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Abstract

Background: Gene expression profiling has benefited medicine by providing clinically relevant insights at the
molecular candidate and systems levels. However, to adopt a more ‘precision’ approach that integrates individual
variability including ‘omics data into risk assessments, diagnoses, and therapeutic decision making, whole
transcriptome expression needs to be interpreted meaningfully for single subjects. We propose an “all-against-one”
framework that uses biological replicates in isogenic conditions for testing differentially expressed genes (DEGs) in a
single subject (ss) in the absence of an appropriate external reference standard or replicates. To evaluate our
proposed “all-against-one” framework, we construct reference standards (RSs) with five conventional replicate-
anchored analyses (NOISeq, DEGseq, edgeR, DESeq, DESeq2) and the remainder were treated separately as single-
subject sample pairs for ss analyses (without replicates).

Results: Eight ss methods (NOISeq, DEGseq, edgeR, mixture model, DESeq, DESeq2, iDEG, and ensemble) for
identifying genes with differential expression were compared in Yeast (parental line versus snf2 deletion mutant;
n = 42/condition) and a MCF7 breast-cancer cell line (baseline versus stimulated with estradiol; n = 7/condition).
Receiver-operator characteristic (ROC) and precision-recall plots were determined for eight ss methods against each
of the five RSs in both datasets. Consistent with prior analyses of these data, ~ 50% and ~ 15% DEGs were obtained
in Yeast and MCF7 datasets respectively, regardless of the RSs method. NOISeq, edgeR, and DESeq were the most
concordant for creating a RS. Single-subject versions of NOISeq, DEGseq, and an ensemble learner achieved the
best median ROC-area-under-the-curve to compare two transcriptomes without replicates regardless of the RS
method and dataset (> 90% in Yeast, > 0.75 in MCF7). Further, distinct specific single-subject methods perform
better according to different proportions of DEGs.
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Conclusions: The “all-against-one” framework provides a honest evaluation framework for single-subject DEG
studies since these methods are evaluated, by design, against reference standards produced by unrelated DEG
methods. The ss-ensemble method was the only one to reliably produce higher accuracies in all conditions tested
in this conservative evaluation framework. However, single-subject methods for identifying DEGs from paired
samples need improvement, as no method performed with precision> 90% and obtained moderate levels of recall.
http://www.lussiergroup.org/publications/EnsembleBiomarker

Keywords: Single-subject studies, Precision medicine, Genomic medicine, Medical genomics, N-of-1, Transcriptome,
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Background
Gene expression profiling has benefited medicine by
characterizing cellular states throughout development
and differentiation, describing the pathological processes
occurring during disease and providing clinically rele-
vant insights at the molecular candidate and systems
levels. As medicine moves to adopt a more ‘precision’
approach that integrates individual variability including
‘omics data into risk assessments, diagnoses, and thera-
peutic decision making, whole transcriptome expression
analyses using technologies such as RNA-Seq are poised
to become foundational methods [1]. Still, there are is-
sues to resolve before this promise can be realized; most
related to data analysis and interpretation rather than
data collection, though all areas can still be better opti-
mized. Major areas for computational analytical methods
improvements include (i) the development of a
well-validated reference standard, thoroughly vetted and
solidly benchmarked for a given investigation, and (ii)
the ability to confidently make individual-level infer-
ences from transcriptomic data.
To the last point, the majority of differentially

expressed gene (DEG) analysis methods currently avail-
able have been designed to make inferences at the popu-
lation level about diseases or conditions, not for
individual patients. These experiments and analytical ap-
proaches seek to define and characterize the common
and consensus processes that differentiate or underlie
two (or more) states. In basic research using model or-
ganisms, establishing controls over genotype and experi-
mental parameters allows genotype-level inference by
using a two-group comparison with three or more repli-
cates per group [2]. In clinical research using human
subjects, however, the genotypic and lived experience di-
versity of each subject introduces substantial biological
variability and noise into expression data. This then re-
quires tens to thousands of genotype-distinct replicate
samples to draw inferences about the population(s) and
condition(s) of interest, but simultaneously ignores or
prohibits individual-level variation and inferences unless
they can be classified according to stratification patterns
common enough to be noticed [3]. To adapt the tools

designed for populations into tools appropriate for
individual-level inference requires either the use of repli-
cates (mimicking the style of a model organism experi-
ment and reducing the cross-sample noise to primarily
stochastic and technical factors), a priori distribution
and parameter assumptions, or data-derived models to
create an expected distribution useful for comparison.
However, in practice, it is not cost-effective and often
entirely infeasible to obtain replicate samples from clin-
ical procedures. Since DEG analysis methods were vali-
dated using replicates [3, 4], there remains a need to
learn how well a DEG method designed for identifying
differential expression would perform in real-world con-
ditions and when replicates are unavailable (ss-DEG
Methods).
Novel methodological advances designed with single

subjects in mind have begun to be proposed [3, 4].
While accurately discovering DEGs between two
RNA-Seq samples remains a challenge and insufficiently
studied [3, 4], methods identifying differentially
expressed gene sets and pathways between two transcrip-
tomes applicable to single-subject studies have been re-
producibly demonstrated as feasible [3, 4] in simulations
[5], retrospective studies in distinct datasets [5–10], cel-
lular assays [11, 12], as well as in one clinical classifier
[13] ( Table 1). These comprehensive validations of gene
set/pathway-level methods established the feasibility of
single-subject interpretation of the transcriptomes and
stimulate further investigations to improve more precise
methods for determining the underlying differentially
expressed genes. However, transcriptional dynamics op-
erating and validated at the gene set or pathway-level
cannot straightforwardly be deconvoluted to identify
specific transcripts altered in a single subject. A recent
study provides a comparison of accuracy for five
ss-DEGs methods using computer simulations of several
data models with genomic dysregulation ranging from 5
to 40% of DEGs [14]. A partial independent biological
validation was conducted for one ss-DEG method,
NOIseq [15], confirming 400 DEG signals by qPCR. Yet,
and to the best of our knowledge, no study has compre-
hensively validated nor compared the accuracies of
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ss-DEG methods using biological or clinical datasets on
a transcriptome scale. In addition, no framework has
been proposed on how to conduct such a comprehensive
validation.
We and others [16] propose that there is a knowledge

