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Abstract

We present H-band polarized scattered light imagery and JHK high-contrast spectroscopy of the protoplanetary
disk around HD 163296 observed with the High-Contrast Coronographic Imager for Adaptive Optics (HiCIAO)
and Subaru Coronagraphic Extreme Adaptive Optics (SCExAO)/Coronagraphic High Angular Resolution
Imaging Spectrograph (CHARIS) instruments at Subaru Observatory. The polarimetric imagery resolve a broken
ring structure surrounding HD 163296 that peaks at a distance along the major axis of 0 65 (66 au) and extends out
to 0 98 (100 au) along the major axis. Our 2011 H-band data exhibit clear axisymmetry, with the NW and SE side
of the disk exhibiting similar intensities. Our data are clearly different from 2016 epoch H-band observations of the
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Very Large Telescope (VLT)/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), which found a
strong 2.7× asymmetry between the NW and SE side of the disk. Collectively, these results indicate the presence
of time-variable, non-azimuthally symmetric illumination of the outer disk. While our SCExAO/CHARIS data are
sensitive enough to recover the planet candidate identified from NIRC2 in the thermal infrared (IR), we fail to
detect an object with JHK brightness nominally consistent with this object. This suggests that the candidate is
either fainter in JHK bands than model predictions, possibly due to extinction from the disk or atmospheric dust/
clouds, or that it is an artifact of the data set/data processing, such as a residual speckle or partially subtracted disk
feature. Assuming standard hot-start evolutionary models and a system age of 5Myr, we set new, direct mass limits
for the inner (outer) Atacama Large Millimeter/submillimeter Array (ALMA)-predicted protoplanet candidate
along the major (minor) disk axis of of 1.5 (2) MJ.

Key words: planets and satellites: detection – protoplanetary disks

Supporting material: data behind figure

1. Introduction

Protoplanetary disks are dust and gas disks around young
stars that guide the accretion of material onto forming stars and
serve as the birthplace of planets. Direct imaging of
protoplanetary disks reveals likely sites of active planet
formation, may identify planets in the final stages of assembly
(protoplanets), and probes the interaction between protoplanets
and the disk material from which they form. Herbig Ae/Be
stars (Herbig 1960), the intermediate mass analogs to T Tauri
stars, are known to both host protoplanetary disks and often
exhibit evidence of ejecting material via collimated, bipolar jets
(Herbig 1950; Grady et al. 2000; Ellerbroek et al. 2014;
Bally 2016). The protoplanetary disks around Herbig Ae/Be
stars exhibit a variety of structures—with some hosting spiral
arms (Hashimoto et al. 2011), and others that are flat and
settled, causing self-shadowing of the disk (Meeus et al. 2001)
—and may host some of the first directly imaged Jovian
protoplanets (Quanz et al. 2013; Currie et al. 2015).

HD 163296 is a young—5.1 0.8
0.3

-
+ Myr old (Montesinos et al.

2009) to 7.6 1.2
1.1

-
+ (Vioque et al. 2018)—Herbig Ae protoplanetary

disk system located at a distance of 101.5±1.2 pc (Gaia
Collaboration et al. 2016, 2018). The disk has been spatially
resolved by ground- and space-based observing platforms at a
multitude of wavelengths, including optical (Hubble Space
Telescope (HST)/Space Telescope Imaging Spectrograph (STIS):
Grady et al. 2000, HST/Advanced Camera for Surveys (ACS):
Wisniewski et al. 2008), near-infrared (IR) (Very Large Telescope
(VLT)/NACO: Garufi et al. 2014, 2017, Gemini/Gemini Planet
Imager (GPI): Monnier et al. 2017, VLT/Spectro-Polarimetric
High-contrast Exoplanet REsearch (SPHERE): Muro-Arena et al.
2018, Subaru/Coronagraphic Imager with Adaptive Optics
(CIAO): Fukagawa et al. 2010, Keck/NIRC2: Guidi et al.
2018), and radio wavelengths (Very Large Array (VLA): Guidi
et al. 2016, ALMA: Guidi et al. 2016; Isella et al. 2016).

Spatially resolved imaging observations have revealed a
complex circumstellar environment and evidence for active
planet formation at wide separations around HD 163296. Its
disk extends to at least to 4 4 (447 au) in optical scattered light
(Wisniewski et al. 2008). While near-IR observations reveal a
64 au-scale inner dust ring (Garufi et al. 2014, 2017; Monnier
et al. 2017; Muro-Arena et al. 2018), 1.3 mm continuum
ALMA imaging (Isella et al. 2016) revealed three azimuthal
gaps in the disk located at 0 49, 0 82, and 1 31 (50, 83, and
133 au respectively given Gaia-DR2 distance of 101.5 pc). The
surface distribution of small dust grains in the outer disk
appears low, owing to settling or partial-to-complete depletion
(Muro-Arena et al. 2018). Keck/NIRC2 thermal infrared

imaging led to the discovery of a candidate 7MJ protoplanet
just exterior to the inner ring (Guidi et al. 2018), while
modeling of ALMA gas emission data suggest Jovian planets at
83 and 137 au (Teague et al. 2018) and/or a single Jovian on an
even wider orbit (260 au Pinte et al. 2018).
Multi-epoch observations have revealed a wealth of variability

in the HD 163296 system, likely traceable to dynamical processes
in the inner disk region. Both IR spectra and visibilities from
optical inteferometry show variability possibly connected to
changes in the inner disk or the system’s wind component
(Sitko et al. 2008; Tannirkulam et al. 2008). Long-term optical
photometric and IR spectroscopic monitoring revealed suggestive
evidence of a 16 yr periodicity, with optical fluxes dimming when
the IR fluxes reach a maximum level (Sitko et al. 2008; Ellerbroek
et al. 2014), on similar timescales as the ejection of Herbig-Haro
objects (Ellerbroek et al. 2014). The star’s accretion rate increased
more than 1 dex over ∼15 yr (Mendigutía et al. 2013). However,
no clear correlation between these variations and the 16 yr optical
infrared periodicity has yet been found. CO rovibrational emission
lines exhibit variability possibly connected to changes in the disk
wind or episodic accretion (Hein Bertelsen et al. 2016).
Spatially resolved imaging may also reveal evidence for

variability—time-dependent changes in the disk’s surface bright-
ness and morphology potentially linked to variable illumination
(Wisniewski et al. 2008). However, despite this plethora of
variability observed, the lack of contemporaneous observations of
both the inner and outer regions of the HD 163296 disk limits
efforts to connect these phenomena to one another.
In this paper, we present multi-epoch near-infrared scattered

light imaging of HD 163296, obtained at H-band in polarized light
as part of the Strategic Exploration of Exoplanets and Disks with
Subaru survey (Tamura 2009) and in total intensity in JHK using
Subaru Coronagraphic Extreme Adaptive Optics (SCExAO)
(Jovanovic et al. 2015) coupled with the Coronagraphic High
Angular Resolution Imaging Spectrograph (CHARIS) integral
field spectrograph (Section 2). To help parse and complement
these data probing the outer disk, we acquired near-contempora-
neous IR spectra to characterize the inner disk region of the
system. We modeled the H-band scattered light images and near-
IR spectra using a well-established 3D Monte Carlo Radiative
Transfer (MCRT) code to create a more coherent, full picture of
the system at this epoch (Section 3). Using our model, we
preformed forward modeling of the SCExAO/CHARIS data to
help constrain the presence of potential planets in the system
(Section 4). Finally we discuss the implications of our results in
Section 5 including deeper constrains on protoplanets around HD
163296 with the new SCExAO/CHARIS data.

