV–PA coupling and
peak VO2 (% predicted) in ePH and PAH. Non-colinear
variables (i.e. Pearson correlation r< 0.6) with a signifi-
cant P value (P< 0.05) on univariable analysis were incor-
porated into bivariate models to identify independent
predictors of peak RV–PA coupling and peak VO2 (%
predicted). A P value< 0.05 was considered significant.
Statistical analyses were performed using GraphPad
Prism 7 (GraphPad Software) and SAS 9.4 (SAS
Institute Inc., Cary, NC, USA).

Results

Demographic and clinical characteristics

We identified 11 patients with ePH and nine patients with
(resting) PAH based on the aforementioned inclusion, who
additionally exhibited an interpretable RV pressure wave-
form (Fig. S2). Additionally, 20 age-matched controls were
identified. Therefore, the study sample was made up of a
total of 40 participants.

There was no statistical difference among controls, ePH,
and PAH for age, body mass index (BMI), and baseline
hemoglobin concentration. PAH had a higher percentage

of women compared to ePH. The baseline characteristics
and co-morbidities are summarized in Table 1.

There was no difference in resting values of heart rate,
SVI, CI, and right atrial pressure between ePH and PAH. At
rest, the PVR and TPR were higher while the PA compli-
ance was lower in PAH compared to ePH. PA compliance
was decreased in ePH and PAH in relation to controls but
there was no difference between the two.

Peak exercise hemodynamics, ventilation, and gas
exchange parameters variables

The maximum iCPET and peak exercise hemodynamic data
are summarized in Table 2. The rest-to-peak exercise hemo-
dynamic patterns for each study group are presented in Fig. 1.

ePH and PAH demonstrated similar reduction in exercise
capacity as evident by their reduced peak VO2. This reduc-
tion in peak VO2 was driven by a reduced peak CI and
reduced peak systemic oxygen extraction (Ca-vO2 differ-
ence) when compared to controls. With exercise, both
PAH and ePH had similarly blunted SVI augmentation.
ePH and PAH demonstrated similar degree of chronotropic
incompetence. The impaired chronotropic reserve in ePH
was found irrespective of B-adrenergic blocker use (Table
S1). Although there was progressive widening of the peak
alveolar-arterial gradient comparing ePH to PAH, peak
exercise CaO2 was not different.

At peak exercise, PVR and TPR for ePH was intermedi-
ate between PAH and controls. ePH and PAH patients
demonstrated similarly reduced peak PA compliance com-
pared to controls (Table 2).

Resting and peak exercise effects on load-independent RV
function

Resting and peak exercise load-independent RV function is
presented in Table 3. The rest-to-peak exercise effects are
presented in Fig. 2. Resting RV Ees and Ea were higher in
PAH compared to ePH and controls. There was no differ-
ence in resting Ees and Ea between ePH and controls.
Additionally, there was no difference in resting RV-PA cou-
pling ratio among the groups.

At peak exercise, Ea was significantly increased in PAH
compared to ePH and controls. Peak exercise Ea was greater
in ePH compared to controls. Additionally, peak exercise
RV–PA coupling ratio was reduced in PAH and ePH com-
pared to controls. Only PAH showed impaired exertional
contractile reserve.

Independent predictors of RV–PA coupling and peak VO2

The univariate and bivariate analysis for predicting RV-PA
coupling and peak VO2 (%predicted) in ePH and PAH are
presented in the online supplementary material. Maximum
heart rate (%predicted) and resting Ees were the only pre-
dictors of peak VO2 (%predicted) (ß coefficient 7.72 and
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�7.76, respectively) (Table S2). Resting PVR, peak Ees, and
RV contractile reserve emerged as independent predictors of
peak RV–PA coupling (ß coefficient –0.34, 0.32, and 0.38,
respectively). On bivariate analysis, RV contractile reserve
emerged as an independent predictor of peak RV–PA cou-
pling (ß coefficient 0.30) in a model that also included rest-
ing PVR (Table S3).

Discussion

This is the first study to demonstrate dynamic RV–PA
uncoupling in ePH and its adverse effect on simultaneously
measured maximum exercise capacity. We showed that the
depressed peak VO2 and SVI is evident even in ePH and is
associated with dynamic rest-to-peak exercise RV–PA

Table 1. Baseline characteristics and resting pulmonary hemodynamic data.