gap in the field with regards to optimizing the operating
characteristics of the state-of-the-art RNA-Seq analytics
for precision medicine: what are the best ss-DEG
methods for interrogating two RNA-Seq samples from
one patient taken in two different conditions without
replicates? Reliable and accurate of ss-DEG methods can
have practical utility. For example, the comparison of af-
fected versus unaffected samples (e.g., cancer versus
non-cancer) can provide valuable insight into the genetic
variables involved in a disease’s pathophysiology and
therapeutics. Similarly, using a patient’s healthy tissue as
its baseline to compare treated tissue or evolution over
time provides another framework to design analytics and
assays for precision medicine.
We thus designed this study under the following

premise: isogenic (genome matched) biological replicates
can provide a framework for testing single-subject
methods in the absence of an externally valid reference
standard. In this study, we aim to identify the
best-performing techniques and parameters in absence
of replicates of distinct single-subject (ss) methods pre-
dicting differentially expressed genes (DEGs). In
addition, we hypothesized, implemented, and evaluated
an ensemble method as possibly more robust across dif-
ferent conditions of application for determining DEGs in
single subjects.

Methods
Figure 1 provides an overview of the experimental de-
sign, including the methods and recommendation for
using an ensemble learner approach to develop robust
reference standards in ss studies.

Computing environment
All analyses in this study were conducted in the R pro-
gramming language, using R 3.4.0 [17], and all the code
is freely available at http://www.lussiergroup.org/publica-
tions/EnsembleBiomarker .

Datasets
In this study, two distinct isogenic RNA-Seq datasets
[18, 19] were used to calculate the reference standards
and to conduct the single-subject studies. Both datasets
have previously been used to evaluate methods that de-
termine differentially expressed genes (DEGs) from
RNA-Seq, using cohort or groups of biological replicates
(r-DEGs methods) rather than for determining the ac-
curacy of single-subject DEGs (ss-DEGs methods) as in
the current study. Furthermore, for the sake of

reproducibility, we conducted no additional preprocess-
ing steps and used the final published datasets as pro-
vided by the experimenters via their portals [18, 19]. The
preprocessing and normalization techniques used can be
found in their original manuscripts [18, 19].
Yeast dataset: The first dataset (hereinafter) “Yeast” is

comprised of 48 wild-type yeast replicates (Saccharomy-
ces cerevisiae BY4741 strain, WT) compared to 48 repli-
cates of a Δsnf2 mutant generated on the same
background. RNA-Seq analysis and mapping includes
7126 measured genes [18]. We followed the author’s
data preprocessing guidelines and conducted our studies
using their suggested 42 WT and 44 Δsnf2 ‘clean’ repli-
cates. Normalized and preprocessed data were down-
loaded as prepared by the original authors from their
GitHub repository, under their “Preprocessed_data” dir-
ectory. Forty-eight expression count files were down-
loaded for the two conditions, respectively, retaining the
“clean” replicates for analysis.
MCF7 dataset: Our second dataset consists of 7 bio-

logical replicates of human MCF7 cells (~ 22,000 mea-
sured genes) which were either treated with 10 nM
17β-estradiol (E2) or cultured as unstimulated controls
[19]. We used the 30M read replicates available in the
MCF7 dataset, which is available open source online
under the Gene Expression Omnibus repository [20]
(id = GSE51403). Normalized and preprocessed datasets
were downloaded on January 21, 2018.

Preprocessing and prediction set construction
The Yeast and MCF7 datasets were used entirely as ob-
tained in their author-processed formats as described
above, with no additional pre-processing steps or data
manipulation. Transcript mapping, filtering,
normalization, and batch correction details can be found
in the original publications [18, 19]. In the MCF7 data-
set, the following 4 biological replicates (“565–
576”,“564–572”,“566–570”,“562–574”) were randomly
selected as the reference set, with the remaining 3
(“563–577”,“568–575”,“569–571”) used to construct and
evaluate how well the ss-DEG methods could recapture
the reference-derived signal. Similarly, in the Yeast data-
set, 30 replicates were randomly selected to construct
the reference standard, with the remaining available 12
replicates used in the single-subject studies.

DEG methods
The study is designed to better understand how
single-subject studies can be conducted in biological and
clinical precision medicine settings, where a true gold
standard accurately reflective of a known ground truth
does not always exist. To this end, we compared pub-
lished and novel computational methods designed to de-
tect DEGs from single-subject without replicates (ss)
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with a variety of well-validated and widely-used RNA-Seq
analysis methods designed to identify DEGs from cohort
or replicate-based comparisons (r-DEG) (Table 1) [5, 10,
15, 21–24]. With the exception of NOISeq that has been
directly designed for application to a single subject under
two conditions without replicates (NOISeq-sim imple-
mentation), the other replicate-based methods (Table 1)
have not been designed nor systematically tested for ac-
curate performance in single-subject, paired-sample con-
ditions where replicates are not available. However, for the
selected methods, the authors have estimated the required
parameters to perform these comparisons, which are in-
cluded in package documentation. All methods were

implemented according to the default parameters pro-
vided for isogenic conditions (genotype-replicates) in the
original publications. For NOISeq, we used noiseqbio
function under their default parameter settings to generate
the reference standard, and noiseq-sim (setting the param-
eters replicates = “no” and nss = 3) for the single-subject
studies. For DESeq, in the estimateDispersions function,
the method parameter is set to ‘per-condition’ for the rep-
licated study, and ‘blind’ for the single-subject studies. For
edgeR, we use the “genetically identical model organisms”
replicate-type in order to set the appropriate BCV value;
and finally, DEGseq and DESeq2 are implemented in
wrapper functions using their default parameters. Figure 2

