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Characterization And Perturbation Of Functional Networks That Support
Human Memory

Abstract
Episodic memory is essential to our daily lives, as it attaches meaning to the constant stream of sensory inputs
to the brain. However, episodic memory often fails in a number of common neurocognitive disorders.
Effective therapies remain elusive, owing to the complexity of brain networks and neural processes that
support episodic encoding and retrieval. In particular, it is not understood how inter-regional communication
within the brain supports memory function, though such communication may be critical to the highly
integrative nature of episodic memory. To uncover the patterns of memory-related functional connectivity, we
asked a large cohort of neurosurgical patients with indwelling electrodes to perform a verbal free-recall task, in
which patients viewed lists of simple nouns and recalled them a short time later. As patients performed this
task, we collected intracranial EEG (iEEG) from electrodes placed on the cortical surface and within the
medial temporal lobe (MTL). First, we examined whole-brain functional networks that emerged during the
encoding and retrieval phases of this task, using spectral methods to correlate frequency-specific signals
between brain regions. We identified a dynamic network of regions that exhibited enhanced theta (3-8 Hz)
connectivity during successful memory processing, whereas regions tended to desynchronize at high
frequencies (30-100 Hz). Next, using only electrodes placed within the MTL, we asked whether functional
coupling was also observed among this mesoscale subnetwork of highly specialized regions that play an
outsize role in memory. Recapitulating our earlier findings, we noted broadly enhanced theta connectivity
within the MTL, centering on the left entorhinal cortex during successful encoding operations. Finally, to
determine whether such low-frequency functional connections reflect correlative or causal relations in the
brain, we applied direct electrical stimulation via electrodes placed within the MTL. We found that low-
frequency connections (5-13 Hz) predicted the emergence of theta activity at distant regions in the brain –
particularly when stimulation occurred near white matter – indicating the potential causal relevance of iEEG-
based functional connections. Taken together, these studies underscore the importance of low-frequency
functional coupling to memory across spatial scales, and suggest this form of coupling indicates a causal
relation between brain regions.
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ABSTRACT 
 

CHARACTERIZATION AND PERTURBATION OF FUNCTIONAL NETWORKS  

THAT SUPPORT HUMAN MEMORY 

 

Ethan A. Solomon 

Michael J. Kahana 

 

Episodic memory is essential to our daily lives, as it attaches meaning to the constant 

stream of sensory inputs to the brain. However, episodic memory often fails in a number of 

common neurocognitive disorders. Effective therapies remain elusive, owing to the 

complexity of brain networks and neural processes that support episodic encoding and 

retrieval. In particular, it is not understood how inter-regional communication within the 

brain supports memory function, though such communication may be critical to the highly 

integrative nature of episodic memory. To uncover the patterns of memory-related 

functional connectivity, we asked a large cohort of neurosurgical patients with indwelling 

electrodes to perform a verbal free-recall task, in which patients viewed lists of simple 

nouns and recalled them a short time later. As patients performed this task, we collected 

intracranial EEG (iEEG) from electrodes placed on the cortical surface and within the medial 

temporal lobe (MTL). First, we examined whole-brain functional networks that emerged 

during the encoding and retrieval phases of this task, using spectral methods to correlate 

frequency-specific signals between brain regions. We identified a dynamic network of 

regions that exhibited enhanced theta (3-8 Hz) connectivity during successful memory 
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processing, whereas regions tended to desynchronize at high frequencies (30-100 Hz). Next, 

using only electrodes placed within the MTL, we asked whether functional coupling was 

also observed among this mesoscale subnetwork of highly specialized regions that play an 

outsize role in memory. Recapitulating our earlier findings, we noted broadly enhanced 

theta connectivity within the MTL, centering on the left entorhinal cortex during successful 

encoding operations. Finally, to determine whether such low-frequency functional 

connections reflect correlative or causal relations in the brain, we applied direct electrical 

stimulation via electrodes placed within the MTL. We found that low-frequency connections 

(5-13 Hz) predicted the emergence of theta activity at distant regions in the brain – 

particularly when stimulation occurred near white matter – indicating the potential causal 

relevance of iEEG-based functional connections. Taken together, these studies underscore 

the importance of low-frequency functional coupling to memory across spatial scales, and 

suggest this form of coupling indicates a causal relation between brain regions.  
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Chapter 1: 

CHA PTER 1: Introduction  
 

Memory is an ever-present facet of our daily experience. It allows us to effortlessly tune our 

behaviors to the situation at hand – seeing a labmate’s face, for example, releases a flood of 

associated information: what this person’s name is, your prior interactions with them, and 

whether you should congratulate them on their recently-completed thesis. Memory attaches 

rich meaning to the stream of sensory information we encounter in every moment of our 

lives. It is hard to imagine what life would be like without memory entirely, though we 

know that even the first hints of normal, age-related decline in memory function can be 

deeply unsettling.  

As central as it is to our lives, we do not know how the brain gives rise to human episodic 

memory. Behavioral assays of memory – starting in earnest more than 125 years ago – have 

described key features of how we learn and forget, but do not offer a mechanism for how 

memories are formed and retrieved in the brain. Clinical case studies, neuroimaging, and 

invasive neurosurgical recordings have begun to unravel that mystery by isolating 

particular brain structures that exhibit enhanced activity during memory operations. To be 

sure, we can now confidently declare that regions of the medial temporal lobe (MTL) play a 

key role in episodic memory1, but the precise manner in which these structures encode 

information, and how they communicate with the rest of the brain, remains unanswered. 

Understanding memory is not simply a matter of scientific curiosity. Diseases of memory 

and cognition are among the most devastating for patients and their families, but the 
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complex neural circuitry that gives rise to these processes pose a serious challenge to 

effective therapeutic interventions. Nearly 6 million Americans live with memory loss 

associated with Alzheimer’s dementia, including 10% of those over the age of 65. The 

burden of dementia worldwide stands at 50 million people2. Worse yet, there are no 

effective therapies to restore memory function.  

Increasingly, clinicians and scientists have turned to brain stimulation as a tool to better 

understand – and hopefully improve – human memory3. Stimulation techniques come in 

several forms, but all rely on the general idea that electrical perturbations of brain activity 

can alter cognition and behavior4. Is it possible that stimulation in the right part of the 

brain, at the right time, can restore the normal operation of dysfunctional memory circuits? 

Developing such an approach depends on answering two fundamental questions: (1) What 

is the normal pattern of neural activity that supports episodic memory, and (2) What 

changes in neural activity are induced by electrical stimulation? 

To fully answer these questions, it is insufficient to only characterize where in the brain we 

observe memory-related activity. Memory involves the integration of information across 

widespread cortical areas, necessitating rapid, complex patterns of inter-regional 

communication between brain structures5. Functional magnetic resonance imaging (fMRI) 

has been used to study memory networks in the human brain6–10, but this method lacks the 

high temporal resolution necessary to track rapid fluctuations in neural activity that 

accompany memory formation and retrieval. Intracranial electroencephalography (iEEG), 

recorded from neurosurgical patients with drug-resistant epilepsy, affords high spatial and 

temporal resolution and is ideally suited to examine the detailed structure of electrical 

networks that engage during memory encoding and retrieval11.  

The goal of this dissertation is to characterize the meso- and macro-scale brain networks 

that support human memory, and to use intracranial stimulation techniques to assess the 

interaction between exogenous stimulation events and endogenous networks. This was 

accomplished in the course of three core investigations, all based on assessments of iEEG 

collected from large cohorts of human neurosurgical patients. This dissertation is organized 

around these investigations, as follows: 
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Chapter 2 covers relevant background material, including foundational principles of human 

memory, EEG recording and analysis, fundamentals of network neuroscience, and a review 

of recent work in intracranial brain stimulation.  

Chapter 3 cover our work to extract memory-related iEEG networks across the whole 

brain. Here, we ask whether functional connectivity in particular frequency bands, namely 

theta and gamma, best correlates with memory performance, and whether such networks 

exhibit structure that varies over time and space. We identified a widespread dynamic 

network of enhanced theta activity underlying successful episodic encoding and retrieval 

operations. 

Chapter 4 extends the work in Chapter 3 by asking whether low-frequency networks are 

also observable in the mesoscale. Specifically, we assayed memory-related functional 

connectivity between subregions of the hippocampus and medial temporal lobe. We found 

that, during encoding, time-varying theta connectivity centers on the left entorhinal cortex, 

but this network substantially reorganizes during retrieval.  

Chapter 5 describes our efforts to understand how electrical stimulation events may 

propagate through functional networks, and whether stimulation events have differential 

effects depending on the network topology of a stimulated node. We confirmed that low-

frequency functional connections predict the propagation of stimulation events in the MTL.  

Finally, in Chapter 6 we provide a summary of the thesis work and discuss key open 

questions in network neuroscience and human memory. 

Major Contributions 
 

The major contributions of this work are: 

1. Characterizing the whole-brain networks of electrical activity that underlie 

successful episodic memory encoding and retrieval; determining the most 

prominent frequency band in which inter-regional connectivity is observed, and 

describing the spatiotemporal structure of such networks.  
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2. Describing the functional connectivity networks within the medial temporal lobe; 

asking whether mesoscale networks between nearby brain regions recapitulate 

network principles from the whole-brain. 

3. Understanding the perturbation of functional networks with intracranial electrical 

stimulation; asking whether patterns of functional connectivity explain the 

propagation of stimulation events throughout the brain, and characterizing the 

patterns of evoked activity in regions distant to the stimulation site.  
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Chapter 2: 

CHAPTER 2: Background 
 

Principles of Human Episodic Memory 

 “Episodic” memory refers specifically to the ability to recall information about past 

experiences, and it will be the focus of most of the investigations presented here. Episodic 

memory has been systematically studied for over 125 years. In the late 19th century, 

Hermann Ebbinghaus famously conducted memorization studies on himself, characterizing 

the rate at which he could learn and forget lists of random syllables12. The powerful notion 

at the root of his work – and virtually all subsequent studies until the modern day – was 

that episodic memory relies on associations between stored items. The associative nature of 

memory is salient in our everyday lives; being in a particular place, seeing an old friend, or 

smelling a favorite food tends to bring forth information of related events or people. More 

broadly, we now conceptualize memory as a process that links new information – content – 

with a prevailing context, or the combined experience of ambient sensory inputs and 

internal mental states13.  

Most behavioral research into human episodic memory is essentially an elaborate exercise 

to characterize how alterations in content or context affect our ability to store and retrieve 

information. Commonly, subjects will be presented with sequences of items to store in 

memory – often words or pictures. In cued recall paradigms, subjects are explicitly 

prompted to complete an item, given some component of it; for example, subjects may be 
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asked to remember pairs of words, and are cued with only one word from each pair. In free 

recall paradigms, subjects are simply asked to recall as many items as possible, in the 

absence of any explicit cues. Implicitly, however, subjects use two cues. First, the prevailing 

context, such as sitting in the same testing room where the items were originally learned, 

serves to spur the retrieval of those memories. Second, memories act as the cues themselves 

– recalling one prior word will tend to cue the recall of words experienced in close temporal 

proximity14, much as reminiscing with old about high school prompts the spontaneous 

retrieval of childhood family memories (Figure 2.1).  

The free recall paradigm is a particularly powerful tool to study human episodic memory. 

The method has high ecological validity; much of our everyday lives involve the 

spontaneous retrieval of past experiences or knowledge, cued by nothing more than the 

current collection of sensory inputs and internal mental states. Relatedly, the retrieval 

period in free recall constitutes an endogenous cognitive search process, guided by the way 

in which knowledge is inherently organized in the brain. It is conceivable that cued recall 

paradigms force subjects to adopt particular strategies that hinge on the presentation of an 

arbitrary cue stimulus. Conversely, free-recall gains real-world validity at the expense of 

experimental control – subjects may adopt any number of strategies to support successful 

encoding or retrieval, potentially reducing the ability to detect statistically consistent effects 

across subjects. Furthermore, the absence of an explicit cue stimulus during retrieval 

presents challenges to rigorously studying the neural substrates of retrieval events.  
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Figure 2.1. Processes of episodic memory encoding and retrieval. Episodic memory can be 
conceptualized as a linking of new items and the prevailing context. Context reflects the ongoing 
collection of sensory inputs and internal mental states that occur as new information (items) are 
encoded into memory. Drifting context forms the basis for later retrieval of past experiences. The 
cognitive neuroscience of memory seeks to understand the way in which items and context are 
neurally represented, and the underlying mechanisms that link the two. 

 

Nonetheless, with an eye towards the eventual development of therapeutics to rescue 

episodic memory, free-recall is a useful episodic memory assay amenable to behavioral and 

neural observation and perturbation. We therefore relied on free-recall episodic memory 

for the bulk of the experiments conducted in completion of this dissertation. In particular, 

we used a verbal free-recall paradigm in which subjects were asked to remember lists of 

simple words and recall as many as possible after a brief arithmetic distractor task (Figure 

2.2).  
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How can free recall be used to understand the fundamental mechanisms that give rise to 

human episodic memory? How exactly are associations formed between items and their 

contexts, and how do we engage those associations to accurately recall prior experiences?  

 

Figure 2.2. Verbal free recall task. In the verbal free recall task, subjects are instructed to 
remember 12-item lists of simple nouns, each presented successively on a computer screen. After a 
brief arithmetic distractor task, subjects are asked to freely recall as many words from the prior list 
as possible.  

 

Recent theoretical and empirical work has combined notions of context-based episodic 

memory with insights from spatial navigation to conceptualize memory as an embedding of 

information in a “cognitive space.”15 This space, like physical space, places items with strong 

associations near each other, such as if two events occurred in a similar context. Items 

might also be closely associated – and therefore embedded closely in a cognitive space – via 

pre-existing knowledge like the semantic content of word items. Retrieval therefore 

constitutes an “exploration” of cognitive spaces, akin to the free exploration of a physical 

environment. Accordingly, it may be possible to predict behavioral patterns of retrieval 

events based on an understanding of how these cognitive spaces are constructed. The work 

described in this thesis establishes a set of neural features associated with verbal free-

recall; future work should ask whether such features align across verbal and spatial tasks, 

to support the notion of a domain-general representational space in the brain.  
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Intracranial EEG 

Noninvasive neuroimaging, in particular functional magnetic resonance imaging (fMRI), has 

been extensively used to understand the brain activity that correlates with behavior and 

cognition8,16–18. However, fMRI’s poor temporal resolution limits its utility to tease apart 

neural mechanisms that support rapid computations occurring on millisecond timescales. 

Indwelling electrodes placed directly in brain tissue can capture activity at this timescale, 

reflecting electric field changes induced by the aggregated activity of thousands of neurons 

near the electrode11,19. This local field potential (LFP) can be safely recorded in human 

neurosurgical patients undergoing clinical monitoring for medication-resistant epilepsy. 

Patients are typically implanted with dozens or hundreds of such electrodes to help 

clinicians identify epileptogenic tissue for resection and eloquent areas to surgically avoid 

(Figure 2.3). During their hospital stay, patients are asked to participate in research studies 

and neural activity is recorded as subjects perform cognitive tasks (such as verbal free 

recall).  

iEEG’s superior temporal resolution revealed that – as was known from animal studies – 

human cognition is correlated with rhythmic fluctuations in the LFP, called oscillations20,21. 

Neural oscillations have been observed in every part of the brain and occur at timescales 

ranging from 1 Hz to 100 Hz (and potentially beyond). The exact purpose and generation of 

neural oscillations is the subject of intense research, though current thinking suggests that 

the functional role of oscillations is differentiated by their rate. Low-frequency oscillations, 

including the theta (4-8 Hz), alpha (9-13 Hz), and beta (15-25 Hz) ranges, have been 

observed in diverse cortical areas as humans behave and perform cognitive tasks22–24. 

Gamma frequencies, between 30 and 100 Hz, also correlate with cognition and behavior, 

but it is not clear to what extent iEEG recordings in this range reflect rhythmic oscillatory 

activity versus overall changes in the firing rate of neurons proximal to the recording 

electrode25–29.  

Studies of intracranial EEG seek to correlate modulations of oscillatory activity with 

cognitive or behavioral events. Experimentalists typically use Fourier methods to 
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decompose iEEG signals – a voltage measure – into component parts within particular 

frequency bands of interest. The exact decomposition method differs in accordance with the 

hypothesis at hand and experimental constraints, but common methods include the Hilbert 

transform, Morlet wavelet convolution, and multitapers. The subsequent frequency-filtered 

signals are usually next analyzed to extract spectral power, reflecting the overall energy 

contained in a given frequency. Filtered signals can also be analyzed for spectral phase, or 

the position (i.e. angle) of a sinusoidal wave at a given point in time. Together, the collection 

of power and phase measurements at a set of frequencies are the fundamental unit of 

analysis in any iEEG study.  

 

Figure 2.3. Intracranial EEG. A. Surgical placement of a grid electrode in a patient with medication-
resistant epilepsy. Grid electrodes are placed subdurally, allowing direct recording of electrical 
potentials from the cortical surface (electrocorticography; ECoG). B. Post-operative CT scan 
coregistered to pre-operative T1 MRI, highlighting the placement of a linear depth electrode in the 
right temporal lobe (red arrow). Depth electrodes enable the recording of LFPs from the medial 
temporal lobe. Image in (a) reproduced from https://mnepilepsy.org/services/ .  

Despite excellent temporal resolution, iEEG is not without its pitfalls. Though the method 

also affords precise spatial resolution – electrodes are typically only a few millimeters in 

diameter – electrodes are only placed in the brain according to clinical considerations, not 

research agendas. Accordingly, placement differs drastically from patient-to-patient, and 

structures believed critical to a particular cognitive process may not be sampled at all. 

Moreover, it is only ethical to perform invasive brain surgery in people with a dire clinical 

need – usually medication-resistant epilepsy. Though it is likely that the general neural 

mechanisms supporting cognition and behavior are the same in epileptic brains as 

compared to neurotypical brains, it is also clear that brain tissue in an epilepsy patient can 
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exhibit highly pathologic activity even outside the seizure focus30–33. It remains an open 

question as to how much these pathologies affect our measurements and judgments of 

human neural function.  

 

Network Neuroscience 

Since the early 20th century, neuroscience has sought to correlate brain structure and 

function with the generation of behavior. The most straightforward way to do this is make a 

measurement of activity within the brain (e.g. scalp/intracranial EEG, microwire recordings, 

fMRI, calcium imaging, etc.), measure an interesting behavioral output, and ask whether the 

two are correlated. This approach has yielded key insights into brain function and 

consequent Nobel prizes. Indeed, this approach largely defines the common understanding 

of neuroscience among the general public; a part of the brain lights up when a mouse or a 

person does something interesting.  

But even since the earliest days of modern neuroscience, it has been clear that the brain 

does not function through the isolated activity of particular regions34. Rather, the brain is a 

highly interconnected organ, with each neuron or chunk of cortex receiving thousands of 

axonal inputs from other places, and sending out thousands more. The brain’s inherent 

structure suggests connectivity is a critical piece of the puzzle to understanding how 

collections of neurons generate movement, language, memory, thought, and emotion.  

Until recently, connectivity was largely the domain of anatomists studying white matter 

tracts in cadaveric brains. Starting in the 1980s and accelerating in the 1990s, 

neuroscientist began to use new tools to uncover functional correlations in brain activity. 

Instead of asking, “are these two brain regions physically connected?”, fMRI and intracranial 

recordings enabled us to ask, “do these two brain regions behave in concert?”16 The idea of 

functional connectivity has evolved into one of neuroscience’s most prolific and exciting 

subfields.  
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Figure 2.4. Intracranial measures of functional connectivity. Intracranial function connectivity 
can be computed by several methods, including multitaper coherence. Coherence reflects the 
normalized cross-spectral density between iEEG recordings from disparate brain regions, at a given 
frequency. The coherence between all possible pairs of electrodes is given by an adjacency matrix 
(right), which represents a whole-brain network and can be subject to further graph-theoretic 
analysis.    

Functional connectivity is essentially a measure of timeseries correlations. Whether these 

timeseries are fluctuations in the BOLD signal recorded through fMRI, or the theta-filtered 

signal from iEEG electrodes, we can ask whether up-and-down fluctuations of these signals 

co-occur (with or without lags) between distant brain regions (Figure 2.4). We now know 

that functional connectivity, like measures of local neural activity, is correlated with 

cognitive and behavioral events. The activity of the prefrontal cortex and hippocampus, for 

example, becomes correlated as human subjects engage in episodic memory tasks10,35. 

Critically, it bears emphasizing that functional connectivity is not a measure of causal 

relations; inter-regional correlations do not imply that that one region directly influences 

another, or that information directly flows from one to the next36. Experimental 

perturbations (see “Brain Stimulation”) remain the only gold-standard way to assess the 

causal role of brain activity in generating behavior.  

Moving beyond pairwise correlations, more recent work in neural connectivity 

conceptualizes the brain as a network of interconnected regions. In this framework, it is the 

coordinated activity among all regions of the brain that ultimately supports complex 

behaviors37,38. Neuroscientists have borrowed tools from the mathematical field of graph 

theory to understand these networks. Brain regions are equated to network nodes, 
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connected to other nodes by edges. In real brains, edges reflect structural or functional 

connections, depending on a researcher’s particular hypothesis or exploratory question. 

Edges are often given weights in accordance with the magnitude of functional correlations 

or structural connections, though it is also possible to threshold weights and simply analyze 

a network of binary, connected-or-not network.  

 

Figure 2.5. General network structure and the node strength statistic. Left: Schematic network 
with circles representing nodes and lines representing edges. The node strength is given by the sum 
of connection weights to a given node, indicated on the blue colored node.  

It is now routine to use graph-theoretic measures to assess the higher-order structure of 

these functional/structural brain networks. Higher-order structure reflects the complex 

topology of brain networks – certain recurring patterns (or motifs) of nodes and edges have 

been observed in naturally-occurring networks, including the brain39. The node strength 

statistic, for example, measures the sum total of all connection weights to a given node. 

Nodes with high node strengths are called “hubs,” which in the brain may indicate regions 

that strongly influence or orchestrate the activity of many others (Figure 2.5). Other 

statistics, such as the clustering and betweenness coefficients, capture more complex 

patterns of interconnectedness and serve as useful summaries of the role a particular node 

plays in a broader network. Taken together, graph-theoretic analysis of brain networks is a 

new and powerful tool for linking features of network topology with interesting cognitive or 

behavioral variables.  

The ensuing studies in this dissertation seek to use simple graph-theoretic analysis to relate 

changes in iEEG-based functional brain networks with episodic memory. The bulk of the 
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analyses presented here are fundamentally correlational; functional connectivity is 

measured as correlated changes in iEEG signals across space, and connectivity itself is 

further correlated with behavioral variables relating to episodic memory. However, the last 

study presented here leverages another innovation: the use of intracranial brain stimulation 

to assess the causal role of brain activity.  

 

Brain Stimulation 

Electrical brain stimulation is not a fundamentally new technique. In fact, neurologists and 

psychiatrists have been delivering electrical pulses to human brain tissue for almost 100 

years, both as clinical and research endeavors40. These efforts have been instrumental to 

understanding the causal role of certain brain structures in behavior; as early as 1937, it 

became apparent that particular areas of the cortex were responsible for speech or 

sensation, which became altered upon electrical stimulation of the area41. Electroconvulsive 

therapy, in which a current is passed through the brain noninvasively, has for over 50 years 

been used as a last-resort therapy for refractive psychiatric illness, particularly 

depression42. More recently, deep brain stimulation (DBS) through indwelling electrodes 

has been used to effectively treat Parkinson’s and related disorders43.  

 

Today, a variety of stimulation methods are approved for research use in humans. 

Transcranial magnetic stimulation (TMS) has become particularly popular, owing to its 

noninvasiveness, low-risk, and ease of use. Transcranial electrical stimulation (TES) is also 

commonly deployed. In neurosurgical patients fitted with indwelling electrodes, electrical 

current can be applied to brain tissue directly, called direct electrical stimulation (DES). DES 

provides a means of providing spatially-focused stimulation even to deep brain structures, 

including the MTL (Figure 2.6).  
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Figure 2.6. Example trace of an intracranial stimulation event. iEEG recording from a depth 
electrode before, during, and after a 500 ms square pulse stimulation event. Stimulation itself elicits a 
recording artifact (visible as high-amplitude spikes during the stimulation interval) and ensuing 
change in neural activity in the post-stimulation period.   

 

Despite its relatively long history, the way in which electrical stimulation affects neural 

activity is largely unknown. Depending on parameters and methods, stimulation can 

enhance or decrease neural excitability and firing rate local to the targeted area, but it is 

unclear whether such modulations are facilitating ongoing neural processes or merely 

injecting noise40. Even more mysterious is the way in which stimulation events are 

propagated through the brain via endogenous mechanisms. In monkeys, it has been shown 

that direct electrical stimulation propagates through known anatomical connections in the 

visual system44. In humans, stimulation events were also noted to move through structural 

and functional connections, as measured via fMRI45,46. Beyond these basic studies, it is not 

understood (1) precisely how ensembles of neurons react to applied currents, (2) how 

neurons transmit the perturbation to distant regions, and (3) how exogenous stimulation 

manifests as alterations in behavior or cognition.  

