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Abstract The growth of structure may be traced via the
redshift-dependent halo mass function. This quantity probes
the re-ionization history and quasar abundance in the Uni-
verse, constituting an important probe of the cosmological
predictions. Halos are not directly observable, however, so
their mass and evolution must be inferred indirectly. The most
common approach is to presume a relationship with galax-
ies and halos. Studies based on the assumption of a con-
stant halo to stellar mass ratio Mh/M∗ (extrapolated from
z � 4) reveal significant tension with ΛCDM – a fail-
ure known as “The Impossibly Early Galaxy Problem”. But
whether this ratio evolves or remains constant through red-
shift 4 � z � 10 is still being debated. To eliminate the
tension with ΛCDM, it would have to change by about 0.8
dex over this range, an issue that may be settled by upcom-
ing observations with the James Webb Space Telescope. In
this paper, we explore the possibility that this major incon-
sistency may instead be an indication that the cosmological
model is not completely correct. We study this problem in the
context of another Friedmann–Lemaître–Robertson–Walker
(FLRW) model known as the Rh = ct universe, and use our
previous measurement of σ8 from the cosmological growth
rate, together with new solutions to the Einstein–Boltzmann
equations, to interpret these recent halo measurements. We
demonstrate that the predicted mass and redshift dependence
of the halo distribution in Rh = ct is consistent with the data,
even assuming a constant Mh/M∗ throughout the observed
redshift range (4 � z � 10), contrasting sharply with the
tension in ΛCDM. We conclude that – if Mh/M∗ turns out
to be constant – the massive galaxies and their halos must
have formed earlier than is possible in ΛCDM.
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1 Introduction

The central principle behind the theory of structure formation
is that large-scale assemblies, such as galaxies and clusters,
formed via the growth of gravitational instabilities in the pri-
mordial density field, comprised of dark matter, radiation and
baryonic matter. By assumption, dark matter is weakly inter-
acting, so it decoupled from the radiation quite early and its
fluctuations grew gravitationally to form the halos. Baryonic
matter subsequently accreted into these potential wells once
it also decoupled from the radiation, forming bound objects
that would become stars and galaxies. Although this latter
process is not yet fully understood, there is better consensus
concerning the halo evolution itself, codified through the so-
called halo mass function [1–3]. As it turns out, the halo mass
function is highly sensitive to the cosmological parameters
in ΛCDM, including the mass fraction Ωm, the dark energy
equation of state parameter wde, and σ8 [4] – at least at lower
redshifts (i.e., z � 2), where it plays a vital role in con-
straining standard cosmology. At higher redshifts, the halo
mass function plays a vital role in probing the re-ionization
history of the Universe [5] and the quasar abundance and
formation sites [6]. It goes without saying that constraining
and evaluating the halo mass function is therefore critical to
the evaluation of structure formation in the Universe.

The standard model predicts a rapid evolution in the num-
ber density of massive halos throughout the redshift range
10 � z � 4. If a strong connection exists between the halos
and galaxies they host, one should expect to see a compa-
rably rapid evolution in the number density of galaxies via
their luminosity and mass distributions, implying that one
should see in ΛCDM a sharp decline in the number den-
sity of luminous galaxies at constant luminosity, or a rapid
decrease in luminosity for a fixed number density, towards
high redshifts. Although the halo mass function has been
evaluated using numerical and N-body simulations at high
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redshifts, only recently has it been tested observationally.
The halos themselves are not directly observable, so they
must be probed indirectly, e.g., through the measured galaxy
mass distribution assuming a close relationship between the
two.

Data gathered recently with the Cosmic Assembly Near-
Infrared Deep Extragalactic Survey (CANDELS; [7]), and
the Spitzer Large Area Surveys (SPLASH; [8]), allow us
to now infer the halo mass function and its evolution with
redshift. Past analyses of the halo mass function and galaxy
luminosity function from these surveys have generated sig-
nificant tension between the observations and predictions in
the context of ΛCDM [9]. These studies derived the halo
mass from the UV luminosity function by assuming a rela-
tionship between UV luminosity and stellar mass which was
then used to infer the halo mass function assuming another
relationship between the stellar mass and halo mass. The out-
come of this work [10] indicated that the halo to stellar mass
ratio is constant throughout the redshift range 0 � z � 4,
but it is not yet clear whether this ratio evolves or remains
constant at z � 4.

In their analysis, Behroozi et al. [11], Behroozi & Silk [12]
and Finkelstein et al. [13] concluded that in order to alleviate
the tension with ΛCDM, this ratio needs to evolve by as much
as ∼ 0.8 dex. An opposing view [9,14,15] maintains that
such an evolution is not supported by existing data, and that
this ratio is instead roughly constant at redshifts 4 � z � 10,
continuing the trend seen at z � 4. In this case, the halo
distribution would be inconsistent with ΛCDM by at least
2–4 orders of magnitude at redshifts 4 � z � 10, a disparity
termed as “The Impossibly Early Galaxy Problem” [9]. It is
anticipated that future observations with the NIRCam and
NIRspec on the James Webb Space Telescope may settle this
debate.

