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ABSTRACT

ON CLOSED SIX-MANIFOLDS ADMITTING METRICS WITH POSITIVE

SECTIONAL CURVATURE AND NON-ABELIAN SYMMETRY

Yuhang Liu

Wolfgang Ziller

We study the topology of closed, simply-connected, 6-dimensional Riemannian

manifolds of positive sectional curvature which admit isometric actions by SU(2) or

SO(3). We show that their Euler characteristic agrees with that of the known exam-

ples, i.e. S6, CP3, the Wallach space SU(3)/T 2 and the biquotient SU(3)//T 2. We

also classify, up to equivariant diffeomorphism, certain actions without exceptional

orbits and show that there are strong restrictions on the exceptional strata.
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Chapter 1

Introduction

The study of Riemannian manifolds with positive sectional curvature is an old

and fundamental subject in Riemannian geometry. There are very few compact

examples of positively curved manifolds besides the so-called Compact Rank One

Symmetric Spaces, which we will abbreviate as CROSS. In fact the only further

known examples exist only in dimension up to 24 and consist of homogeneous spaces

[Wal72][BB76], biquotients [Esc82] and one cohomogeneity one manifold in dimen-

sion 7 [GVZ11][Dea11].

The fundamental group of a compact Riemannian manifolds with positive sec-

tional curvature is finite, and it is trivial or equal to Z/2 in even dimensions. Fur-

thermore, odd-dimensional positively curved closed manifolds are orientable. How-

ever, for simply connected closed manifolds, no general topological obstructions are

known to separate the class of positively curved manifolds from the class of non-
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negatively curved manifolds, although thee are many examples with non-negative

curvature.

There are several classifications results of positively curved manifolds in low di-

mensions, though all of which require some “symmetry” conditions on the metric.

Positively curved 3-manifolds are space forms [Ham82]. In dimension 4, Hsiang and

Kleiner showed that positively curved simply connected 4-manifolds with S1 sym-

metry are homeomorphic to the 4-sphere S4 or the projective space CP2(see [HK89]);

later Grove and Wilking improved the result to equivariant diffeomorphism([GW14]).

In dimension 5, Xiaochun Rong showed that a T 2-invariant simply connected closed

5-manifold is diffeomorphic to a 5-sphere (see [Ron02]).

Inspired by Hsiang and Kleiner’s work, Karsten Grove proposed what is now

called the “symmetry program” in [Gro02], which is to study positively curved

manifolds with “large” symmetry group. Here “large” can have several different

meanings. Many results were obtained in this direction, particularly for torus ac-

tions. For example, Grove and Searle proved the Maximal Rank theorem([GS94]),

which states that the symmetry rank of a n-dimensional positively curved closed

manifold is at most [n+1
2

], and in the case of equality the manifold is diffeomor-

phic to a sphere, RPn, CPn or a lens space. Burkhard Wilking showed that when

n ≥ 10 and a positively curved closed simply connected n-manifold M has symme-

try rank at least n
4

+ 1, M is homeomorphic to Sn or HP
n
4 or homotopy equivalent

to CP
n
2 [Wil03]. Recently Kennard, Wiemeler and Wilking showed that an even-
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dimensional positively curved manifold with T 5-symmetry has Euler characteristic

at least 2.

After these classification results of positively curved manifolds invariant un-

der torus actions, it is natural to investigate metrics with non-abelian symmetry.

Wilking studied positively curved manifolds with high symmetry degree or low co-

homogeneity relative to the dimension in [Wil06]. Since all non-abelian compact Lie

groups contain a rank 1 subgroup, SU(2) or SO(3), it is natural to study metrics

invariant under SU(2) or SO(3). In dimension 5, Fabio Simas obtained a partial

classification of positively curved 5-manifolds invariant under SU(2) or SO(3) (see

[Sim16]). In this paper we study 6-dimensional positively curved manifolds with

SU(2) or SO(3) symmetry. This is also the first dimension where new examples

have been constructed, which need to be recognized. They are the Wallach space

SU(3)/T 2, where T 2 is the maximal torus, and the biquotient SU(3)//T 2, where

T 2 = {(diag(z, w, zw), diag(1, 1, z̄2w̄2))|z, w ∈ S1} ⊂ S(U(3)×U(3)) acts freely on

SU(3). On the first space one has an action by both SO(3) and SU(2), isometric

in the positively curved metric, and on the second space an action by SU(2) which

commutes with diag(1, 1, z̄2w̄2).

Our first result is:

Theorem 1.0.1. Let M = M6 be a 6-dimensional closed simply connected Rie-

mannian manifold of positive sectional curvature such that SU(2) or SO(3) acts

isometrically and effectively on M . Then:

3



(a) The Euler characteristic χ(M) = 2, 4, 6;

(b) The principal isotropy group is trivial unless M is equivariantly diffeomorphic

to S6 with a linear SO(3)-action;

(c) When the principal isotropy is trivial, the exceptional isotropy groups are ei-

ther cyclic or dihedral groups.

Notice that in the known examples, one has indeed χ(M) = 2, 4, 6. Before

stating the next theorems, we mention that the orbit spaceM/G is homeomorphic to

a 3-sphere or a 3-ball (see Theorem 3.0.11) unless M is equivariantly diffeomorphic

to S6 with a linear SO(3)-action (See Chapter 6, Example 1(c)).

In the case of G = SU(2) we will show:

Theorem 1.0.2. Assume that G = SU(2) acts on M isometrically and effectively.

1. If the fixed point set MG is non-empty, then M is equivariantly diffeomorphic

to a linear action on S6 or CP3.

2. If MG is empty and the action has no exceptional orbits, then M is diffeo-

morphic to S6, S2 × S4 or SU(3)/T 2.

Explicit actions as in the above theorem are described in Chapter 6.

Theorem 1.0.3. Suppose G = SO(3) and assume that the orbit space M/G is a

3-ball whose boundary contains more than 1 orbit types, and that there are no ex-

ceptional orbits or interior singular orbits. Then M6 is equivariantly homeomorphic

to a linear action on S6.

4



See Theorem 4.1.1 for further results in this special cases. The strategy to obtain

these results is to analyze the structure of the orbit space and recover M from M/G.

We will show that M/G is homeomorphic to B4, B3 or S3. We describe the structure

of singular orbit strata in all three cases, which allows us to glue different pieces of

singular orbits to recover the topology of M if exceptional orbits do not occur. If

exceptional orbits occur, we show that the stratification of M∗ must be very special.

We point out here that Fuquan Fang studied this problem, and claimed a partial

classification of such positively curved 6-manifolds (see [Fan02]). Unfortunately, his

proof contains several gaps.

5



Chapter 2

Preliminaries

We start by recalling some basic definitions for group actions, see e.g. [Bre72][AB15]

for a reference. Let G be a compact Lie group and M be a compact smooth manifold.

