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Abstract

The observed binary black hole (BBH) mergers indicate a large Galactic progenitor population continuously
evolving from large orbital separations and low gravitational-wave (GW) frequencies to the final merger phase. We
investigate the equilibrium distribution of BBHs in the Galaxy. Given the observed BBH merger rate, we contrast
the expected number of systems radiating in the low-frequency 0.1–10 mHz GW band under two assumptions:
(1) that all merging systems originate from near-circular orbits, as may be indicative of isolated binary evolution,
and (2) that all merging systems originate at very high eccentricity, as predicted by models of dynamically formed
BBHs and triple and quadruple systems undergoing Lidov–Kozai eccentricity oscillations. We show that the
equilibrium number of systems expected at every frequency is higher in the eccentric case (2) than in the circular
case (1) by a factor of ;2–15. This follows from the fact that eccentric systems spend more time than circular
systems radiating in the low-frequency GW bands. The GW emission comes in pulses at periastron separated by
the orbital period, which may be days to years. For a LISA-like sensitivity curve, we show that if eccentric systems
contribute significantly to the observed merger rate, then ;10 eccentric systems should be seen in the Galaxy.
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1. Introduction

The gravitational-wave (GW) experiments LIGO and
VIRGO (Abbott et al. 2009; Accadia et al. 2012) recently
made the first discoveries of binary black hole (BH) and
neutron star (NS) mergers, and they are expected to detect
many more such systems in future observing runs (Abbott et al.
2016a, 2016b, 2017a, 2017b, 2017c, 2017d; The LIGO
Scientific Collaboration & the Virgo Collaboration 2018).
Meanwhile, upcoming GW experiments, e.g.,LISA (Amaro-
Seoane et al. 2017), DECIGO (Kawamura et al. 2006), Taiji
(Gong et al. 2015), and TianQin (Luo et al. 2016a) will focus
on lower frequency ranges, and thus different types and
evolutionary stages of compact object binaries.

Current high-frequency GW searches focus on binaries with
circular orbits, which are expected both from isolated massive
star binary evolution models and the circularization of the orbit
during GW inspiral. Although the condition that the orbital
eccentricity is small in the LIGO band may well be satisfied, it
may not be true for systems at much lower frequency, where
formation channels different from isolated binary evolution
may imprint themselves (e.g.,Sesana 2016; Chen & Amaro-
Seoane 2017). In particular, two alternative channels for the
production of merging compact object binaries have been
suggested, and both predict large eccentricities (e0.9) when
the system is radiating GWs at low frequency (1 mHz):
(1) dynamically formed compact object binaries within and
ejected from globular clusters (GCs) and other dense
stellar systems (e.g.,Rodriguez et al. 2016; Banerjee 2017,
2018a, 2018b; Chatterjee et al. 2017a, 2017b; Antonini et al.
2018; Arca-Sedda et al. 2018; D’Orazio & Samsing 2018;
Fragione & Kocsis 2018; Gondán et al. 2018; Kremer et al.
2018, 2019; Rodriguez et al. 2018; Samsing & D’Orazio 2018)
and (2) hierarchical triple and quadruple systems undergoing

Lidov–Kozai (LK) eccentricity oscillations (e.g.,Blaes et al.
2002; Miller & Hamilton 2002; Wen 2003; Thompson 2011;
Antonini & Perets 2012; Naoz et al. 2013b; Antonini et al.
2016, 2017; VanLandingham et al. 2016; Petrovich &
Antonini 2017; Silsbee & Tremaine 2017; Fang et al. 2018;
Fragione et al. 2018; Hamers 2018; Hoang et al. 2018; Liu &
Lai 2018; Randall & Xianyu 2018; Rodriguez & Antonini
2018). Note that the actual frequency range of the “highly
eccentric” systems depends on the formation mechanism, and
some mechanism can produce highly eccentric systems at even
higher frequencies (10 mHz), e.g.,the highly eccentric GW
capture channel in clusters and the evection-induced migration
in hierarchical systems.
Here, we argue that if the eccentric channels proposed

account for the observed BBH merger rate, then there must be a
large population of highly eccentric BBHs waiting to be
discovered at low GW frequencies, in the 0.1–10 mHz band. In
direct analogy with Socrates et al. (2012), who studied the
population of tidally interacting high-eccentricity migrating hot
Jupiters, in a steady state, the observed merger rate together
with the continuity equation directly yields the number of
eccentric BBH systems in the Galaxy. Since the periastron
distance is directly related to the frequency of maximum GW
power, these systems will appear as short pulses spaced in time
by orbital period. Because the binary orbital angular momen-
tum is approximately conserved at high eccentricity, the
periastron distance and peak GW frequency are also nearly
invariant during the high-eccentricity “migration” from large to
small semimajor axes.
Here, we consider the possibility that a fraction of the