In this paper, we consider what would happen if this prob-
lem turns out to be real and provide a possible solution using
a recently completed study of the perturbation growth in the
Rh = ct universe [16] to describe and report the growth
of structure from redshift z ∼ 1011 to 0 in this alterna-
tive Friedmann–Lemaître–Robertson–Walker (FLRW) cos-
mology. We shall summarize the essential features of this
alternative model in Sect. 2, and then derive the growth equa-
tions in Sect. 2. We shall evaluate the halo mass function in
Sects. 3 and 4, and end with our conclusions in Sect. 5.

2 The Rh = ct universe

The Rh = ct universe [17–22] has thus far been tested using
a variety of observations. For a summary, see Table 2 in ref.
[23]. The principal difference between ΛCDM and Rh = ct
is that the latter model is constrained by the equation of
state ρ + 3p = 0, i.e., the so-called zero active mass con-

dition in general relativity. In the standard model, radiation
was dominant early, followed by matter and dark energy at
later times, whereas dark energy has always been present in
Rh = ct , with a significant component of radiation early on,
followed by matter towards lower redshifts. Also, the dark-
energy equation of state is wde = −1 in ΛCDM, while it is
wde = −1/2 in Rh = ct (see Ref. [24] for further details).

Some additional support for the Rh = ct cosmology,
based on an alternative theoretical concept, may also be found
in Ref. [25] and the updated discussion in Ref. [26]. But
in spite of the success this model has enjoyed thus far in
accounting for many observations as well, if not better, than
the standard model, some counter claims have also been pub-
lished in recent years, so the issue of whether or not it is the
correct cosmology still needs to be resolved. This is a prin-
cipal reason for continuing to test it as we do in this paper.
Our analysis here advances this discussion significantly by
providing new insights and an important new comparison
between Rh = ct and ΛCDM using observations over an
unusually large redshift range (see Figs. 2, 3, 4, 5, 6, 7 below).

As noted above, over the past decade, Rh = ct has been
compared to ΛCDM using data across a broad redshift range,
using integrated distances and the redshift-dependent Hub-
ble parameter, among various other measures. Still, some
of these data are often associated with unknown systematics
and, worse, are often dependent on the presumed background
model. The analysis of Type Ia SNe is a well-known exam-
ple in which the lightcurve is characterized by at least 3 ‘nui-
sance’ parameters that need to be optimized along with those
in the cosmological model. A different choice of assumptions
(e.g., the unknown intrinsic dispersions) and techniques (e.g.,
χ2 minimization versus maximization of a likelihood func-
tion and/or model selection with information criteria), can
sometimes produce varying outcomes in these tests.

For example, Type Ia SNe are challenging to use for
model testing when various subsamples are merged together
to improve the statistics, since one must deal with different
unknown systematics in each case. In his assessment, Shafer
[27] merged the Union2.1 and JLA samples and found that
this compilation favours the standard model. In his analysis,
however, he avoided the unknown intrinsic dispersions by
instead constraining the reduced χ2 to be 1 in each subsam-
ple. In recent years, a superior statistical approach has been
developed [28–30] in which these unknowns are instead esti-
mated by maximizing the overall likelihood function. The
outcome of which cosmology is preferred by the SN data
changes depending on which of these assumptions and meth-
ods are chosen.

Another recent test [31] used local probes, combining
SN data with measurements of the Hubble parameter H(z)
and baryon acoustic oscillations (BAO). This analysis also
showed that ΛCDM is favoured over Rh = ct , contrasting
with other work where the opposite was reported [30,32]. The
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different results may be traced to the choice of data sets in the
two studies. As is the case for SN measurements, the BAO
also do not provide model-independent information since the
location of the BAO peak cannot easily be distinguished from
redshift space distortions (RSD). As of today, only 3 such
measurements have provided a clean peak location. In other
cases, a cosmology must be preassumed in order to model the
RSD, rendering the data highly model-dependent. Any use
of these BAO data, and the of H(z) measured from them,
produces a biased outcome. In their assessment, Lin et al.
[31] used all the data and concluded, not surprisingly, that
they favour ΛCDM because the standard model was used to
estimate the RSD. When only model-independent data are
used instead, however, one reaches the opposite conclusion
[32].

As we discuss elsewhere in this paper, the inferred halo
mass function is itself subject to an important unknown: the
redshift dependence of the halo to stellar mass ratio Mh/M∗,
so our conclusions may also require revision once new data
will have been acquired. Depending on whether or not this
ratio changes by roughly an order of magnitude between red-
shifts 4 and 10, a factor yet to be resolved observationally,
ΛCDM may or may not be favoured over Rh = ct . Nonethe-
less, providing one more important comparison between
these two models is essential in establishing the conditions
that must be met in order for Rh = ct to be viewed as a viable
alternative to the standard model.