Fig. 1 Evaluation strategy of methods designed for transcriptome analysis in paired single subject samples. Motivation: Identifying the gene products
altered between two conditions in a single subject without replicates (ss-DEGs) is highly relevant in precision medicine. While conventional analytical
methods may be applied to discover differences between isogenic replicates studied in distinct conditions (r-DEGs), precision medicine has helped
usher in the possibility that diagnosis, prognosis, and therapeutic choices may be determined more accurately from single-subject measurements.
Accurate ss-DEGs methods enable studying (i) cancer vs unaffected adjacent tissue or (ii) an ex-vivo cellular provocation assay operating on relevant
tissue with or without therapy. Evaluation framework. Step 1. A dataset comprising multiple biological replicates of isogenic transcriptomes observed
on samples taken in distinct biological conditions is identified. Step 2 The replicates are split into two groups of independent samples: a reference set
and a single-subject (ss) prediction set. Step 3. Each r-DEG method (e.g., EdgeR, DESeq, etc.) is applied independently to the reference set to generate
multiple reference standards, as each method has biases and none can be truly considered as a gold standard (Step 3, top panel). The reference set
consists of biological replicates between two conditions of isogenic samples, and is thus a proxy for studying and mimicking the isogenic biologic
variation of one subject (and each set of r-DEGs is an attempt at becoming a gold standard. In parallel, each ss-DEG method is applied to independent
pairs of samples (one in each condition) taken from the prediction set, each as a proxy to a single subject (Step 3. Bottom panel). Step 4. Accuracy
scores are determined for each ss-DEG method against each r-DEG-derived reference standard. Step 5. Summary statistics are conducted across all
experiments to determine the best ss-DEGs according to the conditions of application
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provides a graphical description of what methods were used
to construct the reference standards for both datasets, illus-
trating the level of concordances between them.

ss-DEG calculations
In this study, ss-DEG defines a class of methods, specif-
ically each of the methods described in Table 1 when
utilized in a single subject rather than applied across
samples. For each DEG method in Table 1, we calculated
ss-DEGs for 12 distinct pairs of samples in the Yeast
prediction set, and 3 pairs of samples in the MCF7 pre-
diction dataset. We did this by randomly generating
pairs across conditions (i.e. selecting a random “WT” to
pair with a random “snf-mutant” for Yeast, and “control”
paired with “E2” for the MCF7 set) without replacement
to ensure independence. Because each sample in the
dataset is isogenic to all the others (save the presence/
absence of the snf mutation characterizing the two con-
ditions in Yeast), we can use this as a model for replicate
pairs drawn from a single subject. As sample replicates
drawn from the same individual, cell line, or model or-
ganism, they should follow identical distributions – with
the exception of the DEGs results from the technical
and biological errors and those attributable to the de-
signed experimental differences. Of note, while many of
the methods were not intended nor validated for
ss-DEG calculations, the authors of each of the r-DEG
methods (Table 1) did indicate their possible application
to two-sample comparisons and provided unpublished
approaches to adapt or estimate the parameters required
for such processing. All details and code are available at
http://www.lussiergroup.org/publications/EnsembleBio-
marker. Figure 3 contains a set of exemplar
precision-recall and ROC curves for the paired samples
in the MCF7 dataset and the Yeast dataset.
False Discovery Rates (FDRs) were calculated using

Benjamini-Yekutieli [25] given the dependent structure

of the hypothesis tests. Mixture Models were imple-
mented as described by Li et al. [5] and a posterior prob-
ability rather than a FDR is utilized for the
receiver-operator characteristics curves and the
precision-recall plots. In Figs. 4 and 5, the posterior
probability > 95% of a fold change between two samples
being a significant DEG was utilized as a Mixture Model
cutoff corresponding to the FDR < 5%.

Developing an ensemble learner across ss-DEG methods
Since differences across individual techniques showed vari-
able performance, we constructed a naïve ensemble pre-
dictor (hereinafter referred to as the “ensemble”) which is
an aggregate collection of multiple predictors. We adopted
the same strategy of creating an ensemble out of multiple
predictors from the popular and highly successful random
forest algorithm [26] due to their high level of success in
genomics. Continuing to treat each independent single sub-
ject as an independent assay, the ensemble combined
ss-DEG predictions from DEGSeq, NOISeq, mixture
models, and edgeR by taking the arithmetic mean of the
FDR corrected values.
Formally, the ensemble prediction of DEG status of a

gene g, noted Ensemble (g), was constructed from mul-
tiple DEG methods mj as:

Ensemble gð Þ ¼ 1
Mj j−1

X

mj∈M

fdr mj
� �� I mj

� � ð1Þ

(where) IðmjÞ∶ ¼ 1 if mj≠mr

0 if mj ¼ mr

�

where mr is the method used to build the reference
standard, and M is the set of FDRs from “mj” models
used to build the ensemble (i.e., M = {DEGseq, NOISeq,
mixture models, edgeR}), fdr(mj) is the false discovery
rate predcited by model mj for a specific transcript g, |M|
is the cardinality of M (e.g., the number of models), I(mj)

Table 1 DEG Methods for Single-Subject Studies and their previous validations
Method Experimental

Design
Distribution
Assumptions

P-
value

Validation of method for single subject inference in original methods publications