Controls

(n¼ 20)

ePH

(n¼ 11)

PAH

(n¼ 9)

Characteristics

Age (years) 63� 9 66� 13 63� 12

Female (n (%)) 8 (40) 2 (18) 6 (66)*

BMI (kg/m2) 28� 5 32� 5 27� 5

Hemoglobin (g/dL) 14.9� 1.7 14.1� 1.4 14.5� 2.2

Co-morbidities (n (%))

Hypertension 13 (65) 7 (63) 6 (67)

Hyperlipidemia 7 (35) 6 (55) 7 (78)

Diabetes 1 (5) 2 (18) 2 (22)

Coronary artery disease 2 (10) 3 (27) 1 (11)

Medications (n (%))

Beta adrenergic receptor blocker 3 (15) 3 (27) 4 (44)

Calcium channel receptor blocker 2 (10) 1 (9) 0

ACE inhibitor or ARB 8 (40) 2 (18) 4 (44)

Diuretics 5 (25) 2 (18) 7 (77)*,y

Ambrisentan 0 0 1 (11)

Tadalafil 0 0 1 (11)

Pulmonary function testing

FEV1 (% predicted) 101� 13 83� 16y 83� 25y

FVC (% predicted) 101� 14 84� 15y 80� 21y

FEV1 / FVC (% predicted) 100� 8 98� 9 104� 9

SaO2 (%) 98 (97–98) 97 (96–97)y 96 (95–98)

Resting hemodynamics

Heart rate (bpm) 72� 10 70� 10 74� 15

Mean RAP (mmHg) 2� 3 4� 3 4� 4

Cardiac output (L/min) 5.0� 0.9 5.6� 1.3 4.9� 0.9

SV index (mL/m2) 34� 7 38� 8 36� 6

Cardiac index (L/min2) 2.4� 0.6 2.6� 0.5 2.8� 0.6

mPAP (mmHg) 13 (12–15) 18 (17–19)y 35 (30–42)*,y

PAWP (mmHg) 5� 3 8� 3 8� 3

PVR (WU) 1.4 (1.2–1.8) 1.7 (1.4–2.4) 6.1 (4.8–6.9)*,y

TPR (WU) 2.5 (2.0–3.6) 3.0 (2.9–3.8)y 7.6 (6.9–8.6)*,y

PA compliance (mL/mmHg) 6.9 (5.4–9.0) 5.5 (4.7–6.8)y 1.9 (1.5–3.2)y

Data presented as n (%) or mean� SD unless otherwise stated.

*P< 0.005 when comparing ePH vs. PAH.
yP< 0.005 compared to controls.

ePH, exercise pulmonary hypertension; PAH, resting pulmonary arterial hypertension; BMI, body mass index; CPET, cardio pulmonary

exercise test; CCB, calcium channel blocker; ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker; FEV1, forced

expiratory volume in 1 s; FVC, forced vital capacity; SaO2, peripheral oxygen saturation; bpm, beats per minute; SV, stroke volume;

VD/VT, dead space ventilation; RAP, right atrial pressure; PAWP, pulmonary artery wedge pressure; mPAP, mean pulmonary arterial

pressure; PA, pulmonary artery; PVR, pulmonary vascular resistance; TPR, total pulmonary resistance.
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uncoupling. Patients with PAH exhibited a similar but more
severe pathophysiology.

Dynamic RV–PA uncoupling during maximum
incremental exercise

The principle finding of this study is that ePH patients are
able to increase RV contractility in response to increasing
RV afterload during exercise, but this is insufficient and
results in deterioration in RV–PA coupling at peak exercise
(Fig. 2). This is associated with a blunted SVI response and
depressed peak VO2. We have previously shown that in
patients with ePH and PAH, a plateau mPAP versus VO2

relationship is encountered, indicating a blunted CO
response with exercise.6 Our current study suggests that

dynamic RV–PA uncoupling during maximum incremental
exercise likely accounts for the observed plateau mPAP
versus VO2 relationship.

In PAH, both impaired RV contractile reserve and increas-
ing RV afterload contributed to RV–PA uncoupling at peak
exercise and a reduced peak SVI. In contrast, ePH patients
were able to maintain a greater peak SVI when compared to
PAH because of a preserved exertional contractile reserve.
However, this increase in RV contractility was insufficient
because in the face of increasing RV afterload, ePH patients
were unable to improve their RV–PA coupling at peak exer-
cise (Fig. 2 and Table 3). Impaired exertional contractile
reserve in PAH 20 has been previously described and is attrib-
uted to downregulation and desensitization of B-adrenergic
receptors from sympathetic overstimulation.21–25

Table 2. Invasive cardiopulmonary exercise data.