 

The mysteriousness of brain/stimulation interactions has not stopped experimentalists and 

clinicians from asking whether stimulation can be used for therapeutic benefit. Beyond the 

well-established use of DBS in Parkinson’s patients, recent studies have asked whether 

stimulation can be used to ameliorate deficits in memory or psychiatric illness, to name a 

few47,48. Results have so far been inconsistent; for example, some studies show electrical 
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stimulation can be used to enhance memory, while others suggest it decreases memory 

performance49–53. Notably, these studies span a wide range of stimulation amplitudes, 

frequencies, anatomical targets, and task-related timing. Indeed, there is now a consensus 

that stimulation for therapeutic benefit must optimize (1) the time at which stimulation is 

delivered, relative to ongoing neural activity, and (2) the location of stimulation given a 

desired change in behavior. Unfortunately, solving this optimization problem requires a far 

more advanced understanding of (1) how the brain generates behavior, and (2) how 

stimulation alters neural activity.  

 

In pursuit of this heightened understanding, this dissertation sought to establish the 

underlying patterns of neural activity that manifest during episodic encoding and retrieval, 

with a focus on functional connectivity. Additionally, the effects of intracranial stimulation 

were examined through the lens of functional connectivity (FC), establishing whether FC 

explains the propagation of stimulation events through the brain.   
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Abstract 

The idea that synchronous neural activity underlies cognition has driven an extensive body 

of research in human and animal neuroscience. Yet, insufficient data on intracranial 

electrical connectivity has precluded a direct test of this hypothesis in a whole-brain setting. 

Through the lens of memory encoding and retrieval processes, we construct whole-brain 

connectivity maps of fast gamma (30-100 Hz) and slow theta (3-8 Hz) spectral neural 

activity, in a dataset of 294 neurosurgical patients fitted with indwelling electrodes. Here 

we report that gamma networks desynchronize and theta networks synchronize during 

encoding and retrieval. Further, for nearly all brain regions we studied, gamma power rises 

as that region desynchronizes with gamma activity elsewhere in the brain, establishing 

gamma as a largely asynchronous phenomenon. The abundant phenomenon of theta 

synchrony is positively correlated with a brain region’s gamma power, suggesting a 

predominant low-frequency mechanism for interregional communication.  
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Introduction 

The brain gives rise to behavior and thought through the coordinated activity and transfer 

of information between disparate regions5. Despite over a century of investigation into the 

brain's interconnectedness34 however, the nature of these inter-regional interactions 

remains unknown. Our understanding of connectivity in the brain originates from studies 

that use indirect measures of neural activity, like blood-oxygen-level dependent (BOLD) 

functional MRI, extracranial electroencephalography (EEG), and magnetoencephalography 

(MEG)54. While these techniques provide a useful picture of how distant brain regions act in 

concert during cognition, they lack the spatial or temporal precision of direct electrical 

recordings in the brain37. Until recently, the limited availability of such intracranial data 

made it difficult to assess the connectivity dynamics of the whole brain as it performs 

cognitive tasks.  

Recent studies using direct brain recordings in neurosurgical patients have made it possible 

to robustly investigate neural synchronization, the coordinated activity of ensembles of 

neurons in different parts of the brain. Synchronization is an appealing mechanism for 

explaining how the brain stores memories, processes sensory inputs, or performs any 

operation that involves interlinking representations of the outside world54, and it generally 

occurs on different timescales - or frequencies - of neural activity. In particular, gamma-

band (30-100 Hz) synchronization is frequently invoked as a means for the brain to 

communicate between regions, since the fast nature of an oscillatory gamma signal is timed 

appropriately for rapid perceptual operations or induction of synaptic 

strengthening21,25,55,56. Support for this idea comes mostly from animal studies25,56–58, though 

some human EEG studies also report cognitively induced low-gamma and short-range 

synchronicity59–61. However, others have argued that this body of work is conceptually and 

empirically deficient to defend the broad notion that high-frequency activity supports a 

meaningful neural connection29,62–65. Notably, conduction delays between cortical areas 

would make the precise synchronization of gamma oscillations difficult, and overall power 

at high frequencies may be too weak to support neuronal synchrony. Furthermore, the 

literature on this subject is mixed - even some of the most influential studies of gamma 
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synchrony in humans report significant periods of desynchronization59,60,66 and steep drop-

offs in synchrony at higher frequencies61. These critiques raise the possibility that gamma 

does not serve to support communication between cortical regions, though this hypothesis 

has not been directly tested.  

If activity in the gamma range is not synchronous, it may instead reflect the aggregation of 

rapid, stochastic firing in a population of neurons near an electrode, not an oscillatory 

modulation of activity that indicates coordinated activity across space27,67. Were this true, 

the general neural activation of a brain region – captured by the spectral power recorded at 

a cortical electrode – would rise as the synchronicity of that region with others would tend 

to fall. However, this form of broadband asynchronous activity may coexist with 

narrowband synchronous oscillations,68,69 and both may contribute to spectral changes at 

frequencies in the gamma band. In this case, it remains untested whether the oscillatory 

component of a gamma-band signal underlies long-range synchronization, and to what 

extent high-frequency activity during cognition reflects synchronous oscillations versus 

asynchronous broadband activity. 

If high-frequency activity is not the principal mediator of inter-regional synchronization, 

low-frequency interactions may be a promising alternative. Synchrony in the slower theta-

band (3-8 Hz) has been reliably found to correlate with cognition in humans and animals70–

73, and theta oscillations are also linked to modulations of gamma activity74,75. However, 

low-frequency networks have not been characterized on a brain-wide scale, making it 

difficult to differentiate general principles of brain function from dynamics that may be 

particular to specific structures. It is possible that canonical regions such as the medial 

temporal lobe and prefrontal cortex participate in low-frequency networks while less well-

studied regions break from this trend. Moreover, low-frequency interactions have not yet 

been directly related to modulations of spectral power on a brain-wide scale, though 

probing these interactions may reveal the relationship between a region’s functional 

connectivity and local processing.  

In this study, our goal is to determine what principles underlie how neural activity is 

coordinated across the brain during memory processing, and to answer how spectral power 
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and synchrony are related: To what extent is inter-regional communication mediated by 

low- versus high-frequency interactions? As the local high-frequency activity of a region 

increases, does its synchrony concomitantly decrease? How often do we observe high-

frequency oscillations during cognition, and are they associated with long-range 

connectivity? While 294 subjects perform memory encoding and retrieval tasks – processes 

which rely on the integration and binding of information – we record iEEG and construct 

whole-brain networks of high- and low-frequency phase interactions.  To determine how 

synchrony changes over time and space, we parse these networks with graph-theoretic 

tools that identify hubs of the network, and then correlate the spatio-temporal pattern of 

synchrony at these hubs with simultaneously-measured spectral power. Though our focus 

is on gamma- and theta-band synchrony, we consider whether connectivity dynamics in 

these bands are better captured by broader frequency ranges, such as broadband low (< 30 

Hz) and broadband high (> 30 Hz) . We observe widespread desynchronization of high-

frequency activity and synchronized low-frequency activity during memory processes, 

which correlate with regions of enhanced high-frequency power. Our findings support the 

notion that macroelectrode-scale recordings largely reflect asynchronous neural firing at 

high frequencies, but also suggest a low-frequency mechanism for interregional 

communication. 

Results 

Quantification of brain-wide connectivity phenomena 

To assess connectivity between brain regions, we collected intracranial 

electroencephalographic (iEEG) data from 294 patients undergoing clinical monitoring for 

seizures while they performed a verbal free-recall memory task (Figure 3.1a; see Figure 

3.S1 for behavioral results). In this task, patients saw a series of words, each presented 

briefly on a screen, and were instructed to recall as many as possible. To construct 

networks of activity, we adopted a common spectral phase-synchronization approach to 

measure connectivity between pairs of electrodes, called the phase-locking value, which 

quantifies the consistency of phase differences at a given frequency across trials of the 

experiment76 (Fig. 3.1b, 3.1c; Methods). In this paper, we primarily focus on regularly-
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spaced frequencies in the 45-100 Hz range, referred to collectively as “high gamma,” though 

we make no prior assumption as to whether these frequencies capture predominantly 

broadband asynchronous or oscillatory synchronous effects. Some analyses are extended to 

the 30-60 Hz range, referred to as “low gamma.” 

We first sought to quantify the grand-average modulation in high gamma (HG) and theta 

connectivity during item encoding that correlates with subsequent successful recall of that 

item – in other words, the relative level of synchronization comparing successful to 

unsuccessful encoding events. To measure this, we averaged the modulation in HG or theta 

connectivity across all possible electrode pairs that spanned every pair of anatomically-

defined regions of interest (ROIs) in all subjects (ROIs are based on automated Talairach 

atlas labeling77, e.g. superior frontal gyrus, middle temporal gyrus, etc. See Methods for 

details, Table 3.T1 for ROI abbreviations used in this paper). Connection weights are then z-

scored against a null distribution, obtained by permuting remembered/not-remembered 

trial labels, to reflect the connection strength between ROIs relative to that expected by 

chance.  The result of this procedure in the gamma and theta bands are  adjacency matrices, 

which represent the pairwise connectivity between all ROIs (Figure 3.1d), and which can be 

rendered as brain maps (Figure 3.1e). 
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Figure 3.1. Network construction and basic analysis. (a) 3D visualization of all surface electrodes 
included in our dataset, colored by the Talairach atlas labels used in this article’s analysis. (b) 
Schematic of spectral phase approach that compares the distributions of phase differences between 
electrodes across all trials of the verbal free-recall task. Significantly tighter distributions indicate 
greater synchronization. (c) Connectivity maps were extracted for each of 294 neurosurgical 
patients, reflecting the connectivity change associated with successful item recall. Effects were 
pooled across subjects and ROIs to construct the final network. Blue indicates decreased phase 
synchrony associated with successful encoding, red indicates increased synchrony. (d) 74x74 ROI 
adjacency matrices representing the z-scored time- and frequency-averaged connection weights 
during the item presentation interval (0-1600ms). The high gamma network is constructed from 
frequencies between 45-100 Hz, and theta from 3-8 Hz. Node indices are organized by lobe per the 
indicators on the axes. Grey areas represent connections between ROIs with fewer than 7 subjects' 
worth of data. (e) 3D visualizations of the whole-brain HG and theta networks. (f) Summed positive 
and negative connection weights in each frequency band. In a remembered versus not-remembered 
contrast, the total level of synchronous theta connections and asynchronous HG connections were 
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significantly greater than chance (P<0.01), and there was a significant frequency-synchrony 
interaction (P<0.01, chi-square test). Dotted lines indicate mean chance level, shaded area +/- 1 STD. 

Encoding networks showed markedly different properties between HG- and theta-band 

frequencies. As measured by the summed connection weights across the entire network, HG 

asynchrony and theta-band synchrony significantly correlated with successful encoding 

(Figure 3.1f; P < 0.01 via permutation test of summed connection weights; see Methods). 

And though the network-wide level of synchronous activity in HG was not significant 

(permutation P = 0.892), this does not preclude the possibility that specific connections 

among ROIs are associated with successful memory encoding. Similarly, the overall level of 

theta-asynchronous interactions was not greater than chance (permutation P >0.99). 

Extending this analysis to higher and lower frequencies revealed significant asynchrony 

(Figure 3.2a; permutation P < 0.05) in frequencies between 30 Hz and 120 Hz, including the 

typical 30-60 Hz low gamma band. Significant synchrony in frequencies between 3 Hz and 

28 Hz – theta, alpha, and beta bands – was also observed (permutation P < 0.01). The 

brainwide connectivity z-score is given as a heatmap for each assessed frequency and 

timepoint in Figure 2b.  

 

Figure 3.2. Synchrony effects from 3-120 Hz. (a) Overall level of SME synchrony/asynchrony in six 
frequency bands spanning 3 Hz to 120 Hz, measured as in Figure 3.1f (edge weight sum). Shaded 
gray areas represent chance mean +/- 1 STD. (b) Z-scored brainwide phase synchronization 
subsequent memory effect (SME) in the memory encoding interval, measured by summing all 
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connection weights in the network, compared to the sum expected by chance. This analysis is 
performed in successive 200ms windows spanning the encoding interval. Red reflects increased 
synchrony associated with successful memory encoding, blue reflects decreased synchrony (see 
Methods for details). Vertical black lines indicate word onset and offset. 

 

Our findings of brain-wide HG asynchrony and theta synchrony during successful memory 

encoding suggest that it is low-frequency connections which support information 

integration or coordinated brain activity during memory formation. However, we must first 

answer two deeper questions to determine whether there is a relationship between the 

neural activity of a region and the state of its connections to the rest of the brain: First, what 

is the brain-wide spatiotemporal pattern of synchrony/asynchrony during memory 

processing, and how does it relate to the pattern of local spectral power? Second, are there 

differing fundamental sources of neural activity that may have different power-synchrony 

relationships? 

Identification of network hubs 

Given that we observed significant levels of synchrony or asynchrony in low and high 

frequency ranges, we next asked whether there is anatomic specificity to these phenomena. 

Are positive and negative connections homogenously distributed throughout the brain, or 

are there specific regions that exhibit greater modulation of connectivity during successful 

memory encoding? 

To determine the most highly-connected (or highly-disconnected) ROIs, we turned to basic 

principles of graph theory. We used the node strength statistic (the sum of the 

unthresholded weights of every connection to a given node, here defined as an ROI) to 

identify which brain regions act as highly-connected "hubs" in the memory network during 

the word presentation interval (0-1600 ms), the epoch with the greatest task-related 

modulation78. We defined hubs as ROIs with significantly greater node strength than 

expected by chance (P < 0.05 via permutation test of node strengths, Benjamini-Hochberg 

corrected for multiple comparisons across ROIs), and we performed this analysis to identify 

hubs from all synchronous and asynchronous connections separately (see Methods). In HG, 

we found 3 synchronous-hubs and 19 asynchronous-hubs, which reflect brain regions that 
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significantly increase or decrease their overall connectivity when a word is successfully 

encoded (0.006 < P < 0.033, FDR corrected). The theta-network exhibits 32 synchronous 

hubs widely dispersed across the cortex (0.005 < P < 0.049, FDR corrected), but no hubs of 

asynchronous activity. Theta and HG hubs are depicted in Figure 3.3, along with their 

strongest connections (Z > 2.5). 

Taken together, these findings demonstrate that frontal, temporal, and medial temporal 

lobe (MTL) cortical regions became desynchronized from each other in HG during memory 

encoding. A smaller subset of right mesial frontal regions expressed synchronous activity 

with each other and functionally connect to temporal and parietal cortex. In the slower 

theta rhythm, the brain exhibited generally correlated activity, with numerous fronto-

temporal, temporal-parietal, and interhemispheric functional connections.  

Our finding that there is widespread theta-synchronization during memory encoding 

follows from prior scalp and intracranial studies, which have shown that low-frequency 

entrainment is associated with cognition70–73,79.  These findings also mirror findings in the 

fMRI literature of low-frequency networks that converge on the MTL in memory tasks10. 

The emergence of bilateral MTL as asynchronous hubs in HG is more surprising – this 

observation suggests, in a general sense, that structures such as the hippocampus do not 

synchronize at high frequencies with many other brain regions during successful encoding.   
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Figure 3.3 Network hubs. Depiction of hub ROIs identified in the brainwide theta and high gamma 
memory encoding networks. The analysis was performed separately for all positive connection 
weights (red) and all negative connection weights (blue), yielding "synchronous hubs" and 
"asynchronous hubs," which respectively increase or decrease their connectivity with the network 
during successful memory encoding. Significant synchronous and asynchronous hubs for the item-
presentation interval are displayed according to their approximate localization on an average brain 
surface, with red circles indicating synchronous hubs and blue indicating asynchronous hubs (larger 
circles, FDR-corrected P < 0.01; smaller circles,  P< 0.05). For each hub, the top 5 connections 
between that hub and any other part of the brain is plotted, if the connection weight z-score was 
greater than 2.5. Line thickness indicates absolute z-score value, according to the figure legend. 
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Dashed lines indicate cross-hemispheric connections. Some labels are excluded from certain views to 
maintain readability. To aid visualization, hemispheres are reflected from their true position in the 
skull.  

Temporal modulation of connectivity effects 

To better characterize the role of these hubs in memory encoding, we asked whether a 

hub's participation in the HG or theta network changes over time. We assessed this by 

computing the node strength statistic at each 200 ms non-overlapping time window 

spanning 200 ms prior to 200 ms after the word presentation interval (see Methods). ROIs 

exhibited their strongest modulation of network participation between 400 ms and 1200 

ms after onset of a word, with a particularly robust decrease in HG connectivity of left MTL 

structures between 800-1000 ms (significant hippocampus, parahippocampus, and uncus 

ROIs, P < 0.05 via permutation test of node strengths; see Methods for details). 

Correspondingly, the right MTL exhibited an increase in theta synchrony between 800-1200 

ms (permutation P < 0.05). Theta synchrony in the right frontal lobe (significant middle, 

medial, inferior, and superior frontal cortices, permutation P < 0.05) peaked earlier,  

between 600-800 ms, while right temporal (significant middle, transverse, superior, and 

inferior temporal cortices, permutation P < 0.05) synchrony peaked between 1000-1200 ms 

(left cortical areas follow a similar pattern, see Figure 3.S2). In Figure 3.4, we show 

timecourses of node strength for ROIs in a subset of broader brain regions that contained 

hubs as identified previously (see Figure 3.S2 for additional timecourses). 

It is not surprising that we observed strong modulation of connectivity in both frequency 

bands during the item presentation interval, since this time period is also known to feature 

the greatest change in spectral power78. What is not known, however, is how the 

directionality of connectivity changes relates to that change in spectral power – does 

enhanced theta-synchrony or decreased HG-synchrony in a brain region predict its HG or 

theta power? 
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Figure 3.4. Timecourse of ROI participation in memory networks. Node strength as a 
function of time for 6 key regions that contain hubs in the theta or high gamma networks: 
right and left MTL, frontal lobe, and temporal lobe. Blue-shaded lines indicate asynchronous 
hub strength over time, while red indicates synchronous hub strength. Vertical lines 
indicate word onset and offset at 0 ms and 1600 ms. Above the z-scored timecourses are 
plotted the total count of specific ROIs within each broader region that reach significance at 
a given timepoint (P < 0.05). For visualization only, timecourses were smoothed with a 2-
point moving average and radial basis filter.  
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Relationship between connectivity and spectral power 

Having established the spatio-temporal dynamics of synchrony during performance of a 

memory task – noting the presence of MTL hubs that peak in their activity during the item 

presentation interval, for instance – we are now equipped to ask how these connectivity 

dynamics relate to spectral power, or the general neural activation of a region. Answering 

this question fills an important gap in knowledge about the nature of connectivity in the 

brain, by showing how connectivity and power relate across a diverse array of cortical 

regions during memory processing.  

We used the node strength of each ROI as a basis for a spectral power-synchrony 

correlation, asking whether a region's overall participation in the whole-brain network 

correlates with that region's modulation of spectral power. For each ROI, we computed the 

power-synchrony (node strength) correlation across time and frequency in HG. We further 

asked how power and synchrony correlate across all ROIs and time after averaging effects 

within frequency band, enabling cross-band correlations.  

We found that only one ROI exhibited a significant positive correlation between HG power 

and synchrony – the left transverse temporal gyrus - after Benjamini-Hochberg correction 

for multiple comparisons (Figure 3.5a; Pearson correlation, r = 0.27, corrected P = 0.017). 

Twenty-four regions exhibited a significant negative correlation (Figure 3.5a; Pearson 

correlation, -0.48 < r < -0.23, 4.6 × 10-6 < P < 0.037).  Example power-synchrony heatmaps 

are given for four regions in Figure 3.5b, depicting significant (corrected P < 0.05) negative 

correlations in the right parahippocampus, left medial temporal lobe, and left frontal cortex.  

Across all ROIs (74) and timepoints (10) together, the HG power-synchrony Pearson 

correlation was -0.339 , P = 0.002 via a permutation test of synchrony and power 

correlation (Figure 3.5c; see Methods for details). In theta, within-ROI correlations showed 

3 ROIs each of positive and negative power-synchrony relationships (corrected P < 0.05; 

Figure 3.S3), but the general effect across all time and ROIs together was negative though 

not significant (Pearson correlation, r = -0.12, permutation P = 0.23; Figure 3.5c). 

Additionally, theta synchrony was weakly - but not significantly - correlated with HG power 
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(Pearson correlation, r = 0.11, permutation P = 0.2; Figure 3.5c). The brainwide spectral 

power and synchrony at all frequencies from 3 Hz to 120 Hz are shown in Figure 3.S4. 

Measuring correlations across all ROIs together may obscure meaningful relationships 

within the subset of ROIs that actively participate in memory processing. We therefore 

sought to assess whether regions of the "core" memory network – those ROIs that 

significantly modulate their neural activity during successful memory encoding – exhibit 

power-synchrony dynamics that are different from the rest of the brain. These regions are 

said to exhibit a subsequent memory effect (SME)80. We found a total of 37 ROIs with no 

significant difference between HG power during successful versus unsuccessful encoding, 

and classified these as outside the core memory network. Next, we matched these ROIs 

against the 37 ROIs with the largest SMEs, representing the core memory network (see 

Table 3.T1 for ROI classifications and z-scores). Among these two ROI subsets, we again 

computed power-synchrony correlations across all regions and all timepoints during the 

word encoding interval. In both groups, HG power and synchrony were inversely correlated 

(Figure 3.6; Pearson correlation, r = -0.38 in-network and r = -0.158 out-of-network, P < 

0.001 and P < 0.05 via permutation test; see Methods). However, only in the core memory 

network was theta synchrony significantly predictive of HG power (Pearson correlation, r = 

0.25, permutation P = 0.003; see Methods). The difference in correlation between in-

network and out-of-network does not reach significance (permutation P = 0.20).   
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Figure 3.5. Power-synchrony correlations across the whole brain. (a) Pearson correlation of the 
modulation of high gamma node strength and power across time and frequency for each ROI, during 
the word encoding interval. Bar plots show the power-synchrony correlation for each ROI, with blue 
indicating negative and red indicating positive correlations. Faded bars are not significant after FDR 
correction for multiple comparisons (α = 0.05). (b) For four example ROIs we depict time-frequency 
heatmaps of that ROI's z-scored spectral power (top) and z-scored node strength (bottom). Red 
colors indicate a relative increase of power/synchrony when an item is successfully encoded, while 
blue indicates a relative decrease.  For visualization only, absolute z-scores less than 1.5 are faded, 
and vertical bars indicate word onset and offset. (c) Pearson correlation of z-scored power and z-
scored node strength (synchrony) against each other for all timepoints and all ROIs, after averaging 
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within frequency band. HG power and HG synchrony are significantly inversely related (P < 0.001, 
permutation test), HG synchrony is positively correlated with theta power (P = 0.005), while other 
tested relationships do not meet significance. 

 

 

Figure 3.6. Correlations in core memory network. (a) Power-synchrony correlations in the core 
memory network: the 37 ROIs with significant HG-power subsequent memory effect (SME). (b) 
Power-synchrony correlations across the 37 ROIs with the no significant HG-power effects. Among 
the core memory network – consisting mostly of left frontal, temporal, and MTL cortex – z-scored 
gamma power and z-scored synchrony were significantly anticorrelated, while theta synchrony and 
gamma power were significantly positively correlated (top row; P < 0.001 and P < 0.01 via 
permutation test, respectively). Among regions that did not exhibit strongly modulated HG activity in 
successful memory encoding, HG power and synchrony were still inversely correlated (Pearson 
correlation, r = -0.158, P < 0.05), but theta synchrony was not significantly predictive of HG power (r 
= 0.131, P = 0.12). 
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Generalization of network phenomena to memory retrieval 

To establish whether memory retrieval is also characterized by desynchronized HG activity 

and synchronized theta-band activity, we identified all of the 500 ms time windows in each 

subject’s recall period that precede onset of a response vocalization, and compared 

connectivity dynamics against 500 ms time windows that are not followed by any 

vocalization for at least 2 seconds ("unsuccessful memory search"). Procedures are 

otherwise identical to those described in Figure 3.1 and Methods – phase locking values in 

successful retrieval are compared to unsuccessful memory search, and these differences are 

pooled across subjects and ROIs. The result is a whole-brain connectivity map that reflects 

how phase synchrony is correlated with successful memory retrieval versus unsuccessful 

memory search (Figure 3.7a, 3.7c).  