For a smooth action π : G ×M → M , the G-orbit G.p through a point p ∈ M

is the submanifold G.p = {gp ∈ M |g ∈ G}, the isotropy group or the stabilizer at

p ∈M is defined as Gp = {g ∈ G|gp = p}, and we have G.p = G/Gp. Furthermore,

we denote the G-fixed point set by MG = {p ∈ M |G.p = p}. Note also that the

fixed point set in an orbit has the form (G/K)H = {g ∈ G|g−1Hg ⊂ K}/K, where

H ⊂ K ⊂ G. In particular, (G/H)H = N(H)/H.

Points in the same G-orbits have conjugate isotropy groups. The isotropy type

of a G-orbit G/H is the conjugacy class of isotropy groups at points in G/H and

denote it by (H). We define M(K) to be the union of orbits with the same isotropy

type (K). For compact group actions on compact manifolds, there are only finitely
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many orbit types.

Among all orbit types of a given action, there exist maximal orbits G/H with

respect to inclusion of isotropy groups called the principal orbits. Non-principal

orbits which have the same dimension as the principal orbit are called exceptional

orbits, and orbits having lower dimension than principal ones are called singular

orbits.

The orbit space M∗ = M/G is the union of its orbit strata M∗
(K) = M(K)/G

which themselves are manifolds. The principal orbit stratum M∗
(H) is an open,

dense and connected subset of M/G. In particular the dimension of M∗
(H) is called

the cohomogeneity of the action. Codimensional one strata in M∗ are called faces,

which are part of ∂M∗. We notice that MK
(K) → M∗

(K) is an N(K)/K-principal

bundle and the structure group of M(K) →M∗
(K) is N(K)/K.

The following theorem gives constraints on the exceptional orbits in simply-

connected manifolds:

Theorem 2.0.4. ([Bre72]) Let M be a simply-connected manifold and G a compact

group acting on M . Then M∗ is also simply connected and there are no exceptional

orbits G/K whose stratum M∗
(K) has codimension 1 in M∗ (so called special excep-

tional orbits).

For each orbit G.p, let T⊥p denote the normal space at p to the orbit and S⊥p the

unit sphere in the normal space. T⊥p admits a natural linear action by the isotropy

group Gp, called the slice representation. The quotient T⊥p /Gp is called the tangent
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cone of the orbit in the orbit space, and S⊥p /Gp is the space of directions at p and

is denoted as S[p]. We also note that M(K) ∩ T⊥p = (T⊥p )K , and the slice theorem

states that an equivariant neighborhood of G/Gp has the form G ×Gp D(T⊥p ) =

(G×D(T⊥p ))/Gp, where D(T⊥p ) is a disk in T⊥p (also called the slice at p) and Gp acts

diagonally on G via right multiplication and on D(T⊥p ) via the slice representation.

If G acts on M by isometries, the orbit space, tangent cones and spaces of direc-

tions all inherit a metric from M. In particular, if we impose the positive curvature

assumption on M, M/G becomes an Alexandrov space with positive curvature.

We frequently use the knowledge of the subgroups of SO(3) and SU(2). For

SO(3) they are given by

• 0-dimensional subgroups: Z/k, Dk (dihedral groups acting on k vertices), A4,

S4, A5;

• 1-dimensional subgroups: SO(2), O(2);

and for SU(2) by

• 0-dimensional subgroups: Z/k, binary dihedral groups, inverse images of A4,

S4, A5 in SU(2);

• 1-dimensional subgroups: U(1), Pin(2) = N(U(1)).

Note that the only subgroups of SU(2) which do not contain the center Z/2 are

cyclic groups of odd order.
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It will also be useful for us to describe the quotient of R3 under a finite subgroup

Γ of SO(3). In the following pictures, a line segment represents a stratum of R3/Γ

with indicated cyclic isotropy, the origin has isotropy Γ and the complement has

trivial isotropy.

Z/k

(a) R3/Z/k

Z/k

Z/2 Z/2
Dk

(b) R3/Dk

Z/2

Z/3 Z/3
A4

(c) R3/A4

Z/4

Z/2 Z/3
S4

(d) R3/S4

Z/5

Z/2 Z/3
A5

(e) R3/A5

Figure 2.1: Finite quotients of R3

For the Euler Characteristic we have

Theorem 2.0.5. (a) ([Kob58]) If a torus T acts smoothly on a closed smooth

manifold M , then the Euler characteristic of M equals that of MT , that is,

χ(M) = χ(MT );

(b) ([PS12]) If M is a 6-dimensional simply connected Riemannian manifold with

positive sectional curvature and S1-symmetry, then χ(M) is positive and even.
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For totally geodesic submanifolds of positively curved manifolds, we have the so

called Connectedness Lemma due to Burkhard Wilking:

Theorem 2.0.6. (Connectedness Lemma, [Wil03]) Let Mn be a compact n-dimensional

Riemannian manifold with positive sectional curvature. Suppose that Nn−k ⊂ Mn

is a compact totally geodesic embedded submanifold of codimension k. Then the

inclusion map Nn−k ↪→Mn is (n-2k+1)-connected.

Recall that if we have a continuous map f : X → Y between two connected

topological spaces X and Y , and a positive integer k, then we say that f is k-

connected if f∗ induces isomorphisms on homotopy groups πi, 1 ≤ i ≤ k − 1 and

surjection on πk.

For smooth actions on positively curved mainifolds with nontrivial principal

isotropy group, we have:

Theorem 2.0.7. (Isotropy Lemma, [Wil06]) Let G be a compact Lie group act-

ing isometrically and not transitively on a positively curved manifold (M, g) with

nontrivial principal isotropy group H. Then any nontrivial irreducible subrepresen-

tation of the isotropy representation of G/H is equivalent to a subrepresentation

of the isotropy representation of K/H, where K is an isotropy group such that the

orbit stratum of K is a boundary face in M/G and K/H is a sphere.

Finally, for Riemannian manifolds with positive sectional curvature and low

fixed point cohomogeneity, we have the following classification which will be used

in the proof of Proposition 4.0.14.
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Theorem 2.0.8. ([GS97][GK04]) If M is a positively curved simply connected

closed manifold which admits an isometric action by a compact group G such that

the fixed point cohomogeneity cohomfix(M,G) := dim(M/G) − dim(MG) − 1 ≤ 1,

then M is equivariantly diffeomorphic to a compact rank one symmetric space.

We now state a version of the soul theorem in the setting of orbit spaces, which

will be used in Theorem 4.1.1.

Theorem 2.0.9. (Theorem 1.2 [GK04], boundary soul lemma). Let M be a closed

Riemannian manifold with positive sectional curvature and G a compact Lie group

acting isometrically on M . Suppose M∗ = M/G has nonempty boundary ∂M∗.

