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Abstract In the semiarid interior western USA, where a majority of surface water supply comes from
mountain forests, high‐resolution aerial lidar‐based surveys are commonly used to study snow. These
surveys provide rich information about snow depth, but they are usually not accompanied with spatially
explicit measurements of snow density, which leads to uncertainty in the estimation of snow water
equivalent (SWE). In this study, we use a novel approach to distribute ~300 field measurements of snow
density with artificial neural networks. We combine the resulting density maps with aerial lidar snow depth
measurements, bias corrected with a very large and precisely geolocated array of field‐measured snow
depths (~4,000 observations), to create and validate maps of snow depth, snow density, and SWE over two
sites along Arizona's Mogollon Rim in February and March 2017. These maps show differences between
midwinter and late‐winter snow conditions. In particular, compared to that of snow depth, the spatial
variability of snow density is smaller for the later snow survey than the earlier snow survey. These gridded
data also show that the representativeness of Snow Telemetry and other point measurements is different
for the midwinter and late‐winter snow surveys. Overall, the lidar artificial neural network SWE estimates
can be as much as 30% different than if Snow Telemetry density were used with lidar snow depths to
estimate SWE.

Plain Language Summary In the western USA, a majority of surface water originates from
mountain snowmelt. Knowing the quantity of water in the snowpack, called snow water equivalent
(SWE), is critical for water supply forecasts and management of rivers and streams for water delivery and
hydropower. In this study, we develop a new method to estimate SWE by combining aerial remote sensing
maps of snow depth with snow density maps generated through machine learning of hundreds of field
measurements of snow density. This study finds that on a given date, snow density can vary widely,
highlighting the importance of considering its spatial variability when estimating SWE. These gridded data
show that the representativeness of Snow Telemetry and other point measurements is different for the
midwinter versus late winter snow surveys. In addition, we show that using spatially variable maps of snow
density can impact watershed‐scale SWE estimates by up to 30% as compared to using snow density
measurements from commonly used snow monitoring stations. The method described in this study will be
useful for generating SWE estimates for water supply monitoring, evaluating snow models, and
understanding how changing mountain forests might impact SWE.

1. Introduction

Melt water from snowpacks in mountain forests such as those in the western USA is vital to water supply, as
it is a dominant source of water for many mountain streams (Kampf & Lefsky, 2016) and can account for
more than 75% of water resources used for agriculture, human consumption, and hydroelectric power gen-
eration for downstream areas (Bales et al., 2006; Mankin et al., 2015). However, our understanding of moun-
tain snowpacks is challenged by a sparsity of high quality, spatially explicit snow observations. On one hand,
point measurements of snowpack, which are relatively easy to make, can be a poor indicator of snowpack
over larger areas in mountainous environments because of the extreme heterogeneity of snow (Guan
et al., 2013; Molotch & Bales, 2005). On the other hand, snowcover data sets produced by moderate‐spa-
tial‐resolution multispectral and especially coarser‐resolution microwave satellite remote sensing can be
unreliable in mountainous regions due to many issues including cloud cover, heterogeneous forest cover,
terrain variability, and incomplete snowcover (Dietz et al., 2012; Dozier et al., 2016; Foster et al., 2005;
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Lettenmaier et al., 2015; Nolin, 2010). Snow monitoring for smaller regions (e.g., managed watersheds) can
be more reliably done using statistical snow modeling along with multitemporal fine spatial resolution data
(Czyzowska‐Wisniewski et al., 2015).

Recently, observations using light detection and ranging (lidar) from fixed‐wing aircraft are increasingly
being used to measure snow depth in mountainous environments (e.g., Baños et al., 2011; Cline et al.,
2009; Dadic et al., 2010; DeBeer & Pomeroy, 2010; Deems et al., 2006; Fassnacht & Deems, 2006;
Grünewald et al., 2013; Kim et al., 2018; Painter et al., 2016; Tinkham et al., 2014; Trujillo et al., 2007).
Lidar is ideal for measuring snow in forested environments because individual lidar pulses can penetrate
a canopy and create multiple measurement returns (Baltsavias, 1999). In addition, lidar data has sufficiently
high spatial resolution to observe the effects of fine‐scale snow‐forest interactions such as snow variability
associated with forest gaps and edges (Golding & Swanson, 1986; Molotch et al., 2009; Musselman et al.,
2008; Veatch et al., 2009). Lidar snow maps have been applied for water resource understanding (e.g.,
Henn et al., 2018) as well as to train and validate snow models (e.g., Bair et al., 2016; Broxton et al., 2015;
Hedrick et al., 2015), which can be used for hydrological monitoring, predicting how regional warming
may influence water supply (Foster et al., 2016; Mankin et al., 2015), and quantifying feedbacks between
water availability and forest disturbance.

Despite its strengths, there are challenges affecting lidar snow surveys. For example, lidar data are some-
times evaluated in a statistical rather than spatially explicit fashion. In addition, they are sometimes paired
with ground surveys conducted on different days from the lidar. However, probably the largest challenge
facing most lidar snow surveys is a lack of spatially explicit snow density data from which to make maps
of SWE (Raleigh & Small, 2017; Wetlaufer et al., 2016), which is the snow variable of greatest interest for
most hydrological applications (Dozier, 2011). Some studies do not consider the spatial variability of snow
density (e.g., Molotch & Bales, 2005), which is known to differ across a landscape due to spatial variability
in several processes (e.g., compaction, melt refreeze, and wind‐caused densification) (López‐Moreno et al.,
2013; Wetlaufer et al., 2016). Because of this, the spatial distribution of snow density would also be expected
to change through time. Furthermore, not accounting for this spatial variability might lead to biases of snow
density estimates if too few or poorly distributed snow density observations are used.

One method to account for these spatial and temporal variations in snow density is to use a physically based
snow density model to convert the lidar snow depth observations to SWE. Most prominently, NASA's
Airborne Snow Observatory (Painter et al., 2016) uses an energy balance snow model (Marks et al., 1999)
with spatially variable snow density estimates to convert lidar depths to SWE (Hedrick et al., 2018).
However, there are uncertainties with many snow density models themselves (Avanzi et al., 2014;
Dawson et al., 2017; Raleigh & Small, 2017) which can lead to error in SWE estimates. For example, ASO
uses observed values of snow density to remove both elevation‐specific and overall biases from the modeled
snow density fields (Painter et al., 2016). These biases indicate that there is still substantial uncertainty when
using these models to estimate snow density across lidar domains.