2
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2. Observations and Data Reduction

2.1. HiCIAO Imagery

We obtained high-contrast H-band imaging of HD 163296
using the High-Contrast Coronographic Imager for Adaptive
Optics (HiCIAO) instrument (Hodapp et al. 2008) along with
the AO-188 system (Hayano et al. 2008, 2010) at the Subaru
Observatory on 2011 August 3. We used a circular occulting
mask having a diameter of 0 3, and observed the system in
standard Polarized Differential Imaging mode at four wave-
plate positions (0°, 22°.5, 45°, 67°.5). We obtained 72 frames
using 30 s exposures, yielding a total of 18 complete wave-
plate sets. We determined that 8 wave-plate sets had lower AO
performance, and discarded them during the reduction of the
data. We also obtained a short, direct H-band photometric
observation of HD 163296, and determined that the source’s
brightness at this epoch was 5.62±0.05 mag.

We reduced our observations using standard double differen-
cing techniques, as described in Hashimoto et al. (2011). To
briefly summarize, the two subimages of each frame contain an
ordinary and an extra-ordinary image, which can be summed and
subtracted from their 90° counterparts to create stokes parameter
−Q, +Q, −U, and +U images. The Q and U frames were then
rotated into a common orientation, corrected for instrumental
polarization, and summed to create final Q and U images. We
corrected these data for the presence of a residual polarized halo
having the properties of p=1.00±0.05% and θ=42°.5±1°.5.
Final polarized intensity (PI) imagery was created from the total Q
and U data, using Q UPI 2 2= + , as shown in Figure 1.

To further simplify the analysis of our imagery, we adopt the
now common practice of assuming single scattering, and rotated all
of the light that is polarized perpendicular to the star by the angle f
into a Qf image and all of the light that is polarized parallel to the
star into a Uf image as defined below (Schmid et al. 2006).

Q Q Ucos 2 sin 2 1f f= ´ + ´f ( )
U Q Usin 2 cos 2 . 2f f= ´ + ´f ( )

The final Qf and Uf imagery for HD 163296 are shown in
Figure 1. Little coherent signal appears present in the Uf image,
which helps confirm that little residual instrumental contaminants
remain in these data. Next, we computed a signal-to-noise (SN)
image, following the procedure outlined by Ohta et al. (2016). In
summary, we computed the noise by measuring the standard
deviation of every pixel in each of the Q and U frames used to
construct the final imagery, then divided by the square root of the
number of frames. The resultant SN image is shown in Figure 1.

2.2. Near-infrared Spectra from SpeX, Broadband Array
Spectrograph System (BASS), and TripleSpec

We also observed HD 163296 multiple times with several
near-IR instruments on NASA’s Infrared Telescope Facility
(IRTF) and at Apache Point Observatory (APO). We observed
HD 163296 using the SpeX spectrograph (Rayner et al. 2003)
at IRTF in its short-wavelength mode (0.8–2.4 μm) and long-
wavelength mode (2.3–5.5 μm) on 2011 July 31, 2016 May 4,
and 2018 June 24. These observations are contemporaneous
with the HiCIAO 2011 observation (Section 2.1), the Gemini/
GPI observation (Section 5.1), and the second SCExAO/
CHARIS observations (Section 2.3) respectively. We observed
HD 163296 using the TripleSpec spectrograph (Wilson et al.
2004) at the APO 3.5 m telescope, covering a spectral range of
0.95–2.46 μm, on 2018 May 16. This observation is

contemporaneous with the first SCExAO/CHARIS observation
(Section 2.3). We observed the nearby A0V star HD 163336 to
perform telluric corrections for both the SpeX and TripleSpec
observations. These data were reduced and calibrated using the
standard reduction packages Spextool and Triplespectool
(Vacca et al. 2003; Cushing et al. 2004). We also observed
HD 163296 with The Aerospace Corporation’s BASS, which
covers two wavelength bands from 2.9–6 μm and 6–13.5 μm
respectively, on 2011 August 1. HD 163336 was observed with
BASS to flux calibrate these data. The instrument and data
reduction method are fully described in Wagner et al. (2015).
These SpeX, TripleSpec, and BASS spectra are plotted in
Figure 2.

2.3. SCExAO/CHARIS High-contrast Near-infrared
Spectroscopy

We observed HD 163296 on 2018 May 22 and July 1 at the
Subaru Observatory with SCExAO coupled with the CHARIS
integral field spectrograph operating in low-resolution
(R∼20) and broadband (1.13–2.39 μm) mode, covering the
JHK filters simultaneously (Groff et al. 2015). For the May
observations, the conditions were stable with 0 4 seeing and
6–7 m s−1 winds. Our observations consisted of co-added
60.4 s frames totaling ∼30 minutes of integration time and
covering a modest parallactic angle rotation (ΔPA=14.8o).
Due to highly variable conditions for the July observations, we
obtained shorter exposures (30.9 s) and removed roughly 50%
of the frames with poor AO correction, yielding ∼40 minutes
of data covering 30°.9 of parallactic angle motion.41

We followed the standard setup used for SCExAO/CHARIS
broadband observations (Currie et al. 2018a; Goebel et al. 2018a),
using the Lyot coronagraph with the 217mas occulting spot and
bracketing our coronagraphic sequence with blank sky frames to
remove sky emission and instrumental artifacts. We used satellite
spots produced from a 25 nm modulation on SCExAO’s
deformable mirror for spectrophotometric calibration and image
registration (Jovanovic et al. 2015). For data cube extraction, we
utilized the least-squares algorithm from the CHARIS Data
Reduction Pipeline (Brandt et al. 2017). Basic data processing,
including sky subtraction, image registration, etc., follows
methods used for recent SCExAO/CHARIS broadband studies
(Currie et al. 2018a, 2018b; Goebel et al. 2018b).
Spectrophotometrically calibrating CHARIS data for pre-

transitional disk sources like HD 163296 requires either
observations of a separate spectral standard or contemporaneous
near-IR spectra. We opt for the latter, using the IRTF/SpeX and
APO/Triplespec data previously discussed in Section 2.2. The
spectra show only minor differences between epochs.
We explored a range of point-spread function (PSF) subtrac-

tion approaches leveraging on angular differential imaging (ADI;
Marois et al. 2006), spectral differential imaging (SDI; Sparks &
Ford 2002), and combinations of the two (ASDI, e.g., Marois
et al. 2014). We further considered a variety of PSF subtraction
algorithms, including A-LOCI (Currie et al. 2012, 2018a),
Karhunen–Loéve Image Projection (KLIP; Soummer et al. 2012),
and classical PSF subtraction (Marois et al. 2006). The approach

41 While a real-time estimate of the Strehl ratio (S.R.) was not recorded for
these data sets, the raw contrast for the May data was just slightly poorer than
that obtained for κ And observations achieving S.R. ∼0.90–0.92 in H band
(Currie et al. 2018a). Raw contrasts for the July data considered in our study
are roughly a factor of 2.5–3 worse at 0 4, more characteristic of performance
at S.R. ∼0.65–0.70.
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implemented for κ And in Currie et al. (2018a), using A-LOCI to
subtract the PSF in ADI and then again to remove residuals in
SDI mode, yielded the best speckle suppression while preserving
the signal from the disk. Due to the limited parallactic angle
motion of both data sets (especially in May) and the presence of
the disk, we utilized large optimization zones for the ADI step,
employed local masking in the SDI step, and imposed a rotation/
magnification criterion of δ=0.5–1.0 PSF footprints in both
steps to construct a reference PSF (see Lafreniére et al. 2007).
For both steps, we used a singular value decomposition (SVD)
cutoff of 10−6 to solve the set of linear equations that result in the
weighted reference PSF for each region of each data cube slice
(see Currie et al. 2015).
Figure 3 shows broadband (wavelength-collapsed) CHARIS

images of HD 163296 from SCExAO/CHARIS for the May
(left) and July (right) epochs after removing the stellar PSF
through both ADI and SDI. Despite poor field rotation (May
data) or variable conditions (July data), we clearly detect the
outer ring of emission seen in polarimetry, which appears as a
sharply defined crescent defining the forward-scattering edge of

Figure 1. H-band scattered light from the HD 163296 disk is clearly seen in polarized intensity (PI) (panel A), the S/N map (panel B), and Qphi imagery (panel C).
Little coherent signal is seen in the Uphi image (panel D), indicating that these data are largely free from PSF residuals. The PI (panel A), Qphi (panel C), and Uphi

(panel D) images are displayed on a linear scale with units of mJy, and have not been filtered. We have applied a software mask having a radial size of 0 3 (gray
circles) to match the effective inner working angle of these data. For all panels, north is up and east is to the left. The Q and U images shown in panels C and D of this
figure are available as the data behind the Figure. The data used to create this figure are available.