observed LIGO events arise from a highly eccentric initial
state. Assuming that the birth and death rates of BBHs are in
equilibrium, the continuity equation yields the distributions of
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orbital properties at every GW frequency, as BBHs evolve
toward coalescence. We use the equilibrium assumption to
derive the distributions of orbital elements for circular and
highly eccentric systems. Because highly eccentric binaries
spend more time radiating at a given GW frequency than a
circular system with the same masses (Section 2), the
equilibrium number of systems in the Galaxy is larger for
eccentric systems than for circular systems if both channels
contribute equally to the observed LIGO merger rate.
Depending on the initial period (semimajor axis) distribution
assumed for the eccentric channel, the equilibrium ratio of
eccentric systems to circular systems in the ∼0.1–10 mHz band
is ∼2–15. These eccentric systems have peak GW frequencies
from 0.1 to 10 mHz, with orbital periods of the order of days or
months, and Galactic systems can be detected by future GW
interferometers.

In Section 2, we show analytically that the equilibrium
number of eccentric systems should outnumber the equilibrium
number of circular systems under generic assumptions. In
Section 3, we calculate the distribution of BBHs as a function
of GW frequency for several progenitor populations, including
dynamically formed BBHs in dense stellar clusters, and triple
systems undergoing LK oscillations. In all cases, we find an
enhancement in the number of eccentric systems relative to
circular systems in the 0.1–10 mHz band. In Section 4, we
discuss the astrophysical implications of the possible existence
of a large population of eccentric BBHs, and their detectability.

2. Circular versus Eccentric BBH Populations

Assuming that the birth and death rates of BBHs are in
equilibrium, the continuity equation yields the distributions of
orbital properties at every GW frequency, as BBHs evolve
toward coalescence. Under this equilibrium assumption, the
distribution of any quantity x is simply given by the chain rule

= =
G
˙

( )dN

dx

dN

dt

dt

dx x
, 1

where we have defined the steady “inflow” and “outflow” rate
of systems as Γ.

For BBHs, the variations in the orbital parameters as the
systems evolve depend sensitively on the eccentricity. The
time-averaged evolution of the semimajor axis a and
eccentricity e for a binary of masses m1 and m2 due to GW
emission are (Peters 1964)

á ñ = -
-

+ +⎜ ⎟⎛
⎝

⎞
⎠˙

( )
( )a

G m m M

c a e
e e

64

5 1
1

73

24

37

96
, 2

3
1 2

5 3 2 7 2
2 4

á ñ = -
-

+⎜ ⎟⎛
⎝

⎞
⎠˙

( )
( )e e

G m m M

c a e
e

304

15 1
1

121

304
, 3

3
1 2

5 4 2 5 2
2

where M=m1+m2, G is the Newton’s constant, and c is the
speed of light.

For the circular binary case (e= 0), the frequency of the
GWs, f, is set by the orbital period P, hence the semimajor axis
a, i.e., p= = ( )f P GM a2 2 4 .2 3 Combining f with
Equation (2), we obtain the time-averaged rate of increase in
the GW frequency = - =˙ ˙ ( ) ( )f f a a G m m M c a3 2 96 53

1 2
5 4 .

If the LIGO BH mergers are produced by initially circular
binaries, there exists a distribution of circular BBHs at each a
and f. If the distribution is in equilibrium, then the frequency
distribution, dN/df, should be proportional to = ˙dt df f1 ,
and it is normalized by the merger rate Γ, i.e.,(as in e.g.,

Farmer & Phinney 2003)
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For the eccentric binary case (e>0), the GW frequency varies
with period P, and the peak frequency fp is set by the periastron

distance = -( )r a e1p , i.e., p= ( )f GM r2 4p p
2 3 . The rate

of increase in fp is then = -˙ ˙ ( )f f r r3 2p p p p . In the highly
eccentric limit ( e 1), we have
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The merger time for a highly eccentric BBH with initial
periastron distance rp0 and semimajor axis a0 can be estimated by

ò

´

=


  ⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ˙∣
·

( )

t
da

a

M

m m M

r a
1.20 10 yr

30 60

0.01au au
.