Controls

(n¼ 20)

ePH

(n¼ 11)

PAH

(n¼ 9)

Maximum invasive CPET data

Peak work (W) 163� 60 92� 33* 72� 48*

Peak VO2 (%predicted) 104� 16 76� 15* 72� 19*

Peak VO2 (mL/kg/min) 24.0� 6.9 14.8� 3.6* 15.6� 6.5*

VO2 at AT (%predicted) 55� 14 46� 9 38� 10*

Peak heart rate (bpm) 142� 16 120� 20* 127� 35

Peak heart rate (%predicted) 90� 8 78� 10* 81� 20

Peak SaO2 (%) 98 (97–98) 96 (94–98)* 91 (82–94)*,y

VE/VCO2 slope 33� 7 32� 5 49� 7*

Peak DO2 (mL/min) 3100� 790 2010� 497* 1469� 611*

Peak DO2 (mL/kg/min) 35.7� 7.0 22.4� 5.4* 21.2� 9.3*

Peak CaO2 (mL/dL) 20.4� 2.4 18.5� 1.8 17.9� 3.2

Peak PA-aO2 (mmHg) 16� 11 33� 14* 58� 14*,y

Peak VD/VT 0.2� 0.1 0.2� 0.1 0.3� 0.1*

Peak Ca-vO2 14.6� 2.0 12.0� 1.4* 11.8� 2.5*

Peak Ca-vO2 corrected for Hgb 97.4� 9.9 86.0� 11.9* 81.2� 14.0*

Peak exercise hemodynamics

Mean RAP (mmHg) 6� 3 8� 4 9� 4*

Cardiac output (L/min) 13.9� 3.2 10.8� 1.8* 8.0� 2.5*

Stroke volume index (mL/m2) 48.9� 8.1 43.7� 3.2* 36.1� 5.6*,y

Cardiac index (L/min2) 7.3� 1.1 5.2� 0.8* 4.6� 1.5*

PAWP (mmHg) 11� 4 13� 3 13� 4

mPAP (mmHg) 26 (20–29) 35 (34–37)* 59 (58–67)*,y

PVR (WU) 0.9 (0.7–1.0) 2.2 (1.6–2.4)* 5.6 (5.3–8.0)*,y

TPR (WU) 1.6 (1.3–2.0) 3.3 (2.6–3.8)* 7.0 (6.8–11.0)*,y

PA compliance (mL/mmHg) 3.3 (3.1–4.3) 2.8 (2.4–3.0)* 1.3 (1.1–1.4)*

Data presented as n (%) and mean� standard deviation unless otherwise stated.

*P< 0.005 compared to controls.
yP< 0.005 when comparing ePH vs. PAH.

ePH, exercise pulmonary hypertension; PAH, resting pulmonary arterial hypertension; BMI, body mass index; CPET, cardio pulmonary

exercise test; V02MAX, maximal oxygen consumption; AT, anaerobic threshold; bpm, beats per minute; SaO2, peripheral oxygen

saturation; RAP, right atrial pressure; mPAP, mean pulmonary arterial pressure; Ve/VCO2, ventilator efficiency; CaO2, arterial oxygen

content; DO2, oxygen delivery; PA-aO2, alveolar arterial oxygen difference; Ca-vO2, arterial-mixed venous oxygen content difference;

O2, oxygen; PA, pulmonary arterial; PAWP, pulmonary arterial wedge pressure; PVR, pulmonary vascular resistance; TPR, total

pulmonary resistance.
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ePH and PAH demonstrated an increase in Ea during
exercise compared to controls with the greatest increase
seen in PAH (Fig. 2). In PAH, the ensuing impaired exer-
tional contractile reserve (i.e. impaired rest-to-peak augmen-
tation of RV contractility) in the face of dynamic RV
afterload increase, culminated in deterioration of peak
RV–PA coupling. Consequently, the SVI augmentation
and therefore peak SVI was significantly reduced in PAH
compared to ePH (Fig. 3). In ePH, the increase in RV con-
tractility was insufficient because the peak RV–PA coupling
ratio was reduced compared to controls. Consequently, ePH
patients experienced reduced SVI augmentation during exer-
cise with resulting blunted peak SVI.