Figure 2. Five epochs of flux calibrated IR spectra of HD 163296, taken with
IRTF/SpeX, IRTF/BASS, or APO/TripleSec, are shown. A full description of
these observations can be found in Section 2.2. The spectra are plotted in log-
log space.
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the structure. Self-subtraction footprints due to both ADI and
SDI flank the ring. In individual passbands, the disk is just
marginally visible in J-band but is well separated from residual
speckle noise in H and K.

We defined a conservative lower limit to the signal-to-noise
ratio (S/N) of the trace of the disk in broad band, adopting the
standard practice of replacing each pixel by the sum within its
aperture, defining a radial-dependent noise profile, and
applying a finite-element correction for the noise (Currie
et al. 2011; Mawet et al. 2014). To be conservative, we include
signal from the disk in our estimate of the noise profile. Except
at the semiminor axis, where the disk signal is attenuated by
self-subtraction, the disk trace is decisively detected, with a
S/N per resolution element ranging from 3 to 8.5.

Our data do not reveal the candidate protoplanet identified in
Keck/NIRC2 Lp data from Guidi et al. (2018) nor the
companions predicted from ALMA data (Teague et al. 2018).
The inner disk seen by GPI polarimetry (Monnier et al. 2017) is
also not visible, likely due to heavy self-subtraction due to poor
field rotation. The position of the Guidi et al. candidate lies
well separated from the ring and residual speckle noise; the
S/N maps show no convolved pixel within one PSF footprint
(∼0 08) of this position with a significance greater than 1.3σ.
More conservative reductions (e.g., larger rotation gap; higher
SVD cutoff) may show slightly elevated residual emission
consistent with additional extended structure at this separation
(e.g., additional ring material). However, this signal is not
statistically significant and is simpler to explain as residual
speckle noise instead.

3. Analysis of the H-band Polarimetry Data

In this section, we characterize the distribution of scattered
light in our H-band imagery, and construct a MCRT model to
help interpret the contemporaneous H-band scattered light
imagery and near-IR spectra.

3.1. Geometry of the Disk

Figure 1 reveals the clear detection of scattered light
surrounding the HD 163296 disk in our H-band imagery
outside of the inner working angle of these data, 0 3 (30.5 au).
The scattered light imagery reveals a broken ring structure that
peaks at a distance along the major axis of 0 65 (66 au) and
extends out to 0 98 (100 au) along the major axis (see
Figure 4). Both the Qf and SN imagery exhibit little coherent

signal between our inner working angle and the inner edge of
the ring structure. We do not detect the inner disk component
as previously detected by Monnier et al. (2017) due to our
larger inner working angle. We therefore conclude that the
small amount of scattered light interior to the ring in the PI
image (panel A; Figure 1) could arise from a mixture of
residual, uncorrected flux from the PSF and scattered flux from
an inner disk component that is within our masked region (see,
e.g., Takami et al. 2018). The NE side of the disk is known to
be the near side (Rosenfeld et al. 2013), and the IR scattered
light disk exhibits evidence of strong forward scattering (Guidi
et al. 2018). The broken ring structure we observe is missing
polarized intensity originating from the far side of the disk (SW
region, along the minor axis; see Figure 1).
We fit an ellipse to the scattered light ring using a least-

squares fitting code (Hammel & Sullivan-Molina 2019),42

assuming the ring is a perfect circle projected at inclination.
Since a known bias of the code is to prefer a smaller ellipse by
preferably fitting the inner points (Halir & Flusser 1998), we
choose to fit the peaks of the ring to mitigate this effect. Due to
the low signal along the SW minor axis and sporadic structure
along the NE minor axis, we did not keep any vertical cuts
between 70°<PA<180° and between 270°<PA<370°.
We fit a Gaussian to each vertical crosscut, producing the peak
x, y position of the ring, and input these positions into the
ellipse code described above.
In order to estimate the error of our ellipse fit, we performed

a Monte Carlo routine by randomly sampling the Gaussian
xy-coordinate errors and adding them to the xy-coordinates
found above. We additionally applied a random rotation of the
image between 0° and 1° to constrain the error associated with
the interpolation of the image due to rotation. We performed
500 iterations and used the average values of the 500 iterations
as the best-fit ellipse. The errors were estimated by taking the
standard deviation of the parameters found with the 500
iterations. The best-fit results are shown in Table 1. The best-fit
ellipse is compared with the PI image in Figure 5, shown as the
white oval, along with the center of the disk (small white circle)
and the center of the star.
Our measured inclination of the disk (41°.4± 0°.3) and PA

(132°.2±0°.3) is in agreement with the values derived from
ALMA data of 42° and 132° respectively (Isella et al. 2016).
Additionally, the offset of the minor axis from the central star

Figure 3. SCExAO/CHARIS broadband (wavelength-collapsed) images from 2018 May (left) and 2018 July (right) after removing the stellar PSF through both ADI
and SDI: the color scaling for both panels goes from −30 to 30 mJy arcsec−2. In both data sets, self-subtraction footprints (dark regions) flank the disk signal, which is
reduced due to processing. The throughput of the disk is slightly higher in the July data due to better field rotation; regions surrounding the disk show slightly less
residual speckle noise in the May data due to better AO performance.

42 https://github.com/bdhammel/least-squares-ellipse-fitting
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that we find (−0 0432± 0 0016) is consistent with previous
measurements, given their quoted errors when available (0 06,
Garufi et al. 2014; 0 105±0 045, Muro-Arena et al. 2018;
0 1, Monnier et al. 2017).

We applied an r2 illumination correction to our data to better
investigate the physical distribution of dust in the ring seen in
Figure 1. We then azimuthally binned the average flux per area
of the ring between two concentric ellipses. We adopted an
inclination of 42°, and constructed each bin to be 8° wide and
spanned a projected radial distance of 0 55–0 71 (55–72.5 au)

to encompass the majority of the disk flux. The binned disk flux
is azimuthally symmetric along the major axis, with the NW
and SE side of the disks exhibiting the same amount of
polarized intensity (Figure 6). There is also a clear azimuthal
asymmetry in the binned flux along the minor axis, with the
near side of the disk (NE side) exhibiting substantially more
flux than the far side (SW side). We observe a deficit in
scattered light flux along the near side of the disk at a PA of 30°
in both the binned imagery (Figure 6) and unbinned PI, Qrot

images, and SN map images (Figure 1). This feature coincides
with the position angle of the disk brightness enhancement and
the position angle of the candidate point source noted by Guidi
et al. (2018), and will be further discussed in Section 5.4.