We found that the same network-level patterns of connectivity held true in the retrieval 

contrast compared to the encoding contrast. The HG retrieval network is characterized by a 

significant degree of asynchronous activity (Figure 3.7b; P < 0.01 via permutation test of 

edge weight sum; see Methods) and an insignificant overall level of synchronous activity 

(permutation P > 0.99). In theta-band, there is a greater degree of synchronous activity 

compared to asynchronous (permutation P < 0.01; Figure 3.7b). The relationship between 

power and synchrony also holds true in the analysis of recall. Even without sub-selecting for 

a core memory network as in Figure 6, we find an inverse HG power-synchrony correlation 

(Pearson correlation, r = -0.67, permutation P < 0.01; Figure 3.7d), although theta 

synchrony was positively but not significantly correlated with HG power (Pearson 

correlation, r = 0.11, permutation P = 0.36; Figure 3.7d).  
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Figure 3.7. Generalization to memory retrieval processes. (a) Adjacency matrices, reflecting 
relative recall vs. baseline synchronization, organized as in Figure 3.1d. (b) Summed positive and 
negative connection weights in each network, showing a strong desynchronization effect in gamma-
band and a synchronization in theta (P < 0.01 for both). There was a significant frequency-synchrony 
interaction (P < 0.01, chi-square test). (c) 3D representation of gamma (top) and theta (bottom) 
retrieval networks, organized as in Figure 3.1e. (d) Correlation of spectral power and phase 
synchronization across all regions (74) and timepoints spanning a retrieval trial (2). HG power and 
synchrony were significantly inversely correlated (Pearson correlation, r = -0.698, P < 0.01 via 
permutation test), while an ROI's theta synchrony was positively but not significantly predictive of 
HG power (r = 0.11, P = 0.36)  

 

Filtering for oscillatory activity 

Findings of HG desynchronization associated with successful memory encoding and 

retrieval suggest stochastic, non-oscillatory neural activity. However, it is possible that a 

mixture of two fundamental signals that occupy the same frequency band: some 

components may be oscillatory, facilitating inter-regional communication, while others 

reflect asynchronous neural spiking activity. If the asynchronous component is much 

stronger or more commonplace than the oscillatory component, our results may be unable 

to capture true high-frequency synchronization that correlates with successful memory 

operations.  

To answer whether high-frequency synchronization is driven by oscillatory dynamics, we 

examined which electrodes exhibit oscillations in the low gamma band (“LG,” 30-60 Hz), 



CHAPTER 3: Whole-Brain Electrical Networks 
_________________________________________________________________________________________________________ 

35 
 

utilizing a validated oscillation-detection routine (“Better Oscillation Detection” method, see 

Methods for details; see Figure 8a for an example)81. We identified the specific frequency 

and time at which a given electrode showed reliably increased oscillatory activity 

associated with trials that were later remembered, as compared to those forgotten 

(“oscillatory SME”; Fig. 3.8b for an example). Among the subset of electrodes with 

oscillatory SMEs, we reconstructed our phase-synchronization networks to determine 

whether enhanced oscillatory activity was associated with increased inter-regional 

synchronization. 

261 electrodes in our dataset exhibited increased oscillatory activity associated with 

successful memory, maximally occurring at 52 Hz, between 400 and 600 ms after word 

onset (Fig. 3.8c). This is 1% of the total electrodes assessed; 5.6% of electrodes exhibited a 

30-60 Hz SME and 10.4% of electrodes that exhibited a 65-100 Hz power SME in the same 

time window (Figure 3.8d). In the phase synchronization subnetwork that can be 

constructed from these 261 electrodes, we observed more synchronous ROI pairs than 

asynchronous pairs, when examining the network at the specific time (400-600 ms) and 

approximate frequencies (50-55 Hz) of maximal oscillatory SME (Figure 3.8e; P = 0.068 via 

permutation test of edge count sum; see Methods). Examining this subnetwork at the same 

time but at higher frequencies (65-85 Hz) reveals a return to the typical preponderance of 

asynchronous activity (Figure 3.8e; permutation P = 0.046). This same trend can be 

observed in Figure 3.8f, where maximal subnetwork-wide synchrony occurs in the same 

frequency range as that of maximal oscillatory SME (maximal Z = 1.2 at 55 Hz). 
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Figure 3.8. Synchronization of low gamma (30-60 Hz) oscillatory activity. (a) Example of an 
electrode exhibiting a gamma oscillation in the middle occipital gyrus, as detected by BOSC (see 
Methods for details). Red line reflects average log power across all remembered events, blue line 
reflects average log power across not-remembered events. An isolated peak in the power spectrum is 
indicated, between approximately 36 and 74 Hz. (b) For the electrode in (a), heatmap of the t-
statistic reflecting the relative frequency of oscillations detected in remembered versus not-
remembered trials. Red colors indicate more oscillations detected at given frequency and timepoint 
in trials that were later remembered correctly. Vertical lines indicate word onset and offset (0 and 
1600 ms). T-statistics less than 2 are faded, for visualization only. Increased oscillatory power from 
43 Hz to 58 Hz, coincident with the oscillatory peak in (a), is indicated. (c) Count of all electrodes in 
the 294-subject dataset that exhibit an oscillatory subsequent memory effect (SME) between 30 and 
58 Hz, at each 200ms epoch spanning the word presentation interval (see Methods). The most 
electrodes exhibit oscillatory SMEs at 52 Hz, between 400 and 600 ms after onset of a word (black 
box). (d) Count of electrodes in the dataset that exhibit different kinds of SMEs between 400 and 600 
ms: 52 Hz oscillation, 30-60 Hz average power, or 65-100 Hz average power. (e) Count of significant 
synchronous or asynchronous network connections using only the subset of electrodes exhibiting 52 
Hz oscillatory SME at 400-600ms. Synchronization effects were deemed significant at P < 0.05, with 
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the chance mean and standard deviation at this significance level indicated in the gray shaded area. 
Left: Counts observed at 50-55 Hz, near the frequency of maximal oscillatory SMEs (52 Hz). Right: 
Counts observed in the 65-85 Hz range among the same electrode subset. The frequency/synchrony 
interaction is not significant (P = 0.11). (f)  Average network synchrony (z-score) for the subnetwork 
of regions sampled in the 52 Hz oscillatory electrode subset, measured by summing the subnetwork 
connection weights at each frequency in the 400-600 ms window, and comparing to the sum 
expected by chance. 

 

Discussion 

We set out to uncover fundamental principles that govern the electrophysiological 

networks of activity in the human brain. As 294 subjects performed a verbal free-recall 

memory task, we analyzed three frequency bands that have been strongly implicated in 

neural synchronization24: theta (3-8 Hz), low gamma (30-60 Hz), and high gamma (45-100 

Hz). Gamma networks exhibited strong desynchronizations between brain regions, 

especially those that saw an increase in gamma power. Theta networks were characterized 

by enhanced synchrony, especially among regions with strong increases in HG power. 

Moreover, hubs of theta network activity tend to localize in frontal, temporal, and medial 

temporal cortices – regions that are known to play a strong role in memory encoding and 

retrieval82.  

Here we report findings that address whether theta or gamma band neural activity drives 

synchronization during memory processing. Gamma activity as a general biological 

mechanism of information transmission25,54,55,70 is not backed by many compelling 

observations in the human brain. We found a profound decrease in HG synchronization that 

is associated with successful memory encoding and retrieval, especially among regions that 

see heightened overall HG activation. This relation is consistent with the hypothesis that 

broadband high-frequency activity in the human brain – as detected by macroelectrodes on 

the cortical surface – largely reflects the aggregation of fast, stochastic spiking activity of a 

population of neurons29. It refutes the notion that this kind of broadband signal 

synchronizes across long distances during cognitive operations, though such interactions 

may still be at play in visual areas83 and at smaller spatial scales.  
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Far from suggesting that brain regions are cut off from their neighbors, the observation that 

highly-active memory regions significantly increase their theta synchronization offers a 

low-frequency mechanism by which the brain coordinates its many parts – a brain-wide 

finding that was suggested by prior studies which could only examine specific 

interactions73,84. Furthermore, our results demonstrate how theta networks exhibit time-

varying structure, highlighting frontotemporal hubs that strengthen their connections 

starting 500 ms after onset of an item to be remembered. The fMRI connectivity literature 

parallels this, demonstrating broad, low-frequency networks that act to support human 

memory by convergence on the MTL7,10,85,86. The extent to which whole-brain iEEG-based 

networks overlap with fMRI networks is unexplored territory. 

A small subset of electrodes exhibited increased narrowband gamma-oscillatory power 

associated with successful memory encoding. We observed increased long-range phase 

synchronization among this subset at the frequency of maximal oscillatory activity. This 

indicates that, in some instances, gamma-band activity is organized into coherent, 

oscillatory waves that may serve to coordinate activity between different regions. The 

rareness of this phenomenon should not be understated; statistically reliable oscillatory 

SMEs were detected in only 1% of electrodes in our 294-subject dataset.  

A prior study by Burke, et al. in 2013 also suggested a general decrease in gamma 

synchronization and increase in theta during memory encoding in humans, but only at the 

level of lobe-wise interactions84. The findings presented here extend that work in several 

important ways. First, we establish that decreases in synchrony accompany increases in 

high-frequency power, and that this fundamental relationship between power and 

synchrony manifests itself throughout the human brain. Second, we examined synchrony 

dynamics at a much finer spatial scale, allowing for the possibility that aggregation by lobe 

obscured synchronous gamma activity between nearby regions. Third, we teased out 

oscillatory effects in gamma, demonstrating that while synchrony is observed in rare 

instances, successful human cognition is overwhelmingly associated with a relative increase 

in asynchronous high-frequency signal.  
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Our data demonstrate the existence of two forms of gamma: Broadband asynchronicity, 

more common, and more rarely, narrow-band synchronous oscillations featuring long-

range synchronization. Typically, the asynchronous broadband signal overwhelms the rare 

instances of oscillatory synchronization, explaining the widespread high-frequency 

desynchronization we found. These findings help reconcile a discrepancy in the 

synchronization literature:  There is an established body of animal work in which cellular-

scale recordings document high-frequency synchronization within or between 

inferotemporal, medial temporal, prefrontal, and occipital cortices during cognition57,58,87–89. 

But a far more tenuous corpus exists for humans at the macroelectrode scale – intracranial 

reports of synchronous gamma activity are rare and often simultaneously find significant 

periods of desynchronization59,60,66. Here, we quantified the extent to which human 

cognition is associated with two high-frequency neural dynamics, and found a predominant 

asynchronous signal at all frequencies above 30 Hz alongside a minority oscillatory 

synchronous signal. It is likely that more robust oscillatory activity can be detected with 

microelectrode recordings – as in prior animal work – but the results here speak against the 

importance of such dynamics at the scale of iEEG.  

Whole-brain connectivity patterns still must be characterized in alternative memory 

paradigms, and other cognitive tasks altogether. Here, we investigated functional 

connectivity during a free recall task, a prominent technique used to probe contextually-

mediated episodic memory. In freely recalling items from a previously studied list, subjects 

engage in a process of cue-dependent retrieval, wherein the cue for each recalled item 

includes information about the context of the target list and the previously recalled items. 

While this procedure disentangles neural activity from the influence of an external stimulus, 

experimenter-cued memory paradigms – especially cued recall and recognition – can 

provide additional valuable information about the time-course of item retrieval.  

The whole-brain connectivity network we report here extends the active frontier of 

network neuroscience39. By enabling the assessment of networks at different timescales of 

neural activity, whole-brain iEEG studies provide insights that go beyond non-invasive 

techniques – for example, the present study identified essentially opposite dynamics 
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between low and high frequency activity, which cannot be assessed by fMRI. By expanding 

our understanding of connectivity to the dimension of temporal frequency, this enhanced 

window into neural communication could reveal new ways in which network dynamics 

correlate with, or even predict, disease states90,91. Connectivity maps also inform the use of 

direct brain stimulation as a therapeutic intervention – functional connectivity could serve 

as a model for predicting how stimulation effects propagate from one region to another, 

influencing activity throughout the brain92. If these connectivity-based models of brain 

function prove to be reliable, they may help clinicians use stimulation to repair the brain 

activity underlying damaged cognitive processes51, such as memory deficits in patients with 

traumatic brain injury or neurodegenerative disease.  

Distributed networks of electrical activity in the brain have remained largely 

uncharacterized despite their critical role in human cognition25. During memory encoding 

and retrieval, we discovered that whole-brain gamma networks were largely asynchronous, 

while theta networks were synchronous and specifically engaged among regions with a high 

degree of local processing. Our results lay the foundation for future study of low-frequency 

electrical networks as the primary driver of interregional communication in the human 

brain.   

 

Methods 
 

Participants 

294 patients with medication-resistant epilepsy underwent a surgical procedure to implant 

subdural platinum recording contacts on the cortical surface and within brain parenchyma. 

Contacts were placed so as to best localize epileptic regions. Data reported were collected at 

10 hospitals over 14 years (2003-2017). Prior to data collection, our research protocol was 

approved by the Institutional Review Board at participating hospitals, and informed 

consent was obtained from the participants and their guardians.  
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Free-recall task 

Each subject participated in a delayed free-recall task in which they studied a list of words 

with the intention to commit the items to memory. The task was performed at bedside on a 

laptop, using PyEPL software. Analog pulses were sent to available recording channels to 

enable alignment of experimental events with the recorded iEEG signal.  

The recall task consisted of three distinct phases: encoding, delay, and retrieval. During 

encoding, lists of 12 words were visually presented in the native language (either English or 

Spanish) of the subject. Words were selected at random, without replacement, from a pool 

of nouns (http://memory.psych.upenn.edu/WordPools). Word presentation lasted for a 

duration of 1600 ms, followed by a blank inter-sitmulus interval of 750 to 1000 ms. 

Presentation of word lists was followed by a 20 second post-encoding delay. Subjects 

performed an arithmetic task during the delay in order to disrupt memory for end-of-list 

items. Math problems of the form A+B+C=?? were presented to the participant, with values 

of A, B, and C set to random single digit integers. After the delay, a row of asterisks, 

accompanied by a 60 Hz auditory tone, was presented for a duration of 300 ms to signal the 

start of the recall period. Subjects were instructed to recall as many words as possible from 

the most recent list, in any order during the 30 second recall period. Vocal responses were 

digitally recorded and parsed offline using Penn TotalRecall 

(http://memory.psych.upenn.edu/TotalRecall). Subjects performed up to 25 recall lists in a 

single session.  

A subset of 92 patients performed a variant of the previously described task. List 

presentation consisted of a total of 15 items. In addition, a green fixation cross served as a 

list-cue to signal an upcoming list of words. The list-cue was presented for a duration of 

1600 ms, followed by the presentation of a blank screen for 800 to 1200 ms. The ISI in this 

variant of the task lasted from 800 to 1200 ms in duration. The recall period for this version 

of the task was 45 seconds in length. 

http://memory.psych.upenn.edu/WordPools
http://memory.psych.upenn.edu/TotalRecall
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Electrocorticographic recordings 

iEEG signal was recorded using subdural grids and strips (contacts placed 10 mm apart) or 

depth electrodes (contacts spaced 5-10 mm apart) using recording systems at each clinical 

site. iEEG systems included DeltaMed XlTek (Natus), Grass Telefactor, and Nihon-Kohden 

EEG systems. Signals were sampled at 500, 512, 1000, 1024, or 2000 Hz, depending on 

hardware restrictions and considerations of clinical application. Signals recorded at 

individual electrodes were converted to a bipolar montage by computing the difference in 

signal between adjacent electrode pairs on each strip, grid, and depth electrode. Bipolar 

signal was notch filtered at 60 Hz with a fourth order 2 Hz stop-band butterworth notch 

filter in order to remove the effects of line noise on the iEEG signal.  

Anatomical localization 

Anatomical localization of electrode placement was accomplished using independent 

processing pipelines for depth and surface electrode localization. For patients with MTL 

depth electrodes, hippocampal subfields and MTL cortices were automatically labeled in a 

pre-implant, T2-weighted MRI using the automatic segmentation of hippocampal subfields 

(ASHS) multi-atlas segmentation method42. Post-implant CT images were coregistered with 

presurgical T1 and T2 weighted structural scans with Advanced Normalization Tools93. MTL 

depth electrodes that were visible on CT scans were localized within MTL subregions by 

neuroradiologists with expertise in MTL anatomy94. Subdural electrodes were localized by 

reconstructing whole-brain cortical surfaces from pre-implant T1-weighted MRIs using 

Freesurfer95. Regions of interest (ROI) used for connectivity analyses were given by the 

Talairach label of a given electrode’s position after mapping final contact locations to 

Talairach space, with the exception of any electrode localized to a hippocampal subfield, 

which were collectively labeled “hippocampus.” We considered 37 possible labels for each 

hemisphere, or 74 total.  

In a subset of 92 patients, contact localization was accomplished by coregistering the 

postoperative CTs with post- or pre-operative MRIs using FSL (FMRIB Software Library) 



CHAPTER 3: Whole-Brain Electrical Networks 
_________________________________________________________________________________________________________ 

43 
 

BET (Brain Extraction Tool) and FLIRT (FMRIB Linear Image Registration Tool) software 

packages.  

Contacts placed in an epileptogenic area or in non-neural tissue (as determined by a 

clinician) were excluded from all the analyses in this report.   

Data analyses and spectral decomposition 

iEEG signals were all treated as bipolar montages (a difference in the raw signals from two 

adjacent electrodes), with sampling rates varying between 500 Hz and 2000 Hz, depending 

on the subject. We convolved the signal (downsampled to 500 Hz) from each bipolar 

electrode in each subject with complex-valued Morlet wavelets (wave number 5) to obtain 

phase and power information. We used 35 wavelets from 3-120 Hz, though most analyses 

focus on the 45-100 Hz (high gamma) and 3-8 Hz (theta) ranges (HG: 11 wavelets spaced 5 

Hz, except between 90Hz and 100Hz; theta, 6 wavelets space 1 Hz). Each wavelet was 

convovled with 3600 ms of data surrounding each word presentation (referred to as “trial,” 

1000 ms before word onset to 2600 ms after word onset), and buffered with 1000ms on 

either end (clipped after convolution).  

For each subject, for all possible pairwise combinations of electrodes, we compared the 

distributions of phase differences in all remembered trials against all not-remembered 

trials, asking whether there is a significantly higher concentration, or tightness of the 

distribution, in one or the other (Fig. 1B). To do this, we found the difference of the mean 

resultant vector lengths (often called phase-locking value) of the remembered and not-

remembered phase difference distributions ( values computed with Circular Statistics 

Toolbox)96: 

 
 

Where  and   refer to the mean resultant vector lengths of all remembered and 

not-remembered trials, pq is an electrode pair, f is a frequency band, and t is a window in 

time.  
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Intuitively, a higher resultant vector length (which falls between 0 and 1) reflects a tighter 

distribution of phase differences and greater synchronization between two electrodes. 

Therefore, higher positive differences (D) indicate greater phase-locking for remembered 

trials, whereas lower negative differences reflect greater phase-locking for not-remembered 

trials. D was computed for each frequency spanning a range from 3 to 120 Hz, and for 18 

non-overlapping 200ms time windows spanning the trial, by averaging phase difference 

values within those windows before computing phase-locking values and their 

corresponding D. Unless stated otherwise, the analyses in this report consider only the eight 

200 ms windows between word onset (0 ms) and offset (1600 ms), called the “item 

presentation interval.” 

values are biased by the number of vectors in a sample. Since our subjects generally 

forget more words than they remember (Figure 3.S1), we adopt a nonparametric 

permutation test of significance. For each subject, and each electrode pair, the phase-

synchrony computation described above was repeated 500 times with the trial labels 

shuffled, generating a distribution of D statistics that could be expected by chance for every 

electrode pair, at each frequency and time window. Since only the trial labels are shuffled, 

the relative size of the surrogate remembered and not-remembered samples also reflect the 

same sample size bias. Consequently, the true D (Dtrue) can be compared to the 

distribution of null Ds to derive a p-value or z-score. Higher z-scores indicate greater 

synchronization between a pair of electrodes for items that are later recalled. 

To construct a network of phase synchrony effects between all brain regions, we pooled 

synchrony effects across electrode pairs that span a pair of ROIs, and then pooled these ROI-

level synchronizations across subjects with that pair of ROIs sampled (ROIs were 

determined by the Talairach label for each electrode after coregistration). To do this, we 

first averaged the Dtrue values across all electrode pairs that spanned a given pair of ROIs 

within a subject. Next, we averaged the corresponding null distributions of these electrode 

pairs, resulting in a single Dtrue and a single null distribution for each ROI pair in a subject. 

We then averaged the Dtrue values and null distributions across all subjects with electrodes 

in a given ROI pair. By comparing the averaged Dtrue to the averaged null distribution, we 
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computed a z-score at each frequency and temporal epoch that indicates indicating 

significant phase-synchrony or asynchrony, depending on which tail of the null distribution 

the true statistic falls. Higher z-scores indicate greater synchronization between a pair of 

ROIs for items that are later recalled. 

Network construction and analyses 

Using the population-level statistics described above, a 74-by-74 adjacency matrix was 

constructed for each of the 18 non-overlapping temporal epochs and for each frequency. 

This matrix represented every possible interaction between all ROI pairs. The z-score of the 

true D relative to the null distribution was used as the connection weight of each edge in the 

adjacency matrix. Negative weights indicate ROI pairs that, on average, de-synchronized 

when a word was recalled successfully, and positive weights indicate ROI pairs that 

synchronized when a word was recalled successfully. We zeroed-out any ROI pairs in the 

adjacency matrix represented by less than 7 subjects' worth of data, to limit the likelihood 

that our population-level matrix is driven by strong effects in a single or very small number 

of individuals. 1,243 ROI pairs (out of a possible total of 2,701) were excluded due to low 

subject counts, comprised largely of interhemispheric pairs (795 pairs, or 64% of those 

excluded) and pairs involving regions where electrodes are less commonly placed, including 

basal ganglia and occipital cortex. 

Since it is possible that collections of weaker connection weights may still account for 

significant structure in our network, we did not apply a z-score threshold before further 

analyses. To assess for the significance of phenomena at the network level, we instead used 

500 null networks that can be constructed on the basis of Ds derived from the shuffled trial 

labels to generate a distribution of chance network-level statistics. True statistics were 

compared to these null distributions to obtain a p-value or z-score (e.g. network-wide 

summed connection weights were computed for true and null networks and reported in 

Figure 3.1f, 3.2a, and 3.6b).  

Accordingly, for every operation performed on the true connectivity network, the same was 

done on each of the 500 null networks that reflect connection strengths expected by chance. 
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For example, to ask whether a ROI has a significantly increased node strength at a given 

point in time (see subsection on Hub analysis), node strength was computed for each of the 

500 null networks to generate a distribution of strengths expected by chance. The true node 

strength is compared to the null distribution in order to get a Z-score or p-value.  

Adjacency matrices reflect the average connectivity strength during the item presentation 

interval (0-1600 ms) for each frequency band. To create them, we averaged true connection 

strengths within frequency bands, then averaged across the eight 200 ms time windows in 

this interval, and compared the result to the time/frequency average from each of the 500 

null networks, resulting in a new Z-score for the time/frequency-averaged network (Figure 

3.1d).  

Hub analysis 

To identify which ROIs are more highly synchronous or asynchronous, we used the node 

strength statistic from graph theory to identify "hubs" of the network. Node strength 

reflects the sum of all connection weights to a particular node (or ROI) in the network, and 

is formalized as:  

 
 

Where k is the node strength of node i, and wij refers to the edge weight between nodes i 

and j. N is the set of all nodes in the network39. 

To identify hubs during the word presentation interval, we first averaged connection 

weights within a frequency band and across the presentation interval (as done in Figure 

3.1). Each ROI’s node strength is then computed with these time/frequency-averaged 

weights, per the equation above. The same procedure was done for each of the 500 null 

networks generated from shuffled trial labels (see “Network construction and analyses”), 

creating a null distribution of node strength for each ROI. P-values were obtained by 

observing where a true node strength falls in its corresponding null distribution. Final p-



CHAPTER 3: Whole-Brain Electrical Networks 
_________________________________________________________________________________________________________ 

47 
 

values were corrected for multiple comparisons (Benjamini-Hochberg procedure, α = 0.05 

or 0.01) to yield the final tally of significant hubs. This process was done for all synchronous 

(Z > 0) and asynchronous (Z < 0) connections separately, yielding synchronous and 

asynchronous collections of hub ROIs. For visualization only, connections depicted in Figure 

3.3 were derived by ranking the time/frequency averaged connection weights of each hub, 

and selecting up to the top 5 connections above a Z-score of 2.5. 

To construct ROI activation timecourses, we compared the frequency-averaged node 

strength at each time window against its corresponding null distribution to generate a Z-

score and a p-value, done separately for all positive and negative connection weights. Our 

selection of right and left medial temporal lobe, frontal, and temporal cortices was driven by 

their implication in memory in prior literature5,84,97 and the presence of gamma and/or 

theta-band hubs in each of those broad regions (Figure 3.4).  

Power-synchrony analysis 

Spectral power was obtained by the same Morlet wavelet convolution as used to extract 

phase information (see “Data analyses and spectral decomposition”). For all bipolar 

electrodes in each subject, we log transformed and z-scored power within each session of 

the free-recall task, which comprises approximately 300 trials. Power values were then 

averaged into 8 non-overlapping 200 ms windows spanning the entire trial, matching our 

procedure for phase synchrony.  

To assess the statistical relationship between power and later recollection of a trial word 

(called the subsequent memory effect, or SME), power values for each electrode, trial, time, 

and frequency were separated into two distributions according to whether the trial word 

was later remembered or not-remembered, and Welch’s t-test was performed to compare 

the means of the two distributions. Next, we shuffled the trial labels 500 times and 

recomputed the t-statistic, reflecting power effects that could be observed by chance. The 

true t-statistics were averaged across all electrodes that occur in a given ROI, as are the null 

distributions, and those statistics are next averaged across all subjects with electrodes in 

that ROI. Finally, the averaged true t-statistic was compared to the averaged null 
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distributions to get a z-score at each time-frequency point for a given ROI. These z-scores 

are reported as a heatmap in Figure 3.5b, and we find the Pearson correlation against node 

strength Z-scores as described in “Hub analysis” (i.e. a correlation across time-frequency 

pixels). Correlation P-values are then FDR corrected for multiple comparisons (corrected P 

< 0.05).  