Then we have

1. There exists a unique point so ∈ M∗, the soul of M∗, at maximal distance to

∂M∗;

2. The space of directions S[so] at so is homeomorphic to ∂M∗;

3. The strata in int(M∗) = M∗ − ∂M∗ belong to one of the following:

(a) all of int(M∗);

(b) the soul point so;

(c) a cone over strata in ∂M∗ with its cone point so removed;

(d) a stratum containing so whose boundary consists of strata in ∂M∗.

11



Remark 2.0.10. We note that in [GK04] it was claimed that the strata in part (d)

is one-dimensional, but one easily gives examples where its dimension is higher.
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Chapter 3

The Structure of Orbit Spaces and

Orbit Types

Throughout the remainder of the paper, G will always be the Lie group SU(2) or

SO(3), and M is a simply connected closed 6-dimensional Riemannian manifold

with positive sectional curvature which admits an effective isometric G-action.

We start by observing the following dichotomy for the topology of the orbit

space M/G:

Theorem 3.0.11. The orbit space M∗ is homeomorphic to either S3 or a 3-ball B3

or B4. When M∗ = B4, M is equivariantly diffeomorphic to S6 with a fixed point

homogeneous linear SO(3)-action.

Proof. The cohomogeneity is calculated via dim(M∗) = dim(M)−dim(G)+dim(H) =

3+dim(H), where H is the principal isotropy group. H is either 0 or 1-dimensional,

13



since closed subgroups of G = SU(2), SO(3) have dimensions 0,1,3, and H cannot

be 3-dimensional since otherwise the G-action would be trivial. Thus the cohomo-

geneity is either 3 or 4.

Suppose that the cohomogeneity is 4. Then the principal isotropy group H is

1-dimensional, thus one of S1, O(2) or Pin(2). Since the isotropy representation

of H is irreducible, Theorem 2.0.7 implies that the boundary face has isotropy

K = G and that the G-action is fixed point homogeneous. The only fixed point

homogeneous action with cohomogeneity 4 is the linear SO(3)-action on S6 fixing

the first 4 coordinates with quotient B4 (Example 1(c) in Chapter 6).

When the cohomogeneity is 3, the orbit space M∗ is a simply connected 3-

dimensional topological manifold possibly with boundary, and [Bre72] Corollary

4.7 implies that M∗ is homeomorphic to a 3-sphere with finitely many open disks

removed. If ∂M∗ is non-empty, the Soul Theorem implies that M∗ is contractible.

In conclusion, M∗ is either a simply connected 3-manifold without boundary, thus

a 3-sphere by Perelman’s solution to the Poincare conjecture; or a 3-sphere with

one open disk removed, thus a 3-ball.

We note that we have 4 kinds of orbits, corresponding to the 0,1,3-dimensional

closed subgroups of G:

(a) Principal orbits G/H, with principal isotropy group H which will be shown

to be trivial, Z/2⊕ Z/2, or SO(2);

14



(b) Exceptional orbits G/Γ, with isotropy groups Γ which are finite extensions of

H; we will show Γ is cyclic or dihedral when H is trivial;

(c) Singular orbits G/K, with 1-dimensional isotropy groups K, and hence K =

SO(2), O(2) when G = SO(3), and K = U(1), P in(2) when G = SU(2);

(d) Fixed points i.e. Gp = G.

We now prove part (b) of Theorem 1.0.1, using Wilking’s Isotropy Lemma.

Theorem 3.0.12. The principal isotropy subgroup H is trivial unless M is equiv-

ariantly diffeomorphic to S6 with a linear SO(3)-action.

Proof. Suppose the principal isotropy group H is non-trivial. By Theorem 3.0.11,

we only need to consider the case dim(M∗) = 3 and thus H is finite. If the isotropy

representation of H on the tangent space to G/H has an irreducible subrepresen-

tation of dimension greater than 1, then by the Isotropy Lemma, the isotropy K

of the boundary face has dimension at least 2. Hence K = G, i.e. the G-action

is fixed point homogeneous. In all other cases the irreducible components of the

(3-dimensional) isotropy representation of G/H are 1-dimensional. Among the non-

trivial subgroups of G, only Z/2 or Z/2⊕Z/2 in SO(3) has 3-dimensional representa-

tions of this type. Thus H = Z/2 or Z/2⊕Z/2, and G = SO(3). Since the isotropy

representation of SO(3)/H has a 1-dimensional subrepresentation on which H acts

as -Id, the Isotropy Lemma implies that the boundary face has isotropy K = O(2).

The only higher strata on ∂M∗ are fixed points. We note here that Proposition

15



4.0.14 does not depend on the triviality of H, thus it is valid to quote its proof.

From the proof of Proposition 4.0.14, if MG 6= ∅ and the principal isotropy is non-

trivial, then the G-action on M has fixed point cohomogeneity at most 1 and M is

equivariantly diffeomorphic to S6 with a linear action.

So we can assume that MG = ∅, the boundary of the orbit space has isotropy

O(2) and hence the interior regular part has isotropy H = Z/2 or Z/2⊕Z/2. From

Theorem 2.0.9(3), we have two possibilities: either M∗ has one interior singular

orbit, or it has none. We rule out both possibilities by calculating the fundamental

group and cohomology groups of M . From now on, π : M → M∗ is the natural

projection, U = π−1(int(M∗)) and V is a tubular neighborhood of π−1(∂M∗). M =

U ∪ V is the desired decomposition.

1. If M∗ has no interior singular orbit, then U is an SO(3)/H-bundle over

int(M∗) = D3 and thus U = SO(3)/H × D3 since the base D3 is con-

tractible. V deformation retracts onto an SO(3)/O(2)-bundle over ∂M∗ = S2,

with structure group N(O(2))/O(2) = id. Thus V retracts onto a trivial

RP2-bundle over S2. U ∩ V deformation retracts onto SO(3)/H × S2. Let

i : U ∩ V → U, j : U ∩ V → V denote the respective inclusions. By van

Kampen’s theorem, π1(M) = π1(U) ∗π1(V )/ < i∗(a)j∗(a)−1|a ∈ π1(U ∩V ) >.

It is non-trivial since i∗ is an isomorphism and thus π1(V ) ∼= Z/2 cannot be

killed. This contradicts the assumption that M is simply connected.

2. If M∗ has an interior singular orbit, a priori the singular orbit could have

16



isotropy SO(2) or O(2). Take the SO(2)-fixed point set MSO(2) = V SO(2) ∪

USO(2). Since SO(2) fixes one point in each orbit on ∂M∗, V SO(2) is home-

omorphic to ∂M∗ = S2. If the interior singular orbit has isotropy O(2),

then USO(2) = (SO(3)/O(2))SO(2) = pt. So Theorem 2.0.5 implies that

χ(M) = χ(MSO(2)) = χ(S2∪pt) = 3, contradicting the fact that χ(M) is even.

Thus the interior singular orbit has isotropy SO(2). Then the slice represen-

tation of SO(2) has slope (2,2), H = Z/2 and USO(2) = (S2)SO(2) = 2 points.