Another common approach is to generate maps of estimated snow variables using statistical models trained
by field measurements of these same variables paired with geophysical or climatic predictor variables. These
statistical models, which include a variety of approaches including regression models (such as multiple
linear regression—MLR), binary regression trees, and lookup tables, have been applied using observations
that span both larger (e.g., continental) scales (Bormann et al., 2013; Sturm et al., 1995, 2010) and smaller
(e.g., watershed) scales (Jonas et al., 2009; Wetlaufer et al., 2016). Other machine learning approaches such
as Random Forests and Artificial Neural Networks have also become popular for estimating snow quantities
(particularly SWE and snow cover) using a variety of input data including data from satellite sensors (e.g.,
Bair et al., 2018; Dobreva & Klein, 2011; Tedesco et al., 2004), land surface models (e.g., Snauffer et al.,
2018), and ground observations (e.g., Tabari et al., 2010; Buckingham et al., 2015; Gharaei‐Manesh
et al., 2016). These approaches have been shown to be highly adaptable to capture nonlinear relationships
involved in snow measurement (Czyzowska‐Wisniewski et al., 2015), allowing them to outperform linear
approaches such as MLR. However, Artificial Neural Networks have not yet been applied to estimate
snow density.

In this study, we use Artificial Neural Networks (ANNs) to estimate snow density across lidar domains: We
create spatial maps of snow depth, snow density, and SWE by combining data from airborne lidar along and
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extensive ground snow surveys (~4,000 manual snow depth measurements and ~300 snow density measure-
ments) through ANN modelling, thus relying entirely on observational data. The ground snow survey data
were precisely geolocated and explicitly associated with 1‐m pixels of snow depth and other geophysical
attributes derived from the lidar data such as aspect, forest cover, and solar forcing index. This enabled both
explicit validation and improvement of the lidar snow depth data as well as generation of gridded snow
density estimates.

These data allow us to assess how the spatial variability of snow density and SWE compare to that of snow
depth at two different snapshots in time representing midwinter and late‐winter (near peak SWE for the
higher terrain) conditions. Additional temporal context is provided by a network of daily snow depth
observations along transects spanning forest and adjacent clearings using time lapse photography (a.k.a.
snowtography). These field observations also provide spatial context for point snow observations in terms
of snow depth, snow density, and SWE. In particular, we evaluate the spatial representativeness of all three
of these variables measured at Snow Telemetry (SNOTEL) stations (which are used by local water managers
for snow monitoring and streamflow forecasting) at two different times in the snow season.

2. Materials and Methods
2.1. Study Areas

Our study areas include two ~100‐km2 snow‐on lidar boxes (Figure 1) in the highlands of central Arizona
(AZ), including a mid‐elevation lidar box (located ~20‐km north of Payson, AZ; Figure 2) and a high‐
elevation lidar box (located ~50‐km east of Show Low, AZ; Figure 3). The mid‐elevation lidar box has an
environment typical of much of the seasonally snow‐covered highlands of northern and central AZ. Its ele-
vations range from 2,100‐ to 2,400‐m above sea level (a.s.l.; Figure 2a), and it is relatively densely forested
with Ponderosa Pine (Pinus ponderosa) forests (the average canopy closure based on lidar data is 56.2%;
Figure 2d). Precipitation amounts from December to March, which encompasses the typical snow‐covered
period, range from 360 mm at lower elevations to 470 mm at the higher elevations (estimated from
PRISM climate data). During this period, most precipitation falls as snow, yet temperatures are mild for
alpine seasonally snow‐covered environments, averaging 3.1 °C at a SNOTEL station (Baker Butte
SNOTEL, 2,225 m a.s.l.). Within the mid‐elevation lidar box, there are five intensively sampled field sites
including snow survey transects and other monitoring data used in this study (Figure 1).

The high‐elevation lidar box has an environment typical of the highest elevation areas in central and north-
ern AZ. It contains a slightly larger range of elevations than the mid‐elevation box, with low elevations in the
south and high elevations in the north (ranging from ~2,400 to 2,950 m a.s.l., Figure 3a). The forest is more
mixed with Pinus ponderosa forests dominating the mid‐elevation southern end of the box andmixed conifer
forests with stands of Aspen (Populus tremuloides) at the higher elevations. There is also a significant amount
of burned area (from a 2011 wildfire) as well as preexisting large montanemeadows in the central and north-
ern regions, resulting in less forest canopy cover (32.4%; Figure 3d) than in the mid‐elevation box. Overall,
the climate is colder and drier than the mid‐elevation box. December–March average temperature and
precipitation is 1.3 °C and 232 mm at a SNOTEL located on the southern end of the lidar box (Wildcat
SNOTEL, 2,393 m a.s.l.), and − 1.0 °C and 278 mm at a SNOTEL located on the northern end of the lidar
box (Maverick Fork SNOTEL, 2,804 m a.s.l). Although the high‐elevation box receives less winter precipita-
tion than the mid‐elevation box, it accumulates more snow because of its colder temperatures. Within the
high‐elevation lidar box, there are two intensively sampled field sites (Figure 1).

2.2. Data
2.2.1. Lidar Data
Two lidar flights (by Quantum Spatial Inc. or QSI) were flown on 1 February and 7 March 2017 for each box.
The first flight captured peak snowpack conditions for the mid‐elevation lidar box and midwinter snowpack
conditions for the high‐elevation lidar box and the second flight captured midablation snowpack conditions
for the mid‐elevation box and peak‐snowpack conditions for portions of the high‐elevation box.

The lidar surveys used a Leica ALS80 systemmounted on a fixed wing aircraft flying at about 1,800‐m above
ground level. The 1 February lidar survey had an average first‐return point density of 15.02 points/m2 and an
average ground classified point density of 4.40 points/m2 (Quantum Spatial, 2017a). For the 7 March lidar
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survey, the average first‐return density was 12.18 points/m2 and the average ground classified density was
3.68 points/m2 (Quantum Spatial, 2017b). These snow‐on survey data were compared with the snow‐off
lidar collection (also flown by QSI) in 2013 for an area encompassing the mid‐elevation lidar box and
2014 for an area encompassing the high‐elevation lidar box (Quantum Spatial, 2013, 2014). Point count
return densities for the 2013 and 2014 data, respectively, were 9.38 and 15.41 points/m2 (ground point
counts averaged 3.97 and 5.95 points/m2). For all collections, the absolute vertical accuracy was estimated
to be on the order of 3–6 cm.