7

r

a

e

p

gw
1

7
2 3

1 2

0
7 2

0
1 2

p0

0

Most of its time will be spent at its high initial eccentricity,
when its periastron distance rp and maximum GW frequency fp
are nearly invariant.
If the LIGO BH mergers arise from an initially highly

eccentric BBH population, with a given a0 and rp0, assuming
that the population is in equilibrium, then it will have a large
peak in GW frequency near the initial p= ( )f GM r2 4p p0

2
0

3 .
The indicated (density) distribution of systems near this
frequency for the eccentric case should be much higher than
that for the circular case:
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2, and where
we have added the subscript “ecce” to denote the initial
properties of the highly eccentric binary.
Note that the frequency distributions are different from the

histograms of the number of systems binned in frequency. The
ratio of the number of systems in the eccentric and circular
cases near fp0 can be estimated by the ratio of merger times
(since most of the merger time is spent near the initial orbital
separation and frequency for both cases)
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As an example, we take m1=m2=30Me, a0=1 au, and
rp0=0.008, 0.015, 0.030, 0.068 au, respectively, and calculate
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ḟp as a function of fp. Assuming each system represents a
population of migrating binaries and that each population
makes up the entire observed LIGO rate, we obtain the
equilibrium distribution as = G ( ) ˙dN d f f flog ln 10 p p10 . This
rate is normalized such that the total rate of mergers is equal to
the observed LIGO BBH merger rate of -

+ - -52.9 Gpc yr27.0
55.6 3 1

(Abbott et al. 2017a, 2017b, 2017c; The LIGO Scientific
Collaboration & the Virgo Collaboration 2018). For illustra-
tion, we normalize to 50 Gpc−3 yr−1 throughout this paper.
Since the Milky Way-size galaxy number density is roughly
0.01Mpc−3, we have Γ∼5×10−6 yr−1 per galaxy.

In Figure 1, we show the frequency distribution (left) and
the number histogram (right) for the circular case (blue)
compared to the eccentric sample populations (orange to
purple, respectively). The dots in the left panel denote the
starting position of each population. The implied enhance-
ment in the equilibrium density of systems in the eccentric
case relative to the circular case is very large, in accordance
with Equation (8). Indeed, for rp0=0.008 au, the ratio of the
eccentric population to the circular population is >104 at
;0.7 mHz. However, the very highly peaked enhancement
for individual system starting parameters shown in the left
panel becomes more modest when we compute the number
per frequency bin, as shown in the right panel, because
eccentric systems spend most of their time radiating at a
small range of GW frequency.6 In addition, as we show below,
a more realistic eccentric BBH population is more broadly
distributed in frequency by the realistic joint distribution of (a0,
rp0) provided by any given formation scenario. As we show
below, these factors reduce the magnitude of the eccentric-to-
circular enhancement, but Equations (8) and (9) show that it is
generic for any secularly evolving eccentric merging BBH
population that contributes at order unity to the observed
LIGO rate.

3. Results for Populations

In this section we give results for the equilibrium number of
eccentric BBH systems in the Galaxy for several progenitor
populations.

3.1. Simplest Population

To illustrate the scalings from Section 2 we assume a generic
eccentric BBH population motivated by dynamically formed
systems in dense stellar environments and few-body systems
undergoing LK oscillations. We assume equal mass BBHs with

= = m m M301 2 , an initial semimajor axis distribution that is
log-uniform between 1 and 1000 au, and a thermal eccentricity
distribution (Jeans 1919), i.e.,e2 is uniform in [0, 1]. Only
systems with tgw less than the Hubble time are included, since
only these will contribute to the observed merger rate. The
thermal eccentricity distribution is motivated by the properties
of dynamically formed binaries produced in dense stellar
systems (e.g., Samsing & D’Orazio 2018), and by the fact that
it produces a uniform distribution of rp0 in the e 1 limit,
equivalent to a uniform distribution of the angular momentum
squared J2, which is a natural consequence of non-secular
stochastic angular momentum kicks due to the tertiary in
hierarchical triple systems (e.g.,Katz & Dong 2012).
We exclude systems from our sample with
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in the e 1 limit, because the fractional change in the orbital
energy per orbit is of order unity and the secular equations
break down (i.e., tgw�P). Such systems emit GWs at a peak
frequency of

> 



⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )f

M

m m a

M

M
0.95 Hz

30 au

60
. 11p

2 2

1 2

3 7 2 7

These extreme systems are not of relevance for the main
comparison in the LISA band from 0.1 to 10 mHz, but may

Figure 1. Left: frequency distributions (dN d flog10 ) per Milky Way-sized galaxy, for cases where eccentric and circular merger rates are the same as the observed
LIGO rate and the initial configurations for the eccentric populations are fixed at a0=1 au, and rp0=0.008, 0.015, 0.030, 0.068 au, corresponding to merger times of
;6×106, 5×107, 6×108, and 1010 yr, respectively. The dots mark the initial values. For comparison, the circular case is shown with the blue line, which starts at
tgw=1010 yr. Right: the corresponding peak frequency histograms normalized to per flog10 bin. The number of systems in each frequency bin is an integration of the
distribution over that bin, which yields much smaller enhancement than the ratios of distributions as shown on the left, and strongly depends on the bin spacing. Also
note that the huge enhancement ratios between eccentric and circular cases are highly peaked at initial frequencies and will be smeared out due to the broad
distribution of realistic systems.