To assess correlations across all time and all ROIs (Figures 3.5c, 3.7d) or ROI subsets 

(Figure 3.6), we first averaged Z-scored node strength and Z-scored power within each 

frequency band. Then, we correlated the strength and power values across all item-

presentation timepoints and all ROIs (i.e. each vector contains time windows by # ROIs total 

elements). To assess significance of these correlations, we adopted a permutation 

procedure that maintains the spatial and temporal dependency between data points: We 

assessed the power-synchrony correlation for each possible 1-shift of one vector against the 

other, and again for the mirror image of that vector. This procedure resulted in a 

distribution of chance correlations, against which we compared the true correlation to 

obtain a p-value.  

Retrieval analysis 

To find out whether principles of brain function uncovered in the memory encoding 

contrast generalize to different cognitive operations, we further analyzed connectivity in a 

retrieval contrast. This was done in a manner similar to Burke, et al. 201426, as follows. For 

each subject, we identified any 500 ms interval during the recall period after which no 

response vocalization occurred for at least 2 seconds, and compared the neural activity in 

these “unsuccessful memory search” intervals to the 500 ms of activity immediately prior to 

successful item recollection. Phase difference values were averaged across two 250 ms time 

windows spanning these trials, as opposed to 200 ms windows in the encoding analysis. All 

other data analysis and spectral methods were matched exactly. This analysis was 

performed on a subset of 197 subjects with detailed retrieval-period information. 
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Oscillations analysis 

We adopted a widely-used method for oscillation detection, called Pepisode or BOSC81,98,99 

(“Better OSCillation detection”). Briefly, this method applies two criteria for the 

identification of a true oscillation: a minimum time (at least 3 cycles), and a significant 

deviation of spectral power from a robust linear fit to the log-frequency vs. log-power curve 

(a spectral “peak”, see Fig. 8a for an example). For each timepoint and frequency assessed, 

BOSC indicates whether an oscillation is present under these criteria. For further details on 

BOSC implementation, see Hughes et al. (2012).  

For each electrode in our dataset, we used BOSC to find out whether the presence of low 

gamma (30-58 Hz, to minimize line noise artifact) oscillations was correlated with whether 

a word would later be remembered or forgotten (“oscillatory SME”). We used this range 

because at higher frequencies, the BOSC measure becomes less reliable as the log-frequency 

vs. log-power becomes nonlinear. For every trial, we computed the fraction of time occupied 

by an oscillation in each of eight 200ms window spanning the 1600ms item presentation 

interval, doing so for 18 log-spaced frequencies between 30 and 58 Hz. The result was a 

measure of oscillatory activity in each time/frequency pixel for each trial. We then grouped 

the trials by whether the word presented was later remembered or forgotten, and 

computed Welch’s t-test between the remembered and forgotten distributions. P-values 

were FDR corrected for multiple comparisons across time/frequency pixels (α = 0.1, a 

deliberately liberal threshold to allow for enough electrodes to analyze pairwise 

synchronization). The count of electrodes with significant memory-correlated oscillatory 

power is depicted in Figure 3.8c. 

To determine whether an electrode exhibited an SME without directly assessing for 

oscillations (and thus capturing elevations in spectral power due to non-oscillatory 

activity), we computed an electrode’s spectral power SME (described in “Power-synchrony 

analysis” above) averaged across 5-Hz spaced frequencies within the 30-60 Hz and 65-100 

Hz bands at each of the eight 200ms windows. P-values were FDR-corrected and declared 

significant at α = 0.1, as above. The count of electrodes with significant SMEs at the 400-

600ms window is depicted in Fig. 3.8d.  
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Since the number of electrodes exhibiting gamma oscillatory SMEs is small (approx. 260), 

the networks that can be constructed from that dataset are sparse. Accordingly, the same 

procedure as described in “Data analyses and spectral decomposition” and “Network 

construction and analysis” is used on this small subset of electrodes (found in 44 subjects) 

to generate a map of some pairwise ROI synchronizations – a subnetwork – but not a whole-

brain network. No threshold was applied on the number of subjects needed to contribute to 

an ROI pair. In Fig. 3.8e, subnetwork connection z-scores during the 400-600 ms window 

were tested for significance at the P<0.05 level (uncorrected), and compared against the 

number of significant connections expected at that level by chance (i.e. shuffled trial labels). 

50-55 Hz were chosen as the closest frequencies to the frequency of maximal oscillatory 

SME (approx. 52 Hz). In Fig. 3.8f, the z-scored mean subnetwork connection weight at 400-

600 ms was plotted as a function of frequency.  
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Supplemental Figures 
 

 

Figure 3.S1. Free-recall behavioral results. (a) Distribution of subject accuracy on the 
verbal delayed free-recall task, mean indicated by vertical line (n=294). (b) Distribution of 
number of total trials (i.e. word presentations) completed by each subject.  

 

 

 

 

 

Figure 3.S2. Left-hemispheric theta (3-8 Hz) hub timecourses. (Figures organized 
according to caption of Figure 3.3 in the main text.) (a) Count of significant (P<0.05) node 
strength for ROIs within three broad regions: left temporal, frontal, and medial temporal 
lobes. (b) Smoothed timecourses of node strength for each ROI. 
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Figure 3.S3. Power-synchrony correlation in the theta band. Correlation of the 
modulation of theta (3-8 Hz) node strength and power across time and frequency for each 
ROI, during the word encoding interval (0-1600ms). Bar plots show the power-synchrony 
correlation for each ROI, with blue indicating negative and red indicating positive 
correlations. Faded bars are not significant after FDR correction for multiple comparisons 
(α = 0.05). 
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Figure 3.S4. Memory-associated brainwide spectral power and phase synchrony in 
the encoding interval (0-1600 ms). (a) Average brainwide t-statistic reflecting the 
relative change in spectral power across all electrodes and all subjects in remembered vs. 
not-remembered conditions (see Fig. 3.S2 and methods for details). (b) Average brainwide 
z-score reflecting the relative change in phase synchrony across all electrode pairs and all 
subjects in remembered vs. not-remembered conditions.  
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Region Name Abbreviation Z-score 
Core Memory Network (in-network), corrected P < 0.01 

R. Extra-Nuclear R. Extra-Nuc N/A 
R. Parahippocampal Gyrus R. Parahipp. 4.11 
R. Subgyral R. Subgyral N/A 
R. Lingual Gyrus R. Lingual 6.71 
R. Fusiform Gyrus R. Fus. 6.77 
R. Middle Frontal Gyrus R. Mid. Fron. 4.86 
R. Inferior Frontal Gyrus R. Inf. Fron. 5.66 
R. Precentral Gyrus R. Precen. 5.32 
R. Superior Parietal Lobule R. Sup. Par. 3.65 
R. Cuneus R. Cuneus 6.15 
R. Superior Occipital Gyrus R. Sup. Occ. 4.25 
R. Middle Occipital Gyrus R. Mid. Occ.  11.86 
R. Inferior Occipital Gyrus R. Inf. Occ. 11.05 
L. Extra-Nuclear L. Extra-Nuc. N/A 
L. Uncus L. Unc. 5.07 
L. Parahippocampal Gyrus L. Parahipp. 8.53 
L. Hippocampus L. Hipp. 5.30 
L. Cingulate L. Cing. 4.99 
L. Subgyral L. Subgyral N/A 
L. Superior Temporal Gyrus L. Sup. Temp. 3.97 
L. Middle Temporal Gyrus L. Mid. Temp. 9.18 
L. Lingual Gyrus L. Lingual 5.46 
L. Fusiform Gyrus L. Fus. 12.21 
L. Inferior Temporal Gyrus L. Inf. Temp. 9.21 
L. Superior Temporal Gyrus L. Sup. Temp. 7.75 
L. Medial Frontal Gyrus L. Med. Fron. 4.40 
L. Middle Frontal Gyrus L. Mid. Fron. 14.31 
L. Inferior Frontal Gyrus L. Inf. Fron. 14.12 
L. Orbital Gyrus L. Orb. 5.04 
L. Precentral Gyrus L. Precen. 4.72 
L. Postcentral Gyrus L. Postcen. 6.13 
L. Superior Parietal Lobule L. Sup. Par. 6.02 
L. Supramarginal Gyrus L. Supramarg. 5.48 
L. Inferior Parietal Lobule L. Inf. Par. 7.69 
L. Cuneus L. Cuneus 6.77 
L. Middle Occipital Gyrus L. Mid. Occ. 12.20 
L. Inferior Occipital Gyrus L. Inf. Occ. 5.67 

Non-Memory Network (out-of-network), corrected P > 0.01 
R. Thalamus R. Thal. 2.29 
R. Caudate R. Caud. 1.81 
R. Lentiform Nucleus R. Lentiform 0.46 
R. Uncus R. Unc. -0.37 
R. Subcallosal Gyrus R. Subcall. 0.49 
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R. Hippocampus R. Hipp. 1.01 
R. Insula R. Insula -0.29 

R. Cingulate R. Cing. 1.65 

R. Anterior Cingulate R. Ant. Cing. 0.12 

R. Posterior Cingulate R. Post. Cing. 0.13 

R. Superior Temporal Gyrus R. Sup. Temp. -2.26 

R. Transverse Temporal Gyrus R. Trans. Temp. -0.09 

R. Middle Temporal Gyrus R. Mid. Temp. 1.78 

R. Inferior Temporal Gyrus R. Inf. Temp. 0.80 

R. Superior Frontal Gyrus R. Sup. Fron. 0.80 

R. Medial Frontal Gyrus R. Med. Fron. -1.39 

R. Orbital Gyrus R. Orb. 0.93 

R. Rectal Gyrus R. Rectal 0.94 

R. Postcentral Gyrus R. Postcen. 1.67 

R. Paracentral Lobule R. Para. Lob. -0.46 

R. Precuneus R. Precun. 0.86 

R. Supramarginal Gyrus R. Supramarg. -2.30 

R. Angular Gyrus R. Ang. -1.52 

R. Inferior Parietal Lobule R. Inf. Par. -0.69 

L. Thalamus L. Thal. 1.64 

L. Caudate L. Caud. 1.35 

L. Lentiform Nucleus L. Lentiform -0.19 

L. Subcallosal Gyrus L. Subcall. 0.96 

L. Insula L. Insula 1.78 

L. Anterior Cingulate L. Ant. Cing. -1.29 

L. Posterior Cingulate L. Post. Cing. 2.50 

L. Transverse Temporal Gyrus L. Trans. Temp. 2.23 

L. Rectal Gyrus L. Rectal 2.01 

L. Paracentral Lobule L. Para. Lob. -1.07 

L. Precuneus L. Precun. 0.17 

L. Angular Gyrus L. Ang. -1.15 

L. Superior Occipital Gyrus L. Sup. Occ. 2.07 

 

Table 3.T1. List of ROIs included in the core memory network. List of the 74 
ROIs (37 per hemisphere) used in this study, with abbreviations. Z-scores reflect a 
comparison of the spectral power between remembered and not-remembered trials, 
averaged across subjects and electrodes. ROIs in the core memory network had 
significant power differences between the two conditions (P < 0.01, Benjamini-
Hochberg corrected for multiple comparisons; see Methods for details). Four 
subcortical ROIs indicated with N/A were excluded from this analysis due to limited 
data (less than 5 subjects with electrodes placed in the ROI).  
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Abstract 

The medial temporal lobe (MTL) is a locus of episodic memory in the human brain. It is 

comprised of cytologically distinct subregions that, in concert, give rise to successful 

encoding and retrieval of context-dependent memories. However, the functional 

connections between these subregions are poorly understood. To determine functional 

connectivity among MTL subregions, we had 126 subjects fitted with indwelling electrodes 

perform a verbal memory task, and asked how encoding or retrieval correlated with 

interregional synchronization. Using phase-based measures of connectivity, we found that 

synchronous theta (4-8 Hz) activity underlies successful episodic memory, whereas high-

frequencies exhibit desynchronization. Moreover, theta functional connectivity during 

encoding aligned with key anatomic connections, including critical links between the 

entorhinal cortex, dentate gyrus, and CA1 of the hippocampus. Retrieval-associated 

networks demonstrated enhanced involvement of the subiculum, reflecting a substantial 

reorganization of the encoding-associated network. We posit that coherent theta activity 

within the MTL marks periods of successful memory, but distinct patterns of connectivity 

dissociate key stages of memory processing. 
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Introduction 

Storing episodic memory is an inherently integrative process, long conceptualized as a 

process that links information about new items to an observer’s current thoughts, emotions, 

and environment5. Decades of behavioral observations, clinical case studies, and scalp 

electroencephalography (EEG) in humans have shed light on the key principles and diverse 

set of brain structures underlying this integration, including frontal, lateral temporal, and 

medial temporal cortex (MTL)80. Recent hypotheses invoke the idea that communication 

among these regions supports memory formation, spurred by a growing number of 

functional imaging and intracranial EEG (iEEG) experiments that show synchronized 

activity among the MTL and cortical structures during memory tasks6,70,100,101.  

However, the MTL has a unique role in supporting episodic memory. Damage to the MTL 

results in profound deficits of memory102, and it has been shown to exhibit enhanced neural 

activity during memory processing in a range of tasks and experimental models82,103, 

identifying this area as a key anatomic hub of episodic encoding and retrieval. The MTL is 

structurally complex; it is subdivided into hippocampus, rhinal cortex, and 

parahippocampal cortex. The cornu ammonis (CA), dentate gyrus, and subiculum comprise 

the hippocampus, while the entrorhinal and perirhinal cortices form rhinal cortex. 

Microscale recordings in animals have revealed that these substructures exhibit distinct 

patterns of activity during memory and navigation tasks, including the generation of 

oscillations, inter-regional synchronization, and neuronal selectivity for time and 

space57,104–109. Computational models of MTL function have assigned unique roles to MTL 

substructures, pertaining to episodic encoding, retrieval, or recognition104,110–113 – typically, 

these models suggest extrahippocampal regions are responsible for placing sensory inputs 

in a useful representational space, while the hippocampus itself forms associative links 

between these representations and their prevailing context.  

Notably, virtually all of the aforementioned animal and modeling literature suggests that 

MTL substructures communicate with one another as they engage in memory processing. 

However, the volume of aforementioned work on intra-MTL connectivity has not been 
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matched by validation studies in humans. Though a handful of investigations have begun to 

address this question in neurosurgical patients59,66,114, limited electrode coverage and 

imprecise localizations have made it difficult to study the fine spatial scale and complete 

extent of neural synchronization within the MTL. But doing so is a crucial component of (1) 

confirming that intra-MTL synchronization observed in animal models also correlates with 

memory processing in humans, and (2) validating models of MTL function that suggest 

communication among specific regions – such as rhinal cortex versus hippocampus – 

supports computations necessary for associative memory formation and retrieval.  

The use of intracranial depth electrodes to study neural activity in the MTL also allows 

neural activity to be studied at different timescales. Slow theta (4-8 Hz) oscillations in the 

hippocampus have been observed during memory processing in humans115–118, as have 

fluctuations at higher frequencies, including the gamma (30-60 Hz) band119,120. These 

oscillations have been theorized to support synchronization between neural assemblies in 

the MTL108,110,121–123, but MTL connectivity has not been fully mapped across frequency 

bands. The extent to which different frequencies underlie neural synchronization in 

memory therefore remains an open question, though converging lines of evidence strongly 

suggest the most prominent connectivity effects occur at low frequencies71,73,124–126. 

Moreover, no studies have deeply considered how observations of within-MTL 

synchronization reflect an experimenter’s choice of connectivity metric, including those that 

are designed to limit the effects of volume-conducted signals that may affect connectivities 

measured across relatively short distances127. 

In this study, we aimed to define the patterns of functional connectivity that emerge in the 

human MTL and to specifically characterize how MTL-subregional connectivity differs when 

memories are being stored versus when they are being subsequently retrieved. 

Additionally, we asked whether functional networks were sensitive to the choice of 

connectivity metric, utilizing the phase-locking value (PLV) and weighted phase-lag index 

(wPLI; insensitive to volume conduction). We leveraged a large dataset of 126 subjects with 

depth electrodes placed in the MTL, localized with hippocampal subfield resolution, and 
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focused on two key contrasts: (1) the encoding subsequent memory effect (SME), 

differentiating remembered from forgotten items, and (2) successful retrieval versus 

periods of unsuccessful memory search. We found that successful encoding was 

characterized by low-frequency connections which converged on left entorhinal cortex, 

while retrieval was associated with enhanced theta connectivity to the subiculum and CA1. 

However, these differing connectivity patterns were not correlated with markedly different 

patterns of local spectral power between encoding and retrieval, suggesting functional 

connections are a key mechanism by which the MTL may switch between distinct memory 

operations. Furthermore, we noted that theta-band connectivity was present regardless of 

choice of connectivity metric or referencing scheme, though connectivity was generally 

blunted when using the wPLI. Taken together, our findings show that low-frequency 

functional coupling in the MTL supports the formation of new memories, with the specific 

pattern of connections acting as the key determinant of successful encoding and retrieval, 

respectively.  

Results 
 

Our general approach to characterizing intra-MTL connectivity was to (1) examine the 

structure of functional connectivity networks using graph-theoretic analysis, (2) examine 

the timecourse of connectivity in key connections, and (3) relate changes in connectivity to 

changes in local activity, as reflected by spectral power. To do this, we correlated intra-MTL 

synchronization with memory state using two contrasts in a verbal free-recall paradigm. 

First, we examined the subsequent memory effect (SME), which has been widely employed 

to characterize whole-brain modulations of spectral power (e.g. Burke et al., 2014a, 2014b) 

that correlate with successful memory encoding. Second, we examined a memory retrieval 

contrast, wherein epochs of time leading up to verbalization of a recalled item are compared 

to matched epochs of time, from other word lists, where no recall occurs (e.g. 29, 40, 41; see 

Methods for details). We refer to these matched periods as “deliberation” intervals.  
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For each contrast, we constructed intra-MTL functional connectivity maps at each 

frequency band, using the phase-locking value (PLV) and weighted phase-lag index (wPLI). 

The PLV76 has long been used to assess whether, across trials, there is a consistent phase 

difference between two electrodes. The wPLI is a more recent modification of the PLV127, 

which downweights phase differences near zero under the assumption that two such 

electrodes are detecting a volume-conducted signal through brain tissue, and not true 

physiologic coupling (Figure 4.1D). We had 126 subjects perform a verbal free-recall task 

during which iEEG was collected from depth electrodes placed in the MTL. Subjects were 

serially presented with 12-item word lists and asked to recall as many words as possible 

after a brief distractor task (Figure 4.1A-C; see Methods for details). For each electrode pair, 

phase differences were computed for each trial, i.e. an encoding or retrieval event. Trials 

were sorted by whether a word was later recalled or forgotten (or, in the retrieval contrast, 

a successful retrieval event or matched deliberation; Figure 4.1E). PLV/wPLI were 

computed for successful/unsuccessful groups separately, and tested for significant 

differences via a nonparametric permutation procedure (see Methods for details). Effects 

were averaged across electrode pairs, subjects, and time, yielding a z-score that indicates 

the relative synchronization in successful vs. unsuccessful memory encoding/retrieval for 

each pair of MTL regions (see Figure 4.2A for an example pair; see Figure 4.S1 for subject 

count per region-pair). Unless indicated otherwise, we use a common average reference for 

all analyses; the bipolar reference is used in some cases to demonstrate generality of key 

results regardless of referencing scheme.  
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Figure 4.1. Task structure and analysis methods. A. Subjects performed a verbal free-recall task, 
consisting of alternating periods of pre-list countdowns (orange), word encoding (blue), and free-
recall (gray). See Methods for details. B. 126 subjects with indwelling electrodes in the medial 
temporal lobe (MTL) participated. Electrodes were localized to CA1, CA3, dentate gyrus (DG), 
subiculum (Sub), perirhinal cortex (PRC), entorhinal cortex (EC), or parahippocampal cortex (PHC). 
Each dot shows an electrode in this dataset, colored by MTL subregion. C. To construct networks of 
intra-MTL activity, we used PLV and wPLI to analyze phase differences between electrode pairs. 
Time windows in two conditions were analyzed: 1.6-second epochs during word encoding 
(blue/red), and 1-second periods leading up to recall vocalizations (gray). D. PLV reflects the 
consistency of phase differences across trials, indicated in example data as clustered phase lags 
around zero (left). The wPLI works similarly, but downweights the contribution of phase lags near 
the zero axis, which may reflect volume conduction (right). Accordingly, stronger connectivity is 
observed if phase lags are clustered around a direction far from zero (or 180 degrees). E. To assess 
intra-MTL connectivity, phase differences are computed for each electrode pair in all trials, and trials 
are then sorted by successful vs. unsuccessful memory. PLV or wPLI is computed for each 
distribution, and a nonparametric permutation procedure is used to determine whether connectivity 
is significantly different between distributions. Connectivity values are averaged across electrode 
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pairs and subjects to yield the final MTL network maps depicted in Figure 3.2 (see Methods for 
details).  

 

Theta networks of memory encoding and retrieval 

Given strong evidence in the literature for synchronous memory effects in the theta 

band71,73,124–126, we first sought to characterize the detailed structure of theta networks in 

the MTL. To do this, we asked whether any regions acted as “hubs” of the MTL by computing 

the node strength for each region, using theta PLV connection weights. Node strength 

reflects the overall connectivity to a given node of the network by summing all of its 

connection weights. In the SME contrast, left entorhinal cortex emerged as a significant hub 

(corrected permuted P < 0.05; Figure 4.2D). In the retrieval contrast, left CA1 was 

numerically greatest and significant if not corrected for multiple comparisons (permuted P 

= 0.013; Figure 4.2F). The single strongest connection for the encoding/retrieval contrasts 

were EC-PRC (Z = 2.65) and CA1-Sub (Z = 2.00), respectively (see Figure 4.1 legend for 

region abbreviations). For each contrast, the strongest synchronous connections are 

depicted schematically in Figures 4.2C and 4.2E. In both retrieval and encoding, entorhinal 

cortex exhibits enhanced connectivity to CA1 and subiculum, with additional perirhinal-

hippocampal connections present exclusively in encoding. Additionally, in both contrasts, 

connections within the left MTL are significantly greater than zero (encoding, P = 0.005; 

retrieval, P = 0.04), and stronger than connections within the right MTL, though not 

significantly so for encoding (encoding, P = 0.15; retrieval, P = 0.03).  

These findings align with known anatomical connections and functional roles of MTL 

subregions. The entorhinal cortex acts as a key input structure to the hippocampus and 

represents the convergence of information from the perirhinal and parahippocampal 

cortices1,130 – it is fitting that this structure exhibits enhanced theta connectivity to other 

MTL structures during with successful memory encoding. Furthermore, a reorganization of 

theta networks featuring enhanced connectivity between the subiculum and CA1 comports 

with anatomical connectivity and notion of subiculum’s role as a major output structure of 

the hippocampus131,132. However, this network-based analysis (1) averages synchrony 

effects over the entire word presentation or retrieval intervals, obscuring time-varying 
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dynamics, and (2) considered only PLV connectivity, which may reflect nonphysiologic 

volume conduction.  

 

Figure 4.2. Structure of theta networks supporting episodic memory. A. To determine overall 
connectivity for each pair of MTL subregions, PLV or wPLI is averaged over the encoding (word 
presentation, 0-1.6 seconds) or retrieval (-1.0 to 0 seconds prior to retrieval onset) intervals, yielding 



CHAPTER 4: Mesoscale Networks in the MTL 
_________________________________________________________________________________________________________ 

64 
 

a single z-scored connection weight. (see Methods for details). The matrix representation of all these 
weights is called an adjacency matrix, shown here for the encoding contrast in the theta band (PLV). 
Any inter-regional connection with fewer than 5 subjects’ worth of data is excluded from analysis 
(white cells). Because interhemispheric connections are less well sampled than intra-hemispheric 
connections, and because interhemispheric connectivity is largely asynchronous, they are excluded 
from this analysis of network structure (gray shading). B. Retrieval contrast theta adjacency matrix 
(PLV), organized as in (A). C. Depiction of strongest (Z > 1) synchronous PLV connectivity in the SME 
contrast, derived from the theta adjacency matrix in (A). These connections reflect the averaged 
connection strength over the word presentation interval (0.0-1.6 seconds; see Methods for details). 
Thicker lines reflect Z-scores above 2. D. Z-scored node strength for each MTL region, computed only 
for connections to ipsilateral MTL regions (see Methods for details). Node strength indicates the sum 
of all connections to a given region, with positive Z-scores indicating enhanced overall connectivity to 
a given region during successful encoding epochs (a “hub” of connectivity). Left EC exhibited 
significant positive node strength (FDR-corrected permuted P < 0.05) correlated with words that 
were successfully remembered. Inset: Z-scored total network strength for all intra-hemispheric MTL 
connections, computed by summing the connection weights for each hemisphere’s MTL subregions 
separately. Intra-MTL connections on the left are significantly greater than chance (P = 0.005), and 
trend greater than right-sided connections (P = 0.15). E. Schematic of strongest theta retrieval 
connections, reflecting increased PLV between two MTL subregions in the 1-second immediately 
prior to successful retrieval of a word item. F. Same as (D), but reflecting synchronous activity from 
the 1-second period prior to successful retrieval of a word item. No region exhibits a significant node 
strength after correction for multiple comparisons, but left CA1 is significant if uncorrected (P = 
0.013). Inset: Z-scored total network strength for all intra-hemispheric MTL connections. Left-sided 
connections are significantly greater than chance (P = 0.04) and significantly greater than right-sided 
connections (P = 0.03).  