QSI did all of the processing tasks required to produce the lidar data deliverables (raw point cloud data as
well as bare earth, highest hit, and intensity raster maps at 1‐m resolution). Snow depth was computed as
the difference between the bare‐earth digital terrain model (DTM) generated using ground‐classified lidar
points in the 2013 and 2014 snow‐off lidar data and those in the 2017 snow‐on lidar collections.
2.2.2. Ground Snow Survey Data
We conducted snow survey field campaigns simultaneously with the lidar flights on both dates (within 24 hr
of the lidar flights) involving more than 24 employees and volunteers from five public and private partner
entities (see Acknowledgements). In this study, we use 3,860 measurements of snow depth, 300 measure-
ments of snow density, and 17 snow pits to ground reference the lidar data and to support the development
of SWE estimates across the lidar boxes. Surveys were designed to capture the widest feasible ranges of the
landscape variables expected to regulate snow depth and density including elevation, slope, aspect, forest
height, cover, and geometry (i.e., size and orientation of canopy and intercanopy gaps). For the 1
February campaign, we collected 2,965 snow depth probe and 245 snow tube (giving snow depth, density,
and SWE) samples at all seven sites in Figure 1, and for the 7 March campaign, we collected 895 snow depth
probe and 55 snow tube samples at M1,M2, and H1. Measurements were taken along premarked transects at
each site (see examples in the inset maps in Figure 1).

An important advance of the present work is the precise geolocation of ground measurements, which allows
spatially explicit (~1 m) comparison with lidar measurements of snow depth, SWE, terrain, and forest struc-
ture. Prior to the snow season, all endpoints of transect segments were marked and georeferenced using two
methods. First, high‐quality lidar‐derived maps of canopy height were loaded onto mobile devices equipped
with Global Positioning System (GPS), and large trees were identified both in the field and in the lidar data.
This ensured that the positioning of the transects and the lidar data matched. Second, multiple differential
GPS readings were taken within 1 m of each transect segment endpoint to ensure that the correct tree was
identified. As an additional check, distances were measured (using a taut tape measure) between the

Figure 1. Site map showing the locations of the field data used in this study. The center panels show the locations of the mid‐elevation and high‐elevation lidar
boxes, as well as the locations of the sites with ground snow survey data. The outer panels show site maps for the two most intensively studied research sites
including the locations of snow survey transects, SNOTELs, and snowtography transects. SNOTEL = Snow Telemetry.
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endpoints of transect segments and all distances were compared with map distances between the
transect endpoints.

Snow measurement campaigns generally followed the methods described by Biederman et al. (2014).
Surveyors collected data at regular intervals along tape measures deployed between the transect end-
points. To ensure spatial representativeness, snow depth measurements were taken with snow probes
every five meters along each transect in a star pattern (i.e., one measurement at exactly the fifth meter
and measurements taken 1 m away forward, backward, to the right, and to the left). At each site, SWE
measurements were taken (using federal core samplers) every 10 or 20 m along each transect, depending
on the transect lengths. We also excavated 17 snow pits to derive layer‐integrated bulk snow density esti-
mates. Snow pit locations were selected to represent the dominant regimes in variables regulating snow
density (i.e., elevation, canopy cover, shading, and topography). Density estimates from pits were com-
pared against federal sampler core estimates representing similar regimes (i.e., expected to have
similar density).

Figure 2. Maps showing (a) elevation, (b) slope, (c) northness [sin (slope) × sin (aspect)], (d) canopy closure, and bias‐cor-
rected lidar‐derived snow depth maps for (e) 1 February 2017 and (f) 7 March 2017 for the mid‐elevation lidar survey box.
For northness, positive values indicate north facing slopes.
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2.2.3. Snowtography Measurements
We also collected “snowtography” measurements or daily pictures of snow measurement poles by trail
cameras mounted in trees to construct daily snow depth time series throughout the winter for ~20 locations
each at two of our field sampling sites (M1 and H1 in Figure 1). They provide a temporal complement to the
spatial SWE and snow depth data collected during the lidar snow surveys, and they are used as data points to
train and evaluate gridded snow density data generated in this study. These measurements are located
within 50 m of SNOTEL stations at each site. The snowtography measurements (which were precisely geor-
eferenced using differential GPS measurements and drone imagery) were set up along transects in cardinal
directions across clearings and extend beyond the boundaries of the clearings into the forest. These locations
represent gradients of both snowfall inputs (e.g., between canopy‐covered and open areas) and snowpack
ablation (sublimation and/or melt) in areas with varying amounts of exposure to sun and wind. Daily
photographs were analyzed by hand to construct snow depth time series data at each measurement pole
(in each image, two to four measurement poles could be seen). In addition, snow density measurements
were made using a federal sampler at every other measurement pole during the snow surveys.

2.3. Bias Correcting Lidar Snow Depth Data

Lidar snow depth data are corrected using field snow depth measurements. First, the precise coordinates of
each snow depth measurement along each snow survey transect are identified by computing map locations
geometrically, relative to transect endpoints. The average of the five snow depth measurements taken within
1 m of each transect location are compared to the corresponding 1‐m pixel of the snow‐on minus snow‐off
lidar DTM (as delivered by QSI) difference maps. These comparisons are used to construct correction factors
to remove the biases between the lidar and field‐measured snow depth data (generally, lidar data

Figure 3. Maps showing (a) elevation, (b) slope, (c) northness [sin (slope) × sin (aspect)], (d) canopy closure, and bias‐corrected lidar‐derived snow depth maps for
(e) 1 February 2017 and (f) 7 March 2017 for the high‐elevation lidar survey box. For northness, positive values indicate north facing slopes.
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underrepresents the field‐measured snow depths, Figure S1 in the supporting information) by fitting power
law curves to the relationship between the lidar depths and the difference between lidar and field depths.
Different correction factors are developed individually for each lidar coverage (Figure S2). These correction
models are evaluated using a tenfold cross validation (samples for each lidar box on each date are broken
into ten subsets, and each subset is evaluated independently with models trained with data from the other
nine). Next, the lidar snow depth data are multiplied by these correction factors. Note that even though this
multiplicative factor is higher at lower values of snow depth, its impact on the absolute value of snow depth
is not necessarily larger at lower snow depths. Maps showing the corrected snow depths for each lidar box
are shown in Figures 2 and 3 (panels e–f).