6 Note that the height of the histogram depends on the bin spacing and the
enhancement ratio in each bin is higher than estimated by Equation (9), because
Equation (9) assumes most of the systems are near fp0, but the time a system
(circular or eccentric) spent within one bin is much shorter than its merger time.
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arise in nature (Silsbee & Tremaine 2017; Samsing &
D’Orazio 2018; Kremer et al. 2019).

We evolve any given binary system “i” in the sample using
the secular equations and calculate ˙( )

f p
i
as a function of fp. We

assume each system represents an equilibrium population with
the same initial conditions undergoing migration toward
coalescence. Thus, at any peak frequency, the population i
has a distribution µ ˙( ) ( )

dN df f1i
p p

i
, and the total number of

systems has a frequency distribution = å =( )dN df dN dfi
i

p

G å( ) [ ˙ ]( )
N f1i p

i
, where N is the sample size, and the

distribution is normalized to the LIGO rate of - -50 Gpc yr3 1.
To obtain the number of systems N12 in frequency bin [f1, f2],
we integrate the frequency distribution over the bin,

= G å( ) ( )N N ti
i

12 12 , where ( )t i
12 is the time spent in the

frequency bin for population i.
Figure 2 shows the histograms of systems in the frequency

range [0.01, 10] mHz assuming that all the LIGO mergers
come from either the eccentric channel or the circular channel.
The upper panel shows the number of systems per logarithmic
frequency bin, with the eccentric systems broken into sub-
samples by orbital period. For the BBH population we consider
here, when a>11.5 au, the orbital period exceeds 5 yr, which
is roughly the operation timescale of LISA. Like single-transit
planet detections in transit surveys (e.g., Villanueva et al.
2018), only a single pulse may be seen during the mission.
However, systems with orbital periods of days or months will
provide many repeated pulses during the entire mission
(Section 4.1).

The bottom panel of Figure 2 shows the ratio of the number of
eccentric systems to the number of circular systems in bins of
frequency. Note that this ratio does not depend on the overall
normalization of the LIGO rate. We find ;6–10 times more
BBHs from the eccentric channel than that predicted by the
circular channel at around 0.1 mHz, decreasing to ;2 times more

at ;3 mHz. In absolute numbers, we find that ;45, 90, and 116
eccentric BBHs in our Galaxy are currently emitting in the
0.1–1mHz range with orbital periods P�1, 10, and 100 days,
respectively. These numbers are;2.5, 5, and 6.5 times more than
that predicted from the circular case in the same frequency band.
The distribution of BBHs with frequency, and thus the

enhancement with respect to the circular channel, depend on
the initial distribution of (a0, rp0). For more realistic estimates,
in Sections 3.2 and 3.2 we recompute the equilibrium
distributions for eccentric BBHs arising from triple systems
and dynamical interactions in GCs, respectively.

3.2. Distributions from Triple Systems

Binaries in hierarchical triple systems are subject to gravita-
tional perturbations from their tertiaries, and can be driven to high
eccentricities due to the LK mechanism (Kozai 1962;
Lidov 1962). In secular calculations where both the inner and
outer orbits are averaged, the time over which the angular
momentum of the inner binary is changed by order unity by the
tertiary (the instantaneous LK timescale), in the m 02 limit, is
given by (e.g.,Bode & Wegg 2014; Antognini 2015)

p
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where m3 is the tertiary mass, and eout and Pout are the
eccentricity and the outer orbital period, respectively.
The equilibrium argument in Section 2 relies on the

assumption of dynamically isolated binaries whose frequencies
evolve monotonically as a result of GW emission. This is only
true for triple systems whose inner binaries are dynamically
decoupled from the outer tertiary. A criterion for decoupling is
that the inner binary is driven to sufficiently high eccentricity
that ( )tLK

ins becomes longer than tgw or the general relativistic
(GR) precession timescale ~ [ ( ) ]t c a r GM2 3pprec

2 3 2 3 2 .
In order to make a first estimate of the BBH population

produced by triple systems, we run a secular calculation for
triple systems with masses m1=m2=m3=30Me. The
eccentricities of the inner and outer orbits, e and eout, are both
sampled from a thermal distribution. The semimajor axis of the
inner orbit a is sampled from a log-uniform distribution in
[10,1000] au, and the semimajor axis ratio of outer to inner
orbit, aout/a is sampled from a log-uniform distribution in [10,
1000]. We discard systems with - <( )a e a1 10out out to make
sure the validity of the secular calculation, and discard systems
with aout>105 au because they are too wide to make up an
important fraction of triple systems. The orientations of both
the inner and outer orbits are sampled randomly. We turn on
the quadrupole-order term in the Newtonian three-body
perturbing Hamiltonian, which leads to the LK effect, the
1PN term (GR precession), and the 2.5PN GW dissipation
terms for the inner orbit. We run 107 systems for 10 Gyrs, and
find that ∼1.14% systems experience a decrease in their
semimajor axis of order unity. These systems dynamically
decouple from the tertiary and will merge within a relatively
short time. We take the last eccentricity maximum of each such
system and its semimajor axis a, and use them to set the initial
conditions ( )a r, p0 0 of “isolated binaries” in our calculation of
the equilibrium distribution of the population.
Following the same procedure as in Section 3.1, we obtain the