3.2. Modeling of the HD 163296 Disk

To help interpret our imagery and contemporaneous IR
spectroscopy of HD 163296, we utilized the 3D MCRT code,
HOCHUNK3D (Whitney et al. 2013). HOCHUNK3D allows
the user to characterize the radial dust distribution, dust
composition, and disk illumination parameters, and outputs a

Figure 4. Crosscuts along the major axis of the 2011 H-band PI image (top row) and Qf image (bottom row). The right column is the PI and Qphi images unscaled, and
the left column is the PI and Qf with a r2 scaling applied. The gray shaded area represents 3σ error bars. The red point is the scaled flux from the 2016 VLT/SPHERE
observation reported by Muro-Arena et al. (2018).

Table 1
Results of Ellipse Fitting to PI H-band Image

Parameter PI Image Value

Major Axis of Disk (au) 58.01±0.09
Minor Axis of Disk (au) 48.4±0.3
Minor Axis offset (″) −0.0432±0.0016
PA (deg) 132.2±0.3
Inclination (°) 41.4±0.3
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spectral energy distribution (SED) of the disk and imagery in a
variety of user-defined bandpasses. The current version of
HOCHUNK3D allows the user to decouple the disk into two
dust distributions, allowing one to parameterize both a settled
dust population toward the midplane and a different dust
population in the upper surface layers of the disk. These two
dust populations can either be co-spatial, or have different
radial sizes. The dust distribution of each disk is characterized
by several power-law parameters: the radial power law (α), the
vertical Gaussian distribution (β), and the height of the disk

from the midplane (h). Deviations from these power laws, such
as a gap, spiral arms, warped disks, and walls, can all be
included. The code also allows for the presence of a dusty
envelope, which is parameterized by its minimum and
maximum radius (Rminenv, Rmaxenv), and a dust density power
law (ENVEXP). The dusty envelope can also include gaps and
a bipolar cavity. Following the techniques established by Sitko
et al. (2008), Wagner et al. (2015), and Fernandes et al. (2018),
we use the dusty envelope as a proxy to model material ejected
from the disk, aka a disk wind.
We constrained our model-starting parameters by observa-

tions when possible, and adopted the parameters from
M. Pikhartova et al. (2019, in preparation), who are using
HOCHUNK3D to model the variations seen in two epochs of
HD163296ʼs SED, as a starting point for our parameter-space
exploration. ALMA observations of HD 163296 revealed the
presence of 3 gaps located at 0 49, 0 82, and 1 31 (50, 83,
and 133 au respectively given Gaia-DR2 distance of 101.5 pc)
(Isella et al. 2016). Because our HiCIAO imagery is only
sensitive to the first dust ring and the near-IR SED is most
sensitive to dust features closer to the star, we only include the
inner gap in our model. We allowed the two components of the
dust distribution to be vertically stratified, and chose the radial
extent of these distributions to match those observed for grains
populating the midplane (250 au from VLA and ALMA
observations; Guidi et al. 2016) and surface layers (540 au,
Isella et al. 2007; Wisniewski et al. 2008). We note that while
ALMA observations of the system were best described by a
radial power law multiplied by an exponential function (Isella
et al. 2016), HOCHUNK3D only uses a power-law function.
Nevertheless, we did adjust the large grain dust distribution to
match, as closely as possible, the dust distribution as measured
by ALMA in the inner portion of the disk (Isella et al. 2016).
The dust parameters for the large grain disk that we used are
adopted from Wood et al. (2002), and are composed of
amorphous carbon and silicon dust particles ranging in size up
to 1 millimeter. The small grain disk and envelope dust
parameters are from Kim et al. (1994), which is the average
galactic interstellar medium (ISM) dust grain model.
We adopted an interstellar extinction of AV=0 mag from

Ellerbroek et al. (2014), who measured the level of extinction
from the ejected Herbig-Haro (HH) knots. Note that Ellerbroek
et al. (2014) concluded that the optical variability of the SED
likely comes from on-source reddening. In our model, we utilize
the dusty envelope, a proxy to model disk wind, to replicate the
on-source reddening, which is further discussed in Section 5.2.
We explored accretion rates ranging from 1.73×10−7 to
4.35×10−6Me, calculated from contemporaneous Brγ emis-
sion lines in the SpeX 2011 data, first presented in Ellerbroek
et al. (2014), but adjusted for the new distance of 101.5 pc.
We constrained these models using a SED (Figure 9)

constructed from contemporaneous near-IR observations
(Figure 2), along with non-contemporaneous photometry from
the AllWISE catalog (Wright et al. 2010), 2MASS All Sky
Survey (Cutri et al. 2003), IRAS point-source catalog (Helou &
Walker 1988), and the historical variability of the V-band
photometry as compiled in Ellerbroek et al. (2014). We also
constrained these models using the surface brightness profiles
along the major axis of our HiCIAO H-band scattered imagery
(Figure 4).
We explored the parameter space of our models using a χ2

minimization scheme. Namely, we calculated the χ2 for the

Figure 5. Result of the best-fit ellipse to our H-band PI data, where the central
white dot is the center of the ellipse, the white ellipse is the peak of the ellipse,
the black x marks the location of the star, and the blue circle marks the inner
working angle. The ellipse was fit to the peak points along the main elliptical
ring by fitting Gaussians to the crosscuts along the ring. The best elliptical fit
finds a minor axis offset of −0 055. This value is consistent with those
reported by Garufi et al. (2014), Monnier et al. (2017), and Muro-Arena et al.
(2018) given their quoted uncertainties.

Figure 6. Binned flux along the azimuthal ring located at 65 au. Each bin is 8°
wide and extends from a projected distance of 55–71 au annulus along the ring
seen in this figure.
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SED fit, the surface brightness along the major axis, and the
minor axis offset, and added these values in quadrature to find
the total χ2 value. Because some of the SED data were not
contemporaneous, we also calculated a separate χ2 value that
only incorporated comparisons of contemporaneously obtained
data to the model. We began the iterative process with model
runs of 5 million photons in order to find the best-fit SED to the
SpeX and BASS spectra. Next, we increased the number of
photons in each run to 50 million photons to obtain higher-
quality model H-band images, and convolved the model image
with the PSF of the H-band image. We explored parameter
space to produce the best-fit χ2 value between model surface
brightness along the major axis and the minor axis offset to the
observed imagery. After finding the best chi-squared fit model
image, we iteratively switched between the SED and the model
until we found a model that optimized the combined chi-
squared value, resulting in our best-fit model. We then reran
this best-fit model using 109 photons to produce the model SED
and imagery used in all of our figures. We remind readers that
MCRT models, like HOCHUNK3D, that employ a large family
of parameters suffer from parameter degeneracy; thus, our best-
fit model is not unique (Dong et al. 2012).

Table 2 lists the main parameters utilized in our best-fit
model, and Figure 7 details the temperature and density profile
of the disk in this model. Figures 8 and 9 show the SED and
radial surface brightness profile along the disk major axis of our
best-fit model as compared with our observations. We remark
that our best-fit model parameters are generally similar to those
previously reported in the literature. For example, our disk
mass of 0.05Me (Table 2) is similar to that measured by Qi
et al. (2011) (0.089Me) and Isella et al. (2007) (0.12Me).

Our best-fit model SED generally matches well with the
contemporaneous spectroscopy and historical observations
from optical to radio wavelengths (Figure 9). Since the optical

flux has been shown to be highly variable and we do not have
contemporaneous optical photometry or spectroscopy, we do
not know whether the modest model overestimation of the
optical flux simply reflects that the star was at a high flux state
in 2011. Additionally, our model reproduces the on-source
extinction value of AV=0.5 mag from Ellerbroek et al. (2014)
with a value of AV=0.46 mag. We note that the observed
versus model imagery comparison matches well along the NW
side of the disk (right-hand side of Figure 8), while the model
imagery is marginally too narrow along the SE side of the disk
(left-hand side of Figure 8). This could be due to slight
geometrical variations in the wall of the disk, causing the
illumination of the SE side of the disk to be broader. We
provide a full comparison of the observed H-band PI imagery
and model imagery in Figure 10. Our model imagery reveals
little scattered light beyond the bright ring and little to no
scattered light within the gap of the disk, which matches the
observed PI and Qf images.