2.4. Artificial Neural Network Modeling of Snow Density Measurements

Next, field snow density measurements are used to construct maps of snow density based on ANNmodelling
of the field measurements. First, snow density data are reviewed for suspect values. We discard snow density
values less than 0.2 g/cm3 for the 1 February lidar survey and 0.25 g/cm3 for the 7March lidar survey to elim-
inate outliers. This results in 4% of snow density measurements being discarded on 1 February and 7% being
discarded on 7 March. For comparison, none of snow pits that we dug during our snow surveys recorded
snow densities below 0.26 g/cm3 on 1 February or 0.29 g/cm3 on 7 March. Figure S3 shows histograms of
snow density measurements used in our snow density modeling (which are all based on federal sampling)
for themiddle‐ and high‐elevation boxes on the two dates, with vertical lines representing snow density mea-
surements from snow pits for comparison. Although there are too few snow pit observations for meaningful
statistical comparisons with federal sampler snow density observations, snow pit densities are also compared
with snow cores representing similar environments at each sample location (e.g., M1, M2, and M3) in
section 3.3.1 below.

As with the snow depth data, the snow density measurements are precisely georeferenced for comparison
with lidar attribute data. At each measurement location, geophysical attributes (elevation, slope, north-
ness—or sin (slope) × sin (aspect) —where positive values indicate north facing slopes, canopy closure,
and canopy height) are extracted from 1‐m raster coverages for each lidar box (many of these are plotted
in Figures 2 and 3), and these attributes are associated with the snow density measurements. Elevation,
slope, and northness maps are derived from the bare‐earth DTMs delivered by QSI using the Geospatial
Data Abstraction Library software, the canopy height maps are computed as the difference between the
bare‐earth DTMs and the highest hit DTMs delivered by QSI, and canopy closure is generated in U.S.
Forest Service FUSION/LDV software (McGaughey, 2012). In addition to these maps, we also use maps of
snow depth, skyview factor, and below‐canopy solar forcing index, or the ratio of incident solar radiation
reaching the ground surface over a given period to that hitting a flat surface with no obstructions.
Skyview factor and below‐canopy solar forcing index are generated from 1‐m lidar maps of canopy and ter-
rain using the SnowPALM energy balance snowmodel (Broxton et al., 2015) integrating from the date of first
snowfall to the date of each lidar flight at each site. Figures 4 and S4 show how representative the sample
locations are of these predictor variables across the lidar boxes. For the 1 February (larger) surveys
(Figure 4), the samples span much of the dynamic range of many of the predictor variables. The notable
exception is elevation, which was limited by our site locations at which snow was measured in the field.
For the 7 March (smaller) surveys (Figure S4), despite the lower number of samples taken, the dynamic
range of many of these predictor variables is still sampled fairly well (with the exception of elevation).

Next, the ANN models are generated and trained with the snow density data (and associated predictor vari-
ables) using the Artificial Neural Network Toolbox® in Matlab®. These trained ANNs are reapplied using the
predictor maps to generate maps of snow density. Like the snow depth data, on each date and for each area,
the snow density models are evaluated using a tenfold cross validation. Note that all snow density data from
the snow survey and snowtography transects are combined to create a single data set for each lidar box and
for each area. We use a relatively simple network structure (one hidden layer with 10 neurons) because
increasing the complexity of the ANNs does not improve model performance. Levenberg–Marquardt back-
propagation (Marquardt, 1963) is used for model fitting. For each set, we run the optimization 50 times and
average the resulting maps, as this technique further reduces model overfitting and improves the perfor-
mance and consistency of the ANN results. Finally, the resulting 1‐m resolution snow density maps are mul-
tiplied by the corresponding corrected lidar snow depths to produce 1‐m SWE maps.
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These gridded maps (of snow depth, snow density, and SWE) are used to evaluate the spatial representative-
ness of SNOTEL stations that are used for water supply forecasting by the Salt River Project (SRP), a major
water stakeholder in AZ that provides hydropower and water supply to millions of customers in central AZ
from snowmelt‐fed streams that originate in our study areas. Understanding how these point measurements
relate to the surrounding landscape in terms of snow depth, density, and SWE is important when using them
to monitor snowpack.

3. Results
3.1. Temporal Context for the Lidar Data

In themid‐elevation lidar box, the snow‐on lidar maps show snow conditions roughly 1 week following large
snowstorms, which occurred on 20–24 January 2017 and 28 February 2017 (Figures 5a and 5b). The two
storms both brought more than 100 mm of SWE to the mid‐elevation box. In the lower elevations, this snow-
fall occurred on top of very shallow (for the first storm) or nonpresent (for the second storm) preexisting
snowpack. In these areas, the snowpack depicted in the lidar maps was composed mostly (for the
February flight) or entirely (for the March flight) of snow no more than ~1 week old. In other areas of the
mid‐elevation box, there was snowpack on the ground prior to the two flights, so the lidar maps depict a
mix of newer and older snow.

Throughout much of the high‐elevation lidar box, there was continuous snowpack persisting from
December to March (Figures 5c and 5d). Unlike most areas within the mid‐elevation box, the period preced-
ing the January storm had significant snow accumulation in the high‐elevation box. Furthermore, the
storms on 20–24 January and especially 28 February were smaller, especially relative to the snowpack on
the ground. Therefore, for much of the high‐elevation box, most of the snowpack consisted of older snow
on both survey dates.

Figure 4. (a–h) Plots showing the distributions of landscape predictors within the mid‐elevation lidar box (lines) and those predictors at individual sampled loca-
tions (dots) on 1 February. (i–p) The same but for the high‐elevation lidar box on 1 February.
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Temperatures were much warmer and sun angles were higher prior to the second (7 March) survey, so sig-
nificantly more snow ablation occurred between the 28 February snowstorm and the 7 March survey than
between the 20–24 January snowstorm and the 1 February survey. Therefore, there was substantially
less/no snow in the lower reaches of the lidar boxes on 7 March (Figures 2f and 3f). At the higher elevations,
snow depths were fairly similar between the two lidar surveys, though there was a much larger difference
between snow depths on differently oriented slopes. There are large differences between the two lidar sur-
veys on the south‐ versus north facing slopes in the northern half of the high‐elevation box (Figures 2f
and 3f), as well as on different sides of forest stands (Figures 6 and S5). For the mid‐elevation lidar box,
the coefficient of variability (CV) of the 7 March snow depth map is 2.8 times as large as that of the 1
February map (0.49 vs. 1.35). For the high‐elevation lidar box, the CV of the 7 March snow depth map is
2.1 times that of the 1 February map (0.42 vs. 0.87).

3.2. Comparison Between Lidar and Snow Survey Snow Depth Data

For both surveys, the uncorrected lidar snow depths (those generated by differencing the snow‐on and snow‐
off lidar DTMs), are, in general, a little shallower than field‐measured snow depths at all of the sites that we
sampled, indicated by the negative biases in Table 1, column 6. These biases represent up to 33% of the aver-
age snow depth in some areas. However, after bias correction, the absolute value of these biases is reduced
for both lidar boxes on both dates (Table 1, column 9), ranging from +1.6 to −2.2 cm (compared to −3.6 to
−12.1 cm before bias correction. Root‐mean‐square errors (RMSEs) between the lidar and field snow depth
data also decrease, with RMSEs between 7.8 and 11.5 cm for the bias‐corrected data (compared to 9.1 to
18.7 cm before bias correction). R2 values between field‐measured and lidar snow depths are very similar
before and after bias correction.