3 The Einstein–Boltzmann equations for dark matter
and energy fluctuations

To obtain the complete evolution of density fields starting
from initial perturbations, one must solve the coupled Boltz-
mann/Einstein equations (see Ref. [33]). The baryons are
strongly coupled with radiation until decoupling and there-
fore do not contribute to the growth of structure during this
epoch. Once they decouple from the radiation, baryons fol-
low the evolution of dark matter, which has preceded them in
forming bound systems. Hence, the initial growth of struc-
ture is dominated by dark matter. For this paper, which is
focused on the question of halo growth, we therefore con-
centrate solely on the growth of dark matter perturbations.
Other aspects of structure growth will be presented elsewhere
[16]. Thus, since we are not interested here in temperature
fluctuations of the radiation field or acoustic oscillations, we
justify the use of Einstein–Boltzmann equations customized
solely for the purpose of describing the growth of dark matter
perturbations, which we derive as follows.

The distribution function for any species (i.e., dark mat-
ter, baryons, radiation, etc.) may depend on the coordi-
nates (xμ) and momentum (Pμ) 4-vectors, resulting in an 8-
dimensional phase space. An additional constraint emerges,

however, from the invariant contraction of the momentum,
gμνPμPν = −m2, which reduces the phase space to 7-
dimensions. So we choose xμ, p ≡ | p| and the direction of
the momentum, p̂i , as our independent variables. Louisville’s
theorem produces the equation

d fs
dλ

= ∂ fs
∂x0

∂x0

∂λ
+ ∂ fs

∂xi
∂xi

∂λ
+ ∂ fs

∂p

∂p

∂λ

+ ∂ fs
∂ p̂i

∂ p̂i

∂λ
= C[ fs], (1)

where fs(xμ, p, p̂i ) is the distribution function for any
species ‘s’ (i.e., dark matter, dark energy, baryons, etc.),
λ is the affine parameter, and C[ fs] is a collision/source
term for this species. We define Pμ = dxμ/dλ, so that
dx0/dλ = P0. Dividing the above equation by P0, and
neglecting the fourth term that is of second order, gives

d fs
dη

= ∂ fs
∂η

+ ∂ fs
∂xi

Pi

P0 + ∂ fs
∂p

∂p

∂η
= C[ fs]

P0 , (2)

where η is now the conformal time, dη ≡ dt/a(t), in terms of
the expansion factora(t) and cosmic time t in the Friedmann–
Lemaître–Robertson–Walker metric.

In the above equation, we may write Pi/P0 = (p/E) p̂i

(where E is the energy) and, using the geodesic equation, we
get

dp

dη
= −Hp + E p̂l∂l

h00

2
− p

2

dhi j
dη

p̂i p̂ j , (3)

where H is the Hubble parameter written in terms of η, and
hαβ are the perturbed metric coefficients. Substituting Eq. (3)
into Eq. (2), we get

d fs
dη

+ p p̂i

E

∂ fs
∂xi

+ p

(
− H + E

p
p̂l∂l

h00

2
− 1

2
h

′
i j p̂

i p̂ j
)

∂ fs
∂p

= a

E
(1 − Φ)C[ fs], (4)

where we have substituted P0 = E
a (1 + Φ), in terms of

the perturbed gravitational potential Φ. We now separate the
distribution function into its unperturbed component, f̄s , and
the perturbed contribution, Fs , such that

fs(η, xi , p, p̂i ) = f̄s(η, xi , p, p̂i ) + Fs(η, xi , p, p̂i ). (5)

Then, multiplying Eq. (4) by E(p), and integrating over
momentum space, collecting the zeroth-order terms, gives∫

d3 p

(2π)3 E(p)
d f̄s
dη

−
∫

d3 p

(2π)3HpE(p)
∂ f̄s
∂p

=
∫

d3 p

(2π)3 aC[ fs]. (6)

In this expression, C[ fs] is zero in the context of ΛCDM
because the particle number is conserved during this phase
of the fluctuation growth. But this is not the case in Rh = ct .
The early universe in this model contains approximately 80%
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dark energy and approximately 20% radiation, with a small
contamination of matter [24]. At late times, the Rh = ct
universe contains approximately 70% dark energy and 30%
matter. A coupling therefore exists between dark matter and
dark energy, such that the particle number for each individual
species is not conserved in this model. The right-hand side
of Eq. (6) is therefore not zero in Rh = ct . Integrating the
second term on the left-hand side by parts and neglecting the
boundary term, we arrive at the expression∫

d3 p

(2π)3 E(p)
d f̄s
dη

+ 3H
∫

d3 p

(2π)3

(
E + p2

3E

)
f̄s

=
∫

d3 p

(2π)3 aC[ fs]. (7)