Internal External

Simulation Biological Replicates or Gold Standard Translation to diagnosis, prognosis & treatment

edgeR [21] r NB ✓ ✓a ✗ ✗

DESeq [22] r NB ✓ ✓a ✗ ✗

DESeq2 [23] r NB ✓ ✓a ✗ ✗

DEGseq [24] r B ✓ ✓a ✗ ✗

NOISeqa [15] r/ss (as NOISeq-sim) NP ✓ ✓a ±b ✗

Mixture Model [5] ss MM ±c ✓ ✗ ✗

iDEG [14] ss NB ✗ ✓a ✗ ✗

NB Negative Binomial, B Binomial, NP Non-Parametric, MM Mixture Model, ss single-subject analytics, r analytics of between group of replicates, ✓ = completed,
± = partially addressed, ✗ = not addressed
aNOISeq-Bio was used to construct the reference standard, while NOISeq-sim was used in the single-subject prediction sets
bPartial validation conducted using qPCR with 400 genes with ~ 80% DEGs
cMixture Model provides a posterior probability rather than a p-value, when FDR < 5% is indicated in the manuscript, it translates as a posterior probability > 95%
for the mixture models
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is the indicator function of a subset of M. The reference
standard is omitted from the construction of the ensemble
in order to minimize any of its potential biases or unfair
advantages since a reference set built from the specific al-
gorithm “mx” will contain the same biases as a prediction
set also constructed from the specific algorithm “mx”.
For example, when edgeR was used to build the repli-

cated reference standard, the ensemble omits edgeR, and
Eq. 1 becomes the case-specific Eq. 2:

Ensemble gð Þ ¼ 1
Mj j−1

X

mj∈M
mr ¼ edgeR

fdr mj
� �� I mj

� �

¼ 1
3
ð fdr edgeRð Þ � 0þ fdr DEGseqð Þ � 1þ fdr mixture modelsð Þ

�1þ fdr NOIseqð Þ � 1

ð2Þ

Since the single-subject implementations of both
DESeq and DESeq2 had extremely low recall (recall< 1%
of DEGs; Results, Figs. 3, 4, 5), these were excluded from

the set M of candidate models. Finally, since iDEG [14]
is currently a preprint publication, we decided against
including it in the ensemble in order to create an ensem-
ble consisting exclusively of published and
peer-reviewed techniques.

Reference standard construction
Each r-DEGs method in Table 1 was used to construct a
reference DEG standard once using n = 30 wild type ver-
sus n = 30 snf2 mutant yeast for the Yeast dataset, and
n = 4 unstimulated vs n = 4 estrogen-stimulated in the
MCF7 dataset. DEGs identified by each r-DEG method
were compared against one another to assess
cross-method overlap for quantifying the variability and
reliability of reference standards. All r-DEG methods
were implemented using their recommended default set-
tings as described earlier in the “DEG Methods” section.
In the original manuscript describing the MCF7 data-

set [19], the authors set a threshold resulting in approxi-
mately 3300 genes detected as DEGs by edgeR when all

Fig. 2 Reference Standards demonstrates high concordance between some techniques and major inconsistencies among others. Each method’s
pairwise concordance with one another (identity overlap of DEGs) is shown, with the diagonal entries as the total number of DEGs of each respective
method, demonstrating the vulnerability of studies relying on a single method to develop a reference standard. The pairwise intersections were
calculated using the count of DEGs in the methods of each column as the denominator. The heatmap is approximately symmetric given the different
denominators of comparing edgeR’s intersection with NOISeq vs. comparing NOISeq’s intersection with edgeR. In both Yeast (n = 30) and MCF7 (n =
4), edgeR, NOIseq, and DESeq show the best concordance to one another, while DESeq2 has the least concordance to any other method. DESeq2
shows the lack of agreement between what it considers DEGs and the rest of the methods, whereas in the left panel, both DESeq2 and DEGseq
differentiate themselves from the cohort. This highlights the need for a consensus as some methods might make certain DEG calls that other methods
miss and vice-versa. A conservative approach would be the intersection of all whereas an anti-conservative approach would take the union
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7 replicates were used. Therefore, we adjusted our False
Discovery Rate (FDR) [26] thresholds in each method to
operate similarly and detect approximately 3300 DEGs
(~ 15% of genes). In the Yeast dataset, we mimicked the
authors’ experimental design and set our
FDR-thresholds for DEG detection at FDR < 5%, which
resulted in a varying number of DEGs per method that
closely resembled their results (e.g., number of DEG
calls) obtained by the original authors analysis of this
dataset. Table 2 summarizes the operating characteristics
of these methods in both datasets.

“All-against-one” evaluation
In this study, we implemented an all-against-one evalu-
ation framework as follows (Algorithm 1):

1) Choose one method in Table 2 and create the
reference standard using the reference set and
multiple replicates for each condition.

2) For all remaining other methods in Table 1, identify
DEGs using a single pair of samples (one in each
condition) from a separate, non-overlapping predic-
tion set. Thus the methods for predictions are dis-
tinct from the one used for the reference standard.

3) All DEG predictions in step (2) (two conditions
without replicates, i.e. two samples) were evaluated
against all the unrelated reference standard built in
step (1),

4) Repeat steps (1–3) for all methods in Table 2.