Figure 6 shows the agreement between the lidar and field‐measured snow depth data on 1 February at a site
where the snow depth variability was particularly dramatic (site H1 in the high‐elevation lidar box). This site
had a persistent snowpack lasting from December to March and so developed more snow variability than a
majority of the other sites. On 1 February, the site had substantial variability of snow depths (CV = 0.33) and
was close to 100% snow covered. The deepest snow was found in locations that received less solar radiation,
such as north facing slopes (in the lower left corner of Figure 6) or areas shaded by canopy. Shallow snow
was found on south facing slopes (in the upper right portion of Figure 6), along the southern margin of
canopy stands, and in areas that became marshy with standing water (the area in the middle of the clearing
just northeast of the transect endpoint labelled B2). By 7 March, the variability increased (CV = 0.56), with
deep snow persisting in the shaded areas and becoming shallower, or completely disappearing in the sunni-
est areas (Figure S5). The lidar data captured the snow depth patterns that were observed in the field well
(transects shown in Figures 6 and S5) with site‐wide R2 values between the two ranging from 0.8 to 0.9
(not shown).

Figure 5. (a) SWE time series at the Snow Telemetry (SNOTEL; black solid line) andmanual SWEmeasurements along snowtography transects (red dots) at theM1
site. (b) Snow depth time series at the SNOTEL (black line) and snowtography measurement locations (red lines). (c and d) The same information at the H1 site.
Snowtography measurements capture a broad range of environmental variables expected to control snow depth and density, while SNOTEL sensors are located in
areas of high snow accumulation. SWE = snow water equivalent.
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Figure 6. Snow depth maps derived from the 1 February lidar snow surveys at the H1 field site and comparison between
lidar and field‐measured snow depths along the transects shown in the maps. In the transect plots, all five field depth
measurements are shown at eachmeasurement location along each transect (black dots), and the blue line represents bias‐
corrected lidar snow depths.

Table 1
Snow Depth Measurements Along the Snow Survey Transects in Each Lidar Box for Each Date

Uncorrected data Bias‐corrected data

Mean Std CV R2 Bias RMSE R2 Bias RMSE
Lidar box Samples (cm) (cm) (−) (−) (cm) (cm) (−) (cm) (cm)

1 Feb Mid 1,690 45.8 23.3 0.51 0.85 −12.1 15.2 0.84 −0.9 9.4
High 1,275 39.7 24.1 0.61 0.91 −3.6 9.1 0.90 +1.6 7.8

7 Mar Mid 325 44.0 32.4 0.74 0.89 −14.8 18.7 0.88 −2.2 11.5
High 570 49.3 33.5 0.68 0.90 −8.4 13.8 0.90 +1.4 10.8

Note. Shown for each site are the total number of depth samples along the transects (column 1), the mean, standard deviation (Std), and CV of the samples (col-
umns 2–4) and the squared correlation coefficient, mean bias (where negative biases indicate that lidar snow depths are less than observed snow depths), and
RMSE between measured and lidar snow depths for both the uncorrected (columns 5–7) and bias corrected data (columns 8–10). CV = coefficient of variability;
RMSE = root‐mean‐square error.
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3.3. Distributed Maps of Snow Density and SWE From Measurements and Artificial Neural
Network Modeling
3.3.1. Snow Density Data
During both snow surveys, measured snow densities varied widely. For both lidar boxes, the observed snow
densities vary from 0.21 to 0.36 g/cm3 for the 1 February snow survey and from 0.24 to 0.37 g/cm3 on the 7
March snow survey (Figure S2). For the February snow survey data, the CV of snow density measurements
was 0.14 for both lidar domains (Table 2). For the 7 March snow survey, snow densities have a slightly smal-
ler range (CV = 0.10–0.12; Table 2). As a check on the accuracy of the federal sampler snow core values, we
compared core densities with layer‐integrated density values from snow pits, considered a highly accurate
method. Snow density showed no clear pattern of bias between pits and cores collected in environments
expected to have similar density based on elevation, topography, snow depth, canopy density, and solar
forcing (mean bias −0.009 ± 0.022 g/cm3; Table S1). At a given survey site (e.g., Site M1 in the mid‐elevation
lidar box), multiple cores from a given environment (e.g., level terrain with dense canopy) had lower
variability than the aggregate of cores from across the site (Figure S6). Core densities matched well with
layer‐integrated pits at most sites, increasing confidence in core accuracy, although a low bias
(−0.03–0.05 g/cm3) was observed at Site M5, which had the least snow depth of all sites (20–30 cm).

Overall, the ANN modelling was able to represent snow densities fairly well in terms of RMSE, while the
spatial representation of ANN‐generated snow density is poorer than that of the lidar snow depths. The
R2 agreement between snow density measurements and the ANN‐generated snow density data (using ten-
fold cross validation) range from 0.29 to 0.39 for the middle‐ and high‐elevation lidar boxes on 1 February
and 7March and RMSE's range from 0.024 to 0.033 g/cm3 (Table 2). These RMSEs are 8%–12% of the average
snow density values for each lidar box (Table 2).

To get a sense of model performance when fewer samples are used to train the ANN snow density models
(indicating the effect of sample size on model performance), the models were also trained with fewer data.
The same tenfold cross validation was used in all cases, except that only part of the data in the training sub-
sets were used to train themodels for each evaluation subset. In all cases, we find that as the number of train-
ing samples increases, the model performance increases, suggesting that larger training samples are better
than smaller ones (Figure 7), though the performance (at least for the larger 1 February snow surveys) begins
to plateau above 75–100 samples. There is also interesting variation between the sites. For example, the spa-
tial performance (R2 statistic) for the snow density model is always higher for the mid‐elevation box than for
the high‐elevation box on 1 February. In addition, the increase in R2 occurs faster for both areas on 7 March.