This equation may be further reduced by using the follow-
ing definitions for the (background) density and pressure:

ρs =
∫

d3 p

(2π)3 E(p) f̄s, (8)

and

Ps =
∫

d3 p

(2π)3

p2

3E
f̄s . (9)

When applied to dark matter, Eq. (7) may thus be written as
follows

dρdm

dη
+ 3H(ρdm + Pdm) =

∫
d3 p

(2π)3 aC[ fdm]. (10)

For this particular species (i.e., dark matter), we may also
put Pdm = 0. In addition, we use an approximate empirical

expression, ρdm = (ρc/3a2) exp

(
− a∗

a
(1−a)
(1−a∗)

)
, to model

the transition from a radiation/dark-energy dominated early
universe to a matter/dark-energy dominated universe at late
times, where ρc is the critical density today, and a∗ represents
the scale factor at matter radiation equality. Note that we are
also normalizing a(t0) to be 1 today, which is possible in a
spatially flat Universe. We infer the required collision/source
term in Eq. (10) by using this empirical expression for ρdm,
which yields∫

d3 p

(2π)3 aC[ fdm] = Hρdm + Hρdm

a

(
a∗

1 − a∗

)
. (11)

It is not difficult to see that the above equation is satisfied to
zeroth order only if

C[ f̄dm] = HE

a
f̄dm + HE

a2 f̄dm

(
a∗

1 − a∗

)
. (12)

This collision/source term explicitly shows the interactions
between dark energy and dark matter required to sustain
the zero active mass condition described above. That is, in
order for the partitioning of 80% dark energy plus 20% radi-
ation in the early Universe to transition to a balance of 70%
dark energy plus 30% matter today, a fraction of the dark

energy must decay/evolve into dark matter. As such, the col-
lision/source for dark energy must be the negative of Eq. (12),
so that

dρde

dη
+ 3H(ρde + Pde)

= −
∫

d3 p

(2π)3

[
HE f̄dm + HE

a
f̄dm

(
a∗

1 − a∗

)]
, (13)

where

C[ f̄de] = −HE

a
f̄dm + HE

a2 f̄dm

(
a∗

1 − a∗

)
. (14)

Returning now to Eq. (4), and using Eq. (12), we find for
dark matter that

d fdm

dη
+ p p̂i

E

∂ fdm

∂xi

+
(

− H + E

p
p̂l∂l

h00

2
− 1

2
h

′
i j p̂

i p̂ j
)

∂ fdm

∂p

=
[
H fdm + H

a
fdm

(
a∗

1 − a∗

)]
(1 − Φ) (15)

We again multiply this equation by E(p) and integrate over
momentum space, but now collecting first order terms, find-
ing that

d(δρdm)

dη
+ (ρdm + Pdm)∂iv

i
dm + 3H(δρdm

+δPdm) + 3(ρdm + Pdm)
dΦ

dη

=
[
H + H

a

(
a∗

1 − a∗

)]
(1 − Φ)δρdm (16)

where, as always, Φ is the gravitational potential. Then,
defining δdm ≡ δρdm/ρdm for the dark-matter perturbation,
with Pdm = δPdm = 0, we may write

dδdm

dη
= 1

ρdm

d(δρdm)

dη
− δdm

ρdm

dρdm

dη
. (17)

Substituting for d(δρdm)/dη in Eq. (16), and isolating the
Fourier mode k, we find that

dδdm,k

dη
= −kuk − 3

dΦk

dη
− H

[
1 + a∗

a(1 − a∗)

]
Φ, (18)

where we have written ∂iv
i
k = kuk , in terms of the veloc-

ity perturbation uk of the dark matter. Finally, we take the
second moment of Eq. (15), multiplying it by p p̂i and con-
tracting it with i k̂i . Then integrating over momentum space,
and collecting first order terms, we get

d(ρdmudm,k)

dη
+ 4Hρdmudm,k + kΦρdm

= H
[

1 + a∗
a(1 − a∗)

]
ρdmudm,k, (19)
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where udm,k is the kth velocity perturbation of dark matter.
Substituting for dρdm/dη in the above equation we thus get

dudm,k

dη
= −1

a

da

dη
udm,k − kΦk . (20)

Turning now to the dark-energy perturbations, we begin
with Eq. (4) and the interaction term in Eq. (14), and find that

d fde

dη
+ p p̂i

E

∂ fde

∂xi
+ p

(
− H + E

p
p̂l∂l

h00

2
− 1

2
h

′
i j p̂

i p̂ j
)

∂ fde

∂p
= −H(1 − Φ)

[
1 + a∗

a(1 − a∗)