Therefore χ(M) = χ(MSO(2)) = χ(S2∪{2 points}) = 4. We first show that M

has the cohomology groups of CP3, and then use the Mayer-Vietoris sequence

to obtain a contradiction.

MH is a totally geodesic submanifold with even codimension since the H-

action on M is orientation-preserving, and it has dimension at least 3 since H

fixes at least one point in each principal orbit. Thus MH is 4-dimensional sub-

manifold with positive sectional curvature. Wilking’s connectedness lemma

implies that the inclusion of i : MH ↪→ M is 3-connected. In particular,

π1(M
H) = π1(M) = 0. Moreover, N(H)/H = O(2) acts effectively on

MH . By the Hsiang-Kleiner theorem ([HK89]), MH is diffeomorphic to S4

or CP2. If MH = S4, then Wilking’s connectedness lemma implies M is a

homology 6-sphere, violating χ(M) = 4. Thus MH = CP2. We then have

π2(M) = π2(CP2) = Z, π3(M) = i∗(π3(CP2)) = 0. Hence the Hurwicz theo-

rem and Poincare duality imply that M has the cohomology groups of CP3.
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Now we apply the Mayer-Vietoris sequence to recompute H∗(M). From the

slice theorem, U = SO(3) ×SO(2) D
4 and the slope of the SO(2) action on

D4 is (2,2). U deformation retracts onto S2. V is an SO(3)/O(2)-bundle

over S2 with structure group N(O(2))/O(2) = id and thus V = S2 × RP2.

U ∩ V = SO(3)×SO(2) S
3 = S2 × S3 since the sum of the slopes is even (see

[Sim16]). We then have the following short exact sequence:

0→ H2(M) ∼= Z→ H2(U)⊕H2(V ) ∼= Z⊕ Z⊕ Z/2→ H2(U ∩ V ) ∼= Z→

→ H3(M) = 0,

(3.0.1)

which leads to a contradiction.

Thus in both cases H is trivial.

In our setting, exceptional orbits could have rich and complicated structure, as

we will see in the next chapters, making it difficult to recover the original manifold

from the orbit space. This is also an issue ignored in Fang’s paper [Fan02]. We state

and prove some results on the structure of exceptional orbits, including Theorem

1.0.1(c).

Proposition 3.0.13. For exceptional orbits G/Γ, the following holds:

(a) The exceptional isotropy groups Γ are cyclic of odd order if G = SU(2), and

cyclic or dihedral if G = SO(3);
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(b) In the orbit space M/G, there are no isolated exceptional orbit strata, that is,

no exceptional strata whose closure does not contain singular strata.

Proof. We prove part (a) via case-by-case analysis. The finite subgroups of SO(3)

are Z/m, Dn, A4, S4, A5.

If Γ = A4, then the local picture of the exceptional strata is Figure 2.1c. We

take the Z/2-fixed point set, and note that

(SO(3)/A4)
Z/2 = {g ∈ SO(3)|g−1(Z/2)g ⊂ A4}/A4 = N(Z/2)A4/A4

= N(Z/2)/N(Z/2) ∩ A4 = N(Z/2)/(Z/2) = S1
∐

S1,

(SO(3)/(Z/2))Z/2 = N(Z/2)/(Z/2) = S1
∐

S1, (SO(3)/(Z/3))Z/2 = ∅.

We conclude that MZ/2 has two circle boundaries at SO(3)/A4. On the other hand,

each component of MZ/2 is a 2-sphere, which is a contradiction.

If Γ = S4, then the local picture of the exceptional strata is Figure 2.1d. Con-

sidering MZ/3 we have

(SO(3)/S4)
Z/3 = N(Z/3)/(Z/3) = S1

∐
S1, (SO(3)/(Z3))

Z/3 = N(Z/3)/(Z/3)

= S1
∐

S1,

(SO(3)/(Z2))
Z/3 = ∅, (SO(3)/(Z4))

Z/3 = ∅.

Hence MZ/3 has circle boundaries at G/Γ, a contradiction.

If Γ = A5, then the local picture of the exceptional strata is Figure 2.1e. Con-
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sidering MZ/5 we have

(SO(3)/A5)
Z/5 = N(Z/5)/(Z/5) = S1

∐
S1, (SO(3)/(Z5))

Z/5 = N(Z/5)/(Z/5)

= S1
∐

S1,

(SO(3)/(Z2))
Z/5 = ∅, (SO(3)/(Z3))

Z/5 = ∅.

Thus MZ/5 again has circle boundaries at G/Γ, a contradiction.

In conclusion, Γ 6= A4, S4, A5, and hence the exceptional isotropy groups are

cyclic or dihedral.

To prove part (b), we first observe that exceptional orbit strata cannot be 2-dim,

as there are no special exceptional orbits. Thus they are isolated points or 1-dim

curves. We want to show that there are no connected components of exceptional

strata whose closure does not contain singular orbits, in particular, exceptional

points can not be isolated.

Suppose there is a component of exceptional strata which is closed. Then it is

a connected graph, which is a union of circles and intervals. Take some exceptional

isotropy group K of the strata and a non-trivial cyclic subgroup C of K, and consider

the C-fixed point component in this exceptional stratum.

In each exceptional orbit G/K, (G/K)C is the union of several circles. Since the

exceptional strata are 1-dim, the fixed point component of MC is 2-dim, and hence

is a 2-sphere, as it is orientable, totally geodesic and hence has positive curvature.

This induces a foliation of S2 by circles, which is impossible since the tangent bundle

of S2 does not contain any sub line bundle.
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Chapter 4

Actions, Orbit Spaces and the

Topology of G-manifolds

In this chapter we study different types of G-actions on positively curved 6-manifolds.

We start with the case of a non-empty fixed point set.

Proposition 4.0.14. If MG 6= ∅, then one of the following holds:

1. M is equivariantly diffeomorphic to S6 or CP3 with a linear action;

2. G = SO(3) and MG is finite. In this case M∗ = B3 and MG lies on ∂M∗.

Proof. We separate the cases of SU(2) and SO(3) actions.

• Case 1: G = SU(2).

SU(2) acts on the normal space to MG effectively without fixed points.

By considering the faithful real representations without trivial summands of
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SU(2) in dimensions less than 6, we see that only the 4-dimensional irreducible

representation of SU(2) satisfies the requirements. Thus the codimension of

MG is 4 and the action of G on the normal space is equivalent to the realifi-

cation of the standard SU(2)-action on C2. Hence G acts transitively on the

unit sphere in C2, the G action on M is fixed point homogeneous and Theorem

2.0.8 implies the desired result.

• Case 2: G = SO(3).

For the action of SO(3) on the normal space to MG we have the following

possibilities:

(a) R3 with the standard SO(3)-action. In this case the action is fixed point

homogeneous;

(b) R5 with the unique 5 dim irreducible representation of SO(3). The

SO(3)-action on the unit normal sphere S4 has cohomogeneity one, which

by definition implies the G-action on M has fixed point cohomogeneity

one;

(c) R3⊕R3 with diagonal action of SO(3). Note: Example 1(e) in Chapter 6

comes from a suspension of this isotropy representation. Thus the origin

is an isolated fixed point.