Figure 8 shows 1‐mmaps of ANN‐generated snow density and SWE. These snow density maps show values
ranging from 0.2 to 0.35 g/cm3 for the mid‐elevation lidar box and mostly above 0.25 g/cm3 for the high‐
elevation lidar box. In the mid‐elevation box, lower‐elevation areas have lower snow density (Figure 8a;
as the low elevations had snowpacks that were predominantly composed of snow no older than 1 week),
while in the high‐elevation lidar box, areas under trees tend to have lower values of snow density than open
areas (Figures 8c and 8f). These trends can be seen when assessing the importance of individual factors on
the snow density models: for 1 February, elevation and terrain slope appear dominant over other variables in

Table 2
Snow Density and SWE Measurements Within Each Lidar Box

Density SWE

Mean Std CV R2 RMSE Mean Std CV R2 RMSE
Lidar box # Sample (g/cm3) (g/cm3) (−) (−) (g/cm3) (cm) (cm) (−) (−) (cm)

1 Feb Mid 124 0.27 0.039 0.14 0.38 0.031 14.0 6.7 0.48 0.79 3.1
High 121 0.28 0.039 0.14 0.29 0.033 11.1 6.9 0.62 0.90 2.2

7 Mar Mid 33 0.28 0.035 0.12 0.34 0.028 10.9 9.4 0.86 0.88 3.2
High 22 0.32 0.031 0.10 0.39 0.024 19.4 7.8 0.40 0.79 4.1

Note. Shown are the number of snow core samples along the transects (column 1), the mean, standard deviation (Std), and CV of snow density measurements
(columns 2‐4), and the squared correlation coefficient and RMSE between measured densities and ANN‐generated snow density data using a tenfold cross vali-
dation (columns 5‐6). The same information is shown for SWE measurements (columns 7–9) and their agreement to the lidar‐ANN SWE data (columns 10–11).
CV = coefficient of variability; RMSE = root‐mean‐square error.
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the mid‐elevation box, while in the high‐elevation box, solar forcing index at the snow surface and skyview
(which would distinguish between sunny areas in gaps and shaded areas near to and underneath trees)
appear to be important (Table 3). On 7 March, the snow densities are higher overall (generally above
0.25–0.3 g/cm3; Figure S7 in the supporting information). In the mid‐elevation box on 7 March, elevation
seems to be much less important, while parameters related to the presence of vegetation become much
more important. For the high‐elevation box on 7 March, terrain slope seems to be the most important
factor. Note that there is colinearity between some of the predictors in Table 3 (e.g., between snow depth
and elevation) or vegetation cover and vegetation height, and so this analysis does not necessarily assign
unique importance to all of the predictors.

In general, there is more variability of snow densities on 1 February than 7 March. For the mid‐elevation
box, the CV of the 7 March snow density map is 95% that of the 1 February snow density map (0.066 vs.
0.069), while for the high‐elevation box, the CV of the 7 March snow density map is 59% that of the 1
February snow density map (0.049 vs. 0.072).
3.3.2. SWE Data
There is generally good agreement between the SWE maps (generated by multiplying the bias‐corrected
lidar snow depth maps with the ANN snow density maps) and observed SWE values. R2 values between
the Lidar‐ANN SWE data and field SWEmeasurements (ranging from 0.79 to 0.90; Table 2) are much higher
for than between the ANN snow density data and field density measurements. RMSEs between the Lidar‐
ANN SWE data and field SWE measurements range from 2.2 to 4.1 cm (which are 28%–37% of the RMSEs
for snow depths). Note that these RMSEs are also up to 17% lower than they would be if the snow density
was assumed to be constant (as the average value of the snow density measurements). For example, if a con-
stant snow density that represents the average of all snow density measurements at the site (0.27 g/cm3) were
used to predict SWE at the sampled locations for the mid‐elevation box on 1 February, the RMSE for pre-
dicted versus measured SWE values would be 3.6 cm (as opposed to 3.1 cm listed in Table 2). For the remain-
ing areas, these RMSEs are 6% to 13% higher than the values listed in Table 2.

Although variability of the SWEmaps is heavily influenced by variability in the lidar snow depthmaps, there
are differences between the SWE and snow depth maps. For example, because there are higher values of
snow density at higher elevations (where there is deeper snow) on 1 February for the mid‐elevation lidar
box, SWE differences are larger between the lower and higher elevations of both boxes than would be indi-
cated from the lidar snow depth data alone (and assuming a constant snow density). However, in general,
because the variability of the snow density maps is lower for 7 March than 1 February (section 3.3.1) while
the variability of the snow depth maps is higher 7 March (section 3.1), the relative importance of the snow
depth variability is much larger for 7 March. For example, for the mid‐elevation box, the ratio between the

Figure 7. R2 and RMSE of snow density samples using a tenfold cross validation showing model performance showing
different numbers of training samples to generate each model for each lidar box on each date. RMSE = root‐mean‐
square error.
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snow density and snow depth CV decreases from 0.15 to 0.05 from 1 February to 7 March. A similar decrease
(from 0.17 to 0.06) occurs for the high‐elevation box. Overall, the CV of the SWEmaps is similar to that of the
snow depth maps (0.50 and 1.34 for the mid‐elevation box on 1 February and 7 March, respectively, and 0.45
and 0.88 for the mid‐elevation box on 1 February and 7 March, respectively).

3.4. Comparison With Snowtography and SNOTEL Data

As can be seen in Figure 5, the snowtography sites generally have less snow depth and SWE through the win-
ter compared to SNOTEL stations because the snowtography measurements capture a broad range of envir-
onmental variables expected to control snow depth and density, while SNOTEL sensors are located in areas
of relatively high snow accumulation; that is, they are not necessarily representative of the snow conditions
for a majority of the landscape at the elevation in which they are found. For example, Figure 9 shows how
the snowtography and SNOTEL snow depth, snow density, and SWE measurements at sites M1 and H1

Figure 8. (a) ANN‐generated map of snow density for the mid‐elevation lidar box on 1 February. (b) SWEmap computed by multiplying the ANN‐generated snow
density map (from a) by the bias‐corrected lidar snow depth map (Figure 2e). (c and d) Same except for the high‐elevation box. (e and f) Zoomed in versions
of the snow density maps around the snowtography setup at sites M1 andH1. Areas with less than 1 cm of SWE aremasked out in the snow density maps (appearing
as gray) and also appear as grey in the SWE maps (note the color bar).