The “all-against-one” framework is conceptually akin
to a leave-one-out (LOO) cross-validation [27] evalu-
ation where instead of leaving out one sample, you leave
out one method for identifying DEGs, and then evaluate
it against the rest. This provides a more robust and hon-
est evaluation in absence of a gold standard.
Algoritm 1 in detail, each of the replicated methods in

Table 2 were used to construct a reference standard

Fig. 3 Exemplar accuracies of ss-DEGs methods validated using “All-against-One.” The selected seven ss-DEGs were evaluated against three rs-DEG-derived
reference standards indicate a high-level of variability across ss-DEG methods and across reference standards, as well as a low to moderate-level of
variability within ss-DEG methods and between biological replicates. The Precision-Recall and ROC curves across individual samples (Yeast) show that even
in isogenic settings, a fair amount of biological variability exists. Furthermore, these single-subject studies provide a thorough comparison of each ss-DEG
method’s performance and consistency in absence of replicates, allowing us to understand which tools have a greater potential for advancing precision
medicine. For example, in the Yeast dataset, under > 40 biological replicates, the authors recommended DESeq and DESeq2. However, in absence of
biological replicates, these techniques performed overly conservatively (unworkable recalls) and, on average, the worst

Rachid Zaim et al. BMC Medical Genomics 2019, 12(Suppl 5):96 Page 7 of 15



using a reference set. At each iteration, once the refer-
ence set was built, the remaining replicates were set
aside as a prediction set. Then, each of the single-subject
methods in Table 1 were evaluated in single-subject

studies (ss-DEG) using the replicates as a prediction set
(12 pairs of single-subject samples for Yeast and three
for MCF7) using Precision-Recall (PR) and
receiver-operator characteristic (ROC) plots. Finally, the

Fig. 4 ROC summary plots in Yeast and MCF7. The Yeast case study produced reference standards that predicted between 55 and 70% of the
genes in the genome as DEGs, while the MCF7 breast cancer cell lines predicted ~ 15% DEGs. In a, the intersection of all reference standard is
used to produce what we would consider an “overtly-conservative” reference. The reference standard was constructed by taking intersection of
the DEG lists from cohort analysis of the dataset with DESeq2, DEGSeq, edgeR, NOISeq-BIO (3118 genes as DE). Conversely, in b), the reference
standard was constructed taking the union of all techniques (6425 genes as DE), resulting in an “anti-conservative” approach. The anti-
conservative scenario facilitates the prediction task as a larger number of genes are called DEGs, which is advantageous to recall. In this case,
methods like DEGseq stand out as they can maintain recall while not sacrificing precision since it will tend to call more genes as DEGs on
average compared to its counterparts. DEGseq also operates invariantly at FDRs of 5–20%, making it highly suitable for precision medicine since
an FDR of 5% is a default standard in clinical decision-making. In the overly conservative scenario with smaller number of DEGs in the gold
standard, a more selective approach will perform better, highlighted in the precision parameter and illustrating the trade-offs available across all
the tested techniques. An ensemble provides the analyst a robust trade-off alternative as it can build upon the strengths of all methods, and not
suffer the issue of “performing well” in one dataset but not in another. In each panel, methods are ordered according to performance
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Fig. 5 (See legend on next page.)
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method that was used to construct the reference
standard was removed from the prediction set, to
honestly report their accuracies against other tech-
niques. Figure 3 illustrates the “all-against-one” evalu-
ation. Note that when a method from Table 1 was
used to construct a reference standard, the
single-subject implementation of that same method
was omitted from that series of analyses (i.e., in the
reported summary statistics of accuracies of
ss-DEGseq, the reference standard based on DEGseq
was omitted from all precision-recall and accuracy
metric evaluations).
Our predictions consist of three independent

single-subject studies in the MCF7 dataset and 12
single-subject studies in Yeast that were not used for ref-
erence standard construction. Each was evaluated
against five methods for replicate-derived reference stan-
dards, lead to 15 (MCF7) + 60 (Yeast) sets of PR and
ROC curves (see Fig. 3 for an illustrative example). Each
set of PR and ROC curves comprise 8 DEG methods
generating predictions from two samples without repli-
cates (550 PR and 550 ROC curves, because a method is
not evaluated against its related reference standard, see

Algorithm 1). Therefore, in order to meaningfully evalu-
ate the methods across all conditions, we summarized
each technique’s performance by analyzing their area
under the curve (AUC), by calculating the AUCs in the
PR and ROC curves. Furthermore, we illustrate each
method’s operating characteristics by creating PR confi-
dence regions which are 1-standard deviation (SD)
bands around their mean precision and recall, at FDR =
5, 10, and 20% (1% also calculated, not shown).

Summarizing results using union and intersection of gold
standards
In Figs. 4 and 5, the union and intersection of reference
standards (Table 2) were utilized to establish the sum-
maries of accuracies of the “all-against-one” evaluation.
Note, that the union and intersection are not necessarily
biologically meaningful, since they may lead to overtly
conservative or extremely anti-conservative DEG calls
(e.g., the yeast data union produces 90% of the genes as
DEGs). However, they do provide us with:

1) An illustrative example of best-case and worst-case
scenarios (i.e., the extreme of possibilities).

(See figure on previous page.)
Fig. 5 Precision-Recall summary plots in Yeast and MCF7 breast cancer cell lines. These aggregate results were constructed by summarizing
precision-recall confidence regions over every ss-DEG evaluation by reporting the best mean values with one standard deviation bars in each
direction creating a cross, to create the broadest possible precision-recall combinations. The curves show a spectrum of operating characteristics
across techniques, indicating the need for an ensemble-like approach and substantial improvements in ss-DEG. The MCF7 case study produced
reference standards that predicted between 15% of the genes in the genome as DEGs, while the Yeast case study produced reference standards
that predicted between 55 and 70% of the genes as DEG. The more clinically relevant range of DEGs from the MCF7 reference standard
construction introduces a very distinct detection problem where methods like DEGseq result in a large number of False Positive as shown in the
precision-recall summary plots. It achieves high recall at the expense of low-precision. Conservative techniques like DESeq obtain a very high
precision on a small number of calls. The results show this is a challenging detection task, and that various techniques operate differently,
providing an analyst with a wide-range of operating characteristics. In the Yeast dataset, all methods achieve a high precision, with varying levels
of recall, however given that the majority of genes are labeled DEGs, this favors methods with high number of calls. Since certain methods can
perform well in one scenario and underperform in others, we recommend a contextual use or an ensemble-like approach where the strengths of
these tools can be combined into a single, robust predictor. Here, precision and recall of each instance of ss-DEGs are respectively calculated on
the union and the intersection of reference standards (Table 2). Of note, at FDR < 20%, DESeq2 produces no predictions and is thus not shown
and considered inappropriate for single-subject DEG analyses.