peak frequency histograms as shown in Figure 3. We again find
a significant enhancement of the eccentric BBH population in

Figure 2. Upper:the peak frequency histograms of the simplest population of
eccentric BBHs described in Section 3.1, normalized to per flog10 bin. The
solid curves show the distributions of all the eccentric BBHs (labeled “All
eBH”) and those with orbital period P<1, 10, 100, and 1000 days. The
distribution for circular BBHs is also shown. Both the eccentric and circular
channels are normalized to a merger rate of Γ=5×10−6 yr−1 per Milky
Way-sized galaxy. The blue dots show the corresponding merger time tgw of
circular BBHs at each frequency. Lower:ratio of the number of eccentric
systems to circular systems in each bin of frequency. An enhancement of 2–10
is seen in the frequency range ;0.04–3 mHz.
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the frequency range 0.1–1mHz, in which the absolute number of
systems with orbital periods within P�1, 10, and 100 days is
;20, 80, and 130. Compared to Figure 2, the systems at
fp0.05mHz disappear. This comes from the fact that such
systems still have perturbations from their tertiaries and are thus
not dynamically isolated. However, the enhancement between
0.1 and 1mHz persists, and is a factor of ;10 at ∼0.3 mHz.

Note that many triple systems undergoing LK oscillations may
emit GWs in the;0.1–10mHz band, but may not be dynamically
decoupled by our criterion. Such systems are not included here
because they do not obey the equilibrium assumptions set out in
Section 2. The total population of GW emitters in the 0.1–10mHz
band (whether dynamically decoupled or not) has yet to be
computed for a realistic and evolving distribution of massive triple
systems as the Galaxy forms over cosmic time.

Figure 3 gives just one minimal estimate for the distribution
from triple systems. Different component binary masses, which
lead to octupole-order terms in the three-body Hamiltonian, tertiary
masses, initial orbital parameter distributions, and cuts on the
resulting population can quantitatively affect the results. Several
variations are presented in the Appendix, with maximum and
minimum enhancements relative to the circular case of ;2–15.

3.3. Distributions from GCs

BBHs arising in GCs and other dense stellar environments
provide another important channel for eccentric BH migration.
Recent numerical studies show that three populations of BBHs
are produced during few-body scattering in GCs. One is
produced by chaotic three-body motion, leading to BBH
mergers in the cluster at very high eccentricity such that
fp1 Hz and tgw becomes less than the orbital period P (as in
Equation (10)). These systems evolve dynamically and never
enter the 0.1–1 mHz band. A second physical class of mergers
are those from BBHs excited to high enough eccentricity
within the cluster that tgw becomes shorter than the time
between two interactions. The third class is those BBHs ejected
from the cluster. Adopting the nomenclature of (Samsing &
D’Orazio 2018) we refer to these three classes as “three-body

mergers,” “two-body mergers,” and “ejected mergers,” respec-
tively. The latter two classes evolve secularly through the
0.1–1 mHz band and are dynamically isolated (Samsing &
D’Orazio 2018; Kremer et al. 2019).
We set aside the dynamically merging three-body mergers

and consider only two-body mergers and ejected mergers. As
an illustration, for these two physical categories, we adopt the
distribution of BBH parameters resulting from the semi-
analytic model described in Samsing & D’Orazio (2018). The
binary component masses are assumed equal, with m=30Me.
The semimajor axis and eccentricity distributions for the BBHs
when they are dynamically isolated are given by Samsing &
D’Orazio (2018), and are used to set the initial conditions of
“isolated binaries” in our calculation of the equilibrium BBH
distribution, just as in Section 3.1.
Figure 4 shows the peak frequency histogram (top) and the

ratio of eccentric to circular systems (bottom) for dynamically
formed eccentric BBHs, normalized to the LIGO rate, as in
previous figures. The shape of the number of systems per bin
encodes the formation channel. As more clearly shown in the
ratio plot (bottom), the two-body BBH mergers inside GCs
dominate the distribution from 0.4–10 mHz, producing a peak
relative to the circular case at fp1 mHz. The ejected BBH
mergers resulting from binaries kicked out of GCs contribute to
a much wider range of frequencies, with a low-frequency cutoff
at ;0.02 mHz for the P10 day binaries.