4. Analysis of SCExAO/CHARIS High-contrast Near-
infrared Spectroscopy

4.1. Methodology: Disk and Planet Forward-modeling

Although none of the protoplanets/candidates reported from
Keck/NIRC2 or ALMA are visible in our data, great care is
needed to properly interpret these non-detections and their
implications. For example, like HD 163296, HD 100546 has
multiple imaged protoplanet candidates embedded in a bright,
structured protoplanetary disk (Quanz et al. 2013; Currie et al.
2015). Follow-up claims of a spurious detection/non-detection
of candidates around HD 100546 were faulty, as shown in
Currie et al. (2017), in large part due to (1) incorrect
spectrophotometric calibration and (2) a lack of forward-
modeling of planet and disk signals.

Table 2
List of Key Best-fit Model Parameters and Estimates of the Upper and Lower Bounds of the Parameter

Parameter (Units) Best-fit Model Lower Bound Upper Bound

Star Temperature (K) 9250 L L
Star Radius (Re) 1.4 1.2 1.6
Disk Mass (Me)

a 0.05 L L
Fraction of Mass in Large Grain Disk 0.9 0.8 0.95

Inner Gap Radius (au) 29 20 32
Outer Gap Radius (au) 59 55 62
Large Grain Disk Minimum Radius (Rsub)

b 31.9 25 35
Large Grain Disk Maximum Radius (au) 250.1 L L
Large Grain Disk Scale Height (Rsub)

b 0.11 0.08 0.13
Large Grain Disk Radial Density Exponent 0.1 0.05 0.2
Large Grain Disk Scale Height Exponent 0.16 0.18
Small Grain Disk Minimum Radius (Rsub)

b 1.22 1.0 1.5
Small Grain Disk Maximum Radius (au) 540.1 L L
Small Grain Disk Scale Height (Rsub)

b 0.11 0.08 0.13
Small Grain Disk Radial Density Exponent 0.05
Small Grain Disk Scale Height Exponent 1.25

Envelope Inner Radius (Rsub)
b 0.41 L L

Envelope Outer Radius (au) 2.38 L L
Envelope Density (g cm 3- ) 4.0×10−17 2.0×10−17 6.0×10−17

Accretion (Me) 6.0×10−7

Notes.
a Disk mass value includes dust and gas. We assumed the gas to dust ratio is 100.
b Rsub is the sublimation radius with 1 Rsub=0.36 au.
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Contemporaneous near-IR spectra of HD 163296 allowed us
to spectrophotometrically calibrate CHARIS data cubes (see
Section 2.1). To properly understand our non-detections and
derive upper limits at the candidates’ locations, we then
performed forward-modeling of our images, investigating the
reduction of the total source signal and the biasing of its spatial
intensity distribution due to processing. This annealing results

from self-subtraction of the source by itself and over-
subtraction of the disk in ADI and SDI. Our method follows
that outlined in Currie et al. (2018a), where we save the
A-LOCI coefficients α and model the disk and planet signals as

Figure 7. Top row of panels present temperature profiles for three regions of our MCRT disk model. The bottom row of panels present the density profiles for these
same three regions of the disk model.

Figure 8. Major axis crosscut of our 2011 H-band imagery data (PI image)
compared with the best-fit model (red-dashed line). The vertical dashed lines
represent the inner working angle of 0 28.

Figure 9. The observed SED of HD 163296 is shown along with our best-fit
model SED (black line). The SpeX 2011 (green line) and BASS 2011 (red line)
data are from this work, as described in Section 2. The blue circles represent
data from the AllWISE catalog (Wright et al. 2010), the green circles are from
the 2MASS All Sky Survey (Cutri et al. 2003), and the purple circles are from
IRAS point-source catalog (Helou & Walker 1988). The gray circles depict
V-band photometry and represent the historical minimum, 1σ below median
flux, median flux, and 1σ above the median flux as reported by Ellerbroek et al.
(2014).
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introducing a linear perturbation of value β, which provides an
additional source of annealing (see also Brandt et al. 2013;
Pueyo 2016). We focus on the 2018 May data due to its higher
quality.

First, we explored the effect of the disk on the non-detections
of planetary companions, using forward-modeling to determine
its annealing due to processing and its effect on any point
sources located exterior, like the proposed companions from
Guidi et al. (2018) and Teague et al. (2018). We started with
the best-fit scattered light disk model described in Section 3.2,
which is drawn from our H-band scattered light imagery with
Subaru/HiCIAO. We produced total intensity (not scattered
light) images in J, H, and K passbands and interpolated the
model images onto the CHARIS wavelength array and pixel
scale. The model disk is slightly bluer than the combined light
of the star+disk, with intrinsic colors of J–H, H–K of ∼0.35
and ∼0.35. Note that the model was constructed based on a
single passband (H-band); thus, the model may not constrain
the true color of the disk. The disk contrast with respect to
the star on the forward-scattering side is typically ΔM=
Mdisk arcsec2 –Må≈3.5–4. The visible trace of a disk may
differ in total intensity versus scattered light. Therefore, we
slightly adjusted the model parameters to provide a better
match to the forward-modeled disk image, specifically
increasing the semimajor axis by 5%.

Second, we verified that an object consistent with the 6–7 MJ
candidate from Guidi et al. would be detected in our data. We
used standard hot-start evolutionary models from Baraffe et al.
(2003), adopting a planet age equal to the system age (5 Myr).
This approach is intermediate between possible extremes that
would yield higher and lower luminosities for a given planet
mass. While we assume a planet age of 5Myr when estimating
mass limits, the age of a superjovian planet is likely much
younger than that of the host star (Currie et al. 2013). This is
especially true for protoplanets, which are nearing the end of
their formation and thus much closer to t1Myr for any
evolutionary model, where the planet luminosity is maximum.
The inferred limits adopting would be then substantially lower
than those we report. Conversely, we could adopt planet mass
limits using the “cold-start” evolutionary models (e.g., Marley
et al. 2007). However, recent literature casts serious doubt on
the validity of the cold-start model formalism, which relies on
specific assumptions about the entropy of accreted material. As
shown by Berardo et al. (2017), classic cold-start conditions are

extremely difficult to reach because the protoplanet will be
substantially heated by the accretion shock, which will increase
its entropy, resulting in hot-start-like initial conditions.
Furthermore, imaged planets for which we have derived
dynamical masses—β Pic b, HR 8799 bcde (Lagrange et al.
2010; Marois et al. 2010; Currie et al. 2011; Snellen &
Brown 2018; Wang et al. 2018; Dupuy et al. 2019)—are
inconsistent with a cold-start evolutionary model. At the
candidate’s location in each data cube, we injected a planet
whose temperature matches that expected for a 4MJ, 5 Myr
planet according to these models. Although such a planet is
predicted to be near the L/T dwarf transition (Teff∼1300 K),
we assume a (cloudier) L dwarf spectrum drawn from the
Bonnefoy et al. (2014) library, because annealing due to SDI
will be stronger for such a spectrum. Integrated over the
CHARIS wavelength array, the broadband contrast of this
planet with respect to HD 163296 is ∼8×10−6, about 2.5–3.5
times as high as the predicted contrast for the Guidi et al.
companion using a cloudy planet atmosphere from Currie et al.
(2011).
Finally, our forward-modeling calculation allowed us to

compute radially averaged, throughput-corrected broadband
contrast curves. As with our fake planet injection test, we used
the Baraffe et al. (2003) models to map between planet mass
and temperature. To map between temperature and spectrum,
we further used atmosphere models drawn from Burrows et al.
(1997), adopting cloud prescriptions that provide reasonable
fits to near-IR photometry for HR 8799 bcde and ROXs 42Bb,
whose temperature, gravity, and masses cover most of our
range (Currie et al. 2011, 2014; Madhusudhan et al. 2011;
T. Currie et al. 2018, in preparation).