Table 2 Generating Reference Standards with r-DEG methods in datasets with replicates Standards

Method Yeast (n = 30 paired samples), genome size = 7126 genes MCF7 (n = 4 paired samples), genome size = ~ 22,000 genes

FDR
Threshold

Number of
DEGs

Percent of Genome as
DEG

FDR
Threshold

Number of
DEGs

Percent of Genome as
DEG

edgeR .05 4437 62% .005 3231 14%

DESeq .05 4594 64% .001 3207 14%

DESeq2 .05 4802 67% .0005 3255 15%

DEGseq .05 5087 71% 3.56e-12 3351 15%

NOISeq .05 3914 55% 0.078 3397 15%

Intersection of all
methods

n/a 3118 44% n/a 1173 5%

Union of all methods n/a 6425 90% n/a 6039 27%

FDRs are adjusted to obtain lists of DEGs of the same length as reported in the original publications. As shown with the intersection of all DEGs predicted by
distinct methods, determining a gold standard in RNA-Seq analyses of multiple biological isogenic replicates remains a challenge
n/a not applicable
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2) A complementary illustration to Fig. 2 showing the
lack of concordance across methods.

The PR and ROC plots were generated using the pre-
crec R package [28] and the boxplots were created using
the ggplot2 [29] graphics library in R.

Results
Evaluating DEGs between two conditions in a single
subject without replicates has not been previously con-
ducted using biologic samples. As previously reported by
other authors, constructing a reliable reference standard
from RNA-seq analytic methods remains a challenge
[30] even in the presence of 30 replicates in each condi-
tion as in the Yeast dataset. As shown in Fig. 2, NOISeq,
edgeR, and DESeq were the most concordant and robust
methods for creating a reference standard. However, the
overall concordance between all methods varies substan-
tially (Table 2). For example, the authors of the original
Yeast dataset report ~ 60% DEGs, while the union of all
methods identifies as many as 90% DEGs, but their
intersection reports a mere 44%.
Since no single reference standard is fully a state-

ment of truth, nor their union or intersection, we sys-
tematically evaluated methods discovering DEGs in
two conditions without replicates against all reference
standards using the aforementioned “all-against-one”
framework. As discussed in the Methods, distinct
samples were utilized for calculating the reference
standard and for estimating DEGs between paired
transcriptomes. Figure 3 demonstrates nine out of the
possible 420 PR and ROC curve combinations for the
Yeast dataset (5 reference standards × 12 independent
sets of two paired samples × 7 methods evaluations in
estimating DEGs from two conditions without repli-
cates). The 420 Yeast PR and ROC plots and the 105
MCF7 PR and ROC plots are respectively summarized
in Figs. 4 and 5. In Fig. 4, the ROC curves are sum-
marized using boxplots, and in Fig. 5, the PR curves
are summarized into ‘average’ PR curves with a 1-SD
band above/below and right/left of its mean
precision-recall coordinate for both FDR 5 and 20%.
As FDR increases, the techniques increase their recall
at the expense of some precision, with the exception,
of DEGseq whose precision and recall in the Yeast
dataset minimally increases. DEG detection methods
like Mixture Model and DEGseq perform fairly con-
sistently across all samples, resulting in narrower con-
fidence regions whereas NOISeq and iDEG’s
variability lies on the higher end of the spectrum.
Note, DESeq2 is not shown in Panel B neither in
Fig. 4 nor in Fig. 5 given its failure to produce any
predictions at the selected FDR cutoffs.

Discussion
Our analyses clearly demonstrated the intricacies of
working with biologically complex transcriptomic data
in the absence of ground truth. As shown by Figs. 4 and
5, NOISeq-sim outperformed other tested single-subject
techniques in terms of precision across both case studies
and was capable of scoring well across a range of
cohort-derived reference standards. In contrast,
single-subject implementations of DESeq and DESeq2
were highly conservative. In addition, ss-DESeq2 does
not perform without replicates, as in our hands, the
method predicted zero DEGs when applied to either the
Yeast or MCF7 single-subject sets, even though robust
responses were noted by both other ss-DEG methods
and cohort analyses suggesting a biological signal was
present.
In the presence of a true gold standard, the kappa

interrater agreement [31] could be utilized to compare
methods, and precision and recall could be calculated
more reliably without the requirement of creating
method-specific reference standards. In absence of this,
proper validation must be conducted to avoid misrepre-
senting the accuracy of the attained results. One major
statistical issue with the way biological validations are
currently conducted is that results typically only show
each method evaluated against itself rather than against
a true gold or reference standard. For example, in the
MCF7 study, edgeR was determined to be the best tech-
nique using a reference standard built from edgeR, but
not a reference standard built from a consensus. This
evaluation better answers the question, “Which tech-
nique is best able to recapture the signal identified by
their own model?” rather than addressing the biological
question, “Which technique can best identify the signal
in the data?” Because all these DEG models assume a
variety of [count] parametric and non-parametric distri-
butions, different models catch different signals, and it
would be naïve to believe that any one model is superior
to address all possible research questions and designs.
Therefore, if there is not a clear consensus on which
model best captures the biological signal, any evaluation
framework must consider an all-against-one evaluation
or an ensemble approach for a more honest and robust
evaluation.
The proposed all-against-one experimental setting is