4. Discussion and Conclusion

Assuming the distribution of BBHs is in equilibrium,
producing a steady merger rate as seen by LIGO, eccentric
BBH formation channels predict a significantly different
population distribution in GW frequency than for circular
BBH formation channels. Because eccentric BBHs spend more
time radiating in the 0.1–1 mHz GW band they should
generically outnumber circular systems at the same frequency.
We estimate that there are ∼10–100 systems with GW peak
frequencies of 0.1–1 mHz in our Galaxy, which is ;2–10 times
higher than that predicted for circular BBHs. Dozens of the

Figure 3. Same as Figure 2, but for the population of eccentric BBHs from
secular dynamics of hierarchical triple systems described in Section 3.2.
Upper:peak frequency histograms for eccentric and circular BBHs. Low-
er:ratio of eccentric to circular systems. A significant enhancement is seen in
the frequency range 0.1–10 mHz. The total number of eccentric systems with
orbital periods of days to months is expected to be of the order of 10–100.

Figure 4. Same as Figures 2 and 3, but for the population of eccentric BBHs
from GCs described in Section 3.2. Upper:peak frequency histograms for
eccentric and circular BBHs. Lower:ratio of eccentric to circular systems. The
“two-body” BBH mergers inside GCs dominate the peak in the distribution at
;0.4–10 mHz, while the “ejected” BBH mergers contribute over a broader
frequency range (Kremer et al. 2019).
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eccentric systems will have orbital periods of order days to
months, implying they may be detectable.

4.1. Detectability

To estimate the two-detector sky-averaged signal-to-noise
ratio (S/N) for eccentric BBHs, we start from Equation (45) in
Barack & Cutler (2004), i.e.,summing over contributions from
all harmonics of the orbital frequency forb,

òå=
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where nmax is the maximum harmonic used in fitting, ºf nfn orb,
Sh is the full strain spectral sensitivity density including the LISA
instrumental noise and the confusion noise from the unresolved
galactic binaries (e.g.,Robson et al. 2018).7 The characteristic

amplitude hc n, is given by p= -( ) ˙ ˙h D E f2c n n n,
1 , where the

unit G=c=1 has been applied. D is the distance of the source.
Ėn is the GW energy emission rate in the nth harmonic and is
given by
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= = m m M301 2 , = M M26c ), gn(e) is given by Equation
(20) in Peters & Mathews (1963). Since the eccentric migration
timescale (~tgw) is much longer than the mission lifetime τ, the
orbital frequency does not change much during the mission,
amd the integral in the S/N becomes
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As discussed by Gould (2011) in the context of eccentric binary
white dwarfs, the GW emission is dominated by pulses at
periastron.

Taking τ=4 yr, D=10 kpc, nmax=105, fp=0.5 mHz,
Mc=26Me, for an eccentric BBH with P=1, 10, and
100 days, we obtain S/N=26, 8.5, and 2.7, respectively,
implying that a number of eccentric BBHs will be detectable by
LISA. In Figure 5, we show the S/Ns for systems at 10 kpc
with different peak frequencies and P=1, 10, and 100 days.
Requiring S/N=5(2) for detection and assuming a distance of
10 kpc (which gives a conservative estimate of the number of
observable systems), we estimate that ∼7, 7, and 8 (15, 17, and
17) eccentric BBHs with P less than 1, 10, and 100 days will be
detected in our Galaxy in 0.1–1 mHz in the case of the simplest
distribution, while ∼5, 6, 7 (11, 14, 15) systems in the triple
case, and ∼4, 4, 5 (8, 9, 10) systems in the GC case. While the
number of detectable eccentric systems is largely limited by the
S/N at fp0.2 mHz, where many more systems exist, the
detection of the few systems at higher frequencies immediately
implies the existence of the eccentric BBH population. Also
note that although less systems are present at higher

frequencies in our Galaxy, a larger volume is accessible due
to the larger S/Ns, hence more extragalactic sources may be
detectable (e.g.,Rodriguez et al. 2018; Samsing & D’Orazio
2018; Kremer et al. 2019). These sources could also be
interesting to experiments sensitive to slightly higher frequency
bands, such as DECIGO, Taiji, and TianQin. The right axis of
Figure 5 shows that eccentric systems with P<1 day can be
discovered by LISA out to ∼8Mpc distances.
In Table 1, we show the estimated numbers of LISA-detectable

galactic eccentric and circular BBHs, assuming different LIGO
rates due to the uncertainty of the measured LIGO merger rate.
Although the actual number of circular systems in each frequency
bin is less than that of eccentric systems, the detectable numbers
may be similar, due to the better S/Ns when detecting circular
binaries. Note that the numbers are obtained by assuming all the
systems are at distance 10 kpc, a typical value of their average
distance. While closer systems have a higher S/N, much less
systems exist at closer distances if a uniform spatial distribution
of BBHs in the stellar halo is assumed, hence resulting in little
changes in the estimated numbers of observable systems.