 

Temporal dynamics of memory-related connectivity 

Having shown that encoding- and retrieval-associated theta networks differ in their 

structure but align with known anatomical connectivity of the MTL, we next asked whether 

our previously-identified synchronous connections exhibited time-varying dynamics. 

Additionally, we aimed to determine whether these connectivity effects were robust to use 

of the PLV or wPLI, which discounts phase differences near zero. In particular, we 

hypothesized that two possibilities could underlie changes in PLV and wPLI between 

conditions. First, tightly-clustered phase lags in a nonzero direction could rotate towards 

zero, resulting in a reduced wPLI since phase lags are downweighted closer to zero (Figure 

4.3A, top row). In this case, PLV would remain unchanged. However, the correction for 

volume-conduction comes at a cost: tightly-clustered phase lags could still be well within a 

believable, nonzero range, yet wPLI would indicate a relative decrease in synchronization 

between conditions. The second possibility is that tightly clustered nonzero phase lags 
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could increase in variance between conditions, resulting in decreased PLV and wPLI (Figure 

4.3A, bottom row). In experimental reality, both between-condition changes could occur 

simultaneously.   

 

 

Figure 4.3. Time-varying dynamics of left EC to left DG coupling. A. As demonstrated using 
simulated data, the wPLI can differ between conditions for two reasons. First, depicted in the top 
row, well-clustered phase lags can rotate toward zero – decreasing wPLI which downweights phase 
lags closer to zero to account for volume conduction. In this case, the PLV will remain unchanged. 
Second, depicted in the bottom row, the variance of a nonzero phase lag distribution can increase 
between conditions, causing decreases in PLV and wPLI. B. Top: Time-frequency plot of PLV 
synchronization between left EC and left DG in the encoding contrast, averaged across subjects. Red 
colors indicate relative synchronization in remembered versus not-remembered trials, blue colors 
indicate relative desynchronization. Vertical black lines indicate word onset and offset, dotted 
horizontal line indicates the max theta frequency considered for connectivity analyses. Bottom: In 
non-overlapping 100 ms windows, PLV (blue) and wPLI (orange) values are averaged across all theta 
frequencies, yielding a synchronization timeseries. Any two consecutive 100 ms windows with 
synchronization significantly greater than chance (P < 0.05) are marked as significant with blue or 
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orange colored rectangles (see Methods for details). In this region-pair, PLV is significant from 400-
600 ms and 700-900 ms after word onset. C. Axial T1-weighted MRI slice depicting electrode 
locations for a representative pair spanning the left DG and EC. D. Time-frequency plots for the 
indicated electrode pair, theta frequencies only. Top row shows PLV synchronization during 
successful encoding, bottom row shows wPLI synchronization. The considered interval and 
frequency for phase lags in (E) is marked with a square. E. For the highlighted frequency and interval, 
phase lags were binned according to whether the trial was later remembered (blue) or not-
remembered (red). The mean direction of the clustered remembered trials is 9.7 degrees (PLV = 
0.34), indicated with the black arrow. Not-remembered trials are unclustered, as reflected by a low 
PLV of 0.07.  

To illustrate this, we examined phase lag distributions for a key connection in the encoding 

contrast – left EC versus left DG. Across all subjects, we observed significantly enhanced 

theta PLV (permuted P < 0.05 from 400-600 ms and 700-900 ms) with successful encoding, 

though no significant wPLI during those same intervals (Figure 4.3B). In a representative 

subject who exhibited enhanced PLV and minimal wPLI modulation in similar intervals, we 

examined phase lags between remembered and not-remembered trials for a pair of 

electrodes in the left EC and DG (Figure 4.3C-D). Phase lags for remembered trials were 

clustered near zero (PLV = 0.34, mean direction = 9.7 degrees), and uniformly distributed in 

the not-remembered condition (PLV = 0.07; Figure 4.3E). One interpretation of these results 

is that wPLI is operating as intended; small phase lags could be reflecting volume-conducted 

signal from a common source that should be discounted. Therefore, even the tightly-

clustered phase distribution in the remembered condition does not yield a relative increase 

in wPLI. Conversely, it is not clear whether a mean phase lag of 9.7 degrees is close enough 

to zero to justify substantially discounting those signals; prior studies have excluded phase 

differences less than 5 degrees from zero73. Finally, in this example, the DG and EC 

recording contacts are separated by more than 2 cm, a spacing which is greater than 

putative distances in which common signal is conducted in brain tissue133. It is therefore 

possible that use of wPLI is inappropriately rejecting true, near-zero phase coupling. 

Temporal dynamics of theta connectivity differed between MTL subregion pairs. Left EC and 

left PRC showed significantly enhanced PLV connectivity (permuted P < 0.05) in the -100-

300 ms interval relative to word onset (Figure 4.4A). Left EC and left CA1, linked by the 

perforant pathway, exhibited enhanced PLV synchrony from 500 ms to 800 ms after word 
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onset, similar to the EC-DG connection (Figure 4.4B). In both cases we observed 

subthreshold increases in wPLI during the word encoding interval.  

 

 

Figure 4.4. Timing analysis of key encoding connections. A. Top: Time-frequency plot of left EC-
PRC synchronization (PLV) in the encoding contrast, averaged across subjects. Bottom: Timecourse 
of PLV/wPLI theta synchronization, averaged across subjects. Significant (P < 0.05) PLV 
synchronization is marked from -100 to 300 ms after word onset. B. Same as (A), but for the EC vs. 
CA1 connection. Significant PLV synchronization is marked from 500 to 800 ms after word onset. C. 
Top row: PLV and wPLI time-frequency plots for left CA1 vs. left DG, under the common average 



CHAPTER 4: Mesoscale Networks in the MTL 
_________________________________________________________________________________________________________ 

68 
 

reference. Bottom row: PLV/wPLI time-frequency plots under the bipolar reference. See Methods for 
details. D. For the left CA1 vs. left DG connection, timecourses of theta PLV/wPLI connections, 
organized as in (A). Significant wPLI was observed under the average reference from 800-1000 ms, 
while significant PLV was observed under the bipolar reference from 500-900 ms. Phase lag 
distributions from a representative electrode pair (average reference) are depicted above the 
timeseries, indicating a relative rotation away from zero for remembered trials.  

 

Connectivity between left CA1 and left DG illustrates convergent results regardless of 

connectivity metric or referencing scheme. We observed general increases in theta 

connectivity in all measured conditions (Figure 4.4C), though PLV increases were 

subthreshold under the average reference, while wPLI increases were significant (permuted 

P < 0.05, 800-1000 ms; Figure 4.4D). To understand this unique case, we examined the 

phase lag distributions for a representative electrode pair (Figure 4.4D, top row). In both 

remembered and not-remembered distributions, phase lags were tightly clustered (PLV = 

0.62, 0.68 respectively), though the not-remembered distribution was rotated towards the 

zero axis (-9 degrees versus -18 degrees). This rotation yielded a relative increase in wPLI 

even as overall phase lag clustering fell slightly. Notably, we also found enhanced PLV in this 

region-pair under the bipolar reference (500-900 ms) and a concomitant subthreshold 

wPLI increase (Figure 4.4D, bottom panel).  

Finally, synchronization during memory retrieval intervals also exhibited time-varying 

structure. In two key connections, left CA1 vs. subiculum and left CA1 vs. left EC, we 

observed increases in theta connectivity in the period leading up to vocalization of a 

recalled word (CA1-Sub, P < 0.05 -200-0 ms prior to retrieval; CA1-EC, -300-100 ms; Figure 

4.5A-B). In a representative electrode pair, we noted CA1-Sub synchronization was 

associated with clustered near-zero phase lags (PLV = 0.47, 8.6 degrees; Figure 4.5C left), 

explaining no observed increase in relative wPLI. In the CA1-EC pair, phase lags were well-

clustered in both conditions but rotated near zero for successfully retrieved events (PLV = 

0.70, 1.9 degrees; Figure 4.5C right).  

Taken together, we found that the general increase in left-MTL synchronization is driven by 

time-varying increases in connectivity between key regions, including left EC, CA1, DG, and 
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subiculum. Connections to or within the hippocampus typically occurred more than 500 ms 

after word onset in the encoding interval, while EC and PRC exhibited an early 

synchronization approximately coincident with word onset. Differences between observed 

PLV and wPLI derive from complex differences in underlying phase lags, though we note 

that clustered phase lags near – but not at – zero tend to blunt wPLI’s sensitivity to 

memory-related effects.  

 

 

Figure 4.5. Timing analysis of key retrieval connections. A. Left: Time-frequency plot of left CA1-
subiculum PLV synchronization in the retrieval contrast, averaged across subjects. Right: Time-
frequency plot of left CA1-EC PLV synchronization in the retrieval contrast. B. Left: Timecourse of left 
CA1-subiculum PLV/wPLI synchronization, organized as in Figure 4.4B. Significant (P < 0.05) PLV 
synchronization is marked from -200 to 0 ms prior to recall onset. Right: Timecourse of left CA1-EC 



CHAPTER 4: Mesoscale Networks in the MTL 
_________________________________________________________________________________________________________ 

70 
 

synchronization. Significant PLV synchronization is marked from -300 to -100 prior to recall onset. C. 
Left: In a representative CA1-sub electrode pair demonstrating enhanced PLV in the significant 
interval, successfully-retrieved trials demonstrated phase lag clustering around a mean direction of 
8.6 degrees (PLV = 0.47). No clustering was evident for epochs where no recall occurred, called 
“deliberation” trials. Right: In a representative CA1-EC electrode pair, successful retrieval events 
showed greater phase clustering than deliberation events, but retrieval events were aligned with the 
zero axis (mean direction, 1.9 degrees). Therefore, PLV reflected a memory-related increase, but 
wPLI did not.  

 

Relationship between connectivity and spectral power 

Our primary focus was to characterize patterns of intra-MTL connectivity, but it is known 

that MTL subregions exhibit distinct patterns of local activation associated with episodic 

memory (e.g. 50, 51). We therefore asked whether changes in local spectral activity within 

the MTL correlate with encoding and retrieval states, and whether such changes relate to 

inter-regional theta connectivity. To do this, we analyzed the relative spectral power 

between successful and unsuccessful encoding/retrieval trials, in the theta band (4-8 Hz) 

and frequencies that correspond to high-frequency activity (HFA, 30-90 Hz). HFA is 

established as a general marker of neural activation that likely includes gamma oscillatory 

components and spectral leakage from aggregate unit spiking activity29. For each MTL 

subregion, we computed the power SME and retrieval contrast for each electrode at each 

frequency, and averaged these effects across electrodes and subjects (see Methods for 

details). This procedure results in a t-statistic that reflects the relative power in a given 

region between successful and unsuccessful encoding/retrieval events.  

Though we broadly observed positive theta connectivity associated with successful episodic 

memory, spectral power contrasts at the same frequencies went in the opposite direction. 

Bilateral CA1 and PRC exhibited significant decreases in theta power associated with 

successful encoding, as did left DG, left PHC, and right subiculum (FDR-corrected P < 0.05; 

Figure 4.6A). Bilateral CA1 also exhibited significantly enhanced HFA, and HFA was 

otherwise nonsignificantly increased in all MTL regions. Power dynamics associated with 

successful retrieval were similar to those observed in the encoding contrast. Theta was 

generally decreased in the left MTL, significantly so in left PRC and CA1 (FDR-corrected P < 

0.05). Furthermore, HFA was elevated in bilateral CA1 and DG. The general trend of 
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decreased theta power and increased HFA aligns with a robust literature demonstrating this 

same effect across a diverse array of cortical regions and the MTL84,100,119,120. 

Between left EC and CA1 – both exhibiting memory-related increases in theta connectivity – 

we further asked whether there was a relationship between modulations of spectral power 

and connectivity. During successful encoding, left CA1 showed a significant (P < 0.05) 

increase in HFA from 700-900 ms after word onset, coincident with the 500-800 ms theta 

connectivity to EC shown in Figure 5B (Figure 4.6B, top row). Additionally, CA1 exhibited a 

sustained and significant decrease in theta power beginning at 500 ms, while EC showed a 

transient decrease from 200 to 600 ms (no significantly increased HFA was observed in EC). 

In the retrieval contrast, HFA increased and theta power decreased in CA1 prior to onset of 

a successfully retrieved word (HFA, -600-0 ms prior to onset; theta, -300-0 ms). Both of 

these intervals overlapped with the period of enhanced CA1-EC theta synchrony from -300 

to -100 ms (Figure 4.6C). We observed no significant modulations of power in either band in 

EC during retrieval, but note subthreshold increases in HFA and decreases in theta power in 

the pre-retrieval interval (Figure 4.6C, right panel). Time-frequency analyses for all MTL 

regions are reported in Figures 4.S2. Collectively, these results recapitulate a theme noted 

in an earlier study of whole-brain connectivity100: Increases in low-frequency connectivity 

are associated with increases in high-frequency power and decreases in low-frequency 

power.  
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Figure 4.6. Dynamics of spectral power associated with memory encoding and retrieval. A. For 
each MTL subregion and hippocampal subfield, the spectral power during successful vs. unsuccessful 
encoding or retrieval epochs was computed in the theta (4-8 Hz) and high-frequency activity (30-90 
Hz) bands. For encoding periods, powers were averaged in the 400-1100 ms interval, and between -
500-0 ms for retrieval periods, which were the times featuring the most prominent network-wide 
power change (see Methods for details). The t-statistic indicating the relative power during 
successful versus unsuccessful encoding or retrieval is mapped to a color, with reds indicating 
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increased power and blues indicating decreased power. These colors are displayed on schematics of 
MTL and hippocampal anatomy for encoding and retrieval conditions (rows), and theta or HFA bands 
(columns). Asterisks indicate significant (P < 0.05) memory-related power modulation, FDR 
corrected across tested regions. “Hipp” was not tested collectively but is colored according to CA1. B. 
Left CA1 and left EC showed changes in spectral power that were temporally associated with 

enhanced connectivity between the regions (see Figure 4.5B). Significant (P < 0.05) increases in CA1 
HFA occurred from 700-1000 ms after word onset, while CA1 theta power decreased from 500 ms to 
the end of the word encoding interval. Left EC theta power decreased from 200-600 ms. The period 
of significantly enhanced theta PLV is marked in green. C. Organized as (B), but for the EC-CA1 
interactions in the retrieval contrast. No significant modulations of left EC power were observed in 
the pre-recall interval.  

 

Memory effects by frequency band 

As several frequency bands have been implicated in intra-MTL synchronization87,104,114,124,135 

– notably theta (4-8 Hz) and low gamma (30-60 Hz) – we finally asked whether memory-

related connectivity in the MTL was also present at higher frequency bands. For the theta, 

alpha (9-13 Hz), beta (16-28 Hz), and low gamma bands, network-wide synchronization 

was only positive for both encoding/retrieval using PLV in the theta band, though not 

significantly greater than synchronicity expected by chance (permuted P = 0.22, 0.53; 

Figure 4.7A; see Methods for details). Specific connection weights for each contrast and 

connectivity metric are depicted in Figure 4.7B. Network-wide wPLI was not positive in any 

band for either contrast. Significant desynchronization was observed for PLV in the beta 

band and wPLI in the gamma band (permuted P < 0.05). In general, synchronization tended 

to decrease with increasing frequency – considering both PLV and wPLI, and under the 

bipolar or common average reference, the greatest desynchronization was observed in 

either the beta or low gamma bands. We note that the bipolar PLV was net positive – though 

not significant – in the low gamma band, though the effect reversed when considering the 

bipolar wPLI.  

Taken together, MTL-wide networks exhibited net increases in connectivity for both 

encoding and retrieval only in the theta band. These increases were not significantly greater 

than chance, likely reflecting an underlying mix of synchronous and asynchronous 

connection weights (Figure 4.7B). This trend is consistent across referencing scheme and 

choice of connectivity metric, though strong increases in connectivity using wPLI are not 
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apparent at any band, perhaps due to the reduced sensitivity of this metric if phase 

differences are near zero. We note that, as shown in earlier analyses, this finding does not 

preclude the possibility that significantly positive wPLI interactions correlate with 

successful memory, just that network-wide effects averaged over time could obscure such 

effects. 

 

 

Figure 4.7. Network-wide synchrony by frequency band. A. Network-wide synchronization is 
computed by averaging all inter-regional connection weights for each frequency, connectivity metric, 
and referencing scheme. Positive network-wide synchrony was noted for both retrieval and encoding 
contrasts in the theta band. Significant PLV desynchronization (*P < 0.05) was noted in the beta band 
for encoding and retrieval, and in the gamma band for encoding. B. Adjacency matrices for both 

contrasts (left vs. right) using PLV and wPLI, organized as shown in Fig. 4.2A.  

 

Discussion 

We set out to understand neural interactions between substructures of the MTL during 

episodic encoding and retrieval. As 126 subjects performed a verbal free-recall task, we 

recorded intracranial EEG from the MTL and compared inter-regional connectivity between 

periods of successful and unsuccessful memory operations. Using these methods, we 

discovered that low-frequency phase locking correlates with successful memory encoding 
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and retrieval, with left entorhinal cortex acting as a key hub for theta connectivity during 

encoding, and a reorganized left-MTL network supporting retrieval. We additionally used 

the weighted phase-lag index to account for volume conduction, and noted periods of theta 

synchronization between key regions but generally blunted effects across all frequency 

bands. Concurrent with these dynamics was a general decrease in theta power and increase 

in high-frequency activity in both retrieval and encoding, though the degree of power 

modulation was not predictive of network hubs.  

Low-frequency synchronization in the MTL has been conjectured to underlie diverse 

cognitive operations, including spatial navigation and working memory104,110. Under these 

hypotheses, theta oscillations result in long-term potentiation of synapses in the 

hippocampus by linking the time of stimulus onset with a cell’s state of maximum 

depolarization. Relatedly, it is well-established that activity in the gamma-band can be 

modulated by the phase of an ongoing theta oscillation, representing another mechanism 

that supports inter-regional plasticity24,74,123. Our data align with this hypothesis – increases 

in theta connectivity occurred alongside enhanced HFA in connected areas. We show this 

theta/gamma dynamic in the context of successful encoding of individual words, suggesting 

that the cognitive operations which support working memory, navigational memory, and 

episodic memory are not so different; indeed, episodic encoding of list items is known to 

involve the contextual binding of one item to another13, not dissimilar to holding a list in 

working memory or building a map of a spatial environment113,136. 

Our identification of encoding and retrieval-associated networks enriches computational 

models of memory in the MTL. An influential theory of MTL function postulates that theta 

oscillations within the hippocampal-entorhinal system constitute a common substrate of 

navigation and episodic memory, by synchronizing EC representations of physical or mental 

space with hippocampal mechanisms that serve to neurally associate these representations 

with context (and later serve to retrieve information)111,112,121. In support of this theory, we 

found theta connectivity between the EC and CA1/DG in the hippocampus (in addition to a 

less robust increase in connectivity between CA1 and DG directly). Enhanced theta 

connectivity between EC and PRC has not been reported before in humans but supports the 
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notion that EC’s representations are built on sensory input from the neocortex, routed 

through extrahippocampal MTL regions. 

Our findings also indicate a role for theta synchronization during memory retrieval. Indeed, 

as suggested by anatomical evidence131 and models of hippocampal function137, successful 

retrieval was associated with enhanced connectivity between CA1-EC and CA1-subiculum. 

Both of these functional connections may support the reinstatement of neocortical activity 

associated with contextually-retrieved information, driven by pattern completion in CA3.  

In this study, we rigorously assessed the utility of two common metrics of phase-based 

connectivity: the phase-locking value and the weighted phase-lag index. In general, neither 

metric showed strong evidence for high-frequency synchronization (beta or above), and 

only the PLV showed truly robust evidence for synchronization in the theta band. Indeed, a 

total reliance on the wPLI – even in this large dataset – would suggest a general absence of 

any connectivity-related phenomena during episodic memory processing in the MTL. For 

several key connections, we demonstrated why there are interpretive difficulties in using 

the wPLI: it is sensitive to changes in the variance of clustered phase lags and the mean 

direction of clustered phase lags. As such, differences in wPLI between conditions could 

reflect either (or both) of these underlying dynamics. In regards to the mean direction of 

phase lags, it is especially difficult to determine whether a change in wPLI is meaningful, 

because wPLI will statistically discount phase lags as they rotate towards the zero axis, even 

if they are still well within believable ranges138. Furthermore, it is not clear that exactly-zero 

phase lags are biologically implausible and should be ignored outright70, especially at low 

frequencies. We observed that, in this dataset, significant increases in PLV were often 

accompanied by subthreshold increases in wPLI – suggesting that this conservative statistic 

was, averaged across subjects, reducing physiologic signal to the point that it was no longer 

significant. At the risk of doubling the number of statistical comparisons, we advise that 

researchers consider PLV and wPLI simultaneously, and further examine the underlying 

distribution of phase differences to gain insight into the biological processes that might 

drive their effects.  
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Our use of a verbal free-recall task – though a powerful paradigm for studying episodic 

memory – necessitated the construction of a retrieval contrast that merits further 

discussion. In this manuscript, we compared neural activity in 1-second intervals leading up 

to vocalization of a word against 1-second intervals at matched periods of time with no 

recalls, in free-recall periods from other lists. In this way, we aimed to contrast activity 

related to successful retrieval against activity during which subjects were liable to try, but 

fail, to recall a word. This paradigm has been employed in several prior studies examining 

the neural correlates of free recall100,120,128,129. However, free-recall tasks inherently 

confound neural process responsible for episodic retrieval with processes responsible for 

vocalization and motor preparatory behavior. To account for this, our analyses exclusively 

consider the MTL – not canonically associated with speech preparation – and only examine 

activity in the time period preceding onset of vocalization. It is still possible that speech-

related activity contaminates the retrieval contrast reported here -- other possible contrasts 

could leverage nonword vocalizations or intrusion events, though these are typically too 

rare to serve as a statistically valid basis for connectivity computations. Replicating the 

finding of recalled-associated theta synchrony in a cued-recall paradigm would therefore be 

a valuable complement to this work.  

In this study, we failed to find strong evidence for memory-related gamma synchronization 

within the MTL – rather, we noted substantial time-averaged decreases in synchronization 

in the 30-60 Hz range, especially when using the wPLI. However, earlier reports of 

hippocampal-rhinal connectivity have reported effects in the gamma band59,114. To constrain 

our hypothesis space, we did not statistically assess possible gamma-band synchronization 

in detail, though our time-frequency analyses of key hippocampal-rhinal connections such 

as EC-CA1 and EC-DG do not indicate robust increases in gamma synchronization associated 

with successful encoding (see Figures 4B and 5B). These data recapitulate an earlier study 

that utilized a superset of the data here, wherein gamma connectivity was found to decrease 

during good memory encoding, across a diverse array of cortical regions and 

hippocampus100. 
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In summary, we found that theta band connectivity characterizes intra-MTL interactions 

that are related to memory encoding and retrieval processes, but distinct networks 

correlate with successful encoding and retrieval. During encoding, we found EC to be a hub 

of theta connectivity, with connections to CA1 and DG. During retrieval, we observed a 

reorganized theta network, with no clear hubs but enhanced connectivity between EC-CA1 

and CA1-subiculum. However, both retrieval and encoding were broadly characterized by 

enhanced HFA and decreased theta power. These findings point to low-frequency 

interactions as the key to unlocking the way in which medial temporal structures give rise 

to episodic memories. 

 

Methods 

Participants 

For connectivity analyses, 126 patients with medication-resistant epilepsy underwent a 

surgical procedure to implant subdural platinum recording contacts on the cortical surface 

and within brain parenchyma. Contacts were placed so as to best localize epileptic regions. 

Data reported were collected at 8 hospitals over 3 years (2015-2017): Thomas Jefferson 

University Hospital (Philadelphia, PA), University of Texas Southwestern Medical Center 

(Dallas, TX), Emory University Hospital (Atlanta, GA), Dartmouth-Hitchcock Medical Center 

(Lebanon, NH), Hospital of the University of Pennsylvania (Philadelphia, PA), Mayo Clinic 

(Rochester, MN), National Institutes of Health (Bethesda, MD), and Columbia University 

Hospital (New York, NY). Prior to data collection, our research protocol was approved by 

the Institutional Review Board at participating hospitals, and informed consent was 

obtained from each participant.  

Free-recall task 

Each subject participated in a delayed free-recall task in which they studied a list of words 

with the intention to commit the items to memory. The task was performed at bedside on a 
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laptop. Analog pulses were sent to available recording channels to enable alignment of 

experimental events with the recorded iEEG signal.  