akin to a leave-one-out (LOO) [27] cross-validation set
up where instead of leaving out one sample, one method
is left out for identifying DEGs, and in order to evaluate
it against the remainder (i.e., create reference standards
from DEGseq, edgeR, and NOISeq and recapture their
DEG calls using DESeq, and then repeat for each indi-
vidual DEG method). The evaluation graphs in Fig. 3
show a subset of these individual experiments where
edgeR, DEGseq, and NOISeqBio are evaluated in a
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all-against-one approach, with all single-subject
methods separately making DEG predictions against the
signal identified by the one method used to construct
the reference standard. Of note, we propose a conserva-
tive framework where a single-subject method is not
evaluated against a reference standard built from its re-
lated method applied to replicates. In other words, both
the data and the method used to build the reference
standard are indepdent from the tested single subject
method and its data substrate. Curiously, the authors
that generated these reference standard datasets and
produced evaluations of r-DEG methods, compared
these method to a reference built from the same
method, likely reporting inflated and biased accuracy
rates attributable to their anticonservative evaluation
framework. Perplexingly, these authors also reported
that distinct r-DEG methods did not agree on the pre-
dicted DEGs but did not consider evaluating a method
performance using another as a reference standard.
The ensemble learner approach follows the school of

thought in machine learning that an individual strong
classifier (say a decision tree or neural network) is less
accurate than a classifier built from aggregating a collec-
tion of weaker classifiers since it may risk being un-
stable. One popular and effective way to build an
ensemble is by way of bootstrapping and aggregating in-
dividual predictors [or bagging for short] [32]. In deci-
sion trees, for example, one carefully pruned decision
tree [33] may be better than any sub-tree in a random
forest classifier, but a random forest classifier as a whole
(which is built on bootstrap and subsampling theory)
will almost surely beat any individually-pruned decision
tree as well as have less variability in its predictions. In
our study, we translated the ensemble learner framework
into the single-subject DEG study by aggregating predic-
tions from individual ss-DEG methods (i.e., aggregating
edgeR, DEGseq, mixture models, and NOISeq predic-
tions) into a single-subject ensemble (ss-ensemble)
method for identifying DEGs.
This proposed ss-ensemble learner approach consist-

ently obtained high overall accuracies which suggests
that a combination of parameter and distribution as-
sumptions can overcome some of the limitations and
biases inherent to any one model, further enabling a
more accurate consensus standard (Fig. 4a). We note
that one other method, NOISeq, performed nearly as
well and could be used interchangeably for the sole use
of predicting DEGs in single subjects. Thus, we recom-
mend an ensemble approach over an individual pre-
dictor given that the ensemble offers the same precise
predictive abilities, but with the added bonus of being
robust to multiple distributional assumptions and their
violations. Furthermore, the inherent diversity in the in-
dividual learners that enter the model (some are

nonparametric while others are parametric techniques,
and the parametric techniques assume a different set of
distributions), enriches the final classifier [34] and pro-
vides a more accurate representation of the true biology,
rather than one specific method’s statistical representa-
tion of it. Therefore, rather than focusing on the advan-
tages and disadvantages of different distributional and
parametric assumptions, we believe that all of their
strengths can be leveraged if used and evaluated in a
comprehensive and conservative framework, like the
proposed “all-against-one”. Individual techniques always
run the risk of being optimal in one dataset and subopti-
mal in another, as assumptions may be violated or ap-
propriate on a dataset-to-dataset basis. However, an
ensemble and holistic evaluation framework mitigates
these risks; though, we are aware that further studies in
this direction are required to fully demonstrate this
added benefit. Future work will also extend our evalu-
ation of the ensemble framework to include bootstrap-
ping, by sampling isogenic pairs with replacement.
From this study, it also appears that all ss-DEG

methods are sensitive to the percentage of DEGs present
in the reference set. Given this, the degree of perturb-
ation, or range in number of DEGs expected in a pair of
samples, can guide the method selection. The Yeast
dataset was utilized due to its large number of replicates
for the construction of independent test and validation
sets; however, the range of DEGs observed as a conse-
quence of deleting a component of the transcriptional
machinery is clearly higher than expected between most
paired clinical samples. On the other hand, the MCF7
dataset was limited in term of samples but still provides
some insight on DEG ranges of 15–30%. We had no
datasets to evaluate conditions with DEGs< 15%. As sim-
ulations and synthetic data can investigate a range of ac-
curacies against a true gold standard, they can be prone
to other biases and limitations. Li et al. [14] have imple-
mented a comprehensive simulation of ss-DEG methods
across 8000 tests in a companion study using a range of
DEG proportions from 5 to 40%, assuming distinct dis-
tributions (Poisson or Negative Binomial) and modeling
a variable mean to variance relationship observed from
real datasets as recommended by McCarthy et al. [35].
The results from those simulations broadly agree with
the results obtained in this study, identifying the same
precision and recall rankings between NOISeq-sim,
edgeR, DESeq, and DEGSeq when used with replicates
to construct the reference standard. In contrast, how-
ever, simulation studies generally yielded higher recall
estimates, suggesting that the observed residual
cross-replicate heterogeneity comprised of non-genomic
and stochastic variation of real biologic datasets can sub-
stantially limit performance of the DEG methods applied
to two conditions without replicates. Due to this, we
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suggest that these methods’ performance should be
viewed as a range or spectrum, rather than definite.
The union of the reference standards provides 90%