4.2. Complexities

A primary assumption in the results presented here is that the
numbers of BBH systems are based on the equilibrium
assumption, which will break down on 10 Gyr timescales.
However, most of the eccentric migrating systems in triples and
GCs with fp>0.1 mHz have merger times less than 1 Gyr,
during which the variations expected as a result of the time
history of star formation in the Galaxy may not be significant.
Additional uncertainties lie in the merger rate. There is a

factor of a few uncertainty in the LIGO BBH merger rate,
which is a function of BBH mass, and we have also assumed
that the LIGO BBH merger rate applies to our Galaxy. While

Figure 5. The left y-axis reads the estimated S/Ns for detecting eccentric BBH
systems with Mc=26 Me, P=1, 10, 100 days, located at 10 kpc, in a 4 yr
mission. The S/N scales proportionally with t D. The right y-axis reads the
maximum distance for detecting these systems requiring S/N=5. Note that
the cosmological redshift is neglected, which only lowers the frequencies by
0.23% at 10 Mpc. For comparison, we also show the detectability of circular
BBHs in the dashed line.

7 Note that the pre-factor “2,” due to the fact that LISA has two channels, has
been absorbed into Sh in Robson et al. (2018).
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these uncertainties will affect the absolute numbers of systems
expected, the ratios between the eccentric and circular cases
presented are robust. In reality, the merger rate may be a
mixture of all the possible channels. For the GC case, most of
cluster simulations predict merger rates less than 50 Gpc−3 yr−1

(e.g.,Rodriguez & Loeb 2018). Thus, the combined number of
eccentric BBHs and their frequency distribution may depend on
the fraction of each channel, which might in turn be used to
probe the relative importance of various channels by LISA.

For the case of eccentric BBHs produced in triple systems,
there are a number of uncertainties and complexities. These
include (1) octupole-order perturbations for a realistic population,
(2) evection, and (3) the astrophysics of realistic triple system
masses and their evolution. The octupole-order perturbation (1)
arises when the inner binary has unequal masses (e.g.,Naoz et al.
2013a) and may change the frequency distributions as indicated
in the tests in the Appendix. A more comprehensive analysis with
a realistic BH mass distribution is needed to fully explore its
effect. Evection (2) induces eccentricity oscillations of the inner
orbit on timescale of Pout, which may be important at high
eccentricities where the inner orbit has small angular momentum,
and is thus prone to torque from the tertiary (e.g.,Ivanov et al.
2005; Katz & Dong 2012; Antognini et al. 2014; Fang et al.
2018). However, we neglect it here because evection may be
considered as random kicks to the inner orbit and will produce a
thermal distribution of e, which is already assumed in our initial
distribution. Thus, while evection may change the absolute
number of triple systems that produce merging and dynamically
isolated BBHs, and while individual systems may experience
non-secular changes of rp, the overall distribution should not be
modified by evection. The inclusion of evection may also
introduce non-negligible secular effects when the triple systems
are moderately hierarchical (e.g.,Luo et al. 2016b; Grishin et al.
2018; Lei et al. 2018), which could suppress the octupole-order
oscillations, and thereby affect the resulting distribution of
systems as a function of GW frequency. Finally, (3) we neglect
stellar evolution of the massive star progenitors, including
possible mass transfer, adiabatic and dynamical mass-loss, and
natal kicks due to the recoil during asymmetric supernova

explosions. These effects may change the orbital parameter
distributions or unbind the systems, which may suppress this
formation channel (e.g.,Silsbee & Tremaine 2017). Additionally,
as the Appendix shows (see Run 3), a realistic distribution of
tertiary masses can significantly change the relative enhancement
of eccentric to circular systems.

4.3. Summary

Our major findings in this paper are as follows.

1. Assuming the distribution of BBHs is in equilibrium,
producing a steady merger rate as seen by LIGO, we show
that eccentric BBH formation channels predict a larger
number of systems relative to circular BBH formation
channels throughout the 0.1–1mHz GW frequency band.
Equations (8) and (9) and Figure 1 show that this predicted
enhancement is generic, and follows from the fact that
eccentric systems spend more time radiating in the low-
frequency GW band than circular systems.