Table 3
Factor Importance of the Predictor Variables Used in the ANN‐Generated Snow Density Maps

Lidar box Snow Depth Elevation Northness Slope Vegetation Cover Vegetation Height SkyView SFI

1 Feb Mid 0.23 0.53 0.00 0.45 0.00 0.03 0.01 0.00
High 0.01 0.07 0.04 0.03 0.01 0.00 0.10 0.34

7 Mar Mid 0.09 0.11 0.23 0.09 0.50 0.10 0.41 0.08
High 0.01 0.12 0.04 0.53 0.01 0.02 0.01 0.05

Note. Shown are R2 values between the ANN‐generated snow density maps and these predictor variables. SFI = solar forcing index.
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compare with the gridded data generated in this study for 500‐ft (~152 m) elevation bands in which they are
located. These elevation bands are chosen because they correspond to those used by SRP to classify snow
amounts for seasonal streamflow forecasts. For M1 (~2,225 m a.s.l.), the band ranges from 2,134 to
2,286 m within the mid‐elevation lidar box and for H1 (~2,800 m. a.s.l), the band ranges from 2,743 to
2,895 m within the high‐elevation lidar box.

At M1, SNOTEL snow depth measurements on 1 February and 7 March plot toward the higher end of eleva-
tion band snow depth, yet snow density measurements (calculated by the common practice of dividing
SNOTEL SWE and snow depthmeasurements) plot toward the low end of the elevation band snow densities.
As a result, SNOTEL SWE data, while still high compared to the surrounding area, are not as high as would
be predicted if just looking at the SNOTEL snow depth data. Conversely, for the H1 site, the SNOTEL data
generally depicts about average snow depth for its elevation band but much higher than average snow den-
sity, leading to higher than average SWE. Note that in many cases, in addition to capturing a range of snow
depth, density, and SWE that at least captures part of their distributions for the elevation band, the average
of the snowtography measurements tends to be closer to the average values for the elevation band in most
cases (Table S2).

The representativeness of the point observations also appears to change through time. Figure 10 shows box-
plots depicting the interquartile range of SWE data for all 500‐ft (152 m) elevation bands within both lidar
domains on both dates. Also plotted are the site elevations (vertical lines) and SNOTEL/snowtography
SWE measurements (horizontal lines). At both sites, the SNOTEL SWE values are higher than the average
SWE for the elevation bands in which they are found, particularly for the 7 March survey. For the later sur-
vey date, especially, the SNOTEL SWE measurements are more similar to the average SWE in higher

Figure 9. Plots showing the distribution of lidar snow depth (top row), artificial neural network‐generated snow density (middle row), and lidar‐artificial neural
network SWE (bottom row) distributions for the 500‐ft (152 m) elevation band used for Salt River Project streamflow forecasting that includes sites M1 and H1.
For M1, the band ranges from 2,134 to 2,286 m within the mid‐elevation lidar box and for H1, the band ranges from 2,743 to 2,895 mwithin the high‐elevation lidar
box. Plotted on the histograms are snow depth, density, and SWE measurements at Snow Telemitry (SNOTEL) sites and along snowtography transects at each
location. Note that there are fewer triangles in the middle and bottom rows because snow density was measured (using federal sampling) at every other
snowtography location.
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elevation bands. Conversely, the snowtography measurements, which include sunny as well as shaded sites,
represent average conditions for their elevation band (Figure 10).

4. Discussion

Several studies have found it important to consider spatial variability of snow density when converting
lidar snow depths to SWE (e.g., Jonas et al., 2009; López‐Moreno et al., 2013; Raleigh & Small, 2017;
Wetlaufer et al., 2016). Here there is a large range of density across the lidar coverages (~0.2–0.35 g/
cm3; spanning ~100 km2 and ~500 m of elevation), and this variability, while smaller than that of snow
depth, is important, especially earlier in the winter. For example, for our midwinter (1 February) survey,
the CV of the density maps is 15%–17% of that of the snow depth maps while for our late‐winter
(7 March) survey, it is only 5%–6% of that of the snow depth maps (driven primarily by increases in snow
depth variability). This suggests that measurements of snow depth (e.g., from airborne lidar) are better
able represent SWE variability later in the winter. Our results also demonstrate the importance of
spatially distributed snowpack measurements because point measurements (e.g., from SNOTEL stations)
can be unrepresentative in terms of snow depth, SWE, and snow density, and further, their representa-
tiveness changes through time (Figure 10).

Spatial patterns in our ANN‐generated snow density maps are generally consistent with processes known to
regulate density. After snow falls to the ground, compaction from additional snow, metamorphism from
aging snow, and melt from liquid and/or refreezing snow increase density, but these processes occur at
different rates in different places on the landscape (Bormann et al., 2013; DeWalle & Rango, 2008;
Kojima, 1967; Sturm et al., 1995). In general, we expect snowpack density to increase with thickness, age,
and exposure to warm temperatures and high radiation. In our ANN maps, we found that older and thicker
snowpacks had higher‐density snow. For example, snow densities were higher overall for the late‐winter
snow survey than the midwinter snow survey, particularly in the higher elevation lidar box, where the
snowpack was oldest (i.e., persisted all winter) and deepest. Snowpack densities were somewhat lower in

Figure 10. (a and b) Boxplots showing the interquartile range of gridded SWE in the mid‐elevation lidar box for 500‐ft
(152 m) elevation bands for the 1 February and 7 March snow surveys. The connected dots show median SWE for each
elevation band. The vertical dashed lines show the elevation of the M1 field site on each panel. The horizontal blue dashed
lines show SWE recorded at the Snow Telemetry and the horizontal red dotted lines show SWE measurements along
snowtography transects on the two dates. (c and d) The same information for the high‐elevation lidar box and H1 site. The
elevation bands are chosen to match those used for Salt River Project seasonal streamflow forecasts.
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the mid‐elevation box versus the high‐elevation box during the late‐winter snow survey because of the much
larger size of the snowstorm that preceded the snow survey relative to the amount of snow on the ground
(Figure 5). Similarly, in the mid‐elevation box during the midwinter survey, density increased with elevation
because snowpack is ephemeral in the lower elevations of the box, and much of what was measured on the
survey date had fallen only 1 week before. Meanwhile, the higher elevations of the box had an older, thicker,
and denser snowpack. Across areas with snowpack of similar age and thickness, solar radiation and forest
cover were important. For example, for the much of the high‐elevation box during the midwinter survey,
large, sunny clearings had markedly higher snow densities than the shaded areas next to and underneath
forest canopy (Figure 8c) perhaps indicating melt refreeze of sun‐exposed snowpack contributing to
higher densities.