If case (a) or (b) occurs, the G-action on M is equivariantly diffeomorphic to

a linear action on S6 or CP3 by Theorem 2.0.8. In case (c), the fixed points
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are isolated and hence MG is finite.

Finally it remains to show M∗ = B3. First note that from the above discus-

sion, the isotropy representation of SO(3) at an isolated fixed point is R3⊕R3

with diagonal action. The orbit types of this representation are:

– principal orbits with trivial isotropy, represented by two linearly inde-

pendent vectors in R3;

– singular orbits with SO(2)-isotropy, represented by two linearly depen-

dent vectors in R3 which are not both zero;

– the fixed point (0, 0).

The union of singular orbits near a fixed point has dimension 4 in M, which

descends to 2-dimensional strata of M∗. Since dim(M∗) = 3, this strata is a

boundary face in ∂M∗ and hence M∗ = B3 by Theorem 3.0.11.

Comparing with the class of linear actions in Chapter 6, one sees that in Case

1 the only actions are those given in Examples 1(b) and 2(a), while for Case 2(a)

and 2(b) the actions are given by Examples 1(c) and 1(d) respectively. Next, we

study the case where MG is finite or empty.
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4.1 SO(3) actions with MG finite or empty

By Theorem 3.0.11, we divide this section into two parts, corresponding to M∗ = B3

and M∗ = S3, and we start with the case where M∗ = B3.

Theorem 4.1.1. Assume G = SO(3), with M∗ = B3 and MG finite. Then:

1. The boundary faces of M∗ consists of singular orbits with SO(2)-isotropy.

2. There is at most 1 interior singular orbit whose isotropy group has to be

SO(2).

3. If ∂M∗ contains more than 1 orbit types, then ∂M∗ contains exactly 2 singular

points which are either two fixed points or one fixed point and one O(2)-

orbit. Moreover, if there is an O(2)-orbit on ∂M∗, then there exist an interior

singular orbit and a Z/2-exceptional stratum connecting the interior singular

orbit and the O(2)-orbit.

4. The Euler characteristic χ(M) ≤ 6. If ∂M∗ contains more than 1 orbit types,

then χ(M) ≤ 4.

For part 3, see Example 2(c) in Chapter 6.

Proof. Proof of part 1: First of all by Theorem 2.0.4 the boundary does not contain

any exceptional orbits. A priori the boundary face orbits could be singular orbits

with O(2)-isotropy, but then from the slice action of O(2) on the 4-dimensional
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normal space the principal isotropy group would be non-trivial (containing Z2),

contradicting Theorem 1.0.1(b).

Proof of part 3: In each boundary face orbit, SO(2) fixes exactly 2 points, since

a boundary face orbit has SO(2)-isotropy; in O(2)-orbits on ∂(M/G) or G fixed

points, SO(2) fixes one point. Thus the SO(2)-fixed point component over ∂(M/G)

is a branched double cover of ∂(M/G) = S2 with branching points corresponding

to O(2)-orbits or G-fixed points. Moreover, the SO(2)-fixed point component is a

2-sphere itself, as it is orientable and has positive curvature. From the Riemann-

Hurwicz formula, a branched double cover between two 2-spheres has exactly 2

branched points.

If there is anO(2)-orbit on ∂M∗, thenO(2) acts on the 4-dim slice as diag(1, 1, 1,−1).

The O(2)-action on the last two coordinates is effective since otherwise the prin-

cipal isotropy would be non-trivial. So we get a Z/2-stratum emanating from the

O(2)-orbit which must end at the interior singular orbit. Finally there cannot be

two O(2)-orbits since otherwise the slice representation of the interior singular orbit

would have slope (2,2), forcing the principal isotropy group to be non-trivial.

Proof of part 2: Theorem 2.0.9(3) implies that M∗ has at most 1 interior singular

orbit G/K. A priori K could be SO(2) or O(2). Suppose K = O(2). The slice

representation of O(2) is 4-dimensional and orientation-reversing, since the isotropy

representation of O(2) on SO(3)/O(2) is orientation-reversing. We list all possible

effective orientation-reversing O(2)-actions on R4:
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Suppose the SO(2) subgroup acts as R(θ) 7→

R(pθ) 0

0 R(qθ)

, where p and q

are coprime integers since otherwise H is nontrivial. Let τ ∈ O(2) \ SO(2) be a

reflection.

1. p, q 6= 0, and τ acts by diag(1,−1, 1,−1). In this case the action of τ is

orientation preserving, which implies that the slice action ofO(2) is orientation

preserving. But this is not allowed.

2. p = 0, q = 1, and τ acts by diag(1, 1, 1,−1). In this case the strata M∗
(O(2)) is

2-dimensional and thus M∗
(O(2)) ⊂ ∂M∗, contradicting the assumption G/K ∈

int(M∗).

3. p = 0, q = 1, and τ acts by diag(−1,−1, 1,−1). In this case M∗
(SO(2)) is 2-

dimensional and M∗
(SO(2)) ⊂ ∂M∗. G/K lies in the closure of M∗

(SO(2)), and

thus G/K ∈ ∂M∗. Thus this also cannot occur.

In conclusion K = SO(2).

Proof of part 4: If ∂M∗ has more than 1 orbit types, then there are two singular

points in ∂M∗ by part 3 and at most one singular orbit in the interior which has

SO(2)-isotropy. These include all singular orbits, and MSO(2) is either a 2-sphere

or the union of 2-sphere with 2 points. Thus χ(M) = χ(MSO(2)) ≤ 4. If ∂M∗ has

only 1 orbit type, then Theorem 2.0.9(3) implies that either int(M∗) is a stratum,

or int(M∗) − s0 and the soul point are two strata. In other words, M∗ has no
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exceptional orbits. Part 2 implies that the soul point has SO(2)-isotropy. Thus

MSO(2) = S2 ∪ S2 or S2 ∪ S2 ∪ {2 points} and χ(M) = χ(MSO(2)) = 4, 6.

Corollary 4.1.2. If G = SO(3) and M∗ = B3, then the structure of M∗ is as in

Figures 4.1a, 4.1b below or the Figures 5.1a, 5.1b, 5.4a and 5.4b in Chapter 5. In

the pictures, the groups represent the isotropy groups of the corresponding strata.

id

SO(3)

N

SO(3)

S

SO(2)

(a)

SO(3)

O(2)

O(2)

Z/2⊕ Z/2

(b)

Figure 4.1: G = SO(3), M∗ = B3

Proof. If MG is not finite, Proposition 4.0.14 implies that M∗ is as in Figure 4.1b.

So we may assume that MG is finite. Then Theorem 4.1.1 implies that the boundary

face has isotropy SO(2) and that there is at most 1 interior singular orbit.