2. We estimate the absolute number of radiating systems in
the circular and eccentric cases in the Galaxy. Figures 2–4
show the eccentric and circular cases for a generic eccentric
population, for eccentric BBHs produced by triple systems
undergoing Lidov–Kozai oscillations, and BBHs formed
dynamically in GCs, respectively. Assuming that both
eccentric and circular channels produce the observed LIGO
rate, we find that eccentric systems outnumber circular
systems by a factor of 2–10 throughout the 0.1−10mHz
GW band. Under these assumptions, there are ∼10–100
eccentric BBHs with GW peak frequencies of 0.1–1mHz
in the Galaxy. Dozens of these systems have orbital periods
of the order of days to months.

3. Eccentric BBH systems emit GW pulses at periastron. We
calculate the S/N for detecting eccentric binaries with a
LISA-like sensitivity curve, and estimate that ;7 (15)
eccentric systems should be seen in the Galaxy with
S/N�5(2), slightly less than the number of observable
circular systems (11 and 16 for S/N�5 and 2) in the
range of 0.1–1mHz. See Figure 5 and Table 1. For the rarer
eccentric systems with higher peak GW frequency of
1–10mHz, the detection volume increases to 0.8–8Mpc
for systems with orbital periods less than ;1 day.
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the US Department of Energy, the Packard Foundation, NASA,
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Appendix
Tests of Different System Configurations

In this appendix, we carry out tests for triple systems with
different masses, initial orbital parameter distributions, and
cuts. We summarize the runs (original and 5 tests) in Table 2.

Table 1
The Estimated Numbers of LISA-detectable Galactic BBHs for a 4 yr Mission
and for S/N�2 and 5, Assuming All the LIGO BH Mergers Originate from
the “Circular” Channel, the Simplest Eccentric BBH Population, the Triple

Scenario, or the GCs

Γ (Gpc−3 yr−1) 25 50 100

Circular
S/N�2 8 16 33
S/N�5 6 11 23

Simplest (P<1, 10, 100 days)
S/N�2 8, 9, 9 15, 17, 17 30, 34, 35
S/N�5 3, 4, 4 7, 7, 8 14, 15, 15

Triple (P<1, 10, 100 days)
S/N�2 5, 7, 7 11, 14, 15 22, 29, 30
S/N�5 3, 3, 3 5, 6, 7 11, 13, 13

GC (P<1, 10, 100 days)
S/N�2 4, 5, 5 8, 9, 10 16, 19, 19
S/N�5 2, 2, 2 4, 4, 5 8, 9, 9

Note. We scale the numbers for different LIGO BH merger rates Γ due to the
uncertainties of the measured LIGO merger rate.
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Figure 6. Peak frequency histograms from different runs listed in Table 2, normalized to per flog10 bin.

8

The Astrophysical Journal, 875:75 (9pp), 2019 April 10 Fang, Thompson, & Hirata



For each run, we use the orbital parameters of the mergers to
produce the peak frequency histograms. The results are shown
in Figure 6. All the runs except Run 2 have shown consistent
enhancements in the 0.1–1 mHz frequency range. In Run 2, the
curves move toward higher frequencies, because the inner
binary mass is smaller (30+15 Me), leading to a longer merger
time, hence requiring a smaller initial periastron (larger initial
peak frequency) to merge within 10 Gyr. Meanwhile, the
octupole-order perturbation in the triples drives many systems
to very high eccentricities (high fp), as seen in Figure 6(c). In
addition, the ḟ for the corresponding circular case is smaller,
resulting in a larger dN d flog10 value. All the factors reduce
the enhancement in the 0.1–1 mHz range.
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Table 2
The Settings of All the Triple System Runs

Runs Masses (Me) a Cuts Merger Fractions in 10 Gyr
m1 m2 m3

0 30 30 30 log-uniform -( )a e a1 10out out 1.14%
1 30 30 30 log-normal -( )a e a1 10out out 1.14%
2 30 15 30 log-uniform -( )a e a1 10out out 2.73%
3 30 30 1 log-uniform -( )a e a1 10out out 0.337%
4 30 30 30 log-uniform -( )a e a1 5out out 1.40%
5 30 30 30 log-uniform -( )a e a1 8out out 1.25%

Note. The inner semimajor axes a range from 10 to 1000 au. Note that run 0 is the original one in Section 3.2. Runs 1–5 are tests with 106 triple systems each. All the
other settings not mentioned in the table are the same as run 0. Run 1 adopts a log-normal distribution for a, i.e., ( )alog10 is assigned a mean of 1.7038 and a standard
deviation of 1.52, inferred from Figure 13 in Raghavan et al. (2010). Run 2 has unequal binary masses, which turns on the octupole-order secular effect and enhances
the merger fraction. Run 3 uses a small tertiary mass, which reduces the merger fraction due to weaker LK effect. Runs 4 and 5 adopt different cuts for the ratio
between outer periastron and inner semimajor axis. Smaller ratio cuts (i.e., less hierarchical) lead to more systems with large tertiary perturbations, hence enhancing
the merger fraction.
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