The recall task consisted of three distinct phases: encoding, delay, and retrieval. During 

encoding, lists of 12 words were visually presented. Words were selected at random, 

without replacement, from a pool of high frequency English nouns 

(http://memory.psych.upenn.edu/WordPools). Word presentation lasted for a duration of 

1600 ms, followed by a blank inter-sitmulus interval of 800 to 1200 ms. Before each list, 

subjects were given a 10-second countdown period during which they passively watch the 

screen as centrally-placed numbers count down from 10. Presentation of word lists was 

followed by a 20 second post-encoding delay, during which time subjects performed an 

arithmetic task during the delay in order to disrupt memory for end-of-list items. Math 

problems of the form A+B+C=?? were presented to the participant, with values of A, B, and C 

set to random single digit integers. After the delay, a row of asterisks, accompanied by a 60 

Hz auditory tone, was presented for a duration of 300 ms to signal the start of the recall 

period. Subjects were instructed to recall as many words as possible from the most recent 

list, in any order, during the 30 second recall period. Vocal responses were digitally 

recorded and parsed offline using Penn TotalRecall 

(http://memory.psych.upenn.edu/TotalRecall). Subjects performed up to 25 recall lists in a 

single session (300 individual words).  

Electrocorticographic recordings 

iEEG signal was recorded using depth electrodes (contacts spaced 5-10 mm apart) using 

recording systems at each clinical site. iEEG systems included DeltaMed XlTek (Natus), 

Grass Telefactor, and Nihon-Kohden EEG systems. Signals were sampled at 500, 1000, or 

1600 Hz, depending on hardware restrictions and considerations of clinical application. 

Signals recorded at individual electrodes were first referenced to a common contact placed 

intracranially, on the scalp, or mastoid process. To eliminate potentially confounding large-

scale artifacts and noise on the reference channel, we next re-referenced the data using the 

common average of all depth electrodes in the MTL that were used for later analysis. For 

http://memory.psych.upenn.edu/WordPools
http://memory.psych.upenn.edu/TotalRecall
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some analyses (Figure 4.2 and Figure 4.5) raw signals recorded at individual recording 

contacts were converted to a bipolar montage by computing the difference in signal 

between adjacent electrode pairs on each depth electrode.  Signals were notch filtered at 60 

Hz with a fourth-order 2 Hz stop-band butterworth notch filter in order to remove the 

effects of line noise on the iEEG signal, and downsampled to 256 Hz. 

As determined by a clinician, any contacts placed in epileptogenic tissue or exhibiting 

frequent inter-ictal spiking were excluded from all subsequent analyses. Any subject with 

fewer than 3 remaining recording contacts in the MTL were not included in the analysis. 

Any subject with fewer than 15 trials of successful encoding or successful retrieval (see 

“Retrieval analyses”) were excluded from analysis (encoding, 3 subjects excluded; retrieval, 

21 subjects excluded).   

Limitations of the bipolar reference: In this manuscript, we considered use of the common 

average and bipolar reference, to account for the possibility that the filtering properties of a 

given reference scheme could affect connectivity measures. However, the use of the bipolar 

reference for studies of intra-MTL connectivity is limited by the geometry of linear depth 

electrodes relative to MTL structures; it is often the case that a bipolar midpoint “virtual” 

electrode will fall in a subregion/subfield where neither physical contact was placed, raising 

interpretive difficulties. Additionally, connectivities between bipolar electrodes that share a 

common monopolar contact are contaminated by shared signal between the two – ideally, 

such pairs should be excluded from analysis. However, doing so drastically reduces the 

number of possible region-to-region pairs within the MTL. In the bipolar analyses 

considered here, all possible pairs were retained even if they shared a common contact, but 

the bulk of our analyses therefore focus on the average reference. (The use of behavioral 

contrasts and wPLI may mitigate the effect of shared signal between bipolar virtual 

contacts.) 

Anatomical localization 

To precisely localize MTL depth electrodes, hippocampal subfields and MTL cortices were 

automatically labeled in a pre-implant, T2-weighted MRI using the automatic segmentation 
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of hippocampal subfields (ASHS) multi-atlas segmentation method94. Post-implant CT 

images were coregistered with presurgical T1 and T2 weighted structural scans with 

Advanced Normalization Tools 93. MTL depth electrodes that were visible on CT scans were 

then localized within MTL subregions by neuroradiologists with expertise in MTL anatomy. 

MTL diagrams were adapted with permission from Moore, et al.139. 

Data analyses and spectral methods 

To obtain phase-locking values (PLV) and weighted phase lag index (wPLI) between 

electrode pairs, we used the MNE Python software package140, a collection of tools and 

processing pipelines for analyzing EEG data. PLV reflects the consistency of phase 

differences between two electrodes across trials76. wPLI operates similarly to PLV, but 

weights phase differences according to their rotation away from the zero axis, to account for 

volume conduction127. Stated differently, the wPLI weights cross-spectra by the magnitude 

of the imaginary component of the cross spectrum. Therefore, maximum wPLI is achieved if 

phase differences are tightly clustered around 90 (or 270) degrees. Both metrics range from 

0 (no synchronization) to 1 (maximal synchronization).  

To obtain phase information, we convolved signals from each MTL recording contact with 

compelx-valued Morlet wavelets (6 cycles). We used 24 wavelets from 3-60 Hz as follows: 

theta (4-8 Hz, spaced 1 Hz), alpha (9-13 Hz, spaced 1 Hz), beta (16-28 Hz, spaced 2 Hz), low 

gamma (30-60 Hz, spaced 5 Hz). For encoding analyses, each wavelet was convolved with 

4000 ms of data surrounding each word presentation (referred to as a “trial”), from 200 ms 

prior to word onset to 1800 ms afterwards, buffered with 1000 ms on either end (clipped 

after convolution). Retrieval analyses considered 1000 ms of data prior to each retrieval 

event, also buffered with 1000 ms on either end.  

For each subject, for all possible pairwise combinations of MTL electrodes, we compared 

the distributions of phase differences in all remembered trials against all not-remembered 

trials, asking whether there is a significantly higher PLV/wPLI in one or the other. In the 

encoding contrast, values were compared between all epochs where words were later 

remembered versus forgotten. In the retrieval contrast, values were compared between 
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epochs leading up to onset of a verbal recall versus matched periods of time when no recall 

occurred (“deliberation” events, see “Retrieval analysis”). To do this, we found the 

difference of PLV/wPLI across conditions, e.g.: 

    (1) 

Where pq is an electrode pair, f is a frequency of interest, and t is a window in time. Higher 

positive differences (D) indicate greater connectivity for remembered trials, whereas lower 

negative differences reflect greater connectivity for not-remembered trials. D was 

computed for each frequency spanning a range from 3 to 60 Hz, averaged into 100 ms non-

overlapping windows spanning each trial (i.e. word encoding or pre-retrieval event). 20 

windows covered encoding events, from 200 ms prior to word onset to 200 ms after offset. 

10 windows covered retrieval/deliberation events, starting 1 second prior to word onset 

(or 1-second of time during matched deliberation period).  

PLV and wPLI values are biased by the number of vectors in a sample. Since our subjects 

generally forget more words than they remember, we adopt a nonparametric permutation 

test of significance. For each subject, and each electrode pair, the synchrony computation 

described above was repeated 250 times with the trial labels shuffled, generating a 

distribution of D statistics that could be expected by chance for every electrode pair, at each 

frequency and time window. Since only the trial labels are shuffled, the relative size of the 

surrogate remembered and not-remembered samples also reflect the same sample size bias. 

Consequently, the true D (Dtrue) can be compared to the distribution of null Ds to derive a z-

score or p-value. Higher z-scores indicate greater synchronization between a pair of 

electrodes for items that are successfully recalled.  

To construct a network of synchrony effects between all MTL subregions, we pooled 

synchrony effects across electrode pairs that span a pair of subregions, and then pooled 

these subregion-level synchronizations across subjects with that pair of subregions 

sampled. To do this, we first averaged the Dtrue values across all electrode pairs that spanned 

a given pair of subregions within a subject. Next, we averaged the corresponding null 

distributions of these electrode pairs, resulting in a single Dtrue and a single null distribution 
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for each subregion-pair in a subject. We then averaged the Dtrue values and null distributions 

across all subjects with electrodes in a given ROI pair. By comparing the averaged Dtrue to 

the averaged null distribution, we computed a z-score (and corresponding p-value) at each 

frequency and temporal epoch that indicates significant synchrony or asynchrony, 

depending on which tail of the null distribution the true statistic falls.  

Statistical considerations: Our procedure for averaging the true and null statistics across 

subjects enables us to construct whole-MTL networks across datasets in which no single 

subject has electrodes in every region of interest. We compute statistics on these networks 

that leverage their completeness, including overall connection strength (Figure 4.2B) and 

node strengths (Figure 4.3). Such statistics cannot be assessed at the level of individual 

subjects who may only have electrode pairs that span a small subset of MTL regions. 

However, the connection strengths for individual region-pairs can be statistically evaluated 

across subjects using a 1-sample T-test, so long as a sufficient number of subjects have been 

sampled for that pair. To demonstrate the correspondence between these two approaches, 

we correlated the connection weight of population-level z-scores (derived from the 

permutation procedure above) to t-statistics computed derived from a 1-sample T-test on z-

scores from individual subjects. Across all possible region-pairs, connection weights are 

highly correlated between the two methods (Pearson’r r = 0.88, Figure 4.S3).  

Network analyses 

Using the population-level statistics described above, a 14-by-14 adjacency matrix was 

constructed for each of the temporal epochs in encoding/retrieval conditions, for each 

frequency. This matrix represented every possible interaction between all MTL subregions. 

The z-score of the true D relative to the null distribution was used as the connection weight 

of each edge in the adjacency matrix. Negative weights indicate ROI pairs that, on average, 

desynchronized when a word was recalled successfully, and positive weights indicate ROI 

pairs that synchronized when a word was recalled successfully. We zeroed-out any ROI 

pairs in the matrix represented by less than 5 subjects’ worth of data, to limit the likelihood 
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that our population-level matrix is driven by strong effects in a single or very small number 

of individuals (see Figure 4.S1 for subject counts at each pair).  

Since it is possible that collections of weaker connection weights may still account for 

significant structure in our network, we did not apply a z-score threshold before further 

analyses. To assess for the significance of phenomena at the network level, we instead used 

250 null networks that can be constructed on the basis of Ds derived from the shuffled trial 

labels to generate a distribution of chance network-level statistics. True statistics were 

compared to these null distributions to obtain a P-value or z-score (e.g. network-wide 

summed connections weights were computed for true and null networks and reported in 

Fig. 4.2B).  

Adjacency matrices reflect the average connectivity strength during the item presentation 

interval (0–1600 ms) or retrieval period (-1000-0 ms) for each frequency band. To create 

them, we averaged true connection strengths within frequency bands, then averaged across 

all the 100 ms time windows in the encoding/retrieval intervals, and compared the result to 

the time/frequency average from each of the 250 null networks, resulting in a new Z-score 

for the time/frequency-averaged network (e.g. Figure 4.2A).  

In analyses of connectivity timecourses (Figures 4.4-4.6), intervals are marked as significant 

so long as the p-value of PLV/wPLI connectivity exceeds a threshold of  P < 0.05 (relative to 

the null distribution for that epoch) for at least 2 consecutive 100 ms epochs.  

Hub analysis 

To determine which MTL regions act as significant “hubs,” or regions that have enhanced 

connectivity to many other nodes in the network, we use the node strength statistic from 

graph theory (Equation 2)39:  

(2) 

Where k is the node strength of node i, and wij refers to the edge weight between nodes i 

and j. N is the set of all nodes in the network. In this paper, we only use ipsilateral MTL 
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regions to compute the node strength of each region, so as to (1) better reflect the 

engagement of a region with its immediate neighbors and (2) acknowledge the sparser 

sampling of interhemispheric connections. The z-scored connectivity between MTL regions 

is used as the edge weight. To assess the significance of a hub, we used edge weights 

derived from each of the 250 null networks, generated by shuffling the original trial labels 

(see “Network analyses”). For each region, the true node strength is compared to the 

distribution of null node strengths to derive a z-score or p-value. In Figure 4.3, p-values 

were Benjamini-Hochberg corrected for multiple comparisons and thresholded at P < 0.05.  

Analysis of spectral power 

To determine the change in spectral power associated with successful memory encoding or 

retrieval, we convolve each electrode’s signal with complex-valued Morlet wavelets (6 

cycles) to obtain power information. For high-frequency activity (HFA) we used 13 wavelets 

spaced 5 Hz (30-90 Hz). Frequencies, time windows, buffers, and spectral methods are 

otherwise identical to those used in the earlier phase-based analysis (see “Data analyses 

and spectral methods”).  

For each electrode in each subject, we log transformed and z-scored power within each 

session of the free-recall task, which comprises approximately 300 trials. Power values 

were next averaged into non-overlapping 100 ms time bins spanning the trial. To assess the 

statistical relationship between power and later recollection of a word (the power SME), 

power values for each electrode, trial, time, and frequency were separated into two 

distributions according to whether the word was later or not remembered, a Welch’s t-test 

was performed to compare the means of the two distributions. The resulting t-statistics 

were averaged across electrodes that fell in a common MTL region (either hippocampal 

subfields or MTL cortices), generating an average t-statistic per subject. Finally, for all MTL 

regions with more than 5 subjects’ worth of data (all regions except right CA3 met this 

criteria), we performed a 1-sample t-test on the distribution of t-statistics against zero. The 

result is a t-statistic that reflects the successful encoding-related change in power across 
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subjects. We report these t-statistics in time-frequency plots in Figure 4.7B, along with time-

averaged t-statistics in Figure 4.7A (encoding, 400-1100 ms; retrieval, -500-0 ms).  

Retrieval analysis 

To find out whether functional connectivity networks uncovered in the memory encoding 

contrast generalized to different cognitive operations, we further analyzed connectivity in a 

retrieval contrast. This was done in a manner similar to Burke, et al. 2014 as follows: 

For each subject, we identified any 1000 ms period preceding vocal onset of a successfully 

recalled word, so long as that word was not preceded or followed by any other vocalization 

for at least 2 seconds. For each retrieval event, we then searched for a 1000 ms interval 

from a different list during which no successful retrieval (or vocalization) took place, 

occurring at the same time as the original recall relative to the beginning of the recall period 

(30-second recall periods followed each of 25 lists per session). These 1000 ms intervals 

are called “deliberation” intervals, reflecting a time during which a subject was liable to be 

attempting recall. If no match could be found for the exact time of a given recall, we 

searched for, still from a different list, a matched deliberation interval within 2 seconds 

surrounding the onset time of the retrieval event. If no match was available within 2 

seconds, the original recall event was discarded from analysis. In this way, each successful 

retrieval is matched with exactly one deliberation interval, of equal length, from a different 

recall list.  

Analyses of the retrieval contrast were otherwise treated identically to analyses of the 

encoding contrast, described in “Data analyses and spectral methods.”  
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Supplemental Figures 
 

 

 

 

Figure 4.S1. Related to Figure 4.1. Number of subjects contributing to each region 
pair. To construct networks of intra-MTL connectivity, we pooled connectivity effects 
across subjects with electrode pairs that span at least one pair among 14 possible MTL 
subregions. Here we depict the number of subjects who contribute to each pairwise 
estimate in adjacency matrix format, with a minimum of 5 subjects needed to include a 
region-pair in this manuscript’s analysis. 
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Figure 4.S2. Memory-related spectral power at all MTL subregions. Related to Figure 
4.6. For each MTL subregion, the spectral power during successful vs. unsuccessful 
encoding or retrieval epochs was measured for frequencies spanning 4-90 Hz. Left: Time-
frequency plots of the successful vs. unsuccessful encoding contrast. Vertical bars indicate 
word onset and offset. Right: Contrast of successful retrieval vs. deliberation epochs. 
Retrieval occurs at 0.0 seconds, or the rightmost edge of each plot. Subregion acronyms are 
defined in Figure S1.  
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Figure 4.S3. Related to Figure 4.2. Comparison of permutation Z-scores against 1-
sample T statistics. A. Left: Original theta encoding adjacency matrix, reflecting a Z-score 
derived by averaging subject’s connectivity statistics and corresponding null distributions. 
Right: Theta encoding adjacency matrix reflecting T-statistics computed for every possible 
region-pair, via a 1-sample T-test across subject’s individual connection Z-scores. B. T-
statistics and z-scores are highly correlated (Pearson’s r = 0.88) across all assessed region-
pairs.  
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Solomon, E. A., et al. "Medial temporal lobe functional connectivity predicts stimulation-
induced theta power." Nature communications 9.1 (2018): 4437. 

 

Abstract 

Focal electrical stimulation of the brain incites a cascade of neural activity that propagates 

from the stimulated region to both nearby and remote areas, offering the potential to 

control the activity of brain networks. Understanding how exogenous electrical signals 

perturb such networks in humans is key to its clinical translation. To investigate this, we 

applied electrical stimulation to subregions of the medial temporal lobe in 26 neurosurgical 

patients fitted with indwelling electrodes. Networks of low-frequency (5-13 Hz) spectral 

coherence predicted stimulation-evoked increases in theta (5-8 Hz) power, particularly 

when stimulation was applied in or adjacent to white matter. Stimulation tended to 

decrease power in the high-frequency broadband (HFB; 50-200 Hz) range, and these 

modulations were correlated with HFB-based networks in a subset of subjects. Our results 

demonstrate that functional connectivity is predictive of causal changes in the brain, 

capturing evoked activity across brain regions and frequency bands.  
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Introduction 

Intracranial brain stimulation is increasingly used to study disorders of human behavior 

and cognition, but very little is known about how these stimulation events affect neural 

activity. Though several recent studies have demonstrated the ability to modulate human 

memory with direct electrical stimulation (DES) of the cortex47,49–51,53,141,142, none have 

described the mechanism by which stimulation yields altered cognitive states. However, 

understanding how the brain responds to these exogenous currents is necessary to 

ultimately develop therapeutic interventions that rely on DES143,144.  

Specifically, investigators have long have asked whether the brain’s intrinsic functional or 

anatomical architecture can predict how mesoscale stimulation events propagate through 

the brain. Early work focused on inferred connectivity through stimulation-evoked behavior 

in rodents145,146. More recently, Logothetis and colleagues demonstrated that the effects of 

electrical stimulation propagated through known anatomical connections in the macaque 

visual system44,147. In humans, corticocortical evoked potentials (CCEPs), measured with 

intracranial EEG (iEEG), have also been shown to propagate through anatomical and 

functional connections45,148, as has the fMRI BOLD response to stimulation149. These studies 

provide powerful evidence that the effects of stimulation are determined by the 

connectivity profile of a targeted region. More broadly, renewed interest in the idea of the 

brain as a controllable network4,92,150 raises a testable hypothesis in need of empirical 

validation: to what extent does a brain’s network architecture predict the cascade of 

physiologic change that accompanies a stimulation event?  

In this study, we asked whether the functional connectivity of a stimulated region predicts 

where we observe changes in neural activity. To expand on prior work that has examined 

network architecture and stimulation, we adopted a paradigm that (1) focuses on 

stimulation’s effect on low-frequency (theta) power, a cognitively-relevant 

electrophysiological biomarker, and (2) simultaneously considers the structural and 

functional connectivity of a targeted region.  In 26 neurosurgical patients with indwelling 

electrodes, we stimulated different regions of the medial temporal lobe (MTL) and asked 
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whether low-frequency coherence predicted modulations of theta power in distributed 

cortical regions. We showed that coherence was mostly predictive of theta modulation 

when stimulation occurred in or near a white matter tract, but in those cases, stimulation 

could evoke sustained increases in theta power even in distant regions. With this initial 

finding in hand, we expanded our paradigm to consider additional measures of functional 

connectivity and evoked power at higher frequencies. We principally considered the 

amplitude envelope of the high-frequency broadband signal (HFB; 50-200 Hz)151, shown to 

correlate with the resting-state fMRI BOLD correlations that are widely used in network 

neuroscience16,151–153. We demonstrated that while low-frequency coherence accurately 

predicts increases in low-frequency power, HFB-based networks can explain decreases of 

HFB power. Taken together, functional connectivity can predict the widespread changes in 

local spectral power induced by direct electrical stimulation of the MTL. 

 

Results 

Calculating network-mediated activation 

To determine how direct cortical stimulation propagates through brain networks, we 

collected intracranial EEG (iEEG) data from 26 patients undergoing clinical monitoring for 

seizures. Subjects rested passively in their hospital bed while we applied bipolar 

macroelectrode stimulation at varying frequencies (10-200 Hz) and amplitudes (0.25 to 1.5 

mA) to MTL depth electrodes (see online Methods for details). Rectangular stimulation 

pulses were delivered for 500 ms, followed by a 3-second inter-stimulation interval (Figure 

1A-C). Each subject received at least 240 stimulation events (“trials”) at 1-8 distinct sites in 

MTL gray or white matter (mean 2.7 sites; see Table 5.T2 for stimulation locations). During 

a separate recording session in which no stimulation occurred, for each subject we 

computed resting networks of low-frequency (5-13 Hz) coherence, motivated by prior 

literature that shows robust iEEG functional connectivity at low frequencies73,100,154,155. 

These networks reflect correlated low-frequency activity between all possible pairs of 
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electrodes in a subject, during a period when subjects are passively waiting for a task to 

begin (Figure 5.2A).  

For each stimulation trial, we computed theta power (5-8 Hz) in 900 ms windows before 

and after each 500 ms stimulation event, and compared the pre- vs. post-stimulation power 

across all trials with a paired t-test (Figure 5.1D). Next, we used linear regression to 

correlate the strength of a stimulation site’s network connectivity to a recording electrode 

with the power t-statistic at that electrode (Figure 5.2A-D). We included absolute distance 

as a factor in our regression, to only consider how connectivity relates to stimulation 

beyond the brain’s tendency to densely connect nearby regions156. The result is a model 

coefficient that indicates, independent of distance, the degree to which functional 

connectivity predicts stimulation-induced change in theta power at a recording site. The 

regression was repeated using permuted connectivity/evoked power relationships to 

generate a null distribution of model coefficients against which the true coefficient is 

compared. We refer to the resulting z-score as the “network-mediated activation (θ),” or 

NMAθ . High NMAθ indicates functional network connectivity predicts observable 

stimulation-related change in theta power at distant sites.  
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Figure 5.1. Comparison of pre- vs. post-stimulation theta (5-8 Hz) power in an example 
subject. (A) Each of 26 subjects received a series of 500 ms bipolar stimulation events, at 1-7 sites 
within the MTL; an example subject schematic is shown here. (B) Anatomical distribution of all MTL 
stimulation sites in the 26-subject dataset. (C) T2 MRI and MTL subregion segmentation for an 
example subject. Stimulation location, in white matter, is indicated at the red cross. See Figure 5.S1 
for subregion labels. (D) Schematic of a typical stimulation session. Each stimulation site receives 
stimulation at three amplitudes (within the 0.25-2.00 mA range) and five pulse frequencies (50-200 
Hz; see Methods for details). During each session, amplitudes are delivered in 60-trial blocks, within 
which 12 stimulations are delivered at each frequency. For the main results, effects are aggregated 
across all stimulation parameters; see Figure 5.S2 for analysis of stimulation amplitude and 
frequency. (E) Using the multitaper method, theta power (5-8 Hz) was measured in 900 ms windows 
preceding and following each stimulation event, with 50 ms buffers before and after stimulation. In 
an example stimulation event, the 5-8 Hz bandpass signal (orange) is overlayed on the raw bipolar 
signal (blue), to emphasize a change in pre- vs. post-stimulation theta power. (F) Theta power is 
extracted in the pre- and post-stimulation intervals for at least 240 events (“trials”) per stimulation 
site. (G) The log-transformed theta power is aggregated for all pre- and post-stimulation intervals 
separately, for later statistical comparison (Fig. 5.2).  
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NMAθ is correlated with proximity to white matter 

At a group level of stimulation sites, NMAθ was significantly greater than zero (1-sample t-

test, t(71) = 4.18, P = 8.2 × 10-5; Figure 5.3A), indicating that stimulation in the MTL tends to 

evoke network-driven change in theta power in distant regions. However, we noted 

substantial heterogeneity between stimulation sites, with some showing little or no ability 

to modulate network-wide theta activity, as reflected by NMAθ near zero. To explain this 

heterogeneity, we hypothesized that, as earlier work demonstrated44,148,157, structural 

connections (i.e. white matter tracts) may be key to the propagation of electrical stimulation 

throughout the brain. 