Water resources stakeholders such as SRP have long relied upon sparse networks of snowpack point mea-
surements, such as SNOTEL stations. Here we find that SNOTEL SWE measurements were biased high
compared to the surrounding area at the same elevation. Furthermore, SNOTEL sites became less represen-
tative of surrounding snowpack SWE, depth, and density for the late‐winter survey. We found that density
can be both overestimated and underestimated by SNOTEL measurements (±0.05–0.10 g/cm3), perhaps
because SNOTEL stations are predominantly in flat, open, and shaded locations with different snow densi-
ties than other physiographic settings. This nonrepresentativeness impacts watershed‐scale SWE estimates if
SNOTEL density is used with lidar snow depths to calculate SWE. For the high‐elevation lidar box, applying
the SNOTEL point density would increase area‐averaged SWE by 18% and 33% compared with the ANN
SWE map for the middle‐ and late‐winter surveys, respectively. Conversely, for the mid‐elevation box,
SNOTEL point density would reduce area‐averaged SWE by 15%–18% compared with the ANN map for
middle‐ and late‐winter surveys. These results suggest caution when using SNOTELs to evaluate density esti-
mates produced by physically based snow models, as SNOTELS may only be representative for limited
physiographic conditions.

4.1. Uncertainty of the ANN Snow Density Data

In general, we find that the ANNs better represent snow density variability than some other machine learn-
ing approaches. For our data set, RMSEs between the field‐collected and ANN‐generated values range from
0.02 to 0.03 g/cm3, explaining 29%–39% of the observational variance of snow density. This performance is
similar in terms of R2 or better in terms of RMSE than regression tree and MLR models used by
Wetlaufer et al. (2016) that model snow density similarly based on physiographic factors. For our data set,
ANNs better modeled snow density than the MLR approach (Table S3).

A variety of factors likely contribute uncertainty to ANN snow densities. First, they may be related to how
well the range of physiographic variables was represented by sampling. Most physiographic variables were
represented fairly well (Figures 4 and S4), although a weaker sampling of elevation could have reduced per-
formance of the ANN snow density models at some sites (e.g., for the high‐elevation box). Density uncer-
tainty also decreased with larger sample size used to train the models (Figure 7). Finally, it could also be
related to uncertainty in field density measurements, themselves. Some previous studies (e.g., Sturm et al.,
2010) have suggested that bulk densities measured with coring tubes may be up to 10% too low because of
issues such as snow falling out of the sampler unless a soil plug is collected (and removed before weighing)
or the sampler hitting an ice layer, which can push snow out of the sampler's path. However, contrasting
results suggest core‐based densities may actually overestimate snow density but up to 10%, especially in
deeper, denser snow (Peterson & Brown, 1975; Farnes et al., 1982). In this study, we find that there is
relatively little bias between layer‐integrated densities from snow pits (which are considered to be highly
accurate) and core‐based values taken from similar environments at each sampling site, and furthermore,
random uncertainty appears to be smaller than the differences across environments which are we trying
to predict (Table S1 and Figure S6). One notable exception is for shallow snowpacks 20‐ to 40‐cm deep at
a warm site in the mid‐elevation box (site M5) during the midwinter survey, where core‐based estimates
average ~5% lower density than layer‐integrated pit values (Figure S6). The equipment used for this survey
(1‐m federal sampler tubes and 1,000‐ml snow pit layer cutters) was not well adapted for measurement of
such thin snowpacks. Because of this, we recommend using 30‐cm plastic snow cutter tubes and 250‐ml
cutters in such low‐snow environments.
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4.2. Uncertainty of the Lidar Snow Depth Data

Overall, the accuracies of the lidar snow depth data are higher than those of the snow density maps. RMSEs
for the bias‐corrected lidar snow depth data range from 9.4 to 11.5 cm for the lidar boxes. For comparison,
Harpold et al. (2014), who evaluate lidar across four lidar domains with return densities of 8–10 returns/m2,
find RMSEs ranging from 7 to 31 cm (with an average of 23 cm) and Tinkham et al. (2014) report RMSEs of
14 cm in areas with low vegetation and 20–35 cm in forested areas. Painter et al. (2016) who use a laser scan-
ning system having lower point counts (due to high‐altitude flight) report snow depth RMSE's of ~8 cm at a
coarser (3 m) spatial resolution. Several sources are known to contribute uncertainty to lidar snow depths.
For example, either of the lidar retrievals (snow on and snow off) are prone to uncertainties associated with
the placement of the lidar points on the order of 1–10 cm because of uncertainties with the onboard differ-
ential GPS, inertial measurement unit (IMU), or boresight calibration (e.g., Baltsavias, 1999). In addition,
there is some uncertainty about the geolocation of the field data along the transects. However, the largest
issue that we identified was that in some areas, lidar snow depths were systematically shallower than
field‐measured depths, especially in forested areas with shallower snow. A plausible explanation for this bias
is that low vegetation such as grasses and shrubs can be misclassified as ground because it is difficult for
ground filters to separate low vegetation and fallen logs from the ground surface when there are not enough
lidar returns to do so effectively (Gould et al., 2013; Liu, 2008; Meng et al., 2010). This issue would lead to a
bias because it would affect the snow‐on and snow‐off lidar differently (Deems et al., 2013; Harpold et al.,
2014; Tinkham et al., 2014). Overall, we find that this bias is higher when there are fewer ground returns
and largely disappears when there are more than 8–10 ground returns/m2 (Figures S1e and S1f).

5. Conclusions

In this study, we combined lidar snow depth data with observation‐based gridded snow density estimates to
create high‐resolution maps of SWE. One of the major methodological advances of this study is the use of a
well distributed and precisely geolocated network of snow density measurements along with ANN machine
learning to determine how snow density changes based on physiographic factors. Variability of these snow
density maps is larger for a midwinter snow survey than for the late‐winter snow survey, especially relative
to that of snow depth variability. This suggests that is more important to consider the spatial variability of
snow density earlier in the winter and that it is also easier to characterize SWE variability later in the season
based from snow depth measurements (e.g., from airborne lidar). Even though the CV of our snow density
maps is smaller than that of our snow depth maps, it is still important to consider snow density variability
when creating distributed maps of SWE. This is particularly true when looking at pixel‐to‐pixel SWE varia-
bility, or when snow density is systematically higher or lower in areas of deeper (e.g., high elevation) or shal-
lower (e.g., low elevation) snowpack.

Perhaps most importantly, though, this study shows that point snow density measurements can be unrepre-
sentative of the broader landscape, impacting watershed‐scale SWE estimation by up to ~30%, and further-
more, this unrepresentativeness can be different at different times. At our study sites, snow densities from
SNOTEL data were as much as 0.12 g/cm3 different from the distributed snow densities based on ANN
modeling, and in general, the SNOTEL data was less representative later in the winter. This highlights the
importance of using a well‐distributed and extensive set of snow density samples to estimate snow density
across a domain (e.g., a lidar coverage or a watershed), as too few/unrepresentative point measurements
of snow density can lead to biased estimates of SWE.
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