]
fdm, (21)

where fde is the distribution function for dark-energy. Thus,
partitioning fde into its unperturbed ( ¯fde) and perturbed (Fde)
components, as was done in Eq. (5), we can collect the first-
order perturbed terms to find that

dFde

dη
+ p p̂i

E

∂Fde

∂xi
− Hp

∂Fde

∂p
+ p

(
E

p
p̂l∂l

h00

2

−1

2
h

′
i j p̂

i p̂ j
)

∂ f̄de

∂p
= −H

[
1 + a∗

a(1 − a∗)

]
(
Fdm − Φ f̄dm

)
. (22)

Multiplying this equation by E(p) and integrating over the
momentum space then gives

dδρde

dη
+ ρde(1 + wde)kude,k + 3Hδρde

(
1 + δPde

δρde

)

+3
dΦ

dη
ρde(1+wde)=H

[
1+ a∗

a(1 − a∗)

]
(ρdmΦ − δρdm).

(23)

Defining δde = δρde/ρde, and using Pde = −ρde/2 ([24])
we may write

dδde

dη
= 1

ρde

dδρde

dη
− δρde

ρ2
de

dρde

dη
, (24)

so that with Eqs. (13) and (23), we find that

dδde

dη
= −k

2
ude,k − 3Hδde

(
1

2
+ δPde

δρde

)
− 3

2

dΦ

dη

+H
[

1 + a∗
a(1 − a∗)

]
ρdm

ρde
(δde − δdm + Φ). (25)

The sound speed for our coupled dark matter/dark energy
fluid is not known yet, so we write it as follows

c2
s ≡ δP

δρ
= δPde

δρdm + δρde
= δPde/δρde

(1 + δρdm/δ + ρde)
, (26)

analogously to what is commonly done with the coupled
baryon-radiation fluid in the standard model. And follow-
ing the conventional approach of assuming adiabatic fluctu-

ations, we also write

δPde

δρde
= c2

s

[
1 + 2ρdm

ρde

]
. (27)

For the sake of simplicity, we assume the sound speed to be
a constant delimited to the range 0 � (cs/c)2 � 1. We have
found that the actual value of this constant has a negligible
impact on the solutions to the above equations since the ratio
of dark matter density to dark energy is always much less
than 1 in the Rh = ct universe, and we therefore adopt the
simple fraction c2

s = c2/2 throughout this work. Thus, using
Eqs. (25) and (27), we get

dδde

dη
= −k

2
ude,k − δde

(
3H
2

+ 3Hc2
s + 6Hc2

sρdm

ρde

)

−3

2

dΦ

dη
+ H

[
1 + a∗

a(1 − a∗)

]
ρdm

ρde
(δde − δdm + Φ).

(28)

Finally, we take the second moment of Eq. (21), multiply it
by p p̂i and contract it with i k̂i . Integrating over momentum
space, and collecting first order terms, we thus find that

dude,k

dη
= −5H

2
ude,k − kΦ + 2kc2

s

[
1 + 2ρdm

ρde

]
δde

+H
[

1 + a∗
a(1 − a∗)

]
ρdm

ρde
(ude,k − 2udm,k). (29)

Our final equation comes from perturbing the FLRW met-
ric in Einstein’s equations (see [33]), which gives

k2Φk + 3
1

a

da

dη

(
dΦk

dη
+ 1

a

da

dη
Φk

)

= 4πGa2
[
ρmδdm,k + ρdeδde

]
. (30)

In arriving at Eq. (30), we have chosen the Newtonian gauge
for the primary reason that the independent components in
this gauge have a direct correspondence to the gauge invariant
Bardeen variables [33,34].

It is important to stress that the set of Eqs. (18), (20), (28)
and (29) in Rh = ct differ from their counterparts in ΛCDM.
This happens because dark energy and dark matter are cou-
pled in Rh = ct , while dark energy is simply a cosmological
constant in the most basic ΛCDM model. The only expres-
sion that is formally common to both Rh = ct and ΛCDM is
Eq. (20), though the dependence of ρdm on a(t) is, of course,
model dependent. Mathematically, this comes about because
the collision/source term in Eq. (12) actually cancels out in
the perturbation Eq. (19) for the velocity perturbations. The
dependence on cosmology also enters into the growth of δdm

via the model-dependentH and a(t) functions. These quanti-
ties change with time according to the background evolution,
and are therefore strongly dependent on the chosen model.
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More specifically, an inspection of these equations reveals
that there are three principal differences between Rh = ct
and ΛCDM: (1) the scale factor a(t) in Rh = ct is given
as a(t) = (t/t0) at all epochs, whereas in ΛCDM it is pro-
portional to t1/2 and t2/3 during the radiation and matter
dominated phases, respectively; (2) the matter density scales

as ρdm = (ρc/3a2) exp

(
− a∗

a
(1−a)
(1−a∗)

)
in Rh = ct , whereas

it is given as ρm = (Ωmρc/a3) in ΛCDM; and (3) the vari-
ous modes of the density field in ΛCDM exited the horizon
during inflation, whereas none of the modes ever crossed
the horizon in Rh = ct [49]. In ΛCDM, small-scale modes
re-entered the horizon while radiation was dominant, while
larger-scale modes entered the horizon when matter domi-
nated, which produces a late start for the growth of structure
compared with what happens in Rh = ct . This appears to
be the principal reason why galaxies and supermassive black
holes appeared earlier in Rh = ct than in the standard model.