Assume that ∂M∗ has 1 orbit type. If int(M∗) contains no singular orbit, M∗

is as in Figure 5.1a. If int(M∗) contains 1 singular orbit, M∗ is as in Figure 5.4a.

Assume that ∂M∗ has multiple orbit types. Theorem 4.1.1 implies ∂M∗ contains

two fixed points, or one fixed point and one O(2)-orbit. If ∂M∗ contains two fixed
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points, M∗ is as in Figure 4.1a or Figure 5.4b. Otherwise, M∗ is as in Figure

5.1b.

We point out that in Figure 4.1a and 4.1b, M is classified. See Theorem 1.0.3

and Proposition 4.0.14 respectively. We now prove Theorem 1.0.3.

Theorem 4.1.3. Assume that G = SO(3), M∗ = B3, ∂M∗ contains more than

1 orbit types and that there are no exceptional orbits or interior singular orbits.

Then: M6 is equivariantly homeomorphic to a 6-sphere S6 and G = SO(3) acts on

S6 ⊂ R7 linearly as in Example 1(e).

Proof. From Theorem 4.1.1(3), we know ∂M∗ has 2 singular points. Since M has no

exceptional orbits, these two orbits cannot be O(2)-orbits, otherwise there will be

exceptional orbits near the O(2) orbit with isotropy containing Z/2. Thus the two

singular points are two G-fixed points. Now we see that all orbit types are: principal

orbits with trivial isotropy, singular orbits on ∂M∗ with SO(2)-isotropy and two

G-fixed points on ∂M∗. We have assumed that there are no interior singular orbits.

We need to classify G-spaces with 3 orbit types (H) = (id), (K) = (SO(2)), (G) =

(SO(3)) such that the number of fixed points is 2.

We recall the Second Classification Theorem in [Bre72]. For a smooth G-action

on M, suppose the orbit space X = M∗ is a contractible manifold with boundary

B, and that the action has only two orbit types, with principal orbits G/H corre-

sponding to X \ B and singular orbits G/K corresponding to B. Then the set of
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equivalence classes of such G-spaces M is parametrized by the following set

[B, (N(H) ∩N(K)) \N(H)]/π0(
N(H)

H
)

where [X, Y ] denotes the homotopy classes of continuous maps from X to Y. (See

Corollary V.6.2, page 257 of [Bre72])

For actions with 3 orbit types H, K and G, Proposition V.10.1 [Bre72] states

that the set of equivariant homeomorphism classes of G-spaces with 3 orbit types is

bijective to the set of equivariant homeomorphism classes of G-spaces with 2 orbit

types (H) and (K) obtained by deleting the fixed points. The latter G-spaces are

homotopy equivalent to G-spaces with orbit space a two-disk D2 and 2 orbit types

H = id, K = SO(2) where the singular orbits G/K lie on the boundary of D2.

Those G-spaces are classified by

[∂(D2), (N(H) ∩N(K)) \N(H)]/π0(
N(H)

H
) = π1(RP2) = Z/2.

Actually we can write down explicitly the 2 G-spaces. They are:

• the 5-sphere where the G-action comes from the restriction of the 6-dimensional

real representation R3 ⊕ R3 and G = SO(3) acts diagonally;

• S2×S3 where G = SO(3) acts diagonally on S2-factor as the standard linear

action and on S3-factor as the linear suspension.

M is the suspension of the above 5-manifolds. But M is a manifold, so it can only be

the suspension of the 5-sphere, which a 6-sphere, and the action is the one described

in the theorem.
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Proposition 4.1.4. If G = SO(3) and M∗ = S3, then there are 2 or 3 singular

orbits.

We first state the Extent Lemma. For any metric space (X, d) and positive

integer q ≥ 2, we define the q-extent of X as

xtq(X) =
1(
q
2

) sup
x1,...,xq∈X

∑
1≤i<j≤q

d(xi, xj). (4.1.1)

In other words, xtq(X) is the maximal average distance between points in q-touples

in X. When q=2, xt2(X) is the diameter of X. The Extent Lemma from [GS97]

states that: if M/G is an Alexandrov space with positive curvature, then for all

(q+1)-touples ([x0], ..., [xq]) in M/G, we have:

1

q + 1

q∑
i=0

xtq(S[xi]) >
π

3
.

We can use the Extent Lemma to prove Proposition 4.1.4.

Proof. There exist singular orbits since χ(MS1
) = χ(M) > 0 and thus MS1 6= ∅.

We apply the Extent Lemma to show that there are at most 3 singular orbits.

Suppose there were 4 singular orbits. Then in M∗, each singular orbit G/Ki

has a space of directions S3(1)/Ki, where Ki = S1orO(2) acts linearly on the unit

normal sphere S3(1) via the slice representation. xt3(S
3/Ki) ≤ xt3(S

2(1
2
)) = π

3
.

Thus 1
4

∑3
i=0 xt3(S

3(1)/Ki) ≤ π
3
, and we get a contradiction to the Extent Lemma.

Finally we show that there cannot be only 1 singular orbit. Suppose there were

only 1 singular orbit G/K. Then there are no exceptional orbits and the singular
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isotropy K = S1. By the slice theorem, an invariant neighborhood of G/K is

SO(3) ×S1 D4 whose boundary is an S3-bundle over S2. On the other hand the

compliment of SO(3)×S1 D4 in M is SO(3)×D3 whose boundary is SO(3)× S2.

The two boundaries are not homeomorphic since their fundamental groups are not

isomorphic, and thus there is no way of gluing the two pieces to get M .

4.2 SU(2) actions with MG = ∅

Proposition 4.2.1. When G = SU(2) and MG = ∅, the orbit space M∗ is a 3-

sphere. Moreover, the fixed point set MZ/2 of the center Z/2 is precisely the union

of all singular orbits, which are all 2-spheres. Furthermore, there can be at most 3

singular orbits.

Proof. We prove the second part first. Each component of MZ/2 is a totally geodesic

orientable submanifold of even codimension in M and SO(3) = SU(2)/(Z/2) acts

on it. A priori it could have dimension 4,2,0. But 0-dimensional components would

be G-fixed points, violating our assumption. We then show that it cannot have

dimension 4.

If a component of MZ/2 has dim 4, then the induced metric has positive sectional

curvature and is invariant under SO(3). From Wilking’s connectedness lemma, it is

also simply connected. Thus by the Hsiang-Kleiner theorem it is diffeomorphic to

either S4 or CP2. And it also admits a cohomogeneity one action by SO(3). From

the classification of 4-dim cohomogeneity one manifolds (see for example [Par86]),
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such actions have at least one singular orbit with O(2)-isotropy, which lifts up to

Pin(2)-isotropy for the corresponding SU(2)-action. The action of the Pin(2)-

isotropy group on the normal space to MZ/2 has to be effective, since otherwise the

center Z/2 would lie in the ineffective kernel. But this is impossible since the normal

space is 2-dimensional and Pin(2) has no effective 2-dim real representation. Thus

every component of MZ/2 is a 2-dimensional orientable positively curved manifold,

which is a 2-sphere. Those 2-spheres are precisely the singular orbits, since every

SO(2) ⊂ SU(2) contains Z/2 and hence every singular orbit is contained in MZ/2.