DEGs, suggesting that our framework illustrates how
anticonservative the accuracy rates reported in studies
[18, 19] are, as each method was evaluated against itself
in these previous studies. While 90% of DEG is biologic-
ally unrealistic, it wholly illustrates the extent to which
all DEG methods disagree. Conversely, we also provide a
conservative reference standard (intersection of
methods). This again can produce extremely low per-
centage of DEG calls and is sensitive to the choice of al-
gorithms used. These extremes show the need for a
more robust and consistent framework for reference
standards akin to that of an ensemble approach or the
“all-against-one”; it also provides a lower and upper
bound of DEG calls that can be expected in any bio-
logical study in order to best study the characteristics of
the methods and data being analyzed. We propose using
the “all-against-one” framework for future studies and
the use of an ensemble to mitigate these challenges.
Based on the results shown in Figs. 4 and 5, we report

in Table 3 recommendations for the use of ss-DEGs in
two conditions without replicates. Of note, when com-
paring our results to the performance metrics published
alongside the Yeast and MCF7 data in the original publi-
cations by Schurch [18] and Liu [19], we found that the
performance was lower across our studies. This may be
due to those authors calculating the accuracy of their
r-DEG methods in the presence of replicates using
anti-conservative conditions: each method was com-
pared to itself using the total number of replicates, while
substudies utilized a random sample within those uti-
lized for the reference standard. Here, our accuracies are
more conservatively calculated in two ways: (i) we con-
structed each reference standard by using distinct

samples for predictions without predicates from the ref-
erence standard construction, and (ii) the accuracy
scores of a method predicting DEGs without replicates
were tested against reference standards built by distinct
methods in replicates.
Figure 4a shows how DEGseq performs similarly to

NOISeq and the ensemble method maintains precision
at FDR 5% and properly detects nearly 75% of the DEGs.
One could argue this combination would potentially
make DEGseq the ideal tool for this dataset; however, in
the MCF7 case study, DEGseq could not replicate its
performance (Fig. 5b). This highlights the risks of relying
on a single technique across distinct DEG proportions.
Furthermore, under multiple biological replicates, tech-
niques like DESeq, DESeq2, and edgeR are the staples of
RNA-Seq data analysis and are often the authors’ default
method choices and recommendations for building ref-
erence standards. However, as seen in Figs. 4 and 5,
DESeq and DESeq2 performed overly conservatively in
the two datasets (extremely low recalls), showing that
their reliability does extend to single-subject (without
replicate) conditions. This study provides a promising
first comparison of how RNA-Seq analysis techniques
fare in comparing two conditions in absence of repli-
cates (one sample per condition). In addition, ranges of
DEGs< 15% - that were not explored here - also merit to
be explored as they are likely clinically relevant in re-
sponse to therapy. The addition of more datasets with
additional response ranges would further improve our
understanding of the accuracy of ss-DEG methods, espe-
cially when these datasets are previously validated, as
was the case of the MCF7 and Yeast datasets. Further-
more, improvement of ss-DEGs methods is required,
particularly for performing with higher recall when
DEGs are low. Further studies are also needed to de-
scribe the effectiveness of better performing methods,

Table 3 ss-DEG Methods Recommendations: Single-subject studies of two-sample conditions without replicates

Combinations of accuracies

15% < DEGs < 30% 55% < DEGs < 70%

Precision (%)→ > 90% > 70% 50 > 90%

Recall→ (>%) 90 70 50 25 90 70 50 25 90 70 50 25 90 70 50 25

Methods

Ensemble ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓

NOISeq ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

DEGseq ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mixture Model ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓

edgeR ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓

iDEG ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

DESeq ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

DESeq2 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

✓ = recommended; ✗ = not recommended
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such as NOISeq (specifically NOISeq-sim), in the ab-
sence of replicates across different contexts.
In the past, comparing a transcriptome to heterogenic

samples from other subjects has been proposed. How-
ever, this strategy brings up a number of confounding
factors: distinct genetics, distinct environmental factors,
etc. Here, we proposed using one’s own samples as con-
trols. Adding biological replicates increases accuracy and
is recommended where possible, but may not be feasible
in certain clinical settings and can be cost prohibitive. In
the absence of replicates, focusing on identifying those
DEGs within differentially expressed pathways may fur-
ther improve the accuracy rates and also merits valid-
ation in future studies.

Conclusions
This study demonstrates that determining differentially
expressed genes (DEGs) between two conditions of one
subject in absence of replicate samples (two samples
total) can be obtained with high precision and limited
recall (< 30%) when the true number of DEGs ranges
from 15 to 30%, while a few methods can also provide
reliable results under conditions where the proportion of
DEGs exceed 50% of the genome. No single-subject
ss-DEG method obtained both high precision and recall
in the evaluations using these biological datasets, though
some obtained a reasonably robust F1-score.
As RNA-Seq technologies expand the opportunities to

analyze single-subject data, more time and research need
to focus on a greater understanding of which analysis
tools are better suited for clinical samples and individual
inferences. At the moment, the limited access to a suffi-
cient quantity of clinically relevant tissues typically pro-
hibits replicate sampling. Thus, conventional analystical
methods that require replicates to determine DEGs must
be adapted or replaced in order to advance the utility of
transcriptome profiling in precision medicine. This study
demonstrates that ongoing improvements in
single-subject methods are required for these to work
robustly and accurately in absence of replicates. We have
also shown that the biological and data characteristics of
RNA-seq are also critical factors that affects method per-
formance, as the relative strengths and limitations of
each method differed markedly depending on the pro-
portion of DEGs regulated by the bioassay. However, en-
semble methods for single-subject analyses enabled
consistent performance regardless of the studied
conditions.
Further, it still remains difficult to generate consensus

reference standards from different RNA-seq analysis
tools as the intersection of all well-established methods
agreed on less than 50% of called DEGs, even when
implementing these tools under their recommended
conditions with replicate samples in well-studied

datasets. Previous studies [36] have shown the transla-
tion value obtained from using single sample data for
clinical phenotyping, thus we must continue expanding
the methodology and framework along this direction. In
order to improve the accuracy, we propose that future
methods consider the injection of knowledge from cu-
rated gene set (e.g., Gene Ontology) and network science
(e.g., unbiased gene set obtained from co-expression net-
works) to pool the signal of altered genes belonging to
functional units as a way to increase signal accuracy and
reliability in single subjects While the reductionism of
identifying directly DEGs from stwo samples is appeal-
ing, previous systems genomics work, showing stronger
signals at differentially expressed pathways in
single-subject studies, suggests combining the two ap-
proaches would substantially increase DEG accuracies.
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