We shall formally introduce the growth function in
Eq. (31) below, and plot it in Fig. 1. It is obtained by solv-
ing Eqs. (10)–(30) simultaneously (see Ref. [16] for more
details). It is quite evident from this plot that the growth fac-
tor in Rh = ct is significantly stronger at large redshifts than
that in ΛCDM, in full agreement with the previous results of
our analysis at lower redshifts [35]. In contrast, the growth
function in ΛCDM indicates a strong evolution from z ∼ 10
to z ∼ 4. And since galaxies typically form on a dynamical
timescale ∼ 300 Myr [36] after halo virialization, the rapid
evolution in the number density of halos from z ∼ 8 to ∼ 4
predicted by ΛCDM corresponds to a rapid evolution in the
UV luminosity of galaxies at 6.0 � z � 3.4. This is one of
the points of contention between the two camps, since this
(required) rapid evolution in the UV luminosity function con-
flicts with the observations [9]. The observed UV luminosity
evolves much more slowly than this prediction, which would
mean that these massive galaxies would have formed much
earlier than expected in ΛCDM.

Fig. 1 Growth Factor predicted by Rh = ct (dashed) and flat ΛCDM
(solid)

4 Halo mass function

The halo mass function was first derived by Press and
Schechter [37] assuming spherical collapse and a primordial
Gaussian density field. When tested against numerical simu-
lations, however, it became evident that the Press-Schechter
formalism over-predicts the number of halos at the high mass
end, and under-predicts at the low mass end. This inconsis-
tency was resolved by introducing ellipsoidal collapse, rather
than spherical, by Sheth–Tormen [1]. But the Bolshoi sim-
ulations performed by Klypin et al. [38] several years later
indicated that, while discrepancies in the Sheth–Tormen mass
function at z ∼ 0 are less than 10% for halo masses in the
range 5×109 −5×1014 M�, this prescription over-predicts
the density by about 50% at z ∼ 6 for masses in the range
1011 − 1012 M�, getting even worse (by an order of magni-
tude) by z ∼ 10. Unfortunately for the standard model, the
inclusion of corrections from the Bolshoi simulations actu-
ally exacerbates the discrepancy between theory and obser-
vation. For this reason, and the fact that analogous simula-
tions to the Bolshoi calculations have not yet been carried
out for Rh = ct , we won’t include such adjustments in this
paper. We point out that if we were to add such corrections
to Rh = ct , the comparison of this model’s predictions with
the data under the assumption of a constant halo mass to
stellar mass ratio would be even more favourable than the
Sheth–Tormen formulation on its own, as one may readily
see in Figs. 2, 3, 4, 5, 6 and 7. As such, our exclusion of these
corrections produces an effect more favourable to ΛCDM
than Rh = ct , even with this assumption, which we do in
order give the standard model as much benefit of the doubt
as possible.

Fig. 2 Top: halo mass function inferred from galaxy surveys at z = 5
compared with Rh = ct . Bottom: same, except now for ΛCDM
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Fig. 3 Top: halo mass function inferred from galaxy surveys at z = 6
compared with Rh = ct . Bottom: same, except now for ΛCDM

Fig. 4 Top: halo mass function inferred from galaxy surveys at z = 7
compared with Rh = ct . Bottom: same, except now for ΛCDM

The Sheth–Tormen mass function is given as

f (σ ) = A

√
2a

π

[
1 +

(
σ 2

aδ2
c

)p]
δc

σ
exp

[
− aδ2

c

2σ 2

]
, (31)

where A = 0.3222 is a normalization factor, and a = 0.707
and p = 0.3. Using this halo mass function, one may obtain
the number of dark matter halos per comoving volume with
masses less than M as follows:

dn

d ln M
= ρ0

M
f (σ )

∣∣∣∣ d ln σ

d ln M

∣∣∣∣, (32)

Fig. 5 Top: halo mass function inferred from galaxy surveys at z = 8
compared with Rh = ct . Bottom: same, except now for ΛCDM

Fig. 6 Top: halo mass function inferred from galaxy surveys at z = 9
compared with Rh = ct . Bottom: same, except now for ΛCDM

where σ is defined according to the expression

σ 2
R(R, z) = b2(z)