In the current study, the resting RV–PA coupling ratio in
our controls was greater than that reported by Spruijt et al.
using similar method to determine RV Ees (Pmax – mPAP/
SVI).20 We found that while our resting Pmax value approxi-
mates that of Spruijt et al., our Ees and therefore RV–PA
coupling (Ees/Ea) were greater at rest. This difference is
probably related to the different CPET methodology

Fig. 1. (a) Heart rate increased significantly in all three groups with ePH demonstrating impaired chronotropic reserve compared to controls

and PAH. (b) Stroke volume index (SVI) significantly increased during exercise in controls only, with a blunted increase in SVI augmentation (rest-

to-exercise response) seen in ePH and PAH. (c) Cardiac index (CI) increased significantly in all three groups, with a blunted increase in CI

augmentation seen in ePH and PAH. (d) Oxygen consumption (VO2) (mL/kg/min) increased significantly in all three groups, with a blunted

increase in VO2 (mL/kg/min) augmentation seen in PAH and ePH. Data are presented as mean� standard deviation with the blue bars repre-

senting data at rest and red bars representing data at peak exercise.

Table 3. Load-independent right ventricular function data.

Controls

(n¼ 20)

ePH

(n¼ 11)

PAH

(n¼ 9)

Rest Ees (mmHg/mL/m2) 0.89� 0.40 0.78� 0.35 1.56� 0.77*,y

Peak Ees (mmHg/mL/m2) 1.23� 0.43 1.31� 0.58 1.97� 0.78*,y

Contractile reserve

(mmHg/mL/m2)

0.35� 0.46 0.53� 0.63 0.41� 0.87

Rest Ea (mmHg/mL/m2) 0.39� 0.11 0.47� 0.06 1.03� 0.19*,y

Peak Ea (mmHg/mL/m2) 0.48� 0.10 0.82� 0.08* 1.84� 0.46*,y

Rest Ees/Ea 2.46� 1.29 1.69� 0.80 1.48� 0.59

Peak Ees/Ea 2.59� 0.87 1.63� 0.77* 1.06� 0.38*

Data presented as n (%) and mean� standard deviation unless otherwise

stated.

*P< 0.005 compared to controls.
yP< 0.005 when comparing ePH vs. PAH.

ePH, exercise pulmonary hypertension; PAH, resting pulmonary arterial hyper-

tension; Ees, end-systolic elastance (right ventricular contractility); Ea, arterial

elastance (right ventricular afterload); Ees/Ea, right ventricular–pulmonary

arterial coupling.

6 | RV-PA Uncoupling in exercise PH and PAH Singh et al.



(upright versus supine cycle ergometer testing). While supine,
venous return and therefore SV is higher at rest compared to
upright position. The transition from a supine to upright
position decreases left ventricular end-diastolic volume and
pressure as well as SV.26 In our study, all participants under-
went upright exercise testing. Consequently, reduced RV pre-
load resulted in a lower RV SV. This resulted in greater
calculated Ees and therefore Ees/Ea at rest.

Similar to Spruijt et al.,20 but different from the study by
Hsu et al.,27 our PAH cohort demonstrated impaired exer-
tional contractile reserve. The latter study also demon-
strated preserved RV–PA coupling in idiopathic PAH
during supine exercise at 25W workload using multi-beat
pressure volume analysis. As pointed out by the authors, the
single beat method may underestimate Ees in PH or with
dynamic changes in RV function. However, compared to the
study by Hsu et al., our PAH patients were subjected to
maximum upright exercise. Furthermore, for the first time,
we linked impaired RV contractile reserve along with
dynamic RV–PA uncoupling during maximum upright

Fig. 2. (a) End-systolic elastance (Ees) significantly increased in controls and ePH but not in PAH suggesting an impaired exertional contractile

reserve in PAH. (b) Arterial elastance (Ea) increased significantly in all three groups with the greatest increase seen in PAH. (c) There was

significant decrease in RV-PA coupling (Ees/Ea) from rest-to-peak exercise in PAH. Data are presented as mean� standard deviation with the blue

bars representing data at rest and red bars representing data at peak exercise.

Fig. 3. Peak stroke volume index (SVI) is associated with peak right

ventricular–pulmonary arterial (RV–PA) uncoupling. A scatter plot of

change in peak SVI vs. peak RV–PA coupling is depicted. Peak RV–PA

coupling is a strong determinant of SVI at peak exercise.
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exercise in PAH to a blunted CI and SVI response with
consequent depressed maximum exercise capacity. Hence,
we suspect that the greater workload imposed by our
CPET protocol is more likely to elicit dynamic RV dysfunc-
tion in PAH.

Mechanism of reduced exercise capacity in ePH and PAH

In the absence of a pulmonary mechanical limit, reduced
peak VO2 is a function of a blunted CO response and/or
impaired systemic oxygen extraction (abnormal Ca-vO2 dif-
ference). In both ePH and PAH, the depressed peak VO2

was driven by a reduced cardiac index and impaired sys-
temic oxygen extraction at peak exercise.