4.2. Results: Limits on Planets

Figure 11 shows the wavelength-collapsed image of the
input disk (left panel) and output image after forward-modeling
the disk through ADI and SDI (right panel). While the disk in
total intensity is more forward-scattering than the model based
on polarimetry would predict, and its brightness is ∼30%
higher, the model otherwise reproduces the CHARIS data and
is sufficient for investigating the impact of self-subtraction on
the forward-scattering side. The proposed candidate from Guidi
et al. (2018) lies exterior to the main trace of the disk (cyan
cross). After processing, the candidate’s location is free of

Figure 10. Our 2011 H-band polarized scattered light image (left panel), the best-fit model PI H-band scattered light image (middle panel), and the difference between
the observed and model PI image (right panel) are shown. All three panels are displayed on the same linear scale and same spatial scale, and rotated such that north is
up and east is left. The inner working angle is masked out with a white circle. Note that the PI image was binned to match the pixel scale of the model for the
difference image.
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negative self-subtraction footprints. Inspection of the individual
data cubes containing the disk model processed through ADI
and SDI likewise show a flat background. At wider separations
overlapping with the proposed candidate from Teague et al.
(2018), the disk likewise leaves negligible residual effects.

As shown in Figure 12 (left panel), a 6–7MJ candidate
similar to the one proposed in Guidi et al. should have been
detected in our data. The fainter, even lower-mass (4MJ)
candidate injected into our data is clearly visible. While its S/N
is formally ∼4.8, our inclusion of disk signal contributions
leads our estimate of the noise to be conservative. A planet
corresponding to the Guidi et al. candidate (ΔF∼2.5×10−5)
would be even more decisively detected (S/N∼15).

Broadband contrast limits in the right-hand panel of
Figure 12 provide stringent limits on protoplanets covering
the range probed with Keck/NIRC2 and ALMA. At ρ∼0 49,
the azimuthally averaged 5σ contrast limit is ∼8.5×10−6, in
agreement with our expectations from the fake planet injection.
If the Guidi et al. companion is real, it would then have to be
redder than H–Lp∼3.5 to escape detection: redder than all
directly imaged planets except for the extreme L/T transition
object HD 95086 b (De Rosa et al. 2016). Over the separations

just interior or close to the visible trace of the disk and
comparable to the separation of the Guidi et al. companion—
ρ∼0 4 (0 7) along the minor (major) axis—we can exclude
planets with masses of 2–5MJ, assuming standard hot-start
evolutionary models. The CHARIS field encloses the possible
location of the innermost companion proposed by Teague
et al. (2018), which would lie at a projected separation of
rproj∼83 au (ρ∼0 82) along the major axis, or rproj∼40 au
(ρ∼0 4) along the minor axis. At these locations, our data
rule out planets more massive than 5MJ and ∼1.5MJ,
respectively. If located along the minor axis, the outermost
proposed companion from Teague et al. (2018) would be at
ρ∼0 65 with a mass less than ∼2MJ, according to our data.

5. Discussion

5.1. Previous Optical–IR Disk Imaging

HD 163296 has been observed numerous times across
optical–IR bandpasses. Here we briefly summarize some of the
major results of those investigations, to compare and contrast
with our new imagery.

Figure 11. (Left) Broadband image of the best-fit synthetic disk model derived from polarimetry interpolated onto the CHARIS pixel scale and wavelength array and
(right) forward-model of the disk after propagating its signal through ADI and SDI. The location of the proposed protoplanet candidate from Guidi et al. (2018) lies
well exterior to the azimuthal and radial self-subtraction footprints in the forward-modeled disk. The images have been smoothed with a top-hat filter to more clearly
reveal the trace of the disk: localized emission exterior to the disk is an artifact of this smoothing.

Figure 12. (Left) 2018 May broadband image with a 4 MJ, 5 Myr old planet injected into our observing sequence at the location of the candidate from Guidi et al.
(2018) (ΔF∼8×10−6) and propagating its signal through ADI and SDI. Even with signal from the disk contributing to an estimate of the noise, the injected
companion is detected at S/N∼5. (Right) Broadband contrast curve for the 2018 May and 2018 June data compared with broadband contrasts for 2–10 MJ planets
assuming the Burrows atmosphere models. The 5σ contrast at 0 49 is in agreement with expectations based on our injected 4 MJ planet in the left panel. The contrast
for a 1 MJ companion lies off the graph at ΔF∼3.7×10−7.
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Space-based optical imagery has been obtained in both white
light (HST/STIS; Grady et al. 2000) and broadband filters
(HST/ACS; Wisniewski et al. 2008), tracing the disk out to
4 4 (447 au) and detecting HH knots. Comparison of these
data revealed evidence for significant variation (∼1 mag) in the
disk surface brightness, changes in the number of disk ansae
visible over time, and changes in the relative brightness of
features located in the NW and SE disk regions (Wisniewski
et al. 2008). Unfortunately, none of these optical observations
fully overlapped in wavelength coverage.

Ground-based AO imagery of the system can be generally
summarized into 3 categories. First, a subset of observations
clearly reveal the detection of the disk in scattered light, but the
presence of residual AO speckle noise in the disk vicinity
prevents a robust characterization of the surface brightness
or detailed morphological structure of the disks (e.g., 2012
H-band imagery Garufi et al. 2014; 2014 Ks-band imagery
Garufi et al. 2017). Second, a subset of observations (e.g., 2012
Ks-band imagery; Garufi et al. 2014) reveal the detection of an
inclined ring structure extending out to 1 03 (103 au), where
the intensity of scattered light is strongest along the major axis
of the disk and is symmetrical about both sides of the disk
major axis (NW side and SE side). Third, a subset of
observations (e.g., 2014 J-band, Monnier et al. 2017; 2016
H-band imagery, Muro-Arena et al. 2018) reveal clear evidence
of this same inclined ring structure whose flux is both
azimuthally asymmetric and not the strongest along the major
axis. In particular, the NW side of the major axis is brighter
than the SE side of the disk in J-band GPI observations (see
Figure 2, Monnier et al. 2017), and the maximum flux from the
disk is north of the major axis peaking on the NW side of the
disk in these data. The 2016 H-band VLT/SPHERE observa-
tions (Muro-Arena et al. 2018) also exhibit strong azimuthal
asymmetry, with the NW side of the disk along the major axis
exhibiting 2.7× more scattered light than the SE side of the
disk along the major axis. Muro-Arena et al. (2018) used 3D
radiative transfer modeling to suggest that this strong azimuthal
asymmetry could be reproduced by including an inner disk
component that was misaligned by 1° compared with the
outer disk.

5.2. Evidence for Time-dependent Azimuthal Asymmetry

Our 2011 epoch H-band imagery is consistent with the
second category of disk appearance we discussed in
Section 5.1. Namely, we observe a broken ring structure in
H-band scattered light whose flux peaks along the major axis
and exhibits clear symmetry between the NW and SE side of
the disk. Our 2011 epoch H-band data are thus clearly different
from the 2016 epoch VLT/SPHERE H-band data, which show
a 2.7× asymmetry between the NW and SE side of the disk
(Muro-Arena et al. 2018).