2π2

∫ ∞

0
k2P(k)W 2(k, R)dk, (33)

and P(k) is the power spectrum, W (k, R) is the top-hat filter
and b(z) is the growth factor shown in Fig. 1 for both ΛCDM
and Rh = ct .
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Fig. 7 Top: halo mass function inferred from galaxy surveys at z = 10
compared with Rh = ct . Bottom: same, except now for ΛCDM

5 Observed halo mass function

The data used in this paper were assembled by Steinhardt et
al. [9], based on measurements obtained using three different
techniques, including the clustering method [39,43] based on
the spatial distribution of galaxies to obtain the halo masses.
This method doesn’t assume any physical properties of the
galaxies themselves, but assumes a model for the dark matter
concentration. Other techniques include template fitting [40],
that adopts a relationship between the luminosity and stellar
masses; the abundance matching technique [13] that relates
critical features in the galaxy luminosity or mass function,
such as a ‘knee’, to crucial elements in the halo mass distri-
bution, that can then be used to match the galaxy and dark
matter densities to infer the halo mass function. The high
redshift (z � 6) data points are derived from the UV lumi-
nosity function, that yields halo masses by assuming that the
halo mass to light ratio obtained at lower redshifts persists
to higher redshifts. Most of the data used in this work were
obtained assuming a constant ratio of halo to stellar-mass.
The two main principles for arriving at this ratio are (1) that
10% of the baryonic matter eventually condensed into stars
[41] and (2) the observation of a 6:1 ratio of dark matter to
baryonic matter [42].

It is quite obvious from the progression seen in Figs. 2, 3, 4,
5, 6 and 7 that the observed halo mass function obtained via
these different techniques [13,39,43,44] is entirely incon-
sistent with the distribution predicted by ΛCDM, if the
halo to stellar-mass ratio remains constant throughout the
4 � z � 10 redshift range [9]. Of course, the caveat is that
these data were not measured directly, and were obtained
using relationships derived at low redshifts. Steinhardt et al.

[9] studied the possibility that these correlations could be
breaking down at high-z. Their investigation indicated, how-
ever, that the star-formation rate vs. stellar mass of these high
redshift galaxies lies on the extrapolation from lower redshift
galaxies. In addition, the ratio of stellar mass to halo mass in
these high redshift galaxies is similar to the standard value
30:1 seen at all redshifts. These two tests therefore indicate
that the high redshift galaxies are quite normal, implying that
the problem is real.

In addition to this, Steinhardt et al. [9] determined that an
evolution of 0.8 dex in MHalo/LUV is needed to mitigate this
problem. Such a change might occur if the stellar population
in galaxies at z = 8 is younger than that at z = 4. Steinhardt et
al. [9] extensively investigated whether this possibility could
mitigate the disparity by modeling the halo mass to light
ratio from an initial stellar population assuming they formed
in one rapid burst at z = 12 and then evolved along the
main sequence until z = 4 − 8, where they were observed.
This resulted in a star formation rate ∝ M0.7∗ , with a stellar
age asymptotically approaching 50−150 Myr, starting from
an initially small value. But this isn’t sufficient enough to
remove the problem and, worse, the above approach isn’t
realistic considering a dynamical timescale of 300 Myr for
star formation after virialization of the halo.

Steinhardt et al. [9] considered this scenario and modeled
the halo mass to light ratio as described above, concluding
that this too is insufficient to reconcile the problem. Another
possibility is that the halo mass to stellar mass ratio evolves
towards higher redshifts. An evolution of 0.8 dex in this ratio
would reconcile the problem. But such a modification is only
possible either by a complete absence of dark matter at red-
shift 8, or if 100% of the baryons condensed instantly into
stars at high redshift upon halo virialization, which is quite
impossible. Hence, one may reasonably conclude that this
problem may be reconciled in ΛCDM only via the introduc-
tion of implausible physics. When viewed in the context of
other “too early” types of problems, the disparity evident in
Figs. 2, 3, 4, 5, 6 and 7 is quite damning for the standard
model. For example, the early appearance of supermassive
black holes at z ∼6–7 [45,46] and galaxies at z ∼ 10 − 12
(see references cited in [47], argues in favor of these problems
being real, presenting a challenge to any attempt to alleviate
them in the context of ΛCDM.