In PAH and ePH, reduced peak CI was the result
of decreased peak SVI and chronotropic incompetence
(Table 2). The blunted CI augmentation (rest-to-peak) in
PAH is associated primarily with a depressed SVI increase
during exercise. In ePH, the blunted CI augmentation is
linked to a blunted increase in SVI and impaired chrono-
tropic reserve during exercise (Fig. 1), irrespective of beta-
blocker use.

ePH and PAH had similarly impaired systemic oxygen
extraction as demonstrated by the blunted Ca-vO2 difference
at peak exercise along with preserved peak exercise CaO2

(Table 2). This is consistent with prior reports implicating
impaired peak systemic oxygen extraction as a cause of aer-
obic limitation in ePH 28 and PAH.29 Impaired systemic
oxygen extraction in patients with pulmonary vascular dis-
ease has been attributed to systemic arteriolar endothelial
dysfunction, intrinsic mitochondrial dysfunction, and capil-
lary rarefaction.30–33

Study limitations

Our study sample was small despite or institution perform-
ing> 300 iCPETs/year. This is because we do not routinely
subject patients with PAH to maximum incremental exercise
testing and also because not all RV tracings were interpret-
able during upright exercise.

Our normal controls were derived from iCPET evalu-
ation for unexplained exertional dyspnea and therefore the
controls may not be representative of a completely healthy
population. However, the controls were selected based on a
preserved peak exercise capacity defined by a normal cardiac
limit to exercise (peak VO2 and peak CO� 80% predicted).
Therefore, they represent a studied population with a
normal physiologic response to exercise and reflect ‘‘symp-
tomatic normal’’ individuals. Exercise hemodynamics varies
considerably according to age.34,35 Hence, for the ePH def-
inition, we used age-related upper limits of normal for
mPAP and PVR. We previously demonstrated that that
there is a 93% concordance between the ePH definition
used in the current study and the alternative proposed cri-
teria that is defined by a peak mPAP> 30mmHg and peak
TPR> 3WU irrespective of age.28

The gold standard to determine RV–PA coupling is by
multi-beat RV pressure–volume analysis using a conduct-
ance catheter.27 However, this method requires repeated
pre-load alteration typically with Valsalva maneuver and
is therefore not feasible in patients undergoing maximum
upright incremental exercise testing.

The single beat method was initially developed for the left
ventricle19 and has since been applied in several clinical stu-
dies in PAH.36,37 There are number of assumptions that
must be considered when using the single beat method,
including the use of mPAP as a surrogate for the RV end-
systolic pressure.20,38 On multi-beat pressure–volume
analysis in patients with resting PH, the RV end-systolic
pressure rather than mPAP most closely approximates the
RV end-systolic elastance.39 However, we have previously
shown that in healthy adults there is a flow-related systolic
pressure gradient that develops during upright incremental
exercise leading to a significant increase in RV systolic pres-
sure when compared to the PA systolic pressure.40 Using the
RV systolic pressure during exercise as a surrogate for the
RV end-systolic pressure will lead to a spuriously low Ees
among our controls. We therefore used the mPAP as a sur-
rogate for the RV end-systolic pressure as was previously
described to determine dynamic RV–PA coupling using the
single beat methodology.20

Approximately 27% of ePH patients were on beta-adre-
nergic receptor blocker therapy. We speculate that it was
initiated as empiric therapy for unexplained dyspnea and
could have influenced the results of this study. However,
all of the load independent parameters of RV function,
including the RV contractile reserve and peak RV–PA cou-
pling were not different among patients who received beta-
adrenergic receptor blocker therapy and those who did not
(Table S1). We recognize that other disease states such as
mitral valve disease and heart failure with preserved ejection
fraction (HFpEF) can cause dynamic RV–PA uncoupling
during exercise. We therefore specifically excluded patients
with HFpEF and mitral valve disease from the current
study.

Conclusions

Dynamic rest-to-peak exercise RV–PA uncoupling depresses
the normal SV response and is associated with reduced max-
imum exercise capacity in pre-capillary PH. Unlike patients
with advanced disease, ePH patients are able to increase RV
contractility in response to increasing RV afterload during
exercise, but this is insufficient and results in deterioration in
RV–PA coupling at peak exercise. These findings suggest
that even in early stage disease, RV function is already com-
promised and supports the potential role of dynamic RV–
PA coupling as an index for early detection of PH.
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