To show that there are at most 3 singular orbits, we use the Extent Lemma. If

there are 4 of them then as in the proof of Proposition 4.1.4, we get a contradiction

to Extent Lemma.

Finally it remains to show M∗ = S3. Assume otherwise. Then by Theorem

3.0.11 M∗ = B3. The boundary of M∗ consists of singular orbits, which means

MZ/2 is 4-dimensional since it contains all singular orbits, which is impossible.

Remark 4.2.2. The above proposition says more than the statement that the orbit

space has no boundary. In fact, there are also no exceptional orbits whose isotropy

groups contain the center Z/2, as a corollary. Hence the exceptional isotropy groups

are all cyclic of odd order.

Now we prove Theorem 1.0.2.
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Theorem 4.2.3. G = SU(2). If MG is empty and the action has no exceptional

orbits, then M is diffeomorphic to S6, S2 × S4 or SU(3)/T 2.

Proof. From Proposition 4.2.1, we know that M∗ = S3 and there are at most

3 singular orbits, all of which have U(1)-isotropy. There has to be at least one

singular orbit, since the fixed point set MU(1) cannot be empty. We then discuss

the 3 cases, in which the number of singular orbits is 1,2, or 3, respectively.

Case 1: there is only one singular orbit. Then by the slice theorem a tubular

neighborhood of the singular orbit is V = SU(2) ×U(1) D
4 = (SU(2) × D4)/U(1),

where D4 is a 4-disk and U(1) acts diagonally on SU(2) factor via right translation

and on D4 via the standard linear action on C2. V is a linear D4-bundle over

SU(2)/U(1) = S2, with boundary ∂V = S3 × S3/S1 = SO(4)/SO(2) = T 1S3 =

S3 × S2. Thus V is a trivial D4-bundle over S2. Moreover, we claim that the slice

action by SU(2) on ∂V = S3 × S2 is group multiplication on the S3-factor and

trivial on the S2-factor. To see this, note that the identification S3 × S2 ∼= T 1S3 is

given by (p, ve) 7→ (p, pve), where ve ∈ TeS3 and pve is quaternion multiplication.

SU(2) acts on T 1S3 via a.(p, pve) = (ap, apve) 7→ (ap, ve) ∈ S3 × S2, and thus it

only acts on the S3-factor.

The complement U of V is an SU(2)-bundle over D3, which has to be the trivial

bundle SU(2) × D3 = S3 × D3 with SU(2) acting only on the first factor. Thus

M is the gluing of U = S3 × D3 and V = S2 × D4 along their common boundary

S2 × S3 via the equivariant gluing map f : S3 × S2 → S3 × S2. f has to take on
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the form

f(p, q) = (p · g(q), φ(q)), (p, q) ∈ S3 × S2, g : S2 → S3, φ ∈ Diffeo(S2).

Since π2(S
3) = 0, g is null-homotopic. There are only 2 homotopy classes of f,

depending on whether φ is orientation-preserving or reversing. Note that there

exists an equivariant orientation-reversing diffeomorphism of U = SU(2)×D3 given

by (g, p) 7→ (g,−p). If f is orientation reversing, we change the orientation on

U equivariantly so that f becomes orientation-preserving. Thus up to change of

orientation f is homotopic to the identity map, and M = U ∪f V is equivariantly

diffeomorphic to S6 .

Case 2: there are two singular orbits. Again a tubular neighborhood V of each

singular orbit is V = SU(2)×U(1)D
4 = S2×D4, and M is the gluing of the 2 copies

of V along their common boundary S2 × S3 via f. Up to a change of orientation of

V, f is homotopic to the identity. Thus the resulting manifold is S2 × S4.

Case 3: there are three singular orbits. A neighborhood V ′ of the singular part

is the union of three copies of S2 ×D4 as in the previous cases. The principal part

U ′ of the manifold is a SU(2)-bundle over S3 minus 3 points, which is homotopy

equivalent to a SU(2)-bundle over S2 ∨ S2. SU(2) principal bundles over S2 are

classified by π1(SU(2)) = 0, and thus have to be trivial. So U ′ is homotopy equiva-

lent to a trivial SU(2)-bundle over S2 ∨S2. U ′ ∩V ′ is diffeomorphic to three copies

of S3 × S2. M is the gluing of U ′ and V ′ along U ′ ∩ V ′ via three copies of f. Each

copy of f could be orientation preserving or reversing. We fix the orientation on U ′,
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and change the orientation of a component of V ′ if the corresponding gluing map is

orientation-reversing. In conclusion, up to change of orientation there is only one

homotopy class of the gluing map and thus only one diffeomorphism class of M .

From Example 3(a) described in Chapter 6, we know the flag manifold SU(3)/T 2

admits such an action, thus M = SU(3)/T 2.

Remark 4.2.4. The SU(2)-actions on S6, S2 × S4 and SU(3)/T 2 in Cases 1,2,3

are all realizable. On S6 it is the triple suspension of the Hopf action on S3. On

S2 × S4 it is the diagonal action where SU(2) acts as SO(3) on S2 and acts on S4

as the suspension of S3. On SU(3)/T 2 it acts via left multiplication. We do not

know though whether S2 × S4 admits a metric with positive sectional curvature

invariant under the SU(2)-action. The SU(2) actions on the 6-sphere in Case 1

and on SU(3)/T 2 in Case 3 preserve positive curvature.

We point out that at this point we have proved Theorem 1.0.1(a). Indeed, when

the orbit space M∗ is a 3-ball, Theorem 1.0.1(a) reduces to Theorem 4.1.1(4). When

M∗ is a 3-sphere, from Proposition 4.1.4 and Proposition 4.2.1, singular orbits are

all isolated whose number is at most 3. In MS1
: each singular orbit contributes

to 1 or 2 S1-fixed points. Thus MS1
is a finite set of at most 6 points. Hence

χ(M) = χ(MS1
) ≤ 6.
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Chapter 5

Unsolved Cases

In this chapter, we summarize the unsolved cases and discuss possible strategies.

In the pictures, the dashed oval indicates M∗ = B3 and a single circle indicates

M∗ = S3. Note that the center c has to be the soul point by Theorem 2.0.9.

1. Figure 5.1a. ∂M∗ has isotropy SO(2) and int(M∗) has trivial isotropy. From

Corollary V.6.2, page 257 of [Bre72], we know such G-spaces are parametrized

by

[B, (N(H) ∩N(K)) \N(H)]/π0(
N(H)

H
) = π2(RP2) = Z.