To illustrate these differences, we scaled the peak flux along
the major axis of the 2016 VLT/SPHERE data and present
these data as dashed horizontal lines in our Figure 4. The 2.7×
asymmetry about the major axis observed in the 2016 VLT/
SPHERE data is clearly outside of the 3σ errors of our 2011
data. This obvious difference is also seen by comparing Figure
1 of Muro-Arena et al. (2018) with Figure 1 in this paper. We
note that neither data set exhibits evidence of large-scale
gradients in its Uf component, indicating that systematic
artifacts are not the cause of this phenomenon. We suggest that
this is clear evidence that the system exhibits large changes in

the appearance of its scattered light disk as seen in multi-epoch
observations obtained with the same filter, and supports
previous suggestions of this phenomenon as deduced from
multi-epoch observations from similar, albeit not the same,
filters (Wisniewski et al. 2008).
There are several mechanisms that could cause an azimuthal

asymmetry of scattered light, including an asymmetrical
distribution of dust (Muro-Arena et al. 2018), an inclined
inner disk shadowing the outer disk (Muro-Arena et al. 2018), a
warped inner disk structure shadowing the outer disk (Sitko
et al. 2008), or dust ejected above the midplane of the disk that
shadows the outer disk (Ellerbroek et al. 2014).
Muro-Arena et al. (2018) suggested that an asymmetric

distribution of dust in the system was unlikely, as no
asymmetry was observed with ALMA (Isella et al. 2016).
Muro-Arena et al. (2018) were able to replicate the azimuthal
asymmetry they observed in their scattered light imagery by
inclining the inner disk by 1° compared with the outer disk,
which is consistent with previous near-IR interferometric
observations (Tannirkulam et al. 2008; Lazareff et al. 2017;
Setterholm et al. 2018). However, our 2011 epoch data reveal
the presence of no azimuthal asymmetry along the major axis in
the same filter bandpass as the 2016 SPHERE observations. An
inclined inner disk is unlikely to precess significantly over a
5 yr time frame; hence, an inclined inner disk alone is unlikely
to produce the observed significant azimuthal variations in the
scattered light disk. Moreover, we have shown that we can
reproduce the basic properties of both our contemporaneously
obtained near-IR SED and H-band imagery with a model that
does not include an inner inclined disk. Thus, while the system
could plausibly host an inclined disk, we suggest that this
feature is unlikely to be responsible for producing the time-
dependent azimuthal variations in the outer scattered light disk
of the system.
We consider several other mechanisms that could explain the

change in disk surface brightness seen in the system. First, a
warped inner disk structure, such as a puffed-up inner disk wall
(Turner et al. 2014), could be shadowing the outer disk (Sitko
et al. 2008). If this disk warp were to dissipate or rotate
azimuthally within a 2–3 yr timescale, this could cause a
change in illumination of the outer disk similar to that observed
between the 2011 and 2016 epoch H-band data sets. Dynamical
simulations are needed to determine whether a substantial
change in the appearance of a warped disk could occur on this
short of a timescale and lead to the amplitude of variable disk
illumination observed.
Second, this phenomenon could be caused by dust ejected

above the midplane of the disk, which partially shadows the
outer disk, as proposed by Ellerbroek et al. (2014). These dust
“clouds” could differentially obstruct the illumination of the
outer disk while they are between the star and the outer disk, as
shown in Figure 13. We do have IR spectra that were obtained
at a similar epoch to both our 2011 HICIAO data and the 2016
SPHERE data. The contemporaneous IR spectra cannot
constrain the possible asymmetric nature of the dust clouds,
but can constrain the total amount of dust in the disk wind
when compared with our MCRT models. As shown in
Figure 2, while both have the same flux around 0.9 μm, the
2011 epoch IR spectrum is brighter (∼0.5 mag at K′) around
2 μm than the 2016 epoch IR spectrum. We remark that we can
best reproduce the 2016 SED in our model by adopting a ∼2×
lower envelope density, e.g., 9.0 10 g cm18 3´ - - , which
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corresponds to a lower circumstellar extinction in 2016 of
AV=0.1 mag. We predict that the 2016 epoch should be
0.4 mag brighter in the V-band compared with the 2011 epoch
data, similar to the optical variability found by Ellerbroek et al.
(2014). Because the interstellar extinction is consistent with
AV=0 mag, the observed reddening most likely originates
from the system. Thus an asymmetric disk wind launching dust
clouds can explain both the variable illumination of the outer
disk (Figure 13) and the reddening optical variability observed
by our disk wind models and Ellerbroek et al. (2014).

If the system does have an inclined inner disk as suggested
by Muro-Arena et al. (2018) that during some epochs produces
non-axisymmetric illumination of the outer disk (e.g., NW side
brighter than SE side; 1998 HST/STIS, Grady et al. 2000, 2014
J-band, Monnier et al. 2017; 2016 H-band, Muro-Arena et al.
2018), the spatial distribution of any dust clouds elevated by a
disk wind must also be non-axisymmetric to produce the
observed epochs of axi-symmetric illumination of the outer
disk (e.g., as seen in 2012 Ks-band imagery, Garufi et al. 2014;
2011 H-band, this study) and the sole-epoch of observed non-
axisymmetric illumination with the SE side of the disk brighter
than the NW side (2004 HST/ACS, Wisniewski et al. 2008).
Future observations that simultaneously observe quiescent and
wind events with contemporaneous optical and IR photometry
and coronagraphic imagery could help to test whether
shadowing by dust clouds could explain the observed behavior

of the inner and outer disk of the system, and better
parameterize the azimuthal distribution of such dust clouds.

5.3. Model

We were able to reproduce the basic properties of our
contemporaneous near-IR spectra and scattered light H-band
imaging with a 3D MCRT disk model, which approximated the
features of a disk wind via an envelope. As seen in Figure 9,
our model SED is consistent with the highest observed V-band
flux that was reported by Ellerbroek et al. (2014), but we
caution that the robustness of this agreement is uncertain
because we do not have contemporaneous optical photometry.
Muro-Arena et al. (2018) also performed MCRT modeling

of HD 163296, and compared their models to the ALMA dust
continuum image from Isella et al. (2016), their own VLT/
SPHERE image, and historical photometry and spectroscopy.
They modeled all three gaps that were observed in the ALMA
continuum image and introduced an inclined disk to explain the
asymmetric scattered light flux observed with the VLT/
SPHERE image as noted above in Section 5.2. Their model
images and SED are well matched to their observed images and
historical photometry and spectroscopy. While they do not
employ a disk wind model as we did (Section 3.2, see
Figure 13), their model does not have a clear mechanism to
explain the time-dependent azimuthal asymmetries seen in
near-IR scattered light images (Section 5.2) or the optical–IR

Figure 13. Diagram of the disk wind model. (A) shows the disk wind, which is asymmetric and shadows the SE portion of the disk. (B) shows a symmetric disk wind
where the both sides of the disk are equally illuminated. The left-hand side of the diagram shows the outer portion of the disk, where the right-hand side of the diagram
shows a zoomed-in version of the disk. The outer disk as been rotated and inclined to match the observed orientation of HD 163296 shown in Figure 1.
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photometric and spectroscopic variability that has been
observed (Sitko et al. 2008; Ellerbroek et al. 2014). We
caution that the inability of an inclined disk by itself to explain
the observed time-dependent azimuthal asymmetries in scat-
tered light does not exclude the possibility that the system does
in fact have an inclined disk. Due to limitations with
HOCHUNK3D, we leave applying our disk wind model to
the archival images and SEDs to future work.