To test whether structural connections play a role in stimulation propagation, we asked 

whether NMAθ was correlated with the proximity of a stimulation site to white matter. If 

these measures are correlated, it would indicate that functional connectivity is predictive of 

physiology only insofar as white matter tracts are accessible. We binned stimulation sites 

according to whether they were placed in gray matter (n = 32, lower 50th percentile of 

distances to white matter), near white matter (n = 33, upper 50th percentile of distances to 

white matter), or within white matter (n = 7, manually identified by a neuroradiologist; 

Figure 5.3A; see  Figure 5.S1 for anatomical placement of each white matter target). We 

found that NMAθ was significantly increasing with white matter placement, relative to a 

permuted distribution (permuted P < 0.001; Figure 5.3B). The NMAθ for gray matter sites 

was not significantly different than zero (1-sample t-test, t(31) = 1.4, P = 0.18), while NMAθ 

for sites near or in white matter was significant (P < 0.05). This relationship holds in a 

Pearson correlation agnostic to any electrode categorization (r = 0.33, P = 0.005; Figure 

5.S3). This finding does not mean gray matter stimulation fails to induce theta activity, but it 

does suggest that stimulation far from white matter tracts may result in theta activity that is 

uncorrelated with connectivity to remote sites.  
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Figure 5.2. Method for determining network-mediated activation (NMAθ). (A) For each subject, 
Euclidean distances (left matrix) and functional connectivity (right matrix) are measured for all 
possible electrode pairs. Distances are linearized as e-(distance), with 1.0 representing no separation 
between two electrodes. Functional connectivity is the averaged 5-13 Hz multitaper coherence in 1-
second windows extracted from a baseline period. (B) Pre- and post-stimulation theta power (Fig. 
5.1C) is compared with a paired t-test to generate a t-statistic for each electrode. Electrodes are 
excluded from analysis if they exhibited significant post-stimulation artifact (red, see Methods for 
details) or were placed in the seizure onset zone or exhibit high inter-ictal spiking (orange). (C) 
Multiple linear regression is used to correlate the logit-transformed functional connectivity (between 
a recording electrode and the stimulation electrode) with the power t-statistic, independent of 
distance. To demonstrate this, the distance-residualized t-statistic (“Stim Effect”) is plotted against 
functional connectivity in the example subject. The z-scored version of this correlation is referred to 
as the “network-mediated activation (θ),” or NMAθ. (D) Rendering of the power t-statistic as color on 
each electrode in the example subject, plotted with the top 10% of functional connections to the stim 
electrode (red lines).  

 

To account for the possibility that the theta response is sensitive to the pulse frequency or 

amplitude of stimulation, we asked whether NMAθ differed in accordance with stimulation 

parameters. Across all stimulation sites, NMAθ was marginally greater for trials delivered at 

a subject’s maximum versus minimum amplitude (paired t-test, t(71) = 1.91, P = 0.061; 
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Figure 5.S2-A), but no difference was noted across pulse frequencies delivered at 10 Hz, 50 

Hz, and 200 Hz (repeated measures ANOVA, F = 0.16, P = 0.85; Figure 5.S2-B). Additionally, 

raw evoked power was significantly greater for maximum amplitude stimulation (t(71) = 

3.52, P = 0.0008), but did not reliably differ across pulse frequencies (F = 0.26, P = 0.77; 

Figure 5.S2-B). For the remainder of this study, all analyses consider stimulation events 

aggregated across amplitudes and frequencies. 

Taken together, these results show that direct electrical stimulation of the MTL can induce 

spectral power changes across a distributed network of regions, particularly if stimulation 

occurs in or proximal to white matter. When this occurred, we discovered that functional 

low-frequency coherence is predictive of where stimulation-related modulations in theta 

power are observed.  

 

Figure 5.3. Proximity to white matter predicts NMAθ.  (A) Correlation between a stimulation site’s 
distance from nearest white matter with the site’s NMAθ. The 50th percentile of white matter 
distances divides sites classified as “gray matter” versus “near white matter.” Stimulated contacts in 
white matter are highlighted in green. See Figure 5.S3 for the Pearson correlation of these data (r = 
0.33, P = 0.005). (B) NMAθ increases with closeness to white matter, as determined by a permutation 
test (P < 0.001, see Methods) and by noting that NMAθ for sites in or near white matter are 
significantly greater than zero (1-sample t-test, P < 0.05) while gray matter sites are not (P = 0.15). 
Electrodes placed in white matter have greater NMAθ than electrodes near white matter (2-sample t-
test, P < 0.05) or gray matter (P < 0.01). Error bars show +/- 1 SEM; * P < 0.05; ** P < 0.01.  
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Network properties of MTL stimulation 

Having shown that stimulation in or near white matter sites induces distributed changes in 

theta power, we next sought to characterize the directionality of change. Specifically, high 

NMAθ could be caused by increases in theta power at electrodes with strong functional 

connectivity to the stimulation target, or decreases in theta power at electrodes with weak 

connectivity to the stimulation target. To distinguish between these possibilities, we further 

examined theta power changes among the 16 stimulation sites that exhibited individually 

significant (P < 0.05) NMAθ (see Table 5.T1 for statistics and anatomical placement of each 

significant site). In this subset, we measured the average pre- vs. post-stimulation theta 

power at the five electrodes with the strongest functional connectivity to the stimulation 

site (controlled for distance), and the five electrodes with the weakest functional 

connectivity. At strongly-connected sites, theta power change was significantly positive (1-

sample t-test, t(15) = 5.6, P = 4.0 × 10-5) and significantly greater than power change at 

weakly-connected sites (paired t-test, t(15) = 6.03, P = 1.7 × 10-5; Figure 5.4B). No 

significant power change was observed at sites with weak functional connectivity (1-sample 

t-test, t(15) = 1.5, P = 0.15). Notably, we observed that of the 16 significant sites analyzed 

here, 15 were placed in or near white matter. We conclude that stimulation causes 

increased theta power at strongly-connected sites and little to no change in power at 

weakly-connected sites.  

Principles of network control theory suggest a relation between the connectivity profile – or 

network topology – of a stimulation site and the ensuing change in brain activity. Network 

“hubs,” or regions with strong connectivity to the rest of the brain, exert differential effects 

on overall brain activity versus non-hubs, or regions with strong connections to only a few 

areas150,158. To directly test whether stimulation propagates differently from hub regions, 

we asked whether stimulation-induced theta power correlated with the functional 

“hubness” of a stimulation site. We again took our measure of stimulation-induced activity 

to be the theta power change at the five recording sites with the strongest functional 

connectivity to the stimulation site, and tested this metric against the node strength of a 

stimulation site, an indicator of hubness. For this analysis, we considered all stimulation 
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sites in or near white matter, (n = 40) as these groups both exhibited significant NMAθ (see 

Figure 5.3B). When weak hubs (lower tercile of hub scores; n = 13) were stimulated, power 

change at connected recording sites was significantly greater than zero (1-sample t-test, 

t(12) = 3.6, P = 0.003), but stimulation at strong hubs (upper tercile; n = 14) evoked no 

significant power modulation (t(13) = 0.15, P = 0.87; Figure 5.4D). While counterintuitive, 

this result could suggest that stimulation at a site with many connections may disperse or 

blunt the effect of perturbation, yielding lesser activation in downstream regions. 

Alternatively, hub stimulation does evoke widespread changes in brain activity, but these 

changes tend to be outside the theta band assessed here.  

Our choice of low-frequency (5-13 Hz) functional connectivity as the basis for predicting 

distributed changes in theta power was motivated by prior studies that have shown strong, 

cognitively-relevant connectivity at low frequencies particularly the theta and alpha 

bands73,100,154. However, others have noted significant inter-regional connectivity in the beta 

and gamma bands59. As our study presented a unique opportunity to examine the causal 

nature of functional connectivity, we asked whether functional connectivity in other 

frequency bands is also predictive of downstream power modulations. Among all MTL 

electrodes placed in or near white matter (n = 40), we asked whether NMA was significant 

for networks constructed from any frequency to a maximum of 50 Hz. No frequencies 

outside the alpha/theta bands exhibited significant group-level NMAθ, after correction for 

multiple comparisons (1-sample t-test, P < 0.05, Benjamini-Hochberg correction; Figure 

5.4E). This demonstrates that functional networks constructed from high frequencies (> 13 

Hz) are not predictive of stimulation-induced theta activity.  
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Figure 5.4. Network properties of stimulation-induced theta. (A) Schematic of a stimulation site 
and its most strongly-connected areas (left) or weakly-connected areas (right). (B) For each of 16 
stimulation sites with significant NMAθ (P < 0.05), the average post- vs. pre-stimulation theta T-
statistic is computed for the five strongest-connected electrodes and the five weakest-connected 
electrodes (controlled for distance). Strongly-connected regions are typically areas of the lateral 
temporal, prefrontal, or inferior parietal cortices. Changes at strongly-connected recording sites are 
significantly greater than changes at weakly-connected sites (paired t-test, t(15) = 6.03, P = 1.7 × 10-
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5). (C) Schematic of a hub-like stimulation site (left) and a non-hub stimulation site (right). Hub 
scores are calculated as the node strength, or average of all connection weights to a given electrode. 
(D) For each of 40 stimulation sites in or near white matter, the average post- vs. pre-stimulation 
theta T-statistic is computed for the five strongest-connected recording electrodes. Stimulation of a 
weak hub (lower tercile of hub scores, n = 13) yields significantly greater change in connected 
regions than stimulation of a strong hub (upper tercile of hub scores, n = 14) (2-sample t-test, P = 
0.016).  (E) Average NMAθ across all in or near-white matter stimulation sites, as a function of 
functional connectivity frequency. NMAθ is greatest for networks constructed from theta or alpha 
coherence (5-13 Hz). Corrected for multiple comparisons across all frequencies, NMAθ is significantly 
greater than zero at 11 Hz. Error bars show +/- 1 SEM; * P < 0.05; ** P < 0.01. 

 

Alternative measures of connectivity 

Functional connectivity is a broad domain, generally referring to an array of measures that 

fundamentally reflect timeseries correlations. In addition to the phase-based measures (i.e. 

spectral coherence) used here, other correlations have also been shown to robustly capture 

inter-regional functional dynamics in the human brain. Of particular utility in iEEG 

investigations is the amplitude envelope of high-frequency broadband (HFB; 50-200 Hz), 

shown to reflect neuronal population spiking activity27 and correlated with fMRI BOLD 

activation28. The slow (< 1 Hz) fluctuations of this signal have also been shown to correlate 

with resting-state functional connectivity (rsfMRI)153,159,160. It has recently been 

demonstrated that stimulation perturbs brain networks in accordance with measures of 

functional connectedness, including a modulation of remote cortical excitability45,161. 

We therefore sought to determine whether these established measures of intrinsic 

functional connectivity – HFB amplitude envelope correlation and rsfMRI connectivity – 

also predicted the location of evoked theta power. To do this, we replicated our procedure 

for computing NMAθ, but used HFB amplitude envelope correlation or atlas-based rsfMRI 

connectivity as predictor variables (see Methods for details; see Figure 5.5A for example 

adjacency matrices). As with the low-frequency coherence networks, the result is a z-scored 

statistic (NMAθ) that reflects the degree to which a functional network predicts remote 

changes in theta power. We emphasize that HFB envelope networks – though based on 

extracted high-frequency power – are wholly distinct from 30+ Hz coherence networks 
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assessed earlier; the former is a correlation of the slow variation in a power timeseries, 

while the latter is a measure of high-frequency phase consistency between two signals.   

Though rsfMRI and HFB connectivity measures qualitatively recapitulated our earlier 

finding – NMAθ increases with closeness to white matter – their ability to predict 

downstream changes in evoked theta power was not significant across all stimulation sites 

(HFB-connectivity, t(71) = 1.07, P = 0.28; atlas rsfMRI, t(49) = 0.17, P = 0.87; Figure 5.5B). 

We note that slightly fewer stimulation sites were available for the rsfMRI analysis (n = 50), 

due to subjects where atlas-based measures could not be estimated for a sufficient number 

of electrodes (see Methods for details).  
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Figure 5.5. Alternative measures of connectivity. (A) Example adjacency matrices for two 
subjects, reflecting functional connectivity from low-frequency (5-13 Hz) coherence, correlated high-
frequency broadband envelope (HFB; 50-200 Hz), and atlas-based resting state fMRI (rsfMRI). 
Matrices are organized as in Figure 5.2A. For reference, adjacency matrices of linearized Euclidean 
distance are shown at the far right. Colormap ranges are selected to visually emphasize network 
structure. Values in the HFB envelope and rsfMRI networks are Fisher z-transformed correlation 
coefficients. (B) NMAθ is computed as in Figures 5.2-5.3, using adjacency matrices for each of the 
three measures. NMAθ was binned by distance from white matter, organized as in Figure 5.3B. In 
addition to significant NMAθ in and near white matter using 5-13 Hz coherence networks (P < 0.05), 
we noted marginally significant NMAθ in white matter using atlas-based rsfMRI networks (P < 0.1). 
(C) Distribution of NMAθ for all stimulation electrodes regardless of distance from white matter. 
NMAθ is significantly greater than zero at the group level for 5-13 Hz coherence (1-sample t-test, 
t(71) = 4.18, P = 8.2 × 10-5). Note that the total count of stimulation electrodes is lower for rsfMRI 
connectivity (n = 50) analyses, due to subjects where atlas-based rsfMRI could not be extracted for a 
stimulation electrode; see Methods for details. Error bars show +/- 1 SEM; * P < 0.05; ** P < 0.01. 

 



CHAPTER 5: Perturbation of Brain Networks 
_________________________________________________________________________________________________________ 

104 
 

Though HFB envelope and rsfMRI connectivity did not strongly replicate our finding of 

significant NMAθ using low-frequency coherence, several factors could account for this 

discrepancy. First, stimulation within the unique architecture of the MTL may propagate 

differently than the cortical surface stimulation used in many prior studies – it is possible 

that, at the cortical surface, HFB/rsfMRI connectivity is better predictive of stimulation 

effects than low-frequency coherence. Second, different measures of connectivity may 

differentially predict different kinds of evoked responses. Low-frequency coherence 

successfully predicts low-frequency power, but may fail to accurately predict modulations 

at higher frequencies.  

Evoked responses at higher frequencies 

While our choice to examine the effect of stimulation on theta frequencies was theoretically 

motivated by a vast literature implicating theta oscillations and cognition124, activity in the 

HFB range is a useful marker of population neural activity67, and cognitively-relevant 

oscillatory dynamics are also observed in the alpha, beta, gamma bands (9-13 Hz, 15-25 Hz, 

30-60 Hz, respectively). To account for the possibility that stimulation evokes activity in 

these higher frequency bands, we extended our analysis to consider the correlation 

between low-frequency coherence and induced power in alpha/beta, gamma, and HFB 

ranges. Furthermore, to address the possibility that HFB-based connectivity networks 

(Figure 5.5A) better predict induced local HFB power, we asked about the correlation 

between HFB envelope connectivity and induced power across frequency ranges (see 

Methods for details).  

We first assessed whether stimulation evoked any detectable modulation of power in the 

alpha/beta, gamma, and HFB bands, regardless of relationship to connectivity. To do this, 

we averaged the pre-versus-post stimulation T-statistic across all electrodes in each 

subject’s brain, for each frequency band. The result is an average T-statistic reflecting the 

stimulation-evoked whole-brain change in power at each frequency band. Across all 

stimulation sites, stimulation significantly increased power in the theta, alpha/beta, and 

gamma bands, but significantly decreased power in the HFB range (1-sample T-test, FDR-

corrected P < 0.05; Figure 5.6A-C). However, the power response to stimulation was not 
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uniform across electrodes within a subject; for electrodes that exhibited a strong theta 

response, evoked changes were weaker at higher frequencies (Figure 5.6D), indicating a 

theta-specific effect.  

 

Figure 5.6. Stimulation-induced power across frequency bands.  (A) Stimulation-induced power 
spectrogram for an example electrode from a single subject (stimulation in left MTL white matter, 
recording electrode in left inferior parietal cortex). (B) Post-minus-pre stimulation difference in 
power from the electrode in (A). (C) Whole-brain stimulation-induced power was measured by 
computing a T-statistic on the pre- vs. post-stimulation spectral power at each electrode in a subject, 
and then averaging across electrodes to get an estimate of whole-brain change in power. On average, 
stimulation elevated whole-brain power in the theta (5-8 Hz), alpha/beta (10-25 Hz), and gamma 
(30-50 Hz) bands (1-sample t-test, FDR-corrected P < 0.05). Stimulation decreased power in the HFB 
range (50-200 Hz). (D) For each subject/stimulation site, electrodes were classified by whether they 
exhibited a significant (T > 2) change in theta power induced by stimulation (at least 1 theta-
responsive electrode was found for 47 of the 72 stimulation sites). The stimulation-induced change 
at higher frequencies was computed for this subset of electrodes, to determine whether the power 
response was specific to theta. Across all subjects/stimulation sites, increased power was observed 
in the alpha/beta and gamma range at theta-responsive electrodes, but no effect was observed in the 
HFB range (1-sample t-test, t(46) = 0.25). The bar for induced theta power is delineated by a dashed 
line and shown as a reference only, since theta power was the basis for selecting these electrodes for 
further analysis. Error bars show +/- 1 SEM; * corr. P < 0.05; ** corr. P < 0.01. 
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Given that stimulation evoked changes in spectral power beyond the theta range, we next 

asked whether functional connectivity networks predicted these changes (e.g. computing 

NMAHFB. Corrected for multiple comparisons, low-frequency (5-13 Hz) coherence networks 

only correlated with evoked power in the theta range (1-sample T-test, t(71) = 4.18, FDR-

corrected P < 0.01; Figure 5.7A).  On average, HFB envelope connectivity did not 

significantly predict power modulation at any frequency band. However, given our earlier 

finding of decreases in power in the HFB band (Figure 5.6), we hypothesized that a null 

average effect was obscuring heterogenous – but individually significant – responses to 

stimulation. In other words, for specific subjects, HFB envelope networks could predict 

increases or decreases in HFB power and yield significant correlations in positive or 

negative directions. Indeed, HFB functional connectivity significantly predicted HFB power 

decreases for 7 stimulation sites and power increases for 3 stimulation sites, a total count 

that significantly exceeds the expected false positive rate (binomial test, FDR-corrected P = 

0.009; Figure 5.7B).  

Taken together, functional connectivity measured by low-frequency coherence significantly 

predicts stimulation-evoked power in the theta band, but not induced power at higher 

frequencies. On average, HFB envelope networks do not significantly correlate with evoked 

changes in any frequency band, even HFB power itself. However, the dynamics of 

stimulation appear to be more complex in this high-frequency band; HFB power is often 

decreased by stimulation – unlike the theta response – and for a significant number of 

stimulation sites, both low-frequency coherence and HFB functional connectivity predict 

where in the brain such decreases are observed. 
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Figure 5.7. Power response at higher frequencies. (A) The average NMA – reflecting the degree to 
which functional connectivity predicts changes in spectral power – was computed for theta (5-8 Hz), 
alpha/beta (10-25 Hz), gamma (30-50 Hz), and HFB (50-200 Hz) bands for all 72 MTL stimulation 
sites. Functional connectivity was measured as 5-13 Hz coherence (left) and HFB amplitude 
correlation (right; see Methods for details). Across all stimulation sites, 5-13 Hz coherence 
significantly predicted changes in theta power, as demonstrated in Figure 5.2 (1-sample t-test, t(71) 
= 4.18, corrected P < 0.01). HFB amplitude correlations did not significantly predict power changes in 
any band. (B) To account for the fact that connectivity could predict decreases or increases in power, 
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each stimulation site was classified by whether its functional connectivity profile significantly 
predicted decreases (blue) or increases (green) power (two-tailed P < 0.05). The count of significant 
stimulation sites are depicted as stacked bars; the expected false positive rate (P = 0.05) is indicated 
as a dashed line. Note that though HFB amplitude correlations do not significantly predict changes in 
HFB power on average (panel A), the count of stimulation sites where connectivity significantly 
predicts changes in HFB power is significantly greater than chance (7 decreases, 3 increases; 
binomial test, corrected P < 0.01). Error bars show +/- 1 SEM; * corr. P < 0.05; ** corr. P < 0.01. 

  

Discussion 

We set out to test a fundamentally simple hypothesis: Do functional connections in the brain 

predict how focal electrical stimulation flows from one region to another? Though critical to 

the future of brain stimulation and therapeutic development, this hypothesis has not seen 

rigorous testing. Prior studies indicate that connectivity plays a role in how stimulation 

events perturb distant brain regions44,45,149,157, but fundamental assumptions of graph-

theoretic models remain untested92. More broadly, no prior studies have addressed whether 

iEEG-based functional connectivity indicates anything about causal relationships in the 

brain, or whether is it merely a correlative measure. Here we specifically tested a 

hypothesis about the effects of stimulation on theta power, given an especially rich 

literature showing the cognitive relevance of theta oscillations115,121,123,162. To account for 

possible dynamics outside this range, we extended several key analyses to alpha/beta, 

gamma, and high-frequency broadband power, and further considered whether 

functionally-derived measures of connectivity better capture the effects of stimulation-

induced power.  

We discovered that (1) modulation of theta power is correlated with functional 

connectivity, particularly if stimulation occurred in or near white matter, (2) stronger 

functional connections yield greater theta power increases, (3) low-frequency coherence 

better predicts downstream increases in theta power than HFB envelope or rsfMRI 

networks, and (4) in specific cases HFB envelope networks do succeed in predicting 

modulations in HFB power. These results suggest that stimulation evokes a heterogenous 

mixture of effects across frequencies, and that functional networks may best predict the 

frequency on which they were based.  
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The meaning of functional connectivity is a subject of considerable debate. Correlated 

activity between two parts of the brain may reflect direct connection between the two, an 

indirect connection through a third region, or the activity of a third region independently 

driving activity in each36. Though most neuroscientists are aware of such limitations, 

functional connectivity is often implicitly treated as a measure of causality nonetheless. Our 

use of targeted stimulation allowed us to test whether this implicit assumption is true. Our 

results generally support the idea that functional connectivity indicates causal relations in 

the brain; when stimulation occurs in or near white matter, we could predict where power 

changes would occur based on distance-independent measures of low-frequency functional 

connections. This finding aligns with observations that intrinsic functional connectivity in 

MRI is constrained by white matter anatomy163. However, substantial variance in power 

modulation remained unexplained by connectivity, and we also showed that propagation of 

gray matter stimulation – still rich with functional connections – cannot be predicted in the 

same way.  

HFB amplitude envelope networks and atlas-based rsfMRI networks failed to strongly 

predict remote changes in theta power. However, earlier reports suggest that these 

functionally-relevant measures do correlate with CCEPs and changes in cortical 

excitability45,161. To explain this discrepancy, we note that there are several key differences 

between those reports and the present study. First, we solely examined the effect of medial 

temporal lobe stimulation, which has a distinct architecture that may affect how stimulation 

propagates to other regions – effects of stimulation at the cortical surface, as in prior 

studies, could differ markedly. Relatedly, we used stimulation amplitudes that are lower 

than those typically used at the cortical surface (< 2mA versus > 4mA). Finally, while HFB 

envelope networks did not successfully predict remote changes in theta power, they more 

accurately correlated with remote decreases in HFB power – it is possible that networks 

based on measures of cortical activation are better predictors of how stimulation affects 

those same measures.  

In this study, we also assessed the relationship between stimulation and the network 

topology of a targeted region. Specifically, we asked whether the downstream effects of 
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stimulation differed between hubs and non-hubs, reflecting regions that are richly or 

sparsely connected. Counterintuitively, we found that stimulation of non-hubs yielded 

greater increases in theta power at downstream sites. It is possible that (1) hub stimulation 

does result in greater distributed power changes, but outside the theta band, or (2) hub 

stimulation results in a dispersal or blunting effect, causing widespread change but limiting 

the magnitude of the effect at any single downstream site. Such a result is plausible if there 

is an interaction between the underlying brain structure and the effect of stimulation – it 

has been demonstrated that stimulation less effectively activates large-diameter axons, for 

example164. Furthermore, principles of network control theory postulate that stimulation of 

sparsely connected regions can be efficacious for moving the brain to “difficult-to-reach” 

states, or states that require significant cognitive effort to achieve92,150,158. However, the 

mapping between spectral power and “brain states” in a cognitive sense remains unclear; 

further empirical and theoretical work should aim to clarify how control theoretic 

predictions can be tested with common intracranial techniques.    

The findings from this study could be extended in several ways. A recent study by Keller, et 

al. (2018) asked whether a multivariate model could predict how direct brain stimulation 

alters remote cortical excitability161. A similar approach could be adopted with these data, 

wherein multimodal measures of connectivity – e.g. coherence, HFB-envelope, and white 

matter proximity – could be used to predict the stimulation response across locations and 

frequency ranges. Such an approach could reveal relationships that were obscured by the 

univariate methods in this manuscript; gray matter targets, for instance, may induce 

widespread, connectivity-related changes in specific frequencies that are predictable by a 

weighted combination of functional networks. Additionally, our study as designed was 

agnostic to the directionality of induced effects; especially in the setting of direct white 

matter stimulation, we expect that our results reflect a combination of prodromic and 

antidromic propagation. In other words, stimulation of MTL structures is potentially 

inducing activity in input and output regions, though the undirected measures of functional 

connectivity used here are unable to tease those effects apart. 
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We solely analyzed stimulation through the lens of changes in brain physiology. However, 

with an eye towards the eventual therapeutic use of stimulation, the results here begin to 

bridge prior studies of stimulation and behavior with underlying neural mechanisms. A 

recent study reported decreases in episodic memory performance during stimulation at 

certain times, associated with increases in cortical theta power51. Additionally, memory 

performance was noted to increase with theta-burst stimulation of the perforant path, a 

major white matter tract of the MTL49. Deep brain stimulation targeted to white matter 

tracts has also been shown to improve outcomes in treatment-resistant depression144. 

Collectively, these findings are supported by the results here – white matter stimulation 

appears to evoke remote increases in neural activity. Few studies have deeply examined 

stimulation-induced changes in physiology with behavioral enhancement, though our 

approach outlined here enables us to do exactly that in future work.  