Two examples of such G-spaces are CP3 and S2 × S4. The SO(3)-action on

CP3 is the one described in Example 2(b) in Chapter 6, while the action

on S2 × S4 is diagonal with standard SO(3)-action on S2-factor and double

suspension on S4-factor. We suspect the G-spaces are oriented S2-bundles

over S4, which are classified by the first Pontryagin class. But we do not
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know how to construct the desired action on other S2-bundles over S4 besides

S2×S4 and CP3. We also do not know whether S2×S4 with this SO(3)-action

admits invariant metric with positive sectional curvature.

2. Figure 5.1b. ∂M∗ \ {N,S} and c have isotropy SO(2); N is a fixed point;

S has isotropy O(2); the open interval connecting S and c has isotropy Z/2;

the rest has trivial isotropy. Example 2(c) of Chapter 6 is an example of this

type.

id

SO(2)

(a) G = SO(3), M∗ = B3

SO(2)

c

SO(3)

N

O(2)

S

Z/2

SO(2)

id

(b) G = SO(3), M∗ = B3

Figure 5.1

3. Figure 5.2. In this case the number of singular orbits is 2 or 3 by Proposition

4.1.4. m, n are positive integers. Examples 2(d) and 3(b) are examples of

this type.

4. Figure 5.3. All possible stratifications are depicted in the following pictures:

m, n, l are pairwise coprime odd integers. Example 4 of Chapter 6 is an
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Figure 5.2: G = SO(3), M∗ = S3

U(1) U(1)
Z/m

Z/n
U(1) U(1)

U(1)

Z/m

Z/n
U(1) U(1)

U(1)

Z/l

Z/mZ/n

Figure 5.3: G = SU(2), M∗ = S3

example of this type.

5. Figure 5.4a. ∂M∗ and the center c have isotropy SO(2), and int(M∗)\ c has

trivial isotropy. We have no example of such actions.

6. Figure 5.4b. ∂M∗\{N,S} and c have isotropy SO(2), N, S are fixed points,

and int(M∗) \ c has trivial isotropy. We have no example of such actions.
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id

(b) G = SO(3), M∗ = B3

Figure 5.4
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Chapter 6

Explicit Examples of G-actions

In this chapter we list all known examples of isometric SU(2), SO(3)-actions on

the known examples of positively curved 6-manifolds, namely

S6, CP3, SU(3)/T 2, SU(3)//T 2,

and depict the stratification of M∗. For S6 and CP3 we list all linear actions. For

the known positively curved metrics on SU(3)/T 2 and SU(3)//T 2, the full isometry

group was determined in [GSZ06] and one easily sees that the only isometric actions

are the ones described below.

1. Actions on S6. Note that all known actions on S6 are classified.

(a) Figure 6.1a. This action is given byA(~x, ~y) = (A~x,A~y), A ∈ SU(2), ~x ∈

R4, ~y ∈ R3, (~x, ~y) ∈ S6. The action on the ~x-component comes from the

real 4-dim irrep of SU(2), i.e. the realification of the standard SU(2)-

action on C2, and the action on ~y-component comes from the standard
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SO(3)-action on R3. Actions of this typre are classified. See Theorem

1.0.2.

(b) Figure 6.1b. G acts on the first 4 coordinates and fixes the last 3

coordinates. ∂M∗ consists of fixed points, and the interior has trivial

isotropy. Actions of this type are fixed point homogeneous and thus are

classified.

(c) G = SO(3), M∗ = B4. G acts on the first 3 coordinates of S6 ⊂ R7 via

rotation and fixes the last 4 coordinates. ∂M∗ consists of fixed points,

and the interior consists of principal orbits with SO(2)-isotropy. This is

the only case with dim(M∗) = 4. Actions of this type are fixed point

homogeneous and thus are classified.

(d) Figure 6.1c. G acts on the first 5 coordinates via the unique 5-dimensional

real representation of SO(3) and fixes the last 2 coordinates. The equator

of ∂M∗ consists of fixed points, and the two boundary faces correspond-

ing to the two open hemi-spheres have O(2)-isotropy. The interior of M∗

consists of principal orbits with isotropy Z/2⊕Z/2. Actions of this type

have fixed point cohomogeneity one and thus are classified.

(e) Figure 6.1d. This action is given by A(~x, ~y, z) = (A~x,A~y, z), A ∈

SO(3), ~x, ~y ∈ R3, z ∈ R, (~x, ~y, z) ∈ S6. Actions of this type are classi-

fied. See Theorem 1.0.3.
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(a) G = SU(2), M∗ = S3

id

SU(2)

(b) G = SU(2), M∗ = B3

SO(3)

O(2)

O(2)

Z/2⊕ Z/2

(c) G = SO(3), M∗ = B3

id

SO(3)

SO(3)

SO(2)

(d) G = SO(3), M∗ = B3

Figure 6.1: M = S6

2. Actions on CP3:

(a) Figure 6.2a. A linear SU(2)-action on CP3, acting on the first 2 ho-

mogeneous coordinates and fixing the last 2 homogeneous coordinates.

M∗ = B3. ∂M∗ = S2 consists of fixed points, and the interior minus the

center has trivial isotropy. The center has U(1)-isotropy, represented by

[x, y, 0, 0] ∈ CP3. Actions of this type are fixed point homogeneous.

(b) Figure 6.2b. This action is induced from one SU(2)-action. Let A ∈
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SU(2) act on CP3 via A(~x, ~y) = (A~x,A~y), ~x, ~y ∈ C2. This action is

ineffective since −Id ∈ SU(2) acts trivially, thus descends to an SO(3)-

action. The interior of M∗ consists of principal orbits, and ∂M∗ consists

of singular SO(2)-orbits.

(c) Figure 6.2c. This action is given by A(z1 : z2 : z3 : z4) = (A(z1 : z2 :

z3)
T : z4), A ∈ SO(3), (z1 : z2 : z3 : z4) ∈ CP3.

(d) Figure 6.2d. The irreducible representation of SU(2) on C4 induces

an action on CP3, which is ineffective with kernel Z/2 and descends to

SO(3).

3. Actions on SU(3)/T 2:

(a) Figure 6.3a. This action is given by left multiplication. Actions of this

type are classified. See Theorem 1.0.2.

(b) Figure 6.3b. This action is given by left multiplication.

4. An action on SU(3)//T 2. Recall that the description of the biquotient

is given by SU(3)//T 2 = (z, w, zw) \ SU(3)/(1, 1, z2w2)−1, z, w ∈ S1. G =

SU(2), M∗ = S3. SU(2) acts from the right as the first 2 block of SU(3),

commuting with the T 2-action. The orbit strata are indicated in Figure 6.4.

A computation, using Mayer-Vietoris sequence, shows that G-spaces of this

type have the same cohomology groups as SU(3)//T 2, that is, H0 = H6 =

Z, H2 = H4 = Z⊕ Z, H2i+1 = 0.
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Figure 6.2: M = CP3
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