5.4. Scattered Light Features along the Minor Axis

We note that a deficit of scattered light is seen in the near
side of our disk imagery at a PA of 30°, in both our binned
imagery (Figure 6) and our unbinned PI and Qrot images. We
caution that while this feature could be real, it is not uncommon
to observe depolarization along the minor axis due to the
residual presence of an uncorrected polarized halo. Interest-
ingly, this feature coincides with the disk brightness increase
observed with the Keck/NIRC2 L′-band vortex coronagraph by
Guidi et al. (2018) and is located at a similar position angle,
albeit closer to the host star, as the purported candidate
planetary mass object reported by Guidi et al. (2018). As noted
by Guidi et al. (2018), this disk feature is located where
forward scattering should be significant. If the feature we
observe at the similar disk position is astrophysical, the
decreased amplitude of the feature in polarized intensity
suggests that it could be polarized less than its neighboring
disk material.

5.5. Limits on Protoplanets Orbiting HD 163296

Our data improve the detection limits for protoplanets in
thermal emission around HD 163296 compared with Keck/
NIRC2 data from Guidi et al. (2018): from 5–7MJ to now
2–5MJ, assuming standard hot-start evolutionary models, near
the projected trace of the disk. At wider separations covering
the possible locations of the inner proposed candidate from
Teague et al. (2018) (rproj∼83 au/ρ∼0 82), the limits have
now improved from 4.5MJ to 1.5MJ, the latter of which is just
slightly higher than the predicted mass of the companion
(1MJ). Limits for the outer Teague et al. candidate along the
minor axis are likewise just slightly higher than the predicted
mass (a limit of 2MJ versus a predicted 1.3MJ). Thus, at least
for now, the ALMA-predicted protoplanet candidates are
consistent with direct imaging constraints.

Our data appear to rule out the proposed, marginally
significant candidate identified from thermal IR data in Guidi
et al. (2018). Using standard assumptions for planet atmo-
spheres, our forward-modeling demonstrates we could have
detected an even fainter planet at the location of the proposed
candidate. For an assumed age of 5Myr and hot-start
evolutionary models, the candidate is predicted to be 6–7MJ,
while our radially averaged contrast limits are significantly
lower (∼4–5MJ).

43

The simplest explanation for our conflicting results is that the
NIRC2 candidate is instead residual, partially subtracted
speckle noise or partially subtracted disk emission left over

from processing. Figure 1 of Guidi et al. (2018) shows multiple
emission peaks with a similar or slightly smaller spatial scale as
the candidate (e.g., at the 2, 6, 7, and 8 o’clock positions just
exterior to the masked region). An even brighter, seemingly
point-source-like peak at nearly the same position angle in
these data appears to be an artificially enhanced region of the
disk, which could have been mistaken for a point in shallower
and/or higher background data. Convolving the image with a
Gaussian kernel may further accentuate the point-source-like
appearance of these features.44 The position of the candidate
also coincides with the minor axis of a second ring of emission
detected with ALMA. Forward-modeling as performed in
Currie et al. (2015) could better clarify whether the candidate’s
morphology is consistent with an annealed point source or
residual disk emission.
Alternatively, the candidate could be extremely red/under-

luminous in the near-IR and thus difficult to detect. If
embedded in the disk, it would be preferentially extincted in
the near-IR compared with the thermal infrared, as has been
proposed for HD 100546 b (Currie et al. 2015; Quanz et al.
2015). It could also retain an extremely dusty/cloudy
atmosphere characteristic of some young exoplanets near the
L/T transition (Currie et al. 2011; De Rosa et al. 2016), making
it appear “underluminous” in the near-infrared. Follow-up
thermal infrared imaging at Lp or Mp could provide a more
decisive probe of these possibilities.

6. Conclusions

We report H-band polarimetric imagery of the HD 163296
system along with contemporaneous infrared spectra observa-
tions and near-IR extreme AO imaging in total intensity.
We find:

1. Our 2011 H-band polarimetric imagery resolve a broken
ring structure surrounding HD 163296 that peaks at a
distance along the major axis of 0. 65 (66 au) and extends
out to 0 98 (100 au) along the major axis. Our non-
detection of the inner disk component is driven by our
inner working angle (0 3, 30.5 au), and does not conflict
with the detection of this component by Monnier et al.
(2017).

2. Our 2011 epoch H-band imagery exhibits clear axisym-
metry, with the NW and SE side of the disk exhibiting
similar intensities. Our 2011 epoch H-band data are thus
clearly different from the 2016 epoch H-band data from
VLT/SPHERE reported by Muro-Arena et al. (2018),
which exhibit a strong 2.7× asymmetry between the NW
and SE side of the disk. These results indicate the
presence of time-variable, non-azimuthally symmetric
illumination of the outer disk.

3. We were able to reproduce the basic properties of our
contemporaneous near-IR spectra and spatially resolved
H-band polarimetric imagery of the HD 163296 disk with
a 3D MCRT disk model that approximated the features of

43 Note that any new age estimates for HD 163296 drawn from its Gaia-
revised distance do not change our results. Comparisons to some isochrones
may imply an older age (e.g., 7.6 ± 1.1 Myr; Vioque et al. 2018). However,
other (e.g., the MIST and PARSEC) isochrones imply ages comparable to or
just slightly greater than 5 Myr. These differences do not change the fact that
the proposed HD 163296 companion should have been detected in our data
under standard assumptions for planet atmospheres.

44 The large spatial scale of the residuals may also be traced to the PSF
subtraction method used, which leverages on the Karhunen–Loéve Image
Projection (KLIP) algorithm with few KL modes retained (Soummer et al.
2012). Compared with standard implementations of A-LOCI, KLIP with few
KL modes retained may yield larger spatial-scale residuals. This is especially
true for KLIP implementations performing PSF subtraction in full annuli as in
Guidi et al. instead of smaller wedge-shaped annular regions, because the
subtraction is less local, in addition to constructing a low-rank approximation
of the data set’s covariance matrix.
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a disk wind via an envelope and did not specifically
require an inclined inner disk component. We suggest
that, while the system could plausibly host an inclined
disk as suggested by Muro-Arena et al. (2018), such a
component is unlikely to be responsible for producing the
observed time-dependent azimuthal variations in the
outer scattered light disk of the system. We speculate
that a variable, non-axisymmetric distribution of dust
clouds elevated by a disk wind could produce the
diversity of morphological appearances of the outer disk
now reported in the literature for this system.

4. While our 2018 epoch SCExAO/CHARIS observations
easily recover the disk, they fail to recover the candidate
6–7MJ protoplanet identified from Keck/NIRC2 data
(Guidi et al. 2018). The Keck/NIRC2 detection is likely a
residual speckle or a partially subtracted piece of the disk;
alternatively, this object could be a heavily embedded or
particularly red/cloudy object only identifiable in the
thermal infrared.

5. Assuming hot-start evolutionary models and a system age
of 5 Myr, our SCExAO/CHARIS detection limits for
protoplanets in thermal emission around HD 163296
near the projected trace of the disk are 2–5MJ. At wider
separations, covering the possible locations of the
inner proposed candidate from Teague et al. (2018)
(rproj∼83 au/ρ∼0 82), our data lower the mass limit
for detections from 4.5MJ to 1.5MJ, which is still slightly
higher than the predicted mass of the companion (1MJ).
Limits for the outer Teague et al. candidate along the
minor axis are likewise just slightly higher than the
predicted mass (a limit of 2MJ versus a predicted 1.3MJ).
The ALMA-predicted protoplanet candidates are cur-
rently still consistent with direct imaging constraints.

We acknowledge support from the NASA XRP program via
NNX-17AF88G. The authors recognize and acknowledge the
significant cultural role and reverence that the summit of
Maunakea has always had within the indigenous Hawaiian
community. We are most fortunate to have the opportunity to
conduct observations from this mountain.
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