Here we demonstrated that functional connections in the human brain inform how 

stimulation evokes remote changes in neural activity. This is powerful new evidence that, 

even in the absence of knowledge about an individual’s structural connectome, functional 

connectivity can reflect causality in the brain – a finding with significant implications for 

how neuroscientists interpret inter-regional correlations of neural activity. Furthermore, by 

showing that stimulation-evoked changes interact with the functional hubness of a targeted 

site, we provided a critical data point for the application of network control theory to real-

world brain dynamics.  

Methods 

Participants 

Twenty-six patients with medication-resistant epilepsy underwent a surgical procedure to 

implant subdural platinum recording contacts on the cortical surface and within brain 

parenchyma. Contacts were placed so as to best localize epileptic regions. Data reported 

were collected at 8 hospitals over 4 years (2015-2018): Thomas Jefferson University 

Hospital (Philadelphia, PA), University of Texas Southwestern Medical Center (Dallas, TX), 

Emory University Hospital (Atlanta, GA), Dartmouth-Hitchcock Medical Center (Lebanon, 
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NH), Hospital of the University of Pennsylvania (Philadelphia, PA), Mayo Clinic (Rochester, 

MN), National Institutes of Health (Bethesda, MD), and Columbia University Hospital (New 

York, NY). Prior to data collection, our research protocol was approved by the Institutional 

Review Board at participating hospitals, and informed consent was obtained from each 

participant.  

Electrocorticographic recordings 

iEEG signal was recorded using depth electrodes (contacts spaced 3.5-10 mm apart) using 

recording systems at each clinical site. iEEG systems included DeltaMed XlTek (Natus), 

Grass Telefactor, and Nihon-Kohden EEG systems. Signals were sampled at 500, 1000, or 

1600 Hz, depending on hardware restrictions and considerations of clinical application. 

Signals recorded at individual electrodes were first referenced to a common contact placed 

intracranially, on the scalp, or mastoid process. To eliminate potentially confounding large-

scale artifacts and noise on the reference channel, we next re-referenced the data using a 

bipolar montage. Channels exhibiting highly non-physiologic signal due to damage or 

misplacement were excluded prior to re-referencing. The resulting bipolar timeseries was 

treated as a virtual electrode and used in all subsequent analysis. Raw electrophysiogical 

data and analysis code used in this study is freely available at 

http://memory.psych.upenn.edu/Electrophysiological_Data. 

Anatomical localization 

To precisely localize MTL depth electrodes, hippocampal subfields and MTL cortices were 

automatically labeled in a pre-implant, T2-weighted MRI using the automatic segmentation 

of hippocampal subfields (ASHS) multi-atlas segmentation method94. Post-implant CT 

images were coregistered with presurgical T1 and T2 weighted structural scans with 

Advanced Normalization Tools93. MTL depth electrodes that were visible on CT scans were 

then localized within MTL subregions (including white matter) by neuroradiologists with 

expertise in MTL anatomy. All localizations in this manuscript refer to the bipolar midpoint 

of two recording contacts or the anode/cathode stimulation contacts. 

http://memory.psych.upenn.edu/Electrophysiological_Data
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Functional connectivity estimation 

To obtain coherence values between electrode pairs, we used the MNE Python software 

package140, a collection of tools and processing pipelines for analyzing EEG data. The 

coherence (Cxy) between two signals is the normalized cross-spectral density (Equation 1); 

this can be thought of as the consistency of phase differences between signals at two 

electrodes, weighted by the correlated change in spectral power at both sites.  

    (1) 

Where Sxy is the cross-spectral density between signals at electrodes x and y; Sxx and Syy are 

the auto-spectral densities at each electrode. Consistent with other studies of EEG 

coherence33,165, we used the multitaper method to estimate spectral density. We used a 

time-bandwidth product of 4 and a maximum of 8 tapers (tapers with spectral energy less 

than 0.9 were removed), computing coherence for frequencies between 4-50 Hz, avoiding 

the 60 Hz frequency range that may be contaminated by line noise. Inter-electrode 

coherences were computed for a series of 1-second windows extracted sequentially from 

10-second baseline periods of a non-stimulation task, in which subjects wait passively 

before beginning a verbal free-recall task. Each subject typically had 24-72 such baseline 

periods, but all had a minimum of 10 (i.e. the minimum total number of windows used for 

network estimation was 100). To construct the low-frequency networks used in the 

majority of this paper, cross-spectra were first averaged across all baseline period windows, 

normalized by the average power spectra, and then averaged between 5-13 Hz. For the 

analysis in Figure 5.4E, networks are constructed for each frequency between 4-50 Hz with 

no averaging over bands.  

Stimulation paradigm 

At the start of each session, we determined the safe amplitude for stimulation using a 

mapping procedure in which stimulation was applied at 0.5 mA, while a neurologist 

monitored for afterdischarges. This procedure was repeated, incrementing the amplitude in 

steps of 0.5 mA, up to a maximum of 1.5 mA (chosen to be below the afterdischarge 
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threshold and below accepted safety limits for charge density166). For each stimulation 

session, we passed electrical current through a single pair of adjacent electrode contacts in 

the MTL. Stimulation was delivered using charge-balanced biphasic rectangular pulses 

(pulse width = 300 μs) at (10, 25, 50, 100, or 200) Hz frequency and (0.25 to 2.00) mA 

amplitude (0.25 mA steps) for 500 ms, with a minimum of 3 seconds between stimulation 

events. During a session, subjects were instructed to sit quietly and did not perform any 

task. An average of 2.7 stimulation sites were selected for each subject, with a minimum of 

240 trials delivered for each. In a typical stimulation session, a given target would receive 

360 total stimulation events, in blocks of 60 trials at each amplitude, with 12 randomly-

spaced trials at each frequency within the block (Figure 5.1D). For all analyses in the main 

text, effects were aggregated across stimulation parameters; see Figure 5.S2 for 

consideration of stimulation frequency and amplitude.  

In most subjects, a post-stimulation voltage deflection artifact briefly contaminates a subset 

of recording contacts. To identify and remove channels exhibiting this artifact, the average 

voltage in the 350 ms prior to stimulation is compared with a paired t-test to the average 

voltage in the 350 ms after stimulation, across all trials, for each channel. The same 

procedure is done with a levene test for different variances. Any electrode with a 

significantly different pre-vs.-post mean voltage or voltage variance (P < 0.01) is excluded 

from further analysis (see “Estimating theta modulation index”). On average, this procedure 

excludes 28% of channels. Regardless of stimulation artifact, any bipolar pair is excluded 

from analysis if it shares a common contact with the stimulated pair. See Figure 5.S4 for a 

representative example of this artifact.  

Spectral power analysis 

We used the multitaper method to assess spectral power in the pre- and post-stimulation 

intervals (-950 to -50 ms relative to stimulation onset, and +50 to +950 ms after stimulation 

offset; Figure 5.1B). We avoided the Morlet wavelet method to obviate the need for buffer 

periods that extend into the stimulation window. As in “Functional connectivity estimation,” 

we used the MNE Python software package. For each trial, theta power was taken as the 
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average PSD from 5-8 Hz, using a time-bandwith product of 4 and excluding tapers with < 

90% spectral concentration. To compute a T-statistic at each electrode, the pre- vs. post log-

transformed power values were compared with a paired t-test (Fig. 5.1G, Fig. 5.2B). We 

avoid calculating significances for individual electrodes because sequential trials are non-

independent events; T-statistics are only used for later correlation analysis (see “Estimating 

network-mediated activation”).  

For analyses that considered spectral power at higher frequencies (Figures 5.6-7), we used 

the following bands: alpha/beta (10-25 Hz), gamma (30-50 Hz), and high-frequency 

broadband (50-200 Hz). Power was otherwise computed exactly as described for theta. To 

measure whole-brain evoked power (Figure 5.6), we took the average T-statistic across all 

electrodes in each subject’s brain, subject to the same exclusion criteria described in 

“Estimating network-mediated activation.” Additionally, we excluded electrodes with T-

statistics greater than 10 from the whole-brain average, to account for raw power values 

that are potentially corrupted by post-stimulation artifact which survives our exclusion 

procedure (their inclusion does not notably change the main results).  

Estimating network-mediated activation 

To examine the relationship between stimulation and functional connectivity, we developed 

an index that reflects the correlation between theta power modulation and connectivity, 

independent of distance. To do this, we first construct low-frequency (5-13 Hz) networks as 

described in “Functional connectivity estimation,” and take the logit transform to linearize 

coherence values that fall between 0 and 1. We also construct adjacency matrices that 

reflect the normalized Euclidean distance between all possible pairs of electrodes (Fig. 

5.2A), and linearize the distances by taking the reciprocal of their exponential (i.e. a 

Euclidean distance of zero would correspond to 1.0). For each stimulated electrode, we take 

that electrode’s distance and connectivity to all other electrodes as predictors of the theta 

power t-statistic (see “Spectral power analysis) in a multiple linear regression. This controls 

for the effect of distance from a stimulation target, which is correlated with power and 

functional connectivity. Next, we permute the order of the predictors 1000 times and re-run 
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the regression for each. The true coefficient for functional connectivity is compared to the 

distribution of null coefficients to obtain a z-score and p-value for each stimulation site. The 

z-score is referred to as the network-mediated activation, or NMA.  

Prior to computing NMAθ, we excluded electrodes placed in the seizure onset zone or 

exhibiting significant inter-ictal spiking, as determined by a clinician. Electrodes with high 

post-stimulation artifact (see “Stimulation paradigm”), and stimulated electrodes 

themselves, were also excluded. Subjects were discarded if less than 10 electrodes 

remained after all exclusions.  

To analyze the relationship between NMAθ and white matter category (Fig. 5.3), we first 

binned electrodes according to their distance from nearest white matter. Distance were 

measured as the linearized Euclidean distance from a stimulation electrode (i.e. bipolar 

midpoint of the anode/cathode) to the nearest vertex of that subject’s Freesurfer white 

matter segmentation167 based on T1 MRI. The 50th percentile of white matter distances 

marked the division between stimulation electrodes categorized as “near” white matter 

versus in gray matter. Seven stimulation electrodes were identified by expert 

neuroradiologists as being placed within white matter (see Figure 5.S1 for exact 

placements). To ask whether NMAθ increases with white matter category, permuted the 

white matter labels for each electrode 1000 times and took the minimum T-statistic 

between gray vs. near and near vs. in categories at each permutation. We then compared 

the minimum T-statistic in the true data to the distribution of null statistics to generate a p-

value.  

Network properties of stimulation 

To determine how the network structure of a stimulation site affected downstream 

alterations in theta power (Fig. 5.4), we first analyzed the relationship between pre- vs. 

post-stimulation theta power and the strength of functional connectivity to a stimulation 

site (Fig. 5.4A-B). For each stimulation site with a significant NMAθ (P < 0.05), we ranked all 

other electrodes by the strength of their functional connectivity to that site, residualized on 

Euclidean distance (e-dist). We then took the average power T-statistic (see “Spectral power 
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analysis”) across the 5 strongest-connected sites and the 5 weakest-connected sites, to 

assess whether theta power changes correlated with the strength of a functional 

connection.  

To assess whether the effects of stimulation differ between hubs and non-hubs (Fig. 5.4C-

D), we measured the node strength37 for each stimulation site in or near white matter 

(n=38), using our low-frequency coherence networks (see “Functional connectivity 

estimation”). The node strength reflects the sum of all connection strengths to a given node 

(for this paper, we normalized node strength by the total number of possible connections 

for a given site, yielding strengths in the range from 0 to 1). For all stimulation sites, we 

binned hub scores by tercile, and took the highest tercile as “strong hubs,” the weakest 

tercile as “weak hubs” (n=13 for each). For stimulation at all strong and weak hubs, we took 

the average power T-statistic for the 5 strongest-connected electrodes. These values were 

used to assess whether hub stimulation tends to cause greater power changes in connected 

regions. The relationship between coherence frequency and theta modulation index (Figure 

5.4E) was assessed by re-estimating the NMAθ (see “Estimating network-mediated 

activation”) using spectral coherence networks observed for each frequency between 4-50 

Hz, spaced by 1Hz, for all stimulation electrodes placed within or near white matter. The 

average NMAθ across sites/subjects was 1-sample t-tested against zero and p-values were 

FDR corrected for multiple comparisons (corrected P < 0.05). For visualization purposes 

only, the displayed NMAθ/frequency curve was smoothed with a 3-point moving average 

window.  

Alternative connectivity metrics 

HFB amplitude envelope correlation: Networks of correlated high-frequency broadband 

(HFB; 50-200 Hz in this manuscript) amplitude envelopes were computed in a manner 

similar to Foster, et al. (2015)153. The general approach is to low-pass filter HFB spectral 

power during a resting period, and the resulting timeseries are correlated between 

recording electrodes to construct an adjacency matrix. Specifically, in a non-stimulation 

memory task, we extracted 240-second (4 minute) resting periods between any task events. 
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Resting periods were identified by searching for the maximum amount of time between task 

events; in some subjects, 240-second intervals were not available but timeseries were still 

extracted for that length in the best-possible period. Signals were bipolar re-referenced and 

notch filtered, sequentially band-passed in 10 Hz windows from 50-200 Hz, Hilbert 

transformed and normalized to the mean amplitude, and then averaged across bands. 

Finally, to estimate the slow variation in this signal as a basis for inter-regional correlation, 

we low-pass filtered the HFB amplitude (< 1 Hz), and computed the Pearson correlation 

coefficient between the resulting signals between all possible pairs of electrodes within a 

subject, yielding an adjacency matrix of correlations. The resulting correlations were Fisher 

z-transformed and then used as predictors of modulations in power (see “Estimating a theta 

modulation index”).  

Atlas-based rsfMRI: We used an independent dataset of resting state functional MRI from the 

Human Connectome Project (HCP)168 to estimate functional connectivity between recording 

sites in each patient. For each patient, we mapped the location of subdural and depth 

electrodes to the HCP grayordinate space169. For subdural electrodes, we assigned vertices 

on the cortical surface mesh within 3mm (geodesic distance) of each recording site to a 

region of interest (ROI). The coordinates in the native space of each subject were then 

mapped to the standard fs_LR mesh (i.e., HCP surface space). The location of subcortical 

contacts in native space were transformed to MNI space using Advanced Normalizations 

Tools170, with spherical ROIs centered at each bipolar midpoint.  Adjacency matrices for 

each subject were constructed by computing the average connectivity (fisher-transformed 

timeseries correlations) between all grayordinates from each pairwise combination of ROIs, 

provided by the group-averaged (n=897 subjects) dense connectome. These adjacency 

matrices were subsequently used to determine whether fMRI defined networks provide a 

scaffold for the propagation of brain-wide theta power following direct electrical 

stimulation.   
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Supplemental Figures 
 

 

 

 

Table 5.T1. Stimulation sites with significant (P < 0.05) network-mediated activation. 
P-value were calculated relative to a null distribution; 0 indicates the true correlation 
exceeded all 1000 observed null correlations. Distances are reported as e-(dist), where 1 
indicates electrodes placed in white matter. Legend: WM, white matter; sub, subiculum; 
amy, amygdala; prc, perirhinal cortex; phc, parahippocampal cortex. “mtl wm” refers to any 
white matter in the parahippocampal gyrus.  

 

 

 

 

 

 

Subject ID Z P Region Distance from WM 

1096 3.016455 0 left ca1 0.989909 

1101 3.411592 0.001 left fusiform gyrus wm 1 

1113 1.72762 0.044 left sub 0.99386 

1114 3.606953 0 left mtl wm 1 

1114 1.659178 0.041 left amy 0.950779 

1115 1.627038 0.045 left sub 0.99555 

1120 3.919829 0 left mtl wm 1 

1122 2.604052 0.003 right sub 0.995395 

1125 1.737326 0.043 left prc 0.988886 

1125 1.750235 0.027 left prc 0.981156 

1125 3.090451 0.005 left phc 0.997158 

1134 1.877686 0.034 left prc 0.994108 

1144 1.647388 0.039 left phc 0.994771 

1144 1.695835 0.048 left sub 0.995736 

1144 2.851826 0.014 left sub 0.994648 

1153 2.043864 0.021 left phc 0.995562 

1163 3.423 0 left prc 0.990563 
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Stimulation region Count 
left amy 1 
left ca1 10 
left dg 3 
left ec 2 
left phc 5 
left prc 12 
left sub 6 
left mtl wm 5 
right amy 1 
right ca1 13 
right ca2 1 
right dg 3 
right ec 2 
right prc 5 
right sub 1 
right mtl wm 2 

 

Table 5.T2. Count of stimulation sites for each MTL subregion. Abbreviations are listed 
in legend for Table 5.T1. 
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Figure 5.S1. MRI and electrode placements in white matter. In 6 subjects (7 distinct 
stimulation sites), bipolar stimulation electrode midpoints fell directly in MTL white matter, 
indicated by red crosses at the midpoint of the anode/cathode contacts. Overlaid 
segmentations show MTL subregions, according to the color legend above (no segmentation 
available for subject 1122). PHC, parahippocampal cortex; BA36, Broadmann area 36; BA35, 
Broadmann area 35/perirhinal cortex; EC, entorhinal cortex; SUB, subiculum; DG, dentate 
gyrus. 
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Figure 5.S2. Analysis of stimulation parameters on evoked power and theta network-
mediated activation (NMAθ). For each stimulation site, stimulation parameters were 
varied across amplitudes (three amplitudes, typically between 0.5-2 mA, 0.25 mA apart) 
and frequencies (10, 25, 50, 100, 200 Hz; see Methods for details). (A) The average theta (5-
8 Hz) power evoked by stimulation (measured as the average pre-vs.-post T-statistic across 
the top 5 most strongly-connected electrodes to the stimulation target) is sensitive to 
stimulation amplitude, comparing the evoked power with the minimum delivered 
amplitude versus the maximum amplitude at each stimulation site (paired T-test, P < 
0.001). The theta network-mediated activation (NMAθ; see Figure 5.3 and Methods for 
details) is marginally sensitive to amplitude (P < 0.1). (B) Repeated measures ANOVA 
indicated no effect of sitmulation frequency (measured at 10 Hz, 50 Hz, 200 Hz) on evoked 
power or NMAθ. Error bars show +/- 1 SEM. 
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Figure 5.S3. Correlation of NMAθ and distance to nearest white matter. There is a 
significant linear relationship (r = 0.33, P = 0.005) between an electrode’s network-
mediated activation in the theta band (NMAθ) and distance to nearest white matter (e-(dist), 
where 1 indicates placement within white matter). 

 

 

 
Figure 5.S4. Depiction of post-stimulation artifact. A subset of channels (average of 28% 
per subject) exhibited a non-physiologic post-stimulation artifact, characterized by a slowly 
decaying voltage offset immediately after the last stimulation pulse. A typical example of 
this artifact for one stimulation event, is shown on the left, and 10 representative examples 
are shown on the right, demonstrating their consistency across events. The red bar 
indicates the 350 ms post-stimulation period used to assess a channel for rejection (see 
Methods). Blue dashed lines indicate the 500 ms stimulation interval. For a representative 
artifact-free trace, see Figure 5.1E-F.  
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CHAPTER 6: 

CHAPTER 6: Conclusions 
 

Developing an effective implantable memory therapeutic requires two key understandings: 

(1) what are the patterns of endogenous brain activity that define successful episodic 

memory, and (2) how does intracranial stimulation alter ongoing brain activity? Here we 

examined “brain activity” principally through the lens of iEEG-based network connectivity, 

to expand upon a more developed literature on purely local activity.  To address these 

questions, this dissertation covered three core investigations. First, we assessed local 

activity and inter-regional connectivity at the whole-brain level during episodic memory 

performance, identifying widespread theta synchronization associated with increased local 

processing. Next, we assessed inter-regional coupling within the medial temporal lobe 

(MTL), a collection of structures specialized for episodic memory. We found that our 

findings at the whole-brain level recapitulated at the mesoscale level – MTL subregions 

tended to couple at theta frequencies during successful episodic encoding and retrieval, 

with a particular focus on the entorhinal cortex. Finally, we used intracranial stimulation to 

assess whether low-frequency connections suggest causal relations in the brain, confirming 

that stimulation-evoked activity propagates through low-frequency functional connections. 

Taken together, these findings suggest a critical generality to low-frequency connectivity as 

a neural phenomenon. It is found at multiple spatial scales, across widespread regions, and 

likely reflects some level of causal interaction between brain regions. Additionally, the 

phenomenon is manifest during episodic memory encoding, retrieval, and during non-task 



CHAPTER 6: Conclusions 
_________________________________________________________________________________________________________ 

125 
 

resting states. Until these studies were conducted, it was unclear as to whether or not low-

frequency connectivity is specific to particular substructures (e.g. prefrontal cortex vs. 

hippocampus) in particular tasks. This new understanding directly informs the use of low-

frequency connectivity as a biomarker for successful memory processing – if low-frequency 

connectivity is not observed, especially within the MTL, episodic encoding may not proceed 

properly. Furthermore, clinical interventions that can enhance low-frequency connections 

may prove to be effective memory therapeutics.  

This work was exclusively conducted using intracranial EEG, which is both a strength and a 

weakness. By demonstrating that low-frequency connectivity is correlated with successful 

episodic memory, we provide a key link between findings from fMRI and the actual 

electrical activity in the brain; under both modalities, we observe coupling within the MTL, 

and between the MTL and cortical regions of the memory network (i.e. prefrontal cortex, 

lateral temporal cortex, and posterior parietal cortex)7,10. As the interpretation of fMRI 

BOLD correlations are a subject of perpetual debate, qualitative correlations with neurally-

derived electrical networks supports the continued use of this powerful noninvasive 

modality. However, as with all iEEG studies, we note that all the data analyzed here was 

recorded from brains with severe epilepsy – limiting their generalizeability to neurotypical 

populations. Additionally, to the extent that this work informs eventual therapeutic devices, 

such devices must involve invasive neurosurgery; future investigations to ask whether 

noninvasive stimulation (see “Brain Stimulation,” Chapter 1) can recapitulate these findings.  

Though the findings in this dissertation unequivocally speak to the important of theta 

connectivity, it remains an open question as to how other frequencies may contribute to 

inter-regional communication. Notably, we observed strong inter-regional coupling in the 

alpha (9-13 Hz) band in the whole-brain analysis (Chapter 3), though this effect was less 

prominent within the medial temporal lobe (Chapter 4). Furthermore, though our data 

largely speak against a prominent role for high-frequency (e.g. gamma, 30+ Hz) inter-

regional synchrony, there are a number of instances in the literature which do suggest 

transient gamma oscillations may be coordinated across space55,59. The studies done here 

were typically not powered to detect such effects; time-averaging across the encoding and 
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retrieval epochs, for example, could obscure such transient phenomena. Future studies 

could uncover to what extent different low-frequency bands support inter-regional 

communication (or different types of inter-regional communication), and whether high-

frequency coupling has a mechanistically important role to play.  

This thesis largely left unanswered how theta-band coupling supports memory encoding, 

even as it quantified the extent to which it exists. Current theories posit that coordinated 

oscillations support spike-timing dependent plasticity (STDP), effectively linking neurons 

that may represent different featural aspects of an item to be encoded in memory55,171. 

Relatedly, low-frequency synchronization may encourage more high-fidelity transmission of 

information from one region to another, by simultaneously optimizing the excitability of 

two regions70. Another possibility is that synchrony emerges as an epiphenomenon of 

another underlying process that causes similar patterns of activity across space, even as 

two regions are not explicitly linked.  

Ultimately, determining the precise mechanistic role of theta in episodic memory processes 

will require a convergence across experimental modalities and integration over spatial 

scales: animal models, in which cellular-scale manipulations can uncover the way in which 

theta oscillations modulate synaptic plasticity; further human studies, in which more subtle 

behavioral contrasts can precisely localize theta oscillations to a particular cognitive 

function; and stimulation experiments in animals or humans to demonstrate the causal role 

of theta activity.  

In these experiments, we convincingly demonstrated that intracranial stimulation could 

elicit theta activity across a distributed network of regions, in accordance with functional 

connections. However, this is not an explicit demonstration of induced theta connectivity 

itself. Though a single recent study started to ask whether targeted stimulation can induce 

theta coherence between brain regions172, the space is largely unexplored. For example, a 

theoretical successful cognitive therapeutic must (1) induce characteristic signature of local 

activity (i.e. increases in HFA, and increases/decreases in theta for particular areas), and (2) 

induce inter-regional low-frequency connectivity between key memory structures. Though 

we now have some grasp on how local activity is modulated by stimulation, we do not know 
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what stimulation paradigms – if any – can evoke a desired pattern of inter-regional 

connectivity. Future studies should seek to rigorously explore how single-target stimulation 

alters ongoing patterns of functional connectivity, and whether multi-target simultaneous 

stimulation could be more efficacious.  

Taken together, by applying principles of graph theory to a large intracranial dataset, the 

work in this dissertation extended the active frontiers of cognitive and network 

neuroscience. We uncovered, for the first time, a whole-brain network of electrical 

connections – previously unobservable with limited amounts of intracranial data. We also 

demonstrated that theta coupling generalizes to smaller scales, and provided a map of 

memory-related functional connections within the human medial temporal lobe. Finally, we 

demonstrated that intracranial stimulation can be used to probe the physiologic meaning of 

functional connectivity. Substantial work remains to build on these findings, but we hope 

this work lays a foundation that can be used by cognitive neuroscientists and clinicians 

alike.  
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