In contrast, the comparison between the Steinhardt et al.
[9] data, under the assumption that the halo to stellar mass
ratio is constant in the redshift range 4 � z � 10, and the
predictions of Rh = ct , is very favourable – except at the
very high mass end of the halo mass distribution, as one may
see in Figs. 2, 3, 4, 5, 6 and 7. The standard model disagrees
progressively more and more with this approach as the red-
shift increases, while Rh = ct fits the data throughout the
range 10 � z � 4 very well at the low and intermediate
mass end, and overpredicts by one to two orders of mag-
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nitude at the high mass end. This over-prediction may be
due to two possible reasons: (1) as noted earlier, the Bol-
shoi simulation [38] has indicated that the Sheth–Tormen
mass function overpredicts the number of halos by at least
10% at redshift z ∼ 0, and overpredicts by at least 50%
at redshift z ∼ 10. Although simulations similar to Bolshoi
haven’t yet been carried out for Rh = ct , a trend analogous to
this in the context of this model, would produce corrections
that largely mitigate the problem at the high mass end; (2)
this over-prediction may also be due in part to observational
selection effects that may be ‘hiding’ some of the sources.
Some massive galaxies may have been missed due to extinc-
tion, which future observations might be able to address.
Regardless of which, if any, of these mitigating factors are
at play in Rh = ct , none of them can resolve the disparity
arising from the predictions of ΛCDM. The discrepancy seen
in the standard model is extreme, ranging from one to over
four orders of magnitude from low to high mass, throughout
the redshift range 4 � z � 10. The factors that may alleviate
the high-mass end problem with Rh = ct , actually makes the
comparison much worse for ΛCDM, increasing the disparity
between predictions and observations. The weaker evolution
in growth rate predicted by Rh = ct is the vital reason for its
success, indicating that massive galaxies must have formed
earlier than predicted in the standard model, consistent with
the observations.

The problem in ΛCDM may instead be reconciled with an
evolution in the halo mass to light ratio, which could happen,
e.g., if the initial mass function were top-heavy. Studies have
shown, however, that this function should be the same at all
redshifts z � 8 [48]. Hopefully, this conclusion can be tested
using supernova rates in the future, which may eliminate even
this last possible caveat for the significant tension between
the observed halo mass function and ΛCDM. On the flip side,
if it turns out that future observations with JWST support an
evolution in the halo to stellar mass ratio of at least ∼ 0.8
dex between z ∼ 4 and 10, validating the predictions of
ΛCDM, the inferred halo distribution will be in tension with
the predictions of Rh = ct . The differences are so significant
(at least several orders of magnitude) that a refinement of
the halo distribution may produce one of the most robust
comparative cosmological tests of these models.

6 Conclusion

In this paper, we have discussed an ongoing debate con-
cerning the early appearance of massive galaxies (and their
halos), which may challenge the formation of structure pre-
dicted by ΛCDM if the halo to stellar mass ratio is roughly
constant in the redshift range 4 � z � 10. This difficulty
could be mitigated with a refinement of the underlying the-
ory of star formation and galaxy evolution, but appears to

require implausible modifications to the physics underlying
these phenomena (Steinhardt et al. 2016). Some support for
the existence of a real problem is provided by other types of
“too early” problems, such as the premature appearance of
supermassive black holes at z ∼6–7 [45,46].

Combining our earlier measurement of σ8 at redshift 0
[49] with our recently completed calculation of the growth
function using the coupled Boltzmann and perturbed Ein-
stein equations, we have re-analyzed “The Impossibly Early
Galaxy Problem” in the context of Rh = ct and showed
that this problem virtually disappears in this cosmology even
if the halo to stellar mass ratio is constant. Although, the
Rh = ct universe overpredicts the number density of halos
by one to two orders of magnitude at the very high mass end,
this problem may be mitigated by corrections to the Sheth–
Tormen mass function, as indicated by the Bolshoi simula-
tions [38]. Thus, once we resolve the question of whether or
not this ratio evolved with redshift, the inferred halo mass
distribution can clearly distinguish between the Rh = ct and
ΛCDM cosmologies.

The timeline in Rh = ct allows both massive galaxies
and supermassive black holes to form at very high redshifts
without invoking exotic physics. It should also be noted that,
while ΛCDM must rely on the unproven and as yet unveri-
fied physics of inflation to account for the generation of scale-
invariant primordial fluctuations and a mechanism for driving
the modes to exit and re-enter the horizon, thus creating an
intricate mechanism for producing different growth rates at
different epochs, no such complicated, fine-tuned mechanism
is necessary in Rh = ct . This model does not have a horizon
problem and does not incorporate inflation into its expansion
history. As explained in more detail in Ref. [16], the growth
of structure in Rh = ct is simple, streamlined and does not
require a different handling of small modes compared to the
larger ones. Such simplicity, particularly when viewed in the
context of the excellent agreement between theory and obser-
vations (Figs. 2, 3, 4, 5, 6, 7), adds considerable support for
the viability of this cosmology.

Looking forward to upcoming surveys and further the-
oretical developments, it is already clear that observations,
e.g., with JWST, will play a crucial role in determining the
quasar distribution and the rate of gamma ray bursts from
Pop III stars, both heavily dependent on the growth rates we
have been discussing in this paper. There is therefore signif-
icant promise of improving the comparison we have made
here even further, perhaps strongly ruling out one or other of